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BANDS IN PERVASIVE PRE–RIESZ SPACES

O. VAN GAANS AND A. KALAUCH

(communicated by L. Rodman)

Abstract. Pre-Riesz spaces are partially ordered vector spaces which are order dense subspaces
of vector lattices. A band in a pre-Riesz space can be extended to a band in the ambient vector
lattice. The corresponding restriction property does not hold in general. We provide sufficient
conditions on the underlying space such that the restriction property for bands holds. As an
application, we consider the space Lr(l∞0 ) of all regular operators on the space l∞0 of all finally
constant sequences. We establish that Lr(l∞0 ) is pre-Riesz and that its subspace of all order
continuous operators is a band in Lr(l∞0 ) .

1. Introduction

The notions of ideal and band in a partially ordered vector space have been in-
vestigated in [6]. The method used there is embedding of the space as an order dense
subspace of a vector lattice. The spaces that allow such an embedding are the pre-Riesz
spaces. It has been studied whether ideals or bands in a pre-Riesz space can be ex-
tended to ideals or bands in the ambient vector lattice and whether the restriction to
the pre-Riesz space of an ideal or band in the vector lattice is an ideal or band in the
pre-Riesz space. An appropriate generalization of ideal has been established such that
both extension and restriction work in arbitrary pre-Riesz spaces. For bands extension
always works, whereas restriction may fail. In this paper we give a condition on the
pre-Riesz space such that both extension and restriction hold for bands. We show that
the condition is satisfied by a space of operators.

We begin by fixing our notations and terminology. Let X be a real vector space and
let K be a cone in X , that is, K is a wedge ( x, y ∈ K, λ ,μ � 0 imply λx + μy ∈ K )
and K ∩ (−K) = {0} . In X a partial order is introduced by defining y � x if and only
if y − x ∈ K . A set M ⊂ X is called order bounded if there are y, z ∈ X such that
y � x � z for all x ∈ M . Denote for a subset M ⊆ X the set of all upper bounds by

Mu = {x ∈ X: x � m for all m ∈ M} .

We denote the natural numbers by N , and N0 = N ∪ {0} . The space (X, K) is called
Archimedean if for every x, y ∈ X with nx � y for all n ∈ N0 one has x � 0 . A set
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M ⊆ X is called directed if for every x, y ∈ M there is an element z ∈ M such that
z � x and z � y . X is directed if and only if the cone K is generating in X , that is,
X = K − K . X has the Riesz decomposition property if for every y, x1, x2 ∈ K with
y � x1 + x2 there exist y1, y2 ∈ K such that y = y1 + y2 and y1 � x1 , y2 � x2 .

For standard notations in the case that X is a vector lattice see [3]. Recall that a
vector lattice is Dedekind complete whenever every non-empty subset that is bounded
from above has a supremum, and σ -Dedekind complete whenever every countable
subset that is bounded from above has a supremum.

A partially ordered vector space X is called pre-Riesz if for every x, y, z ∈ X the
inclusion {x + y, x + z}u ⊆ {y, z}u implies x ∈ K [7, Definition 1.1(viii), Theorem
4.15]. Every pre-Riesz space is directed and every directed Archimedean partially
ordered vector space is pre-Riesz [7]. Clearly, each vector lattice is pre-Riesz.

By a subspace of a partially ordered vector space or a vector lattice we mean
an arbitrary linear subspace with the inherited order. We do not require it to be a
lattice or a sublattice. We say that a subspace X of a vector lattice Y generates Y
as a vector lattice if for every y ∈ Y there exist a1, . . . , am, b1, . . . , bn ∈ X such that
y =

∨m
i=1 ai −

∨n
i=1 bi .

We call a linear subspace D of a partially ordered vector space X order dense in
X if for every x ∈ X we have x = inf{y ∈ D: y � x} , that is, each x is the greatest
lower bound of the set {y ∈ D: y � x} in X [4, p. 360].

Recall that a linear map i: X → Y , where X and Y are partially ordered vector
spaces, is called bipositive if for every x ∈ X one has i(x) � 0 if and only if x � 0 .
An embedding map is required to be linear and bipositive, which implies injectivity.

Let X be a partially ordered vector space. The following statements are equivalent
[7, Corollaries 4.9–11 and Theorems 3.5, 3.7, 4.13]:

(i) X is pre-Riesz.
(ii) There exist a vector lattice Y and a bipositive linear map i: X → Y such that

i(X) is order dense in Y .
(iii) There exist a vector lattice Y and a bipositive linear map i: X → Y such that

i(X) is order dense in Y and generates Y as a vector lattice.
All spaces Y as in (iii) are isomorphic as vector lattices. A pair (Y, i) as in (iii) is
called a Riesz completion of X . As it is unique up to isomorphism we will speak of the
Riesz completion of X and denote it by Xρ .

