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BANDS IN PERVASIVE PRE-RIESZ SPACES
O. VAN GAANS AND A. KALAUCH

(communicated by L. Rodman)

Abstract. Pre-Riesz spaces are partially ordered vector spaces which are order dense subspaces
of vector lattices. A band in a pre-Riesz space can be extended to a band in the ambient vector
lattice. The corresponding restriction property does not hold in general. We provide sufficient
conditions on the underlying space such that the restriction property for bands holds. As an
application, we consider the space L"(I5°) of all regular operators on the space [§° of all finally
constant sequences. We establish that L"(I§°) is pre-Riesz and that its subspace of all order
continuous operators is a band in L"(I§°) .

1. Introduction

The notions of ideal and band in a partially ordered vector space have been in-
vestigated in [6]. The method used there is embedding of the space as an order dense
subspace of a vector lattice. The spaces that allow such an embedding are the pre-Riesz
spaces. It has been studied whether ideals or bands in a pre-Riesz space can be ex-
tended to ideals or bands in the ambient vector lattice and whether the restriction to
the pre-Riesz space of an ideal or band in the vector lattice is an ideal or band in the
pre-Riesz space. An appropriate generalization of ideal has been established such that
both extension and restriction work in arbitrary pre-Riesz spaces. For bands extension
always works, whereas restriction may fail. In this paper we give a condition on the
pre-Riesz space such that both extension and restriction hold for bands. We show that
the condition is satisfied by a space of operators.

We begin by fixing our notations and terminology. Let X be a real vector space and
let K be aconein X, thatis, K is a wedge (x,y € K, A,u > 0 imply Ax+ uy € K)
and KN (—K) = {0}. In X a partial order is introduced by defining y > x if and only
if y—x € K. Aset M C X is called order bounded if there are y,z € X such that
y <x < z forall x € M. Denote for a subset M C X the set of all upper bounds by

M'={xeX:x>mforall meM}.

We denote the natural numbers by N, and Ny = N U {0} . The space (X, K) is called
Archimedean if for every x,y € X with nx <y forall n € Ny one has x < 0. A set
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M C X is called directed if for every x,y € M there is an element z € M such that
z2x and z > y. X is directed if and only if the cone K is generating in X, that is,
X = K — K. X has the Riesz decomposition property if for every y,x;,x, € K with
y < X1 + x, there exist y;,y2 € K suchthat y=y; +y; and y; <x1, y» < x2.

For standard notations in the case that X is a vector lattice see [3]. Recall that a
vector lattice is Dedekind complete whenever every non-empty subset that is bounded
from above has a supremum, and o -Dedekind complete whenever every countable
subset that is bounded from above has a supremum.

A partially ordered vector space X is called pre-Riesz if for every x,y,z € X the
inclusion {x +y,x + z}* C {y,z}" implies x € K [7, Definition 1.1(viii), Theorem
4.15]. Every pre-Riesz space is directed and every directed Archimedean partially
ordered vector space is pre-Riesz [7]. Clearly, each vector lattice is pre-Riesz.

By a subspace of a partially ordered vector space or a vector lattice we mean
an arbitrary linear subspace with the inherited order. We do not require it to be a
lattice or a sublattice. We say that a subspace X of a vector lattice Y generates Y
as a vector lattice if for every y € Y there exist ay,...,an, b1,...,b, € X such that
y=Viia—Vi b

We call a linear subspace D of a partially ordered vector space X order dense in
X if for every x € X we have x = inf{y € D: y > x}, that is, each x is the greatest
lower bound of the set {y € D: y > x} in X [4, p. 360].

Recall that a linear map i: X — Y, where X and Y are partially ordered vector
spaces, is called bipositive if for every x € X one has i(x) > 0 if and only if x > 0.
An embedding map is required to be linear and bipositive, which implies injectivity.

Let X be a partially ordered vector space. The following statements are equivalent
[7, Corollaries 4.9-11 and Theorems 3.5, 3.7, 4.13]:

(i) X is pre-Riesz.
(ii) There exist a vector lattice ¥ and a bipositive linear map i: X — Y such that
i(X) is order dense in Y.
(iii) There exist a vector lattice ¥ and a bipositive linear map i: X — Y such that
i(X) is order dense in Y and generates Y as a vector lattice.
All spaces Y as in (iii) are isomorphic as vector lattices. A pair (Y,i) as in (iii) is
called a Riesz completion of X . As it is unique up to isomorphism we will speak of the
Riesz completion of X and denote it by X*.

