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Abstract. The well-known Carlson–Schneider inertia theorem for finite matrices, satisfying the
Lyapunov equation with a semi-definite right-hand side, is extended to linear operators acting on
an infinite dimensional Hilbert space. The proofs use extensively the theory of linear operators
acting on indefinite inner product spaces. An application to stability problems of semigroups is
also presented.

1. Introduction and main results

In 1962 D. Carlson and H. Schneider proved the following fundamental result (see
[5]). For an n × n complex matrix A let π(A), ν(A) , and δ(A) denote the number of
eigenvalues, counting multiplicities, located in the open right halfplane C+ , the open
left halfplane C

− , and on the imaginary axis iR , respectively.

THEOREM 1.1. Let A ∈ Cn×n and let X be a Hermitian matrix such that

AX + XA∗ = W � 0.

(i) If δ(A) = 0 , then π(X) � π(A) and ν(X) � ν(A) .
(ii) If X is invertible, then π(A) � π(X) and ν(A) � ν(X) .
(iii) From (i) and (ii) it follows that if δ(A) = δ(X) = 0 , then π(X) = π(A) and

ν(X) = ν(A) .

The main goal of this paper is to extend this result (and in particular part (iii)) to the
case of linear operators acting on infinite dimensional Hilbert spaces (see Theorem 1.6
and Theorem 1.7 below).

To state ourmain results and to put them into a proper perspectivewe now introduce
some appropriate notions and briefly describe the relevant developments in inertia
theory.
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In what follows H is a complex Hilbert space, and L(H ) denotes the set of all
linear bounded operators from H into H . An operator W ∈ L(H ) will be called
nonnegative if 〈 x, Wx〉 � 0 for all x ∈ H (which we will denote by W � 0 ), positive
(W > 0 ) if for all nonzero x ∈ H 〈 x, Wx〉 > 0 , and uniformly positive if for all
nonzero x ∈ H 〈 x, Wx〉 � δ ‖x‖2 for some positive number δ . Observe that in case
H is finite dimensional the latter two concepts coincide. In an infinite dimensional
space for an operator W to be uniformly positive is equivalent to being positive and
invertible in L(H ) . By σ(A) we denote the spectrum of the operator A , be it bounded
or unbounded.

Let A(H → H ) be a closed linear operator and let Γ be a simple, closed,
rectifiable contour in the complex plane, such that Γ does not intersect the spectrum of
A . Let σ ⊂ σ(A) be an isolated part of spectrum of A , which means that both σ and
σ(A) \σ are closed subsets of σ(A) , let σ be contained in the domain bounded by Γ ,
and let σ(A)σ be outside the domain bounded by Γ . By

Pσ(A) =
1

2πi

∫
Γ
(λ I − A)−1dλ

we denote the Riesz projection of A corresponding to σ . For an operator A(H → H )
with domain D(A) , a subspace M ⊂ H is called A -invariant if A(M ∩ D(A)) ⊂ M .
In that case A|M denotes the restriction of the operator A to M ∩ D(A) .

Now let σ ⊂ C be closed. An A -invariant subspace M of H is called the
spectral subspace of A associated with σ if

(i) σ(A|M) ⊂ σ ,
(ii) if N is any A -invariant subspace of H such that σ(A|N) ⊂ σ , then N ⊂ M .

If σ is a bounded isolated subset of σ(A) , also called a bounded spectral set, then
the range of the Riesz projection Pσ(A) , i.e. ImPσ(A) , is the spectral subspace of A
associated with σ .

A point λ0 ∈ σ(A) is called a regular eigenvalue of A if λ0 is an isolated point
of σ(A) and the corresponding spectral subspace ImP{λ0}(A) is finite dimensional (in
D(A) , for the case when A is unbounded). For a nonempty subset Σ ⊂ C , define

s(A;Σ) =
∑

λ0∈σ(A)∩Σ
dim ImP{λ0}(A)

if the intersection σ(A) ∩ Σ consists only of a finite number of regular eigenvalues of
A . Otherwise, put s(A;Σ) = ∞ .

The inertia In(A) = (π(A), ν(A), δ(A)) of an operator A with respect to the
imaginary axis is defined by

π(A) = s(A; C+), ν(A) = s(A; C−), δ(A) = s(A; {iα|α ∈ R}).
In this paper we deal with the inertia theory, based on the Lyapunov equation

AX + XA∗ = W (1)

with positive or uniformly positive operator W . In the framework of this theory the
inertia of the operator A with respect to the imaginary axis is described in terms of the
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inertia of a self-adjoint solution X of (1). The first result of this nature is the celebrated
Lyapunov Theorem, proved more than a century ago.