Let X be a partially ordered vector space. The elements x, y ∈ X are called
disjoint, in symbols x ⊥ y , if {x + y,−x − y}u = {x − y,−x + y}u , cf. [5]. If
X is a vector lattice, then this notion of disjointness coincides with the usual one,
cf. [3, Theorem 1.4(4)]. The disjoint complement of a subset M ⊆ X is the set
Md = {y ∈ X: y ⊥ x for all x ∈ M} .

PROPOSITION 1.1. [5, Proposition 2.1] Let X and Y be partially ordered vector
spaces and let x, y ∈ X .

(i) If X is a subspace of Y , then x ⊥ y in Y implies x ⊥ y in X .
(ii) If X is an order dense subspace of Y , then x ⊥ y in Y if and only if x ⊥ y in

X .
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A linear subspace M of a partially ordered vector space X is called a band in X if

(Md)d = M ,

cf. [5, Definition 5.4]. If X is an Archimedean vector lattice, then this notion of a band
coincides with the usual one. For every subset M of X , the disjoint complemet Md is
a band [5, Proposition 5.5].

Let Y be a vector lattice and X an order dense subspace of Y . In [6] the following
restriction property (R) and extension property (E) for bands are considered:

(R) If J is a band in Y , then J ∩ X is a band in X .

(E) If I is a band in X , then there exists a band J in Y such that I = J ∩ X .

The extension property (E) for bands is shown in [6, Proposition 3.15]. The restriction
property (R) for bands is not true in general [6, Example 4.16]. In the present paper, we
provide sufficient conditions on X such that (R) is satisfied. We verify (R) for several
spaces, in particular for a space of operators.

We conclude the section by collecting standard definitions concerning spaces of
operators. Let X be a partially ordered vector space and L(X) the set of all linear
operators on X . As usual, an operator T ∈ L(X) is called positivewhenever T(K) ⊆ K ;
we write S � T if S − T is positive. An operator T ∈ L(X) is called order bounded
if T maps order bounded subsets into order bounded subsets, and regular whenever T
can be written as a difference of two positive operators. The set of all order bounded
operators is denoted by Lb(X) , whereas the set of all regular operators is denoted by
Lr(X) .

A net {xα} ⊆ X is said to be decreasing (in symbols, xα ↓ ), whenever α � β
implies xα � xβ . For x ∈ X the notation xα ↓ x means that xα ↓ and infα{ xα} = x
both hold. We say that a net {xα}α ⊂ X (o) -converges to x ∈ X (in symbols,

xα
(o)−→ x ), if there is a net {yα}α ⊂ X such that yα ↓ 0 and for all α one has

±(xα − x) � yα . The equivalence of xα
(o)−→ x and xα − x

(o)−→ 0 is obvious. If a net
(o)-converges, then the limit is unique.

An operator T ∈ Lb(X) is called (o) -continuous if for each net {xα}α∈A ⊂ X

with xα
(o)−→ 0 follows T(xα)

(o)−→ 0 . Clearly, the (o)-continuity of T implies

T(xα)
(o)−→ T(x) for every net {xα} ⊂ X with xα

(o)−→ x ∈ X . Moreover, if T is
positive, then T is (o)-continuous if and only if xα ↓ 0 implies T(xα) ↓ 0 . Denote the
set of all (o)-continuous operators in Lb(X) by Ln(X) .

If X is a Dedekind complete vector lattice, then Lb(X) is a Dedekind complete
vector lattice as well, which implies Lb(X) = Lr(X) [3, Theorem 1.13]. Moreover,
Ln(X) is a band in Lb(X) (Ogasawara’s theorem, see [3, Theorem 4.4]). We are
interested in this statement if X is not Dedekind complete. We consider an example of
a vector lattice X , where X is not Dedekind complete, Lb(X) is pre-Riesz, and where
Ln(X) turns out to be a band in Lb(X) . For the proof we calculate the Riesz completion
of Lb(X) and show that Ln(X) can be obtained as the restriction of a band in the Riesz
completion.
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2. The restriction property for bands

In the present section, we study (R) for a pre-Riesz space X and its Riesz com-
pletion Y = Xρ . In certain pre-Riesz spaces the restriction property (R) is trivially
satisfied.

EXAMPLE 2.1. We refer to [6, Example 3.4], where subspaces of the space C(R)
of continuous functions on R are considered, ordered by the natural cone

{x ∈ C(R): x(t) � 0 for all t ∈ R} .

Let X = P2(R) be the ordered vector space of all real polynomial functions on R of at
most degree 2. X is pre-Riesz, and its Riesz completion is given by

Y = {y ∈ C(R): y is a piecewise polynomial function of at most degree 2

with L(y) = R(y) } ,

where
L(y) = lim

t→−∞ y(t)/t2 and R(y) = lim
t→∞ y(t)/t2.

Let B be a non-trivial band in Y and let x ∈ B ∩ X . Since Bd 
= {0} , there is y ∈ Y ,
y 
= 0 , such that x ⊥ y . This implies x = 0 . Consequently, B ∩ X = {0} , which is a
band in X .

