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ON SPECTRAL RADIUS ALGEBRAS
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(communicated by D. Hadwin)

Abstract. We show how one can associate a Hermitian operator P to every operator A , and we
prove that the invertibility properties of P imply the non-transitivity and density of the spectral
radius algebra associated to A . In the finite dimensional case we give a complete characterization
of these algebras in terms of P . In addition, we show that in the finite dimensional case, the
spectral radius algebra always properly contains the commutant of A .

1. Introduction and Preliminaries

Let H be a complex, separable Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . If T is an operator in L (H ) then a subspace
M ⊂ H is invariant for T if TM ⊂ M and it is hyperinvariant for T if it is invariant
for every operator in the commutant {T}′ of T . A nontrivial invariant subspace (n. i. s.)
is one that is neither H nor the zero subspace. It was shown in [2] that one can associate
the so-called spectral radius algebra BA to each operator A . Such an algebra always
contains {A}′ so, when it has a n. i. s. it represents a generalization of the concept of
a hyperinvariant subspace. Such is the case when A is compact (cf., [2]) or a certain
type of normal operator (see Theorem 3.6 below). Therefore, it is essential to establish
that the inclusion {A}′ ⊂ BA is proper. Otherwise, any invariant subspace result is
probably well known and can be obtained in an easier manner. In the other direction, it
is important to demonstrate that the algebra is not too “big”, i. e., weakly dense or equal
to L (H ) , which would preclude it having a n. i. s.

In this paper we introduce a tool that can be used to calibrate the size of BA (i. e.,
determine whether BA has a n. i. s., or is dense in, or equal to L (H ) ). We will show
that a Hermitian operator P = PA can be associated to A in a natural way, and we will
see how the properties of P relate to the properties of BA . Although this approach
can be used in Hilbert space of any finite or infinite dimension, we have been able to
obtain the complete characterization only in the case when H is finite dimensional (see
Theorem 2.5, Theorem 2.12, and Theorem 4.1 below). We will also address the issue
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whether BA properly contains {A}′ . We will show (see Theorem 4.3 and Theorem 4.8
below) that, when H is finite dimensional the inclusion in question is proper.

Before we proceed, we briefly review the relevant definitions. Interested readers
can find more details in [2]. If A ∈ L (H ) and m � 1 , we define

Rm(A) = Rm :=

( ∞∑
n=0

d2n
m A∗ nAn

)1/2

where dm =
1

1
m + r(A)

. (1.1)

Since dm ↑ 1/r(A) (we use the convention 1/0 = ∞ ), the sum in (1.1) is norm conver-
gent and the operators Rm are well defined, positive, and invertible. The spectral radius
algebra BA consists of all operators T ∈ L (H ) such that supm∈N

‖RmTR−1
m ‖ < ∞ .

An important subset of BA is the collection QA = {T ∈ L (H ) : ‖RmTR−1
m ‖ → 0} .

The following result (cf., [2, Theorem 3.4]) shows why.

THEOREM 1.1. If QA �= (0) and there exists a nonzero compact operator in BA ,
then BA has a n. i. s.

When A is compact itself, it is always possible to construct a non-zero operator in
QA , as was proved in [2, Theorem 4.1].

THEOREM 1.2. Let K be a nonzero compact operator on the separable, infinite
dimensional Hilbert space H . Then BK has a n. i. s.

Since dm ↑ 1/r(A) , the sequence R2
m is increasing and, hence, R−2

m is a decreasing
sequence of positive operators. Consequently, there is a (Hermitian) operator P = PA

such that R−1
m converges strongly to P .

2. Basic properties of PA

In this section we will establish some basic properties of PA . We start with two
examples in L (C2) .

EXAMPLE 2.1. Let A =
(

2 0
0 1

)
. Then, An =

(
2n 0
0 1

)
, A∗nAn =

(
22n 0
0 1

)
,

R2
m =

(
(1−4d2

m)−1 0

0 (1−d2
m)−1

)
, and R−2

m =
(

1−4d2
m 0

0 1−d2
m

)
, so P =

(
0 0
0
√

3/2

)
.