Let X be a partially ordered vector space. The elements x,y € X are called
disjoint, in symbols x L y, if {x+y,—x—y}* = {x —y,—x+ y}*,cf. [5]. If
X is a vector lattice, then this notion of disjointness coincides with the usual one,
cf. [3, Theorem 1.4(4)]. The disjoint complement of a subset M C X is the set
M?={yeX:ylLxforallx e M}.

PROPOSITION 1.1. [5, Proposition 2.1] Let X and Y be partially ordered vector
spaces and let x,y € X.
(i) If X is a subspace of Y, then x Ly in Y implies x Ly in X.
(ii) If X is an order dense subspace of Y, then x Ly in Y ifandonlyif x L y in
X.
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A linear subspace M of a partially ordered vector space X is called a band in X if
(M d)d =M,

cf. [5, Definition 5.4]. If X is an Archimedean vector lattice, then this notion of a band
coincides with the usual one. For every subset M of X, the disjoint complemet M¢ is
a band [5, Proposition 5.5].

Let Y be a vector lattice and X an order dense subspace of Y. In [6] the following
restriction property (R) and extension property (E) for bands are considered:

(R) If J isabandin Y, then JNX isabandin X.
(E) If I isabandin X, then there exists aband J in ¥ suchthat I =JNX.

The extension property (E) for bands is shown in [6, Proposition 3.15]. The restriction
property (R) for bands is not true in general [6, Example 4.16]. In the present paper, we
provide sufficient conditions on X such that (R) is satisfied. We verify (R) for several
spaces, in particular for a space of operators.

We conclude the section by collecting standard definitions concerning spaces of
operators. Let X be a partially ordered vector space and L(X) the set of all linear
operators on X . Asusual, anoperator T € L(X) is called positive whenever T(K) C K ;
we write S > T if S — T is positive. An operator T € L(X) is called order bounded
if T maps order bounded subsets into order bounded subsets, and regular whenever T
can be written as a difference of two positive operators. The set of all order bounded
operators is denoted by L?(X), whereas the set of all regular operators is denoted by
L'(X).

A net {xs} C X is said to be decreasing (in symbols, x, | ), whenever a > 8
implies x, < xg. For x € X the notation x,, | x means that x, | and info{x} = x
both hold. We say that a net {xo}y, C X (0)-converges to x € X (in symbols,
Xo L, x), if there is a net {yq}q C X such that y, | O and for all o one has
+(xo¢ — x) < Yo - The equivalence of x, L, x and xo — x L, 0 is obvious. If a net
(0)-converges, then the limit is unique.

An operator T € LP(X) is called (o) -continuous if for each net {xq}qea C X

with xq 10 follows T(xq) . Clearly, the (o)-continuity of 7 implies

T(xy) L), (x) for every net {xo} C X with x, ) xex. Moreover, if T is

positive, then T is (0)-continuous if and only if x, | O implies T(x,) | 0. Denote the
set of all (0)-continuous operators in L?(X) by L*(X).

If X is a Dedekind complete vector lattice, then L?(X) is a Dedekind complete
vector lattice as well, which implies L”(X) = L"(X) [3, Theorem 1.13]. Moreover,
L"(X) is a band in L”(X) (Ogasawara’s theorem, see [3, Theorem 4.4]). We are
interested in this statement if X is not Dedekind complete. We consider an example of
a vector lattice X, where X is not Dedekind complete, b (X) is pre-Riesz, and where
L"(X) turns out to be aband in L?(X) . For the proof we calculate the Riesz completion
of L?(X) and show that L"(X) can be obtained as the restriction of a band in the Riesz
completion.
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2. The restriction property for bands

In the present section, we study (R) for a pre-Riesz space X and its Riesz com-
pletion ¥ = X”. In certain pre-Riesz spaces the restriction property (R) is trivially
satisfied.

EXAMPLE 2.1. We refer to [6, Example 3.4], where subspaces of the space C(R)
of continuous functions on R are considered, ordered by the natural cone

{x € C(R): x(¢) > 0 forall + € R}.

Let X = P,(R) be the ordered vector space of all real polynomial functions on R of at
most degree 2. X is pre-Riesz, and its Riesz completion is given by

Y ={y € C(R): y is a piecewise polynomial function of at most degree 2
with L(y) = R(y) } ,

where
L(y) = lim y(7) /> and R(y) = lim (1) it

Let B be a non-trivial band in ¥ and let x € BN X. Since B? # {0}, thereis y € Y,
v # 0, such that x L y. This implies x = 0. Consequently, BN X = {0}, which is a
band in X.