In general, the restriction property (R) for bands does not hold. We continue with
an example of a sequence space which turns out to be pre-Riesz, calculate its Riesz
completion, and define a band in the Riesz completion that does not restrict to a band
in the pre-Riesz space.

EXAMPLE 2.2. Consider the space X = c of all convergent sequences and denote
c+ = {(xn)n∈N ∈ c: xn � 0 for all n ∈ N} . Consider the linear functional f on X
given by

f (x) =
∞∑
n=1

xn

2n
− lim

n→∞ xn for each x = (xn)n∈N ∈ X .

Let X be ordered by the cone K = {x ∈ c+: f (x) � 0} . X is not a lattice, since e. g.
for the elements u = (un)n∈N with un = 1 for all n ∈ N and v = (vn)n∈N with v1 = 1
and vn = 0 for all n � 2 the infimum does not exist. Indeed, assume that w is the
infimum of u and v . On one hand, w is coordinatewise less or equal v , which yields
w1 � 1 and wn � 0 for all n � 2 . On the other hand, w is coordinatewise equal or
greater than each lower bound of u and v . Since obviously f (u) = 0 , f (v) = 1

2 and
f (0) = 0 , one gets 0 � u, v . For the sequence z = (zn)n∈N with z1 = 1 , z2 = −2
and zn = 0 for all n � 3 one has f (z) = 0 , so z � u, v . Since w is coordinatewise
greater than 0 and z , one gets w1 = 1 and wn = 0 for all n � 2 , thus w = v . From
f (v) � f (u) follows w � u , a contradiction.

The space Y = c × R , ordered by the cone Y+ = {(x, r) ∈ Y: x ∈ c+, r � 0} , is
a vector lattice, and the mapping i: X → Y , i(x) = (x, f (x)) for each x ∈ X , is linear
and bipositive. We show that i(X) is order dense in Y and that i(X) generates Y as a
vector lattice, which implies that X is a pre-Riesz space and Y is its Riesz completion.
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Let y = (x, r) ∈ Y , i. e. x = (xn)n∈N ∈ X . Consider the first case f (x) � r . Put

vn =
{

x1 + 2(r − f (x)) if n = 1
xn otherwise

, wn =
{

x2 + 4(r − f (x)) if n = 2
xn otherwise

.

The sequences v = (vn)n∈N and w = (wn)n∈N are elements of X . Furthermore,
f (v) = f (x) + (r − f (x)) = r and, analogously, f (w) = r . So, y � i(v) , y � i(w) ,
and moreover, y = i(v) ∧ i(w) = −(i(−v) ∨ i(−w)) .

Consider the second case f (x) > r . Then, due to the first case, there are v̂, ŵ ∈ X
such that −y = −(i(v̂)∨ i(ŵ)) , i. e. y = i(v̂)∨ i(ŵ) . So, i(X) generates Y as a vector
lattice.

In the case f (x) > r it remains to show that the element y = (x, r) is the infimum
of elements of i(X) . For each m ∈ N consider the sequence z(m) = (z(m)

n )n∈N with

z(m)
n = 0 for all n < m and z(m)

n = 1 otherwise. Clearly, z(m) ∈ X , and since
limn→∞ z(m)

n = 1 , one has

f (z(m)) =
∞∑

n=m

1
2n

− 1 =
1

2m−1
− 1 .

For each m ∈ N put u(m) = x + (f (x) − r)z(m) , then u(m) ∈ X , u(m) � x and

f (u(m)) = f (x) + (f (x) − r)f (z(m)) = r +
1

2m−1
(f (x) − r) � r ,

so for each m ∈ N one has (u(m), f (u(m))) � (x, r) = y . Let (v, s) ∈ Y be an arbitrary
lower bound of the set {(u(m), f (u(m))): m ∈ N} . Then v is elementwise less or equal
x , moreover s � f (u(m)) for all m ∈ N , so s � r , which implies (v, s) � (x, r) = y .
So,

y = inf{i(u(m)): m ∈ N} .

Consequently, i(X) is order dense in Y .
The set B = {(x, r) ∈ Y: r = 0} is a band in Y . Let B′ = B∩X = {x ∈ c: f (x) =

0}. As � = (1, 1, 1, . . .) ∈ B′ , due to Proposition 1.1 one gets

(B′)d = {v ∈ c: (v, f (v)) ⊥ (b, f (b)) in Y for all b ∈ B′} = {0} .

Hence, (B′)dd = c 
= B′ , so B′ is not a band in X . Thus, the restriction property (R)
for bands is not satisfied.

We provide conditions on a pre-Riesz space X which ensure that the restriction
property (R) for bands holds.

DEFINITION 2.3. A pre-Riesz space X is called pervasive, if for each element
y ∈ Xρ , y � 0 , y 
= 0 , there is x ∈ X , x 
= 0 , such that 0 � x � y .