EXAMPLE 2.2. Let A =
(

2 1
0 1

)
. Then, An =

(
2n 2n−1
0 1

)
and

A∗nAn =
(

22n 22n−2n

22n−2n 22n−2·2n+2

)
. Consequently,

R2
m =

⎡
⎢⎣

1
1 − 4d2

m

1
1 − 4d2

m
− 1

1 − 2d2
m

1
1 − 4d2

m
− 1

1 − 2d2
m

1
1 − 4d2

m
− 2

1 − 2d2
m

+
2

1 − d2
m

⎤
⎥⎦ ,

and
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R−2
m =

1
det(R2

m)

⎡
⎢⎣

1
1 − 4d2

m
− 2

1 − 2d2
m

+
2

1 − d2
m

1
1 − 2d2

m
− 1

1 − 4d2
m

1
1 − 2d2

m
− 1

1 − 4d2
m

1
1 − 4d2

m

⎤
⎥⎦ .

A calculation shows that det(R2
m) =

2
(1 − 4d2

m)(1 − d2
m)

− 1
(1 − 2d2

m)2
and, since

dm → 1/2 , we obtain that P =
√

3
4

(
1 −1
−1 1

)
.

These examples show that P is not invariant under similarity. However, our next
result establishes a connection between similar operators.

PROPOSITION 2.3. Let B = TAT−1 . Then P2
B � 1

‖T‖2
TP2

AT∗ . In particular,

PA = 0 if and only if PB = 0 .

Proof. Since A and B are similar, they have the same spectral radius so dm(A) =
dm(B) , andwe denote it by dm . Then, for all x ∈ H , ‖Rm(B)x‖2 =

∑
d2n

m ‖TAnT−1x‖2

� ‖T‖2‖Rm(A)T−1x‖2 . Therefore, I � Rm(B)2 � ‖T‖2T∗−1Rm(A)2T−1 and the result
follows by taking inverses and letting m → ∞ . �

Before we proceed we recall a result from [1].

THEOREM 2.4. Let A ∈ L (H ). Then BA = L (H ) if and only if the operator
A is similar to a constant multiple of an isometry.

It is our goal to establish the connection between PA and BA . The following
result does that in the case when PA is injective (or equivalently, when it has dense
range).

THEOREM 2.5. With P = PA as before, we have that PAL (H ) ⊂ BA . Conse-
quently, if the range of PA is dense in H , then BA is dense in L (H ) . Furthermore,
if the range of PA is dense in H , then the equality BA = L (H ) holds if and only if
PA is invertible in which case PA = I and A = 0 .

Proof. Clearly RmP2Rm � RmR−2
m Rm = I so RmP2Rm and RmP are both contrac-

tions. If T ∈ L (H ) , then ‖RmPTR−1
m ‖ � ‖RmP‖ ‖T‖ ‖R−1

m ‖ � ‖T‖ . Consequently,
PT ∈ BA .

If P is invertible it follows that BA = L (H ) and, by Theorem 2.4, A must be
similar to λV with V an isometry. If λ �= 0 , a calculation shows that PλV = 0 and
Proposition 2.3 would imply that PA = 0 . Thus, λ = 0 and A = 0 , and it is easy to
see that P0 = I .

Notice that BA contains every rank one operator of the form Px ⊗ y and, if the
range of P is dense, these rank one operators span a dense subalgebra of L (H ) . �

COROLLARY 2.6. When PA �= 0 we always have that BA �= {A}′ .
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Proof. As we have seen, every rank one operator of the form Px ⊗ y belongs to
BA . On the other hand Px ⊗ y commutes with A only when y is an eigenvector of
A∗ . (Of course, A is not scalar since such operators have P = 0 .) �

The following example shows that PA can have dense range properly contained in
H .

EXAMPLE 2.7. Let A = diag

(
i

i + 1

)
. An easy calculation shows that P =

diag

(√
2i + 1

(i + 1)2

)
, and it is easy to see that the range of this operator is dense, but it

is not surjective.

Now we turn our attention to the case P = 0 . The following theorem gives a
characterization in terms of the asymptotic behavior of the sequence Rm .

THEOREM 2.8. P = 0 if and only if limm ‖Rmx‖ = ∞ for all nonzero vectors
x ∈ H .

Proof. Once again, RmP2Rm � RmR−2
m Rm = I so PRm is a contraction and the

same is true of RmP . Thus, we have ‖RmPx‖ � ‖x‖ , and if limm ‖Rmx‖ = ∞ for all
nonzero x ∈ H then P must be the zero operator.

Conversely, if there is x0 ∈ H such that supm ‖Rmx0‖ is finite, then for each
y ∈ KerP , 〈 x0, y〉 = limm〈Rmx0, R−1

m y〉 = 0 . Thus, x0 is orthogonal to KerP which
shows that P �= 0 . �

If Ax = 0 then ‖Rmx‖ = ‖x‖ . Thus we obtain

COROLLARY 2.9. If KerA �= (0) then PA �= 0 .