In general, the restriction property (R) for bands does not hold. We continue with
an example of a sequence space which turns out to be pre-Riesz, calculate its Riesz
completion, and define a band in the Riesz completion that does not restrict to a band
in the pre-Riesz space.

EXAMPLE 2.2. Consider the space X = ¢ of all convergent sequences and denote
¢ = {(xn)nen € ¢ x, = 0 forall n € N}. Consider the linear functional f on X
given by

flx)= % — nlinolo x, foreachx = (x,),eny € X .
n=1

Let X be ordered by the cone K = {x € ¢™: f(x) = 0}. X is not a lattice, since e. g.
for the elements u = (u,),eny With u, = 1 forall n € N and v = (v,)nen with v; = 1
and v, = 0 for all n > 2 the infimum does not exist. Indeed, assume that w is the
infimum of # and v. On one hand, w is coordinatewise less or equal v, which yields
w; < 1 and w, < 0 for all n > 2. On the other hand, w is coordinatewise equal or
greater than each lower bound of « and v. Since obviously f(u) =0, f(v) = 1 and
f(0) = 0, one gets 0 < u,v. For the sequence z = (z,)ueny With 7y = 1, 20 = =2
and z, = 0 forall n > 3 one has f(z) =0, s0 z < u,v. Since w is coordinatewise
greater than O and z, one gets w; = 1 and w, =0 forall n > 2, thus w = v. From
f(v) £ f(u) follows w £ u, a contradiction.

The space Y = ¢ x R, ordered by the cone Y* = {(x,r) € Y:ix € c",r > 0}, is
a vector lattice, and the mapping i: X — Y, i(x) = (x,f (x)) for each x € X, is linear
and bipositive. We show that i(X) is order dense in ¥ and that i(X) generates Y as a
vector lattice, which implies that X is a pre-Riesz space and Y is its Riesz completion.
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Let y = (x,r) € Y,i.e. x = (xy)nen € X. Consider the first case f (x) < r. Put

Vn:{x1+2(rf(x)) if n=1 Wn:{x2+4(rf(x)) ifn=2

Xp otherwise ’ Xy, otherwise

The sequences v = (vy)nen and w = (wy)uen are elements of X. Furthermore,
fw)=f(x)+ (r—f(x)) = r and, analogously, f (w) = r. So, y < i(v), y < i(w),
and moreover, y = i(v) Ai(w) = —(i(—v) Vi(—w)).

Consider the second case f (x) > r. Then, due to the first case, there are 9, w € X
such that —y = —(i(P) Vi(w)),i.e. y =i(P) Vi(W). So, i(X) generates Y as a vector
lattice.

In the case f (x) > r it remains to show that the element y = (x, r) is the infimum

of elements of i(X). For each m € N consider the sequence z(") = (zf,m>),,€N with

zs,m) = 0 for all n < m and z,<1m> = 1 otherwise. Clearly, Zm e X, and since
lim,_, oo zﬁ, m 1, one has
=1 1
(m)y — - =
f(Z >) - on I = mel L.

For each m € N put u™ = x + (f (x) — r)z", then u™ € X, u™ > x and

F) = F () + () = Af ) = r b g (P =) > 7

so foreach m € N one has (u J @™)) > (x,r) = y. Let (v,s) € Y be an arbitrary
lower bound of the set {( . f (u "’>)) m € N}. Then v is elementwise less or equal
x, moreover s < f (u!™) forall m € N, so s < r, which implies (v,s) < (x,7) = y.
So,
y = inf{i(u™): m € N} .

Consequently, i(X) is order dense in Y.

Theset B= {(x,r) € Y:r =0} isabandin Y. Let B =BNX={x € c:f(x) =
0}. As 1 =(1,1,1,...) € B’, due to Proposition 1.1 one gets

(B ={vec(vf)L(bfb)inYforalbe B} = {0}.

Hence, (B')% = ¢ # B’,so B’ is not a band in X. Thus, the restriction property (R)
for bands is not satisfied.

We provide conditions on a pre-Riesz space X which ensure that the restriction
property (R) for bands holds.

DEFINITION 2.3. A pre-Riesz space X is called pervasive, if for each element
yEXP,y>0,y#0,thereis x € X, x 20, such that 0 < x < y.