LEMMA 2.4. If X is a pervasive pre-Riesz space, then for every y ∈ Xρ , y � 0 ,
there is S ⊆ X such that {y}d = Sd in Xρ .
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Proof. Let y ∈ Xρ , y � 0 . We assume y 
= 0 . Let S = {x ∈ X: 0 � x � y} . On
one hand, if z ∈ Xρ is such that |z| ∧ y = 0 , then 0 � |z| ∧ x � |z| ∧ y = 0 for all
x ∈ S , hence {y}d ⊆ Sd in Xρ .

On the other hand, assume that there exists z ∈ Sd \ {y}d . Put w = |z| ∧ y , then
w ∈ Xρ , w � 0 , w 
= 0 . Since X is pervasive, there is x ∈ X , x 
= 0 , such that
0 � x � w . As w � y we obtain x ∈ S and therefore x ∧ |z| = 0 . Hence,

x = x ∧ x � x ∧ w � x ∧ |z| = 0 ,

which is a contradiction. We conclude {y}d = Sd in Xρ . �

PROPOSITION 2.5. Let X be a pre-Riesz space such that for every y ∈ Xρ , y � 0 ,
there is S ⊆ X such that {y}d = Sd . Then the restriction property (R) for bands holds.

Proof. Let B be a band in Xρ and B′ = B ∩ X . We have to show (B′)dd = B′ in
X . Since B′ ⊆ (B′)dd is obvious, it suffices to establish (B′)dd ⊆ B′ . Let x ∈ (B′)dd

in X . We show x ∈ Bdd in Xρ . Indeed, let y ∈ Bd in Xρ . Then |y| ∈ Xρ , |y| � 0 .
So there is a set S ⊆ X such that {|y|}d = Sd in Xρ . Let z ∈ B′ ⊆ B . Then y ⊥ z in
Xρ , so z ∈ {|y|}d = Sd in Xρ . So, for any s ∈ S one has z ⊥ s in Xρ , which implies
z ⊥ s in X due to Proposition 1.1. Hence z ∈ Sd in X , and one gets B′ ⊆ Sd in X .
Therefore (B′)dd ⊆ Sddd = Sd in X . So x ∈ Sd in X . Due to Proposition 1.1, one has
x ∈ Sd in Xρ , and, hence, x ∈ {|y|}d in Xρ . Consequently, x ⊥ y in Xρ . As y was an
arbitrary element of Bd in Xρ , we obtain x ∈ Bdd = B in Xρ . Thus, x ∈ B ∩ E = B′ .
We conclude (B′)dd ⊆ B′ in X . �

Observe that the condition in Proposition 2.5 is not necessary. Indeed, referring to
Example 2.1, for S ⊆ X one has either Sd = {0} or Sd = Y . On the other hand, there
are y ∈ Y with {y}d non-trivial. Nevertheless, (R) is satisfied.

We combine Lemma 2.4 and Proposition 2.5.

THEOREM 2.6. In a pervasive pre-Riesz space the restriction property (R) for
bands holds.

Observe that the pre-Riesz space in Example 2.2 is not pervasive.

EXAMPLE 2.7. Consider the space X = Ck[0, 1] of k times continuously differ-
entiable functions on [0, 1] , equipped with the pointwise ordering. X is order dense in
C[0, 1] , and the Riesz completion of X is given by

Y = {y ∈ C[0, 1]: y is a piecewise k times continuously differentiable function} .

(A detailed argumentation can be given analogously to [6, Example 3.4].) X is perva-
sive, so the restriction property (R) for bands holds. An analogous statement is satisfied
for the space C∞[0, 1] .

REMARK 2.8. For a linear subspace D of a partially ordered vector space X we
compare order denseness and the property

(p) ∀x ∈ X , x � 0 , x 
= 0 ∃y ∈ D : 0 � y � x , y 
= 0 ,
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which appears in Definition 2.3.
(i) Example 2.2 shows that in general order denseness does not imply (p). Vice

versa, (p) does in general not imply order denseness. Indeed, let X = R2 be ordered
by the cone

K = {(x1, x2): x1 > 0, or x1 = 0 and x2 � 0}.
Let D = {(0, x2): x2 ∈ R} . Then D ∩ K = {(0, x2): x2 � 0} . On one hand,
if x = (x1, x2) ∈ X is such that x � 0 and x 
= 0 , then either x1 > 0 so that
(0, 0) � (0, 1) � (x1, x2) with (0, 1) ∈ D , or x2 = 0 and x1 > 0 so that x ∈ D .
Hence (p) holds. On the other hand, D is not order dense, since for x = (1, 0) we have
y � x , y 
= x for all y ∈ D .

(ii) If X is a vector lattice and D is an order dense sublattice of X then (p) holds.
Indeed, let x ∈ X , x � 0 , x 
= 0 . Then −x = inf{y ∈ D: y � −x} , so that there
exists a y ∈ D with y � −x and y 
� 0 , so y− 
= 0 . Then 0∧ y � 0∧ (−x) = −x and
since y− = −(y ∧ 0) we have −y− � −x and therefore 0 � y− � x . So (p) holds.