EXAMPLE 2.10. Set E = EA = {x ∈ H : supm ‖Rmx‖ < ∞} . It is easy to see
that E is a linear manifold invariant under BA . Indeed, it suffices to notice, that for
each T ∈ BA there is M > 0 so that ‖RmTx‖ � M‖Rmx‖ for all x ∈ H .

Example 2.1 shows that the converse to Corollary 2.9 is not true. It becomes true,
however, when A is quasinilpotent.

PROPOSITION 2.11. Suppose A is quasinilpotent and one-to-one. Then, PA = 0 .

Proof. Note that if A is quasinilpotent, then dm = m . Consequently, for all
x ∈ L (H ) , we have ‖Rmx‖2 � m2‖Ax‖2 → ∞ unless x ∈ KerA . In view of
Theorem 2.8 this finishes the proof. �

Theorem 2.5 shows that, if P is injective, then BA is dense in L (H ) . In fact,
as we will show, the converse is almost true as well.

THEOREM 2.12. Let PA �= 0 and not injective. Then BA has a n. i. s.

Proof. Since P is not injective, there is a non-zero vector y such that Py = 0 and,
hence, limm R−1

m y = 0 . On the other hand, Theorem 2.8 implies that there is a nonzero
vector x ∈ H such that supm ‖Rmx‖ is finite. Consequently, the rank one operator
x ⊗ y belongs to QA and the result follows from Theorem 1.1. �
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Theorem2.5 andTheorem2.12 show that,when PA �= 0 , there is a nice relationship
between PA and BA . Namely, if Ker P �= (0) then BA has a n. i. s.; if KerP = (0)
but the range of P is a proper, dense subset of H then BA is a proper, weakly dense
subalgebra of L (H ) ; when P is invertible, BA = L (H ) . Unfortunately, when
PA = 0 , as the following examples will show, BA can have any of the 3 properties
above.

EXAMPLE 2.13. Let A = S , the unilateral shift. Since S is an isometry, BS =
L (H ) . On the other hand, S∗nSn = I , so R2

m =
∑

d2n
m , R−2

m = 1 − d2
m , and P = 0 .

EXAMPLE 2.14. Let A be aweighted shiftwithweights α1 = 1 , αn =
√

(n − 1)/n

for n � 2 . Then R2
m = diag

(∑
d2n

m k/(n + k)
)

=
k

d2k
m

[
− ln(1 − d2

m) − 1 − d2
m − d4

m

2

− · · · − d2k−2
m

k − 1

]
and it is easy to see that P = 0 . On the other hand, BA contains

every rank-one operator of the form ei ⊗ ej , where {en} is the orthonormal basis that
A shifts. Indeed, the previous calculation shows that the i th entry on the diagonal of

Rm behaves asymptotically (as m → ∞ ) like − i ln(1 − d2
m)

d2i
m

, so the j th entry of R−1
m

behaves as − d2j
m

j ln(1 − d2
m)

and ‖Rmei‖‖R−1
m ej‖ has the limit i/j . Of course, one knows

that A is not similar to an isometry (cf., [3, Theorem 2]), so BA �= L (H ) .

EXAMPLE 2.15. Let A be a weighted shift with weights αn = 1/
√

n for n � 1 .
Since A is quasinilpotent and injective, PA = 0 by Proposition 2.11. Furthermore, A
is compact so, by Theorem 1.2, BA has a n. i. s.

The examples above show that it may be hard to characterize operators A for which
PA = 0 . Surprisingly, if H is finite dimensional such a characterization is available.
We will postpone this discussion until Section 4.

3. Applications

In this section, we will compute PA and use it to analyze BA in some specific
cases, namelywhen the operator A is either a co-isometry, or quasinormalor a backward
weighted shift. We start by considering the case when A is a co-isometry. One knows
that A is unitarily equivalent to a direct sum S∗ ⊕U acting on K = G ⊕ G ′ where S
is a forward unilateral shift (of arbitrary multiplicity) on G and U is a unitary operator
on G ′ . Recall that A is a pure co-isometry if G ′ = (0) . One knows that G = ⊕∞

i=1Gi ,
where each Gi can be identified with Ker S∗ .