LEMMA 2.4. If X is a pervasive pre-Riesz space, then for every y € XP, y > 0,
there is S C X such that {y}¢ = 8¢ in X°.
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Proof. Let y € XP, y > 0. Weassume y #20. Let S={x € X:0<x <y}. On
one hand, if z € X” is such that |zl Ay = 0, then 0 < [z] Ax < |zl Ay = 0 for all
x € S, hence {y}? C S in X°.

On the other hand, assume that there exists z € ¢\ {y}¢. Put w = |z] Ay, then
weXP, w>=0,w# 0. Since X is pervasive, there is x € X, x # 0, such that
0 <x<w.As w<y weobtain x € S and therefore x A |z] = 0. Hence,

x=xAx<xAw<xAlzZ] =0,
which is a contradiction. We conclude {y}? = S in X”. O

PROPOSITION 2.5.  Let X be a pre-Riesz space such that for every y € XP, y > 0,
there is S C X such that {y}? = S?. Then the restriction property (R) for bands holds.

Proof. Let B be abandin X? and B’ = BN X. We have to show (B')% = B in
X. Since B’ C (B')™ is obvious, it suffices to establish (B')¥ C B'. Let x € (B')%
in X. We show x € B in XP. Indeed, let y € B? in XP. Then |y| € X*, |y| > 0.
So there is a set S C X such that {|y|}¥ = S? in XP. Let z€ B C B. Then y L z in
XP,s0 z € {|y|}¥ =S in X*. So, for any s € S one has z L s in X?, which implies
z L s in X due to Proposition 1.1. Hence z € S¢ in X, and one gets B’ C 5%in X.
Therefore (B')% C §99 = §¢ in X. So x € $* in X . Due to Proposition 1.1, one has
x € 84 in X, and, hence, x € {|y|}¢ in X”. Consequently, x L y in XP. As y was an
arbitrary element of B¢ in X”, we obtain x € B = B in X. Thus, x ¢ BNE = B'.
We conclude (B')% C B’ in X. O

Observe that the condition in Proposition 2.5 is not necessary. Indeed, referring to
Example 2.1, for S C X one has either ¢ = {0} or $¢ = Y. On the other hand, there
are y € Y with {y}? non-trivial. Nevertheless, (R) is satisfied.

We combine Lemma 2.4 and Proposition 2.5.

THEOREM 2.6. In a pervasive pre-Riesz space the restriction property (R) for
bands holds.

Observe that the pre-Riesz space in Example 2.2 is not pervasive.

EXAMPLE 2.7. Consider the space X = CX[0, 1] of k times continuously differ-
entiable functions on [0, 1], equipped with the pointwise ordering. X is order dense in
C[0, 1], and the Riesz completion of X is given by

Y = {y € C[0,1]: y is a piecewise k times continuously differentiable function } .

(A detailed argumentation can be given analogously to [6, Example 3.4].) X is perva-
sive, so the restriction property (R) for bands holds. An analogous statement is satisfied
for the space C*°[0,1].

REMARK 2.8. For a linear subspace D of a partially ordered vector space X we
compare order denseness and the property
(p) *e€X,x20,x#0 FyeD: 0<y<x,y#0,
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which appears in Definition 2.3.

(i) Example 2.2 shows that in general order denseness does not imply (p). Vice
versa, (p) does in general not imply order denseness. Indeed, let X = R? be ordered
by the cone

K ={(x1,x2): x1 >0, orx; = 0and x, > 0}.

Let D = {(0,x2): x € R}. Then DNK = {(0,x2): x, > 0}. On one hand,
if x = (x1,x) € X is such that x > 0 and x # O, then either x; > 0 so that
(0,0) < (0,1) < (x1,x2) with (0,1) € D, or x, = 0 and x; > 0 so that x € D.
Hence (p) holds. On the other hand, D is not order dense, since for x = (1,0) we have
y<x,y#x forall ye D.

(ii) If X is a vector lattice and D is an order dense sublattice of X then (p) holds.
Indeed, let x € X, x > 0, x # 0. Then —x = inf{y € D: y > —x}, so that there
existsay € D withy > —x and y 20,50 y~ #0. Then 0Ay > 0A(—x) = —x and
since y~ = —(y A 0) we have —y~ > —x and therefore 0 < y~ < x. So (p) holds.