(iii) If X is an Archimedean vector lattice and D is a majorizing subspace of X ,
then (p) implies that D is order dense in X . For a proof, suppose that D is not order
dense in X . Then there exists an x ∈ X such that x 
= inf{y ∈ D: y � x} . That is,
there exists a v ∈ X such that v � y for all y ∈ D with y � x , but v 
� x . Put
w = v ∧ x ∈ X . Then w � y for all y ∈ D with y � x , and we have 0 � w − x
and w − x 
= 0 . Since (p) holds, there exists a u ∈ D , u 
= 0 , with 0 � u � w − x ,
hence w − u � x . Since D is majorizing, there exists a y0 ∈ D with y0 � w . Then
y1 = y0 − u � w − u � x , where y1 ∈ D and y1 � w . Inductively, we define
yn = yn−1 − u = y0 − nu ∈ D with yn � w − u � x and therefore yn � w , where
n ∈ N . Then y0 −w � nu for all n ∈ N . As X is Archimedean we obtain that u � 0 ,
which is a contradiction.

(iv) If X is an Archimedean vector lattice and D is a sublattice, then D is order
dense in X if and only if (p) holds (cf. [3, Theorem 3.1]).

3. A space of operators

In [2] the space l∞0 of all real sequences which are constant except for a finite
number of terms is investigated. This vector lattice is not Dedekind complete. In [2,
Theorem4.1] it is established that Lr(l∞0 ) = Lb(l∞0 ) . The space Lr(l∞0 ) does not satisfy
the Riesz decomposition property [2, Theorem 5.1], so Lr(l∞0 ) is not a vector lattice.
Since every (o)-continuous operator is automatically order bounded (see [1, Theorem
2.1]), the space of (o)-continuous operators Ln(l∞0 ) is a subspace of Lr(l∞0 ) . We show
that Ln(l∞0 ) is a band in Lr(l∞0 ) . Indeed, we establish that Lr(l∞0 ) is a pre-Riesz space,
calculate its Riesz completion, show that Lr(l∞0 ) is pervasive and apply the restriction
property for bands.

In view of the subsequent example, we fix some notations. The space of all real
sequences which are zero except for a finite number of terms is denoted by c00 . Let X
be a vector space with a countable algebraic basis B = (b(i))i∈N0 , i. e. for every x ∈ X
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there is a unique sequence ξ = (ξi)i∈N0 ∈ c00 such that

x =
∞∑
i=0

ξib
(i) .

For i ∈ N define f (i): X → R by f (i)(x) = ξi , so one can write

x =
∞∑
i=0

f (i)(x)b(i) .

Let A: X → X be a linear operator. We denote the matrix representation of A with
respect to B by Â , i. e.

Â = (aij)i,j∈N0 with aij = f (i)(Ab(j)) . (1)

By definition, for each j ∈ N0 one has (aij)i∈N0 ∈ c00 . Conversely, every matrix
(aij)i,j∈N0 with (aij)i∈N0 ∈ c00 for all j ∈ N0 corresponds to a linear operator A: X → X .
We view Â as a linear operator on c00 , where

Â: c00 → c00 .

EXAMPLE 3.1. Let X = l∞0 be the vector lattice of all eventually constant
sequences, i. e.

l∞0 = {(xi)i∈N: there is β ∈ R and k ∈ N such that xi = β for all i > k} ,

equipped with the coordinatewise order. The cone in X is denoted by X+ . For every
j ∈ N denote

e(j) = (xi)i∈N with xj = 1 and xi = 0 for all i 
= j .

Moreover, denote � = (1)i∈N . The set

B = {�, e(1), e(2), . . .}
is an algebraic basis of X , where for x = (xi)i∈N ∈ X one has

f (0)(x) = lim
i→∞ xi

and f (j)(x) = xj − lim
i→∞ xi for all j � 1 . (2)

For a linear operator A: X → X we have the matrix representation Â according to (1).
Next we address the issue of order. Define

K = {ξ = (ξi)i∈N0 ∈ c00: ξ0 � 0, ξi + ξ0 � 0 for all i ∈ N} ,

then one has
x ∈ X+ if and only if (f (i)(x))i∈N0 ∈ K .

So, A is positive if and only if Â is positive in the space (c00, K) . We characterize the
positivity of Â .
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(a) Â = (aij)i,j∈N0 is positive in (c00, K) if and only if for all i ∈ N the both
conditions
(i) a0j + aij � 0 for all j ∈ N , and
(ii) a00 + ai0 �

∑∞
j=1(a0j + aij)

are satisfied.
For a proof, assume first that Â is positive in (c00, K) . Denote ε(j) = (εi)i∈N0 with
εj = 1 and εi = 0 for all i 
= j . Since ε(j) ∈ K , we have Âε(j) ∈ K for all j ∈ N0 ,
which means that (i) holds and that

(iii) a0j � 0 for all j ∈ N0 .
Further, let N ∈ N and consider ξ = (ξi)i∈N0 ∈ K defined by ξ0 = 1 , ξi = −1 for
1 � i � N , and ξi = 0 for i > N . As Âξ ∈ K we obtain a00 �

∑N
j=1 a0j and

a00 + ai0 �
N∑

j=1

(a0j + aij) for all i ∈ N.