THEOREM 1.2. (Lyapunov) Let A and W be n × n complex matrices such that
W is positive definite.

(i) If A is stable, that is ν(A) = n , then the equation

AH + HA∗ = W (2)

has a unique negative definite solution H .
(ii) If there exists a negative definite matrix H satisfying (2), then A is stable.

In the finite dimensional setting, for the case of positive right hand side W ,
the fundamental inertia result was obtained by A. Ostrowski and H. Schneider, and
independently by M. Krein, in the early 60’s (see [16], [13]), and reads as follows.

THEOREM 1.3. Let A ∈ Cn×n . If X is a Hermitian matrix such that

AX + XA∗ = W (3)

with W (uniformly) positive, then X is nonsingular and

δ(A) = δ(X) = 0, (4a)

π(A) = π(X), ν(A) = ν(X). (4b)

Conversely, if δ(A) = 0 , then there exists a Hermitian matrix X such that the equa-
tions (3), (4a) and (4b) hold.

A similar result was obtained by Taussky (see [20]).
The main result for the case of semidefinite right-hand side W is the theorem of

Carlson and Schneider cited above (Theorem 1.1).
Further significant advances in the inertia theory were connected with the idea of

controllability, which emerged from system theory and was introduced by Chen and
Wimmer (see [6, 22]) and J. Snyders and M. Zakai (see [18]) into the study of inertia
of matrices.

We define now the relevant notions. Observe that our definition of exact control-
lability differs from the one given in e.g., [7].

DEFINITION 1.1. Let G and H be Hilbert spaces. A pair of operators (A, B) ,
where A ∈ L(H ) and B ∈ L(G , H ) , is called almost exactly controllable if for some
p ∈ N the linear set

Im [B, AB, A2B, . . . , Ap−1B] =
p−1∑
j=0

ImAjB

is closed and has finite codimension in H . If

Im [B, AB, A2B, . . . , Ap−1B] = H
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for some p , then a pair (A, B) is called exactly controllable. A pair (A, B) is called
approximately controllable if

Im [B, AB, A2B, A3B . . .] = H .

The following result has been proved for matrices in [6], [22].

THEOREM 1.4. Let A and X be n × n complex matrices such that X = X∗ ,

AX + XA∗ = W � 0

and let the pair (A, W) be exactly controllable. Then

δ(A) = δ(X) = 0, π(A) = π(X), ν(A) = ν(X).

A more detailed exposition of the finite dimensional case can be found in the
well-known book [14].

Now we turn to the infinite dimensional case. In this case the Lyapunov Theorem
reads as follows (see [8]): The spectrum of an operator A ∈ L(H ) lies in the open left
halfplane, that is σ(A) ⊂ C− , if and only if there exists a uniformly positive operator
X such that AX + XA∗ = W is uniformly negative. Moreover, if σ(A) ⊂ C− , then
for every uniformly negative W there exists a uniformly positive operator X , such that
AX + XA∗ = W .

Some generalizations of the Theorem 1.3 were developed in [4] for the case of W
being uniformly positive and the operators A, X, W acting in a Hilbert space. In [19]
the operator equation AX +XA∗ = −C with nonnegative C , was studied in connection
with the notion of approximate controllability, and various conditions for the existence
of a nonnegative solution for this equation were investigated.

In the infinite dimensional setting Theorem 1.4 was generalized in [3] for the case
when the pair (A, W) is exactly controllable. In [15] it was shown that if the assumption
that the pair (A, W) is exactly controllable in Theorem 1.4 (and in [3]) is weakened
to almost exactly controllability, then estimates for |π(A) − π(X)| , |ν(A) − ν(X)| and
also for δ(A) and δ(X) can be found.

The following important result was obtained in [17]. Observe that the Lyapunov
equation here is different from the one in the earlier theorems; we chose to state the
theorem exactly as it is stated in [17].

THEOREM 1.5. Let A be a densely defined closed operator on a Hilbert space
H with domain D(A) . Suppose that σ = σ(A) ∩ C+ is a bounded spectral set of
A , dim ImPσ(A) < ∞ , H ∈ L(H ) is a selfadjoint operator, such that 0 /∈ σp(H) ,
ν(H) < ∞ and

〈 (A∗H + HA)x, x〉 � 0 for all x ∈ D(A)

Then π(A) � ν(H) .