(iii) If X is an Archimedean vector lattice and D is a majorizing subspace of X,
then (p) implies that D is order dense in X . For a proof, suppose that D is not order
dense in X. Then there exists an x € X such that x # inf{y € D: y > x}. That is,
there exists a v € X such that v < y forall y € D with y > x, but v £ x. Put
w=vAx €X. Then w <y forall y € D with y > x, and we have 0 < w — x
and w — x # 0. Since (p) holds, there existsa u € D, u # 0, with 0 < u < w — x,
hence w — u > x. Since D is majorizing, there exists a yg € D with yo > w. Then
yI =Yo—u>=>w—u > x,where yy € D and y; > w. Inductively, we define
Yy = Yp—1 —U = yo —nu € D with y, > w — u > x and therefore y, > w, where
n € N. Then yo —w > nu forall n € N. As X is Archimedean we obtain that u < 0,
which is a contradiction.

(iv) If X is an Archimedean vector lattice and D is a sublattice, then D is order
dense in X if and only if (p) holds (cf. [3, Theorem 3.1]).

3. A space of operators

In [2] the space [3° of all real sequences which are constant except for a finite
number of terms is investigated. This vector lattice is not Dedekind complete. In [2,
Theorem 4.1] it is established that L' (I3°) = L”(I5°) . The space L (IS°) does not satisfy
the Riesz decomposition property [2, Theorem 5.1], so L"(I§°) is not a vector lattice.
Since every (o)-continuous operator is automatically order bounded (see [1, Theorem
2.1]), the space of (0)-continuous operators L"(I5°) is a subspace of L"(I3°). We show
that L*(I5°) isabandin L"(I§°). Indeed, we establish that L"(I§°) is a pre-Riesz space,
calculate its Riesz completion, show that L"(I§°) is pervasive and apply the restriction
property for bands.

In view of the subsequent example, we fix some notations. The space of all real
sequences which are zero except for a finite number of terms is denoted by cgo. Let X
be a vector space with a countable algebraic basis Z = (b)), , i. e. forevery x € X
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there is a unique sequence & = (&)ien, € coo such that

X = i b
i=0

For i € N define f(): X — R by £ (x) = &, so one can write
x=> 0k
i=0

Let A:X — X be a linear operator. We denote the matrix representation of A with
respectto % by A, 1i. e.

N

A = (ay)ijen, with az=f(AbY). (1)

By definition, for each j € Ny one has (aij)ieNo € cgo. Conversely, every matrix
(aij)ijen, With (a;)ien, € coo forall j € Ny corresponds to alinear operator A: X — X .
We view A as a linear operator on ¢, where

A: Coo — Coo -

EXAMPLE 3.1. Let X = [§° be the vector lattice of all eventually constant
sequences, i. €.

I5° = {(x:)ien: thereis B € R and k € N such that x; = 8 forall i >k},

equipped with the coordinatewise order. The cone in X is denoted by X, . For every
Jj € N denote

eV = (x;)ien With x; =1 and x; = 0 forall i #j.
Moreover, denote 1 = (1);en. The set
B = {]l,e(l),em7 .
is an algebraic basis of X, where for x = (x;);en € X one has

FfO%) = limx

I—00

and fV(x) = x;— lim x; forall j>1. (2)

11— 00

For a linear operator A: X — X we have the matrix representation A according to (1).
Next we address the issue of order. Define

K = {é (él)lENo € Ccoo: éo O é, + éo 0 forall i € N}

then one has '
x € X, ifandonlyif (f?(x))ien, € K.

So, A is positive if and only if A is positive in the space (coo, K). We characterize the
positivity of A.
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(a) A = (aj)ijen, is positive in (co, K) if and only if for all i € N the both
conditions
(i) ag+a; >0 forall j € N, and

(ii) ago + ain = Zjozol (aoj + ajj)

are satisfied.
For a proof, assume first that A is positive in (coo, K). Denote €/} = (¢;)icy, With
¢ =1and ¢ = 0 forall i # j. Since el € K, we have AeV) € K for all j € Ny,
which means that (i) holds and that

(iii) ao; > 0 forall j € Np.
Further let N € N and consider & = (&)ien, € K definedby & =1, & = —1 for
1<i<N,and { =0 fori>N. AsAéeKweobtamaoo>Z _; aoj and

apo + ajp = Z ap; + a,J forall i € N.
j=1

We infer (ii) and

(iV) ano Z ZJO:OI aoj .
Conversely, assume that (i) and (ii) hold and let & € K. Forevery i € N we have

(AE)i+ (A8)o = (an+an)éo + Y _(aj+ag)§
=1

> (aio + apo)é&o — Z(aij + agj)& = 0.
=1
Since the columns of A are eventually zero, we see that (iii) and (iv) follow from (i)
and (ii). Hence

(AE)o = agéo + Zaojéj > apéo — Zaojéo >0
j=1 j=1
Thus A is positive.
(b) A = (ay)ijen, is regular with respect to (coo, K) if and only if the sequence of

absolute row sums (37, [a;|)ien, is bounded.