We infer (ii) and
(iv) a00 �

∑∞
j=1 a0j .

Conversely, assume that (i) and (ii) hold and let ξ ∈ K . For every i ∈ N we have

(Âξ)i + (Âξ)0 = (ai0 + a00)ξ0 +
∞∑
j=1

(aij + a0j)ξj

� (ai0 + a00)ξ0 −
∞∑
j=1

(aij + a0j)ξ0 � 0.

Since the columns of Â are eventually zero, we see that (iii) and (iv) follow from (i)
and (ii). Hence

(Âξ)0 = a00ξ0 +
∞∑
j=1

a0jξj � a00ξ0 −
∞∑
j=1

a0jξ0 � 0.

Thus Â is positive.
(b) Â = (aij)i,j∈N0 is regular with respect to (c00, K) if and only if the sequence of

absolute row sums (
∑∞

j=1 |aij|)i∈N0 is bounded.

Indeed, assume that Â is regular. Then there exist positive operators G and H on
(c00, K) with G = (gij)i,j∈N0 and H = (hij)i,j∈N0 such that Â = G − H . Define
B = (bij)i,j∈N0 by B = G + H . Then B is positive and B− Â = 2H is positive, so that
for all i ∈ N ,

b0j � 0, b0j + bij � 0 for all j ∈ N,

b00 �
∞∑
j=1

b0j, b00 + bi0 �
∞∑
j=1

(b0j + bij),

b0j − a0j � 0, b0j − a0j + bij − aij � 0 for all j ∈ N, and

b00 − a00 �
∞∑
j=1

(b0j − a0j).
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Hence

aij � b0j + bij − a0j � (b0j + bij) + (b0j − a0j) for all i, j ∈ N.

Both terms at the right hand side are positive, so taking positive parts and summing over
j yields

∞∑
j=1

a+
ij �

∞∑
j=1

(
(bij + b0j) + (b0j − a0j)

)

� b00 + bi0 + b00 − a00 for all i ∈ N.

Similarly, if we consider −Â instead of Â we obtain b0j + a0j � 0 for all j ∈ N0 and

∞∑
j=1

(−aij)+ � b00 + bi0 + b00 + a00 for all i ∈ N.

Since (bi0)i∈N0 ∈ c00 , the maximum b = max{bi0: i ∈ N0} exists, and
∑∞

j=1 |aij| �
4b00 + 2b for all i ∈ N . It also follows that |a0j| � b0j for all j ∈ N0 and hence∑∞

j=1 |a0j| � b00 . Thus, (
∑∞

j=1 |aij|)i∈N0 is bounded by 4b00 + 2b .
Next assume that (

∑∞
j=1 |aij|)i∈N0 is bounded. Let b � 4

∑∞
j=1 |aij| for all i ∈ N0 .

Define B = (bij)i,j∈N0 by

b00 = b + |a00| and bij = |aij| for i, j ∈ N0 with (i, j) 
= (0, 0).

With the aid of (a) it follows that B and B − Â are positive. Hence Â = B − (B − Â)
is regular.

(c) The space Lr(c00, K) of regular operators on (c00, K) is not a lattice.

For example, consider A = (aij)i,j∈N0 with aij = −1/i if i = j � 1 and aij = 0
otherwise. Due to (b), A is a regular operator on (c00, K) . We show that A ∨ 0 does

not exist. Define for n ∈ N0 the operator B(n) = (b(n)
ij )i,j∈N0 by

b(n)
ij =

⎧⎨
⎩

1
n+1 if i = j = 0,

1
i if j = 0 and 1 � i � n,
0 otherwise.

It is easily checked that B(n) and B(n) − A are positive for all n ∈ N0 . Further, let
G = (gij)i,j∈N0 be an operator on (c00, K) such that 0 � G � B(n) for all n ∈ N0 . If
we show that G � A cannot hold, then we know that there is no least upper bound of
{0, A} . For i ∈ N and n ∈ N0 , the positivity of G and B(n) − G yields g00 + gi0 � 0
and b(n)

00 − g00 + b(n)
i0 − gi0 � 0 . Since the columns of B(n) and G are eventually zero,

it follows that 0 � g00 � b(n)
00 for all n and therefore g00 = 0 . If we now suppose that

G � A , then

g00 − a00 + gi0 − ai0 �
∞∑
j=1

(g0j − a0j + gij − aij) for all i ∈ N,
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so gi0 � 1/i , which contradicts the fact that the columns of G are eventually zero.
Thus A ∨ 0 does not exist in Lr(c00, K) .

Recall that the space Lr(c00, K) consists of the matrix representations of the regular
operators on l∞0 . Due to (b), this space of matrix representations is given by

R = {(aij)i,j∈N0 : (aij)i ∈ c00 ∀j ∈ N0 and
( ∑∞

j=1 |aij|
)

i∈N0
is bounded}.