The above Theorem generalizes part (ii) of Theorem 1.1. The following two
theorems, which are the main results of the present paper, can be viewed as a full
generalization of part (iii) of the Theorem 1.1 to the infinite dimensional setting, for
the bounded and unbounded cases.
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THEOREM 1.6. Let A, H ∈ L(H ) be bounded linear operators, such that H is
self-adjoint and invertible, ν(H) < ∞ , the spectrum of A does not contain eigenvalues
which lie on the imaginary axis, and σ(A) ∩ C− is a spectral set. If

A∗H + HA � 0 (5)

then ν(H) = ν(A) .

Recall that a linear operator A is called boundedly invertible if there exists a
bounded linear operator B : H → H such that Im B = D(A) , ABx = x for all
x ∈ H and BAx = x for all x ∈ D(A) . In that case we denote B = A−1 .

THEOREM 1.7. Let A : D(A) ⊂ H → H be a linear, densely defined closed
operator with domain D(A) . Assume, in addition, that A is boundedly invertible,
the spectrum of A does not contain eigenvalues which lie on the imaginary axis, and
σ(A) ∩ C− is a bounded spectral set. Suppose H ∈ L(H ) is a self-adjoint invertible
operator such that ν(H) < ∞ and

〈 (A∗H + HA)x, x〉 � 0, ∀x ∈ D(A). (6)

Then ν(H) = ν(A) .

In the next section we give some background in the theory of indefinite inner
products. Section 3 contains the proof of a lemma which is the basis for further proofs.
In Section 4 we prove the main results of this paper. In Section 5 we give some
background of the theory of strongly-continuous semigroups and application of our
results. Section 6 is devoted to additional applications.

2. The Pontryagin space approach

The proof of the main theorem relies on facts from the theory of spaces with
indefinite metric. In the following, we introduce several definitions and basic results.
Gothic letters will denote general vector spaces with an indefinite inner product.

DEFINITION 2.1. Let V be a complex vector space. A map [·, ·] : V × V −→ C

satisfying:
(i) [αx1 + βx2, y] = α [x1, y] + β [x2, y] for x1, x2, y ∈ V and α, β ∈ C ,

(ii) [x, y] = [y, x] for all x, y ∈ V ,

is called an indefinite inner product or indefinite metric.

In contrast with spaces with definite inner product, indefinite inner product spaces
may contain vectors x for which [x, x] < 0 .

DEFINITION 2.2. A vector x ∈ V is called positive, negative or neutral (with
respect to [·, ·] ) depending on whether [x, x] > 0 , [x, x] < 0 or [x, x] = 0 , respectively.
Positive (resp. negative) and neutral vectors are combined under the general term
non-negative (resp. non-positive) vectors.
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We denote the set of all positive (negative) vectors by V+ (V− ) and the set of
all neutral vectors by V0 , i.e.

V+ = {x ∈ V| [x, x] > 0} ,

V− = {x ∈ V| [x, x] < 0} ,

V0 = {x ∈ V| [x, x] = 0} .

A subspace W ⊆ V is called positive (non-negative), negative (non-positive)or neutral
if W ⊆ V+ ∪ {0} (W ⊆ V+ ∪ V0) , W ⊆ V− ∪ {0} (W ⊆ V− ∪ V0) or W ⊆ V0 ,
respectively. A positive subspace M is called maximal if for every positive subspace
M1 ⊇ M we have M1 = M . Maximal negative, maximal non-positive, maximal
non-negative and maximal neutral subspaces are defined in a similar way. Suppose
now, that the space V admits a decomposition into the direct sum of positive and
negative subspaces: V = N+ .

+ N− . Suppose also that the subspaces N+ and
N− are orthogonal with respect to the indefinite inner product [·, ·] . In this case the
decomposition is called canonical and denoted by

V = N+[
.
+]N−.

A space V , in which N+ and N− form Hilbert spaces with respect to the inner
products [·, ·] and − [·, ·] , respectively, is called a Krein space. In the special case
where κ = dim(N−) is finite, V is called a Pontryagin space and denoted by Πκ . On
a Krein spacewe can define a definite inner product as follows: for x = x++x− and y =
y++y− , with x+, y+ ∈ N+ and x−, y− ∈ N− , we define 〈 x, y〉 = [x+, y+]−[x−, y−] .
With this inner product the space becomes a Hilbert space, whose norm gives the Krein
space its topology and defines its bounded linear operators.