PROPOSITION 3.1. Suppose A = S∗ ⊕ U as above. Then PA = P ⊕ 0 where

P is the diagonal operator relative to G =
⊕∞

i=0 Gi given by PS∗x =
(

xk√
k + 1

)
,

x = (xk)∞k=0 ∈ G .
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Proof. It is easy to see that Rm(A) = Rm(S∗) ⊕ Rm(U) , hence PA = PS∗ ⊕
PU A calculation shows that R2

m(U) = (1 − d2
m)−1 so PU = 0 . On the other

hand, Rm(S∗) is the diagonal operator diag (
∑n

i=0 d2i
m) so PS∗ is the diagonal operator

diag (1, 1/
√

2, 1/
√

3, . . . ) . �

COROLLARY 3.2. When A is a pure co-isometry, then BA is weakly dense, but not
equal to L (H ) . Otherwise, BA has a n. i. s.

Proof. This follows from Theorem 2.5 and Theorem 2.12. �
We will now consider the case when A is quasinormal. Recall that an operator

A is quasinormal if A commutes with (A∗A) . Furthermore, if A is quasinormal, then
r(A) = ‖A‖ .

THEOREM 3.3. If A is quasinormal, then P2
A = I − 1

‖A‖2
(A∗A) .

Proof. Using the fact that A(A∗A) = (A∗A)A, it is easy to prove by induction that,
for all n ∈ N , A∗nA = (A∗A)n . Consequently, R−2

m = I − d2
mA∗A . The result now

follows from the fact that limm→∞ dm = 1/r = 1/‖A‖ . �

REMARK 3.4. As a consequence of the previous result, if A is quasinormal, then
we have

(1) PA commutes with A .
(2) KerPA = KerP2

A = {x : ‖Ax‖ = ‖A‖‖x‖} .

Theorem3.3 allows us to obtain a result about the spectral radius algebra associated
to a quasinormal operator.

COROLLARY 3.5. Let A be a quasinormal operator and let M = {x ∈ H :
‖Ax‖ = ‖A‖‖x‖} . If M = (0) then BA is dense but not equal to L (H ) ; if
M = H then BA = L (H ) . In all other cases, BA has a n. i. s.

Proof. Notice that M = KerPA , so the result follows from Theorem 2.5 and
Theorem 2.12. �

As a special case, when A is normal, we obtain one of the main results of [1].

THEOREM 3.6. Let A be a nonzero normal operator on H with ‖A‖ = 1 .
(a) If A is unitary, then BA = L (H ) .
(b) If A is completely nonunitary, then BA is weakly dense in, but not equal to,

L (H ) .
(c) If A is neither unitary nor completely nonunitary, then BA has a n. i. s.

Let W denote a forward weighted shift (of any multiplicity) with weight sequence
{αn}n∈N . Regarding the adjoint W∗ we have the following theorem.

THEOREM 3.7. If r(W∗) = 0 then P is the projection on Ker W∗ so BW∗ �=
{W∗}′ has a n. i. s. If r(W∗) �= 0 then Ran P �= H is dense, so BW∗ �= L (H ) is
weakly dense.
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Proof. A straightforward calculation combined with Theorem 2.12 leads to the
first assertion. If r = r(W∗) �= 0 , then P = diag (1, (1+ |α1|2/r2)−1/2, (1+ |α2|2/r2 +
|α1α2|2/r4)−1/2, . . . ) . Since none of the diagonal entries is 0, P is injective, and the
result follows from Theorem 2.5. �

4. The finite dimensional case

In this section we consider the case when dimH < ∞ . In this situation the case
PA = 0 can be completely characterized. Also, we will show that BA �= {A}′ .

THEOREM 4.1. Suppose that dimH < ∞ and A ∈ L (H ) . Then PA = 0
if and only if r(A) > 0 and every eigenvalue λ of A satisfies |λ | = r(A) . In this
situation, BA has a n. i. s. if and only if A is not diagonalizable.

Proof. Suppose that PA = 0 . Then r = r(A) �= 0 , otherwise A would have a
nontrivial kernel and, by Corollary 2.9, we would have that PA �= 0 . We will show
that, if |λ | �= r , then A − λ I is invertible. To that end, let Tm = RmAR−1

m and notice

that T∗
mTm = R−1

m A∗R2
mAR−1

m = R−1
m (

1
d2

m
(R2

m − I))R−1
m =

1
d2

m
(I − R−2

m ) → r2I . Since

A ∈ BA , the sequence Tm is bounded and there is a subsequence Tmk that converges
(in norm) to an operator T . Clearly, T∗T = r2I so T − λ I is invertible. One knows
that the set of invertible operators is open, so there is m such that RmAR−1

m − λ I is
invertible. Consequently, A − λ I must be invertible.