The space R is equipped with the cone of operators that are positive with respect to
(c00, K) , that is, the representations satisfying (i) and (ii) of (a). It is our aim to embed
R into an appropriate vector lattice. Define a space Y as the space of all matrices
(bij)i∈N,j∈N0 that satisfy the following four conditions:

(bij)i∈N is eventually constant for all j � 1, (3)
∞∑
j=1

|βj| < ∞, where βj = lim
i→∞ bij, (4)

(bi0)i∈N is bounded, (5)( ∞∑
j=1

|bij|
)

i∈N

is bounded. (6)

We endow Y with the entrywise order. We define a map F on R by

F(A) = (f ij(A))i∈N,j∈N0 ,

for A = (aij)i,j∈N0 ∈ R , where

f ij(A) =
{

a0j + aij for i ∈ N, j � 1,
a00 + ai0 −

∑∞
�=1(a0� + ai�) for i ∈ N, j = 0.

(d) The space Y is a vector lattice and F: R → Y is a bipositive linear map.

It is straightforward that Y is a vector lattice. We next show that F maps into Y . Let
A ∈ R and put bij = f ij(A) for i ∈ N and j ∈ N0 . For j � 1 we have bij = a0j for i
large, so (3) holds. Further, βj := limi→∞ bij = a0j and

∑∞
j=1 |βj| =

∑∞
j=1 |a0j| < ∞ ,

so we have (4). To infer (5) and (6), use that
( ∑∞

j=1 |aij|
)

i
is bounded and (ai0)i ∈ c00 .

It is clear that the map F is linear and that F(A) is positive if and only if A is a positive
element of R .

As each bipositive map is injective, it follows that R is embedded in Y by the
map F .

(e) The subspace F(R) is order dense in Y .

Indeed, let B = (bij)i∈N,j∈N0 ∈ Y . We construct a sequence (AN)N∈N in R such that
for each N ∈ N we have

F(AN)ij = bij for i ∈ N, j ∈ N, and for i = 1, . . . , N, j = 0,
F(AN)ij � bij for j = 0, i > N.
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Then it follows that B = inf{F(A): A ∈ R, F(A) � B} . Fix N ∈ N . The construction
of AN is as follows. Denote βj = limi→∞ bij for j � 1 and choose β0 � 0 such that

β0 � sup
i∈N

|bi0| + sup
i∈N

∞∑
j=1

|bij|,

which is possible due to (5) and (6). Define

aN
ij =

⎧⎪⎪⎨
⎪⎪⎩

βj for i = 0, j ∈ N0,
bij − βj for i ∈ N, j ∈ N,
bi0 − β0 +

∑∞
�=1 bi� for i ∈ N with i � N, j = 0,

0 for i ∈ N with i > N, j = 0,

and put AN = (aN
ij )i,j∈N0 . It is straightforward that AN ∈ R and that F(AN) is as

desired.
Thus, we have shown that the space Lr(c00, K) is pre-Riesz and that its Riesz

completion is the vector lattice generated by F(R) in Y .
(f) The space Y is not σ -Dedekind complete.

For a proof, define B(n) = (b(n)
ij )i∈N,j∈N0 for n ∈ N by

b(n)
ij =

{
1/i for i = 1, . . . , n, j = 1,
0 otherwise.

Then B(n) ∈ Y for all n ∈ N and {B(n): n ∈ N} does not have a supremum in Y .
(g) The space Lr(c00, K) is pervasive.

We show that for any B ∈ Y , B � 0 , B 
= 0 , there is A ∈ R such that F(A) � 0 ,
F(A) 
= 0 , F(A) � B . Let B = (bij)i∈N,j∈N0 , bij � 0 , B 
= 0 . We examine two cases.

(i) There is i ∈ N such that bi0 > 0 .
Put ai0 = bi0 and akl = 0 otherwise. Then A = (akl)k,l∈N0 ∈ R and

F(A)kl =
{

bi0 for k = i, l = 0
0 otherwise

.

(ii) There are i, j ∈ N such that bij > 0 .
Put ai0 = aij = bij and akl = 0 otherwise. Then A = (akl)k,l∈N0 ∈ R and

F(A)kl :=
{

bij for k = i, l = j
0 otherwise

.

In both cases A satisfies F(A) � 0 , F(A) 
= 0 , and F(A) � B .
We conclude from Theorem 2.6 that the space Lr(c00, K) (and, hence, Lr(l∞0 ) )

has the restriction property (R) for bands.
Let us now consider the space Ln(c00, K) of (o)-continuous operators on (c00, K) ,

which is a subspace of Lr(c00) . We will show that Ln(c00, K) is a directed band
in Lr(c00, K) . (Note that, in general, a band need not be directed, cf. [6, Example
5.13].) First, we characterize the positive (o)-continuousoperators and then we consider
the arbitrary case. In order to prove the characterizations, we need two statements
concerning (o)-convergence of sequences in (c00, K) .
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(h) (i) A net (xα)α in (c00, K) satisfies xα ↓ 0 if and only if xα0 ↓ and xα0 +xαi ↓ 0
for all i ∈ N .