It is known (see [1]) that in a Krein space V , the dimension of any non-positive
subspace M ⊂ V = N+[

.
+]N− does not exceed the dimension of N− , and if M is

a maximal non-positive subspace of a Krein space V , then dimM = dimN− . So
the non-positive subspaces of a Pontryagin space Πκ have dimension at most κ , and
exactly κ if and only if they are maximal non-positive.

DEFINITION 2.3. A linear operator A with dense domain D(A) , acting in a Krein
space V is called dissipative, if

� [Ax, x] � 0

for all x ∈ D(A) . A is called strictly dissipative if

� [Ax, x] > 0

and uniformly dissipative if there exists δ > 0 such that

� [Ax, x] � δ [x, x]

for all 0 �= x ∈ D(A) .

Of special interest are invariant subspaces of operators that are dissipative with
respect to the indefinite inner product. In this regard, we cite the following result.
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THEOREM 2.1. Let A be a bounded dissipative operator acting in a Pontryagin
space Πκ . Then:

(i) There exists a maximal non-negative (non-positive) subspace M+ (M−) which
is A -invariant and σ(A|M+) ⊆ C+ (σ(A|M−) ⊆ C−) ,

(ii) If A is a strictly dissipative operator, then there exists unique maximal non-
negative (non-positive) subspace M+ (M−) which is A -invariant.
Moreover, this subspace is positive (negative) and M+

.
+ M− = Πκ .

Here we denote by C− and C+ the open lower and upper half planes, respectively.

In fact, the above theorem is true for every maximal dissipative operator. For the
notion of maximal dissipative operator and more details see [12].

Let (H , 〈 ·, ·〉 ) be a Hilbert space, and let H be an invertible, bounded selfadjoint
operator. Then the inner product defined by

[x, y] = 〈Hx, y〉 (7)

is indefinite. Sometimes, [·, ·] is called H -inner product, and the corresponding notions
are called similarly, e.g. an operator dissipative with respect to H -inner product is
called H -dissipative. If in addition, H has precisely κ negative regular eigenvalues
(counting multiplicities), then the space H is a Pontryagin space with respect to
[·, ·] , i.e. (H , [·, ·]) = Πκ . Here we should note, that when H is taken to be an
arbitrary self-adjoint operator, then the induced space endowed with indefinite metric
is sometimes called the H -space. Indefinite inner product spaces were used in several
works on inertia, see, for example, [10, 15, 17]. It is instructive to restate Theorem 1.3
in terms of basic notions arising in the theory of indefinite inner product spaces for the
finite dimensional case.

THEOREM 2.2. Let H be an invertible self-adjoint operator acting on a finite
dimensional Hilbert space H , and let [·, ·] be the indefinite inner product defined by
(7). Assume that A ∈ L(H ) is a strictly H -dissipative operator, that is

� [Ax, x] > 0, x ∈ H \ {0}.

Then the dimension of a maximal non-negative (non-positive) subspace is equal to the
the dimension of the spectral subspace of A corresponding to the upper (lower) half
plane.

We will need the following result in the proof of one of the main theorems. The
proof of it can be found in [1].

THEOREM 2.3. Let H be selfadjoint invertible operator and let H be the cor-
responding H -space. Suppose that A is a closed, H -dissipative operator, that is
1
i 〈 (HA − A∗H)x, x〉 � 0 for x ∈ D(A) . Let σ = σ(A) ∩ C− be a bounded spectral
set of A , and let Pσ denote the corresponding Riesz projection. Then the subspace
ImPσ is non-positive and A -invariant.
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3. The Basic Lemma

In this section we denote by Πκ the Pontryagin space, which arises from the
bounded, self-adjoint and invertible operator H , acting on a Hilbert space (H , 〈 ·, ·〉 ) ,
with a finite number of negative eigenvalues with finite multiplicities, whose sum equals
to κ . That is, Πκ is the space H , endowed with the indefinite inner product given by
the formula

[x, y] = 〈Hx, y〉 .

The following result is important in the proof of the main theorems.