Indeed, assume that A is regular. Then there exist positive operators G and H on
(co0,K) with G = (g;)ijen, and H = (h;)ijen, such that A = G — H. Define
B = (b;)ijen, by B= G+ H. Then B is positive and B — A = 2H is positive, so that
forall i € N,

boj >0, bo+b; >0 forall j €N,

boo > Y _ boj, oo + bio > Z (boj + by),
j=1 j=1

boj — aoj 2 0, by — agj +b;j —a; =0 forall j €N, and

o0
boo — ago > E (boj — agy)-
Jj=1
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Hence
aj; < b()] + by a()] (boj + b,j) (b()j — a()j) forall i,j € N.

Both terms at the right hand side are positive, so taking positive parts and summing over
J yields
doai <Y ((b,-j + boj) + (bo; — aoj))
j=1 j=1
< boo + bip + boo — ago  forall i € N.

Similarly, if we consider —A instead of A we obtain bgj + agj > 0 for all j € Ny and

o0
Z (1,] t < bgo + big + boo + agy  forall i € N.
j=1

Since (bio)ien, € coo, the maximum b = max{b,o: i € Ny} exists, and Zool la;j| <
4boo + 2b for all i € N. It also follows that |ag;| < bo; for all j € Ny and hence
Z]:l |aoj| < bgp . Thus, (ZJ:I ‘alj|)lENu is bounded by 4bgg + 2b.

Next assume that (357, |a;|)ien, is bounded. Let b > 4 377, |a;| forall i € No.

j
Define B = (b;);jen, by

bop = b + |(1()()‘ and bij = \a,j| for i,j € Ny with (i,j) 7£ (0, 0)

A

With the aid of (a) it follows that B and B — A are positive. Hence A = B — (B — A)
is regular.

(c) The space L(cqo, K) of regular operators on (cgo, K) is not a lattice.

For example, consider A = (ajj)ijen, With a; = —1/iif i =j > 1 and a3 = 0
otherwise. Due to (b), A is a regular operator on (coo, K). We show that A V 0 does
not exist. Define for n € Ny the operator B") = (bfj")),- JjeN, by
L if i=j=0,
by = 1 if j=0 and 1 <i<n,
0 otherwise.

It is easily checked that B"™ and B") — A are positive for all n € Ny. Further, let
G = (g;j)ijen, be an operator on (cop, K) such that 0 < G < B™ forall n € Ny. If
we show that G > A cannot hold, then we know that there is no least upper bound of
{0,A}. For i € N and n € Ny, the positivity of G and B") — G yields goo + gio > 0
and b("> — goo + b( " _ gio = 0. Since the columns of B™ and G are eventually zero,
it follows that 0 < ggp < b(()()) for all n and therefore ggo = 0. If we now suppose that
G > A, then

goo — aoo + gio — aip = Z(g()j ag + gij —a;) forall i e N,
j=1



BANDS IN PERVASIVE PRE-RIESZ SPACES 187

so gio = 1/i, which contradicts the fact that the columns of G are eventually zero.
Thus A V 0 does not exist in L"(cgo, K) .

Recall that the space L"(cqo, K) consists of the matrix representations of the regular
operators on [5° . Due to (b), this space of matrix representations is given by

Z = {(ajj)ijen,: (aij)i € coo Vj € Ng and (ZJOZOI |a"f‘)ieNo is bounded}.

The space Z is equipped with the cone of operators that are positive with respect to
(coo, K), that is, the representations satisfying (i) and (ii) of (a). It is our aim to embed
Z into an appropriate vector lattice. Define a space Y as the space of all matrices
(bij)ienjen, that satisfy the following four conditions:

(bj)ien is eventually constant for all j > 1, 3)

Z |Bj| < oo, where B = zlir?o bij, )

j=1

(bio)ien is bounded, )
bi’) is bounded. 6

(J_Zl il ien 1s bounde (©)

We endow Y with the entrywise order. We define a map F on &% by

F(A) = (fi(A))ienjeny;
for A = (ay)ijen, € %, where

f(A): (loj+oélij for iGN,j}l,
v aopo + aip — Zé:l(aw + a,[) for i € N, j= 0.
(d) The space Y is a vector lattice and F: % — Y is a bipositive linear map.