Conversely, suppose that r(A) > 0 and every eigenvalue λ of A satisfies |λ | =
r(A) . Notice that E is an invariant subspace for A so all eigenvalues of the restriction
A|E are the eigenvalues of A . If P �= 0 , Theorem2.8 would imply that E is a non-zero
subspace and there would be a non-zero vector x0 ∈ E such that Ax0 = λx0 with |λ | =
r(A) . However, an easy calculation shows that ‖Rmx0‖2 = ‖x0‖2/(1− r2d2

m) → ∞ , as
m → ∞ contradicting x0 ∈ E . Thus P = 0 . Finally, the last assertion follows from
Theorem 2.4. �

In the case where H is finite dimensional, BA is either L (H ) or it has a
n. i. s. In the former case, Theorem 2.4 gives a complete characterization of A . In the
latter, it is of interest to establish that BA properly contains the commutant {A}′ . First
we tackle the case when A has at least 2 different eigenvalues. In this situation, the
conclusion will be an easy consequence of the following result (cf., [2, Corollary 2.4]).

PROPOSITION 4.2. Let T be an operator such that AT = λTA for some complex
number λ with |λ | � 1 . Then T ∈ BA .

Proposition 4.2 leads to the following result.

THEOREM 4.3. Let A be a non-zero operator on a finite dimensional Hilbert
space, and suppose that the spectrum of A consists of at least 2 points, or of zero alone.
In both cases BA �= {A}′ .

Proof. Denote two distinct eigenvalues of A by α and β , and suppose that
|α| � |β | and β �= 0 . Then there exist vectors u and v so that Au = αu and
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A∗v = βv . It is easy to see that A(u ⊗ v) = (α/β)(u ⊗ v)A . Therefore, u ⊗ v is
an extended eigenvector for A corresponding to the extended eigenvalue λ = α/β so
u ⊗ v ∈ BA . On the other hand, since α �= β , u ⊗ v /∈ {A}′ . When 0 is the only
eigenvalue, we take u, v so that Au = 0 and v is not an eigenvector for A∗ . Then
A(u ⊗ v) = 0(u ⊗ v)A so u ⊗ v ∈ BA , and it is easy to see that u ⊗ v /∈ {A}′ . �

So, it remains to consider the case when the spectrum of A consists of a single
(nonzero) point. The following theorem (cf., [1, Theorem 2.4]) shows that in order to
study the spectral radius algebra, it suffices to look at the similarity models.

THEOREM 4.4. Let A, B ∈ L (H ) and T be an invertible operator in L (H )
such that T−1BT = A. The map X �→ T−1XT is an isomorphism from BB onto BA .

From now on, we will assume that the operators under scrutiny are in the Jordan
form. We start with some preliminary results that will be useful in the proof of our main
theorem.

LEMMA 4.5. Let |x| < 1 and let sk(x) =
∑∞

n=0 nkxn . Then sk(x) is a polynomial
of degree k + 1 in (1 − x)−1 , with the leading coefficient equal to k! .

Proof. It is easy to verify that sn+1(x) = x[sn(x)]′ for n � 0 , whence the proof
follows by induction. �

The following result is little harder to prove.

PROPOSITION 4.6. Let B be an n × n matrix with (i, j) entry
(i+j

i

)
, 0 � i, j �

n − 1 . Then det(B) = 1 .

Proof. Let Mk denote the k × k minor of B consisting of the k bottom rows and
k leftmost columns. We will prove by induction that, for each k , det(Mk) = 1 . The
case k = 1 is obvious since the (n − 1, 0) entry of B is 1. We make a hypothesis
that det(Mk) = 1 and we consider Mk+1 . Notice that the leftmost column of B (and,
hence, of Mk+1 ) has each entry equal to 1. We will apply a sequence of elementary
transformations to Mk+1 that will have the effect of row transformations Rn−1−Rn−2 →
Rn−1 , Rn−2 − Rn−3 → Rn−2, . . . , Rn−k − Rn−k−1 → Rn−k . (By Rm − Rp → Rm we
mean that the row p is subtracted from the row m , and the result placed back in the row
m . It is well known that these transformations leave the determinant invariant.) Now
the leftmost column of the so obtained matrix M′

k+1 has 1 in the top position and zeros
elsewhere, so the determinant of M′

k+1 equals the determinant of its principal minor
M′

k obtained from M′
k+1 by deleting its top row and the leftmost column. In order to

complete the proof, we notice that M′
k = Mk . Indeed, by the construction, the (i, j)

entry of M′
k equals

(i+j
i

) − (i+j−1
i−1

)
=
(i+j−1

i

)
which is precisely the (i, j − 1) entry

of Mk . Thus Mk and M′
k have the corresponding entries equal, and the proposition is

proved. �
Next we address the asymptotic behavior of det(Rm) .