LEMMA 3.1. Let A be a bounded, dissipative operator on the Pontryagin space
Πκ with no real eigenvalues. Then there is a κ -dimensional maximal nonpositive
A -invariant subspace M such that σ(A|M) is in the open lower half plane.

Proof. As A is dissipative in the indefinite inner product induced by H , we have

1
i
(HA − A∗H) = D � 0.

For δ > 0 consider A(δ) = A + iδH−1 . One easily checks that

1
i
(HA(δ) − A(δ)∗H) = D + 2δ I > 0.

Hence A(δ) is strictly and uniformly dissipative. Therefore, the spectrum of A(δ) in
the open lower half plane is a finite set of regular eigenvalues, and the spectral subspace
corresponding to the open lower half plane is a maximal H -nonpositive subspace (see
Paragraph 2 of Chapter 2 in [1], also Section 2). So there is an A(δ) -invariant maximal
H -nonpositive subspace M(δ) .

Let

A =
[

A11 A12

A21 A22

]

be the matrix representation of A with respect to the canonical decomposition Πκ =
Π+

κ [
.
+]Π−

κ . It can be shown (see [12]) that the following equation can be used to
characterize the A -invariant maximal nonpositive subspaces

A12 + A11K = K(A22 + A21K), (8)

where K is a contractive operator acting from Π−
κ to Π+

κ . Let K(δ) be the angular
operator corresponding to the subspace M(δ) . Since the closed unit ball B(Π−

κ ,Π+
κ )

is compact with respect to the weak operator topology, there exists a sequence {δi}∞i=1
such that δi ↓ 0 and the sequence K(δi) converges to some K ∈ B(Π−

κ ,Π+
κ ) . Let M

be the κ -dimensional, maximal non-positive subspace corresponding to operator K .
Since the subspaces M(δi) are A(δi) -invariant, it follows that M is an A -invariant
subspace. Indeed, from the equation (8) it follows that

A12(δi) + A11(δi)K(δi) = K(δi)(A22(δi) + A21(δi)K(δi)).
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Note that Akj(δi) converges to Akj in the uniform operator topology. Since ‖K(δi)‖ �
1 , it follows that A21(δi)K(δi) converges in the weak operator topology to A21K . As all
these operators act in the finite dimensional space Π−

κ this convergenceholds also in the
uniform operator topology. The same is true for the sequence A22(δi) + A21(δi)K(δi) .
Hence the right hand side K(δi)(A22(δi)+A21(δi)K(δi)) of the above equation converges
in the weak operator topology to K(A22 + A21K) . In the same way, the left-hand
side converges in the weak operator toplogy to A12 + A11K . We finally get that
A12 + A11K = K(A22 + A21K) . Thus, we conclude that the subspace M defined by
means of operator K is A -invariant. (This argument is the same as the one used in [12],
page 85.) It can easily be shown that the A -invariant maximal H -nonpositive subspace
M is such that σ(A|M) is in the closed lower half plane. Now suppose that λ0 is a
point in σ(A|M) that is on the real line. Since M is finite dimensional, it has to be
an eigenvalue of A|M , and hence an eigenvalue of A . But A does not have any point
spectrum on the real line by assumption, and so it follows that σ(A|M) is actually in
the open lower half plane. �

4. Proof of the main theorems

We are ready now to prove one of the main results of this paper.

Proof of Theorem 1.6. Since H is bounded, selfadjoint, and invertible, and since
κ = ν(H) < ∞ , the indefinite inner product given by

[x, y] = 〈Hx, y〉 for all x, y ∈ H

makes H into a Pontryagin space Πκ .
From the Lyapunov equation (5) it follows, that the operator B = iA is dissipative

in Πκ . Also it does not have eigenvalues on the real line. Applying Lemma 3.1 to iA ,
we conclude that there exists a κ -dimensional, A -invariant, maximal H -nonpositive
subspace M , such that σ(A|M) is entirely in C− . On the other hand, since σ =
σ(A) ∩ C− is a spectral set, by Theorem 2.3 Im Pσ is a non-positive A -invariant
subspace in Πκ . From the maximality of M , it follows that dim ImPσ = κ . �

Next, we prove the second of our main results.

Proof of Theorem 1.7. Since A is a densely defined, closed operator, we recall
(see for example [11]) that A is boundedly invertible if and only if A∗ is boundedly
invertible and in this case (A∗)−1 = (A−1)∗ . From (6) and the fact that A is boundedly
invertible it follows that

〈 (A−1)∗(A∗H + HA)A−1x, x〉 � 0.

for every x ∈ H . Hence

(A−1)∗H + HA−1 � 0.