It is straightforward that Y is a vector lattice. We next show that F maps into Y. Let
A€ % and put b;; = f;;(A) for i € N and j € Ny. For j > 1 we have b;; = ag; for i
large, so (3) holds. Further, f; := lim; oo by = ag; and 37, |Bj| = >°7%, |ag;| < oo,
so we have (4). To infer (5) and (6), use that (Zjoil |a;j|), is bounded and (aio); € coo -
It is clear that the map F is linear and that F/(A) is positive if and only if A is a positive
element of Z.

As each bipositive map is injective, it follows that &% is embedded in Y by the

map F.

(e) The subspace F(#) is order dense in Y.
Indeed, let B = (b;j)ienjen, € Y. We construct a sequence (AY)yen in Z such that
for each N € N we have

F(AN); =b; fori€eN, jeN, andfor i=1,...,N, j=0,
F(AN)UZZJ,] fOI']ZO, i>N.
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Then it follows that B = inf{F(A): A € #Z, F(A) > B}. Fix N € N. The construction
of AV is as follows. Denote ﬁj = lim;_, o b;; for j > 1 and choose Bo > 0 such that

oo
Bo = sup |bio| +sup > _ |by],
ieN ieN i

which is possible due to (5) and (6). Define

B for i =0, j € Ny,

GN: bij—ﬂj fOI‘iEN,jEN,

v bigfﬁngzzlbig for ie N with i <N, j=0,
0 for ie N with i > N, j =0,

and put AV = (a)ijen, . It is straightforward that AN € Z and that F(A") is as
desired.

Thus, we have shown that the space L'(co, K) is pre-Riesz and that its Riesz
completion is the vector lattice generated by F(#) in Y.

(f) The space Y is not o-Dedekind complete.
For a proof, define B") = (bl(]”)),-eN jen, for n € N by

pn) 1/i fori=1,...,n,j=1,
i 71 0 otherwise.

Then B™ € Y forall n € N and {B™: n € N} does not have a supremum in Y.
(g) The space L"(co, K) is pervasive.
We show that forany B € Y, B > 0, B # 0, there is A € Z such that F(A) > 0,
F(A) #0, F(A) < B. Let B = (bjj)ien,jen, » bj = 0, B # 0. We examine two cases.
(i) Thereis i € N such that by > 0.
Put ajp = bjp and ay = 0 otherwise. Then A = (ay)ien, € % and

| bip for k=i,1=0
F(A)u = { 0 otherwise

(ii) Thereare i,j € N such that b; > 0.
Put a;p = ajj = bij and ay = 0 otherwise. Then A = (akl)kJeNU € % and

| by for k=i, l=j
F(A)u = { 0 otherwise

In both cases A satisfies F(A) > 0, F(A) #0,and F(A) < B.

We conclude from Theorem 2.6 that the space L'(coo, K) (and, hence, L' (I5°))
has the restriction property (R) for bands.

Let us now consider the space L"(coo, K) of (0)-continuous operators on (cqo, K),
which is a subspace of L"(cop). We will show that L"(cgo,K) is a directed band
in L"(coo,K). (Note that, in general, a band need not be directed, cf. [6, Example
5.13].) First, we characterize the positive (0)-continuous operators and then we consider
the arbitrary case. In order to prove the characterizations, we need two statements
concerning (0)-convergence of sequences in (cqo, K) .
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(h) (i) Anet (x*)g in (cgo, K) satisfies x* | 0 if and only if xJ | and x§ +x% | 0
forall i € N.
(ii) The sequence (x"),en in (coo, K) defined by xjj := 1, x! := —1 for
i=1,...,n,and x} :=0 for i > n, n € N, satisfies x" | 0.
To show (i), we first assume that x* | 0. Then x§ > 0 and x§ +x* > 0, and both
x§ and x§ + x{* are decreasing in o for all i € N. Suppose that x§ + x7 > & for
all o for some k € N and 6 > 0. If we define y € cgo by yx := 8 and y; := 0 for
all i # k, then y < x* for all . However, y € 0, since yp + yx = 6 % 0, which
contradicts x* | 0.

Conversely, we assume that x§ | and x§ +x{ | O forall i € N. Then (x%),
is a decreasing net of positive elements. If y € coy satisfies y < x* for all o, then
Yo+ yi <x§ +x¥ forall i € N andall or. Hence yo +y; < 0 forall i € N and then
also yg < 0 as y € ¢go. So y < 0 and therefore x* | 0.