THEOREM 4.7. Let α be a complex number and let Jα be the N × N Jordan
block with eigenvalue α �= 0 . If A = Jα then det(Rm) has the order of magnitude
(1 − α2d2

m)−N2
.
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Proof. First we consider the case when α = 1 . Notice that An is an upper
triangular Toeplitz matrix with the (k, j) entry

( n
j−k

)
when 0 � k � j . Conse-

quently, the (i, j) entry of A∗nAn is
∑min{i,j}

k=0

( n
i−k

)( n
j−k

)
. Clearly

( n
i−k

)( n
j−k

)
is a

polynomial in n of degree i + j with the leading coefficient 1/(i!j!) so we can write( n
i−k

)( n
j−k

)
= ni+j/(i!j!) + pi+j−1(n) . It follows that (R2

m)i,j — the (i, j) entry of R2
m

— satisfies (R2
m)i,j =

∑
n�0 d2n

m

(
ni+j/(i!j!) + pi+j−1(n)

)
and, using Lemma 4.5 and

denoting 1/(1− d2
m) by λm , we obtain that (R2

m)i,j = (i + j)!/(i!j!) λ i+j+1
m + qi+j(λm) ,

where qi+j is a polynomial of degree up to i + j . Therefore, when m → ∞ , R2
m

behaves asymptotically as the Hankel matrix with (i, j) entry
(i+j

i

)
λ i+j+1

m . This matrix
can be written as a product LiBLj+1 where Li stands for a diagonalmatrix diag (λ i

m) . A

calculation shows that its determinant equals λN2

m det(B) where B is the Hankel matrix
with (i, j) entry

(i+j
i

)
. The result now follows from Proposition 4.6.

In the general case (α �= 1 ), it is not hard to see that the (R2
m)i,j behaves asymp-

totically as
∑

(αdm)2nni+j/(i!j!) . The proof goes as in the previous case, except that
λm now denotes 1/(1 − α2d2

m) . �

Now we are ready to prove that BA properly contains {A}′ .

THEOREM 4.8. Let A be a matrix with the only eigenvalue α . Then BA �= {A}′ .

Proof. Using Theorem 4.4 there is no loss of generality in assuming that A is a
direct sum of Jordan blockswith eigenvalue α , and that the block in the upper left corner
is of size N ×N , with N � 2 . In fact, it suffices to find an operator T ∈ L (CN) such
that T ∈ BJα \{Jα}′ , sowewill assume that A is an N×N Jordan blockwith eigenvalue
α . Let e0, e1, e2, . . . , eN−1 be the appropriate basis for CN . It is easy to see that the
rank one operator eN−1⊗eN−1 does not commute with A . We will show that it belongs
to BA . By definition of BA , it suffices to prove that ‖RmeN−1‖‖R−1

m eN−1‖ remains
bounded as m → ∞ . Notice that ‖RmeN−1‖2 = 〈R2

meN−1, eN−1〉 , so it equals the (N−
1, N−1) entry of R2

m . As we have seen in the proof of Theorem 4.7, this entry behaves
asymptotically as

(2N−2
N−1

)
λ 2N−1

m , where λm = (1 − α2d2
m)−1 . Similarly, ‖R−1

m eN−1‖2

equals the (N − 1, N − 1) entry of R−2
m . One knows that this entry can be calculated

by dividing the determinant of the cofactor corresponding to the (N − 1, N − 1) entry
of R2

m by the determinant of R2
m . A calculation shows that the minor in question equals

R2
m(A′) where A′ is the compression of A to the first N − 1 rows and columns, hence

its determinant behaves, by Theorem 4.7, as λ (N−1)2

m . Finaly, again by Theorem 4.7, the
determinant of R2

m behaves as λN2

m . Consequently, ‖RmeN−1‖2‖R−1
m eN−1‖2 behaves

as
(2N−2

N−1

)
λ 2N−1

m λ (N−1)2

m /λN2

m =
(2N−2

N−1

)
, and the theorem is proved. �
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