Since σ(A) ∩ C− is a bounded spectral set it follows that σ(A−1) ∩ C− is a spectral
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set as well. Also for every nonzero λ ∈ C if λ is an eigenvalue of A , then 1
λ is

eigenvalue of A−1 . The converse is also true. Since bounded invertibility of A implies
that 0 is not an eigenvalue of either A or A−1 , we conclude that operator A−1 does not
have eigenvalues on imaginary axis. So, applying Theorem 1.6 to the operator A−1 ,
we conclude that

ν(H) = ν(A−1).

But ν(A−1) = ν(A) , and the theorem follows. �

5. Applications to Semigroups

Strongly continuous semigroups are important, since many natural phenomena can
be described using them.

DEFINITION 5.1. A family {T(t)}t�0 of bounded linear operators acting in a
Hilbert space H is called a strongly continuous semigroup (usually denoted by C0 -
semigroup) if the functional equations

{
T(t + s) = T(t)T(s) for all t, s � 0,

T(0) = I,

hold, and the map t �→ T(t) is continuous in the strong operator topology.

DEFINITION 5.2. The (infinitesimal) generator A : D(A) ⊆ H → H of a
strongly continuous semigroup {T(t)}t�0 is the operator defined by

Ax = lim
h↓0

(T(h)x − x)
h

,

with

D(A) =
{

x ∈ H

∣∣∣∣limh↓0

(T(h)x − x)
h

exists

}
.

The generator of a strongly continuous semigroup is a closed, densely defined
linear operator that determines the semigroup uniquely, see [9].

DEFINITION 5.3. Let {T(t)}t�0 be a strongly continuous semigroup on a Hilbert
space H . The semigroup is

• strongly stable if for all x ∈ H , limt→∞ ‖T(t)x‖ = 0 ,
• (uniformly) exponentially stable if there exists an ε > 0 such that

lim
t→∞ eεt ‖T(t)‖ = 0.

Clearly, exponential stability implies strong stability, and these two types of stabil-
ity are equivalent in the finite dimensional case, while in the general case for strongly
continuous semigroups exponential stability is equivalent to uniform stability, i.e. to
limt→∞ ‖T(t)‖ = 0 , but not to strong stability, see Section V.1 in [9].
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Evenwhen the semigroup {T(t)}t�0 is not uniformly exponentially stable, we may
be able to decompose the underlying space H into a direct sum H+ ⊕ H− such that
{T(t)}t�0 is “forward” exponentially stable on H+ and “backward” exponentially
stable on H− . If the above decomposition is possible, the semigroup is called
hyperbolic:

DEFINITION 5.4. A semigroup {T(t)}t�0 on a Hilbert space H is said to be
hyperbolic, if the space H decomposes into H = H+ ⊕ H− , where H+ and
H− are T(t) -invariant closed non-trivial subspaces; the restriction {T+(t)}t�0 of the
semigroup {T(t)}t�0 to H+ is exponentially stable, while the restriction {T−(t)}t�0

to H− extends to a strongly continuous group on H− , defined by T−(t) = T(−t)−1

for t < 0 .

The decomposition of the space H is equivalent to the existence of a bounded
projection P such that Ker P = H+ and ImP = H− . In particular, if the image of
P is finite dimensional, then the restriction of T(t) to H− automatically extends to a
continuous group.

Another important notion is that of bisemigroup.

DEFINITION 5.5. {E(t)}t∈R
⊂ L(H ) is a bisemigroup if there exists a nontrivial

bounded projection operator P , called the separating projection, such that the restriction
{E(t)|Ker P}t�0 is a strongly continuous semigroup on Ker P , while the restriction
{−E(−t)|Im P}t�0 is a strongly continuous semigroup on Im P , and, moreover, both
these semigroups have a negative exponential growth bound (in other words, they are
both exponentially stable semigroups, see[2]).

Let A+, A− be the closed, densely defined linear operators on Ker P and ImP
respectively, such that A+ is the generator of the semigroup {E(t)|Ker P}t�0 , and −A−
is the generator of the semigroup {−E(−t)|Im P}t�0 . The operator A with domain
D(A) = D(A+)⊕D(A−) defined by A(x+ +x−) = A+x+−A−x− , where x+ ∈ D(A+)
and x− ∈ D(A−) , is called the generator of the bisemigroup. The generator of the
bisemigroup has the following spectral property: the resolvent set of A contains a strip
{z ∈ C | |Re z| < δ} about the imaginary axis, see [2].