For a proof of assertion (ii), observe that for n > m,

1 fm<i<n

(X" =x")p=0 and (X" —x");+ (" —x")= { 0 otherwise,

so X" > x". Further, x* > 0 for all n. Finally, if y < x" for all n, then for every
i € N we have y; +yo < x/ +xj forall n, so y; +yo < 0. Since y € cgp, we also
obtain yp < 0 and y < 0. Hence x* | 0.

(j) A regular operator A = (a;)ijen, on (coo, K) is (0)-continuous if and only if

oo
Z aj +a()] =ajp +ag foralli e N.
j=1

Moreover, the space L"(cq, K) is directed.

We first assume that A is an (0)-continuous operator on (cgy,K) and show that the

algebraic condition holds. Foranet x* | 0 we have Ax* L), 0, so that there exists a net

(v*)e in (coo, K) with £Ax* < v* forall o and v§ | and v +v§ | 0 forall i € N.
We then have £[(Ax®); + (Ax*)o] < vf* + v, s0 | 3270 (ay + ag)x| < v +vg L 0
forall i € N. Further, foreach i € N,

o0 o0
Z aj + ag;) (x]" + x3) Z lag| + |ag]) (x]" + x5),
j=1 j=1

which converges to 0 by the Monotone Convergence Theorem, since ZJO:OI la;i| < oo
forall i € Ny and x{ +x | O forall j € N. Hence for each i € N, the right hand
side of the identity

AMg

oo oo

o
E (aij + aoj)xg — (aio + aoo)xy = (aij + agj)( x +x5) g (aij + agj)x
Jj=1 j=0

j=1

converges to 0. If we consider the sequence (x"),en of (ii) of (h), we have x} = 1 for
all n, and we infer that ZJO:OI (aj + aoj) = aip + ago forall i € N,
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Next, we show that any regular operator A = (a;j)ijen, on (coo, K) that satisfies
the algebraic condition is (0)-continuous. We assume as a first step that A is positive.
Let (x*)y be anetin (coo,K) with x* | 0. Then Ax* | and in particular (Ax*)o | .
Due to the property of A we have forevery i € N,

(Ax®)o + (Ax*); = Y (ao) + ag)(xf + ).

J=1

Since Y7 (ag+ay) < oo and x§+xf* | 0 forall 7, itfollows that (Ax*)o+(Ax*); | 0.
By (i) of (h) we infer that Ax* | 0. Hence A is (0)-continuous.

Now, let A = (a;)ijen, be an arbitrary regular operator on (cgo, K) that satisfies
the algebraic condition. We show that there exists a positive (0)-continuous operator B
on (cgo, K) such that B — A is positive and (o0)-continuous. Let

+
d=sup | > (lag] +lagl) = (Jaoo| + law]) |
IS ;
J=1
which is a finite number, as A is regular. Define d; = |a;| for i,j € Ny with
(i,7) # (0,0) and doo = |ago| + d. Then
Bi=dw+do— Y (dj+dy) >0 forall ieN.
=1

Now define B = (b;);jen, by

doo for i :] = O,
by={ dj forijeN with i#},
dzt+ﬁl for l,JeN with l:J

Then the columns of B are eventually zero, so B is an operator on (cgo, K) . Further,
B satisfies the algebraic condition, and so does B — A. Also, B and B — A are
positive. Therefore, both B and B — A are (o)-continuous. Thus, A = B— (B — A) is
(0)-continuous and the proof is complete.
(k) The space L"(coo, K) is a band in L"(coo, K) .

We show the equivalent assertion, namely that the set .4” of matrix representations of
elements of L"(coo, K) is a band in . We use the embedding in Y and the fact that
disjointness in Y is the entrywise disjointness. According to (d) and (e), the map F
embeds & order densely into Y. Due to (j), an element A € & isin .4 if and only
if F(A)io =0 forall i € N. The set {B = (bjj)ien,en, € Y:bip =0foralli € N} isa
band in Y. Since the restriction property (R) for bands holds, F(#) N B is a band in
F(Z%). Accordingly, .4 isabandin Z .

We conclude that L"(I5°) is a band in the pre-Riesz space L"(I§°).

In the previous example the Riesz completion shows to be an appropriate tool to

deal with spaces of operators on a vector lattice that is not Dedekind complete. If X is
a Dedekind complete vector lattice, Ogasawara’s theorem states that L"(X) is a band
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in L'(X). The above example may be seen as an instance of this theorem in the more
general setting of pre-Riesz spaces. Thus we arrive at the following question for a vector
lattice X :

If L”(X) is pre-Riesz (e. g., Archimedean and directed), which conditions on X
ensure that L"(X) is a band in L*(X)?
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