Lyapunov stability results can be successfully applied to strongly continuous semi-
groups. For a bounded generator A one can characterize the stability of a semigroup
using the generalized Lyapunov theorem, as the stability can be restated in terms of
spectral properties of A . This is also the case for the infinitesimal generator A . It is
known (see [7]) that the strongly continuous semigroup {T(t)}t�0 generated by A is
exponentially stable if and only if there exists a positive operator Q ∈ L(H ) such that

〈 (QA + A∗Q)x, x〉 < 0

for all 0 �= x ∈ D(A) . One can also find an inertia-like result in [9], which states that a
strongly continuous semigroup on a Hilbert space is exponentially stable if and only if
C+ is contained in the resolvent set of generator A , and the resolvent of A is bounded
in C+ .
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Next we turn our attention to an application to the theory of bisemigroups. As an
immediate application of Theorem 1.7 we have the following theorem.

THEOREM 5.1. Let A be the generator of a bisemigroup. Assume that σ(A)∩C
−

is a bounded spectral set. Suppose further that there exists an invertible self-adjoint
operator H ∈ L(H ) with ν(H) < ∞ such that (6) holds. Then ν(A) = ν(H) , and
in particular, A generates a hyperbolic semigroup.

Proof. All that is to prove are the spectral properties of A . Clearly, since A is the
generator of a bisemigroup there is a strip around the imaginary axis in the resolvent
set of A . This shows that A is invertible, and no point on the imaginary axis is an
eigenvalue of A . �

6. Additional Applications

In this section we shall investigate several applications of our main result. First,
we treat the case where H = I − K , with K compact.

THEOREM 6.1. Let A ∈ L(H ) be such that the spectrum of A does not contain
eigenvalues on the imaginary axis and σ(A) ∩ C− is a spectral set. Let K = K∗ ∈
L(H ) be compact with 1 /∈ σ(K) . If

A∗(I − K) + (I − K)A � 0

then ν(I − K) = ν(A) .

Proof. The spectrum of operator I − K consists of a finite or infinite number of
regular eigenvalues, with, possibly, the limit point at 1 . Thus, there is only a finite
number of such points lying in the left half plane. That is ν(I −K) < ∞ . Since all the
conditions of Theorem 1.6 are satisfied, the conclusion holds true. �

In the second application, consider again the equation

A∗H + HA = W � 0.

Since W � 0 , we can write W = B∗B . Now, we assume approximate controllability of
the pair (A∗, B∗) and relax the condition on the spectrum of A . Under the assumptions
we made, we deduce a Chen–Wimmer type result.

THEOREM 6.2. Let A, H ∈ L(H ) be bounded linear operators, such that σ(A)∩
C

− is a spectral set, H is self-adjoint and invertible and ν(H) < ∞ . If

A∗H + HA = B∗B (9)

and the pair (A∗, B∗) is approximately controllable, then ν(H) = ν(A) .

Proof. We will show that approximate controllability of the pair (A∗, B∗) guar-
antees that A does not have eigenvalues on the imaginary axis. Then the conditions
of Theorem 1.6 are satisfied, and hence the conclusion is also true. First assume, to
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the contrary, that Ax = iλx for x �= 0 and some λ ∈ R . From the above equation it
follows that

‖Bx‖2 = 〈B∗Bx, x〉 = 〈HAx, x〉 + 〈Hx, Ax〉 = (iλ − iλ ) 〈Hx, x〉 = 0

and hence Bx = 0 , i.e. x ∈ KerB . Also

B(A)kx = (iλ )kBx = 0.

It follows that x ∈ ⋂
k�0 Ker B(A)k , and then the approximate controllability of (A∗, B∗)

implies that x = 0 . This is a contradiction, so A has no eigenvalues on the imaginary
axis. From the Theorem 1.6 it follows that ν(H) = ν(A) and the theorem follows.

�

REMARK 6.3. In the last theoremwe have assumed that the operator H is invertible.
We can relax this condition and assume that 0 /∈ σc(H) . Using the same technique as
in the proof of Theorem 6.2 we can show, that 0 is not an eigenvalue of H .
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