(ii) The sequence (xn)n∈N in (c00, K) defined by xn
0 := 1 , xn

i := −1 for
i = 1, . . . , n , and xn

i := 0 for i > n , n ∈ N , satisfies xn ↓ 0 .
To show (i), we first assume that xα ↓ 0 . Then xα0 � 0 and xα0 + xαi � 0 , and both
xα0 and xα0 + xαi are decreasing in α for all i ∈ N . Suppose that xα0 + xαk � δ for
all α for some k ∈ N and δ > 0 . If we define y ∈ c00 by yk := δ and yi := 0 for
all i 
= k , then y � xα for all α . However, y 
� 0 , since y0 + yk = δ 
� 0 , which
contradicts xα ↓ 0 .

Conversely, we assume that xα0 ↓ and xα0 + xαi ↓ 0 for all i ∈ N . Then (xα)α
is a decreasing net of positive elements. If y ∈ c00 satisfies y � xα for all α , then
y0 + yi � xα0 + xαi for all i ∈ N and all α . Hence y0 + yi � 0 for all i ∈ N and then
also y0 � 0 as y ∈ c00 . So y � 0 and therefore xα ↓ 0 .

For a proof of assertion (ii), observe that for n > m ,

(xm − xn)0 = 0 and (xm − xn)i + (xm − xn)0 =
{

1 if m < i � n,
0 otherwise,

so xm � xn . Further, xn � 0 for all n . Finally, if y � xn for all n , then for every
i ∈ N we have yi + y0 � xn

i + xn
0 for all n , so yi + y0 � 0 . Since y ∈ c00 , we also

obtain y0 � 0 and y � 0 . Hence xn ↓ 0 .

(j) A regular operator A = (aij)i,j∈N0 on (c00, K) is (o)-continuous if and only if

∞∑
j=1

(aij + a0j) = ai0 + a00 for all i ∈ N.

Moreover, the space Ln(c00, K) is directed.

We first assume that A is an (o)-continuous operator on (c00, K) and show that the

algebraic condition holds. For a net xα ↓ 0 we have Axα
(o)−→ 0 , so that there exists a net

(vα)α in (c00, K) with ±Axα � vα for all α and vα0 ↓ and vαi + vα0 ↓ 0 for all i ∈ N .
We then have ±[(Axα)i + (Axα)0] � vαi + vα0 , so |∑∞

j=0(aij + a0j)xαj | � vαi + vα0 ↓ 0
for all i ∈ N . Further, for each i ∈ N ,∣∣∣∣∣∣

∞∑
j=1

(aij + a0j)(xαj + xα0 )

∣∣∣∣∣∣ �
∞∑
j=1

(|aij| + |a0j|)(xαj + xα0 ),

which converges to 0 by the Monotone Convergence Theorem, since
∑∞

j=1 |aij| < ∞
for all i ∈ N0 and xαj + xα0 ↓ 0 for all j ∈ N . Hence for each i ∈ N , the right hand
side of the identity

∞∑
j=1

(aij + a0j)xα0 − (ai0 + a00)xα0 =
∞∑
j=1

(aij + a0j)(xαj + xα0 ) −
∞∑
j=0

(aij + a0j)xαj

converges to 0 . If we consider the sequence (xn)n∈N of (ii) of (h), we have xn
0 = 1 for

all n , and we infer that
∑∞

j=1(aij + a0j) = ai0 + a00 for all i ∈ N .
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Next, we show that any regular operator A = (aij)i,j∈N0 on (c00, K) that satisfies
the algebraic condition is (o)-continuous. We assume as a first step that A is positive.
Let (xα)α be a net in (c00, K) with xα ↓ 0 . Then Axα ↓ and in particular (Axα)0 ↓ .
Due to the property of A we have for every i ∈ N ,

(Axα)0 + (Axα)i =
∞∑
j=1

(a0j + aij)(xα0 + xαj ).

Since
∑∞

j=1(a0j+aij) < ∞ and xα0 +xαj ↓ 0 for all i , it follows that (Axα)0+(Axα)i ↓ 0 .
By (i) of (h) we infer that Axα ↓ 0 . Hence A is (o)-continuous.

Now, let A = (aij)i,j∈N0 be an arbitrary regular operator on (c00, K) that satisfies
the algebraic condition. We show that there exists a positive (o)-continuous operator B
on (c00, K) such that B − A is positive and (o)-continuous. Let

d = sup
i∈N

⎛
⎝ ∞∑

j=1

(|a0j| + |aij|) − (|a00| + |ai0|)
⎞
⎠

+

,

which is a finite number, as A is regular. Define dij = |aij| for i, j ∈ N0 with
(i, j) 
= (0, 0) and d00 = |a00| + d . Then

βi = d00 + di0 −
∞∑
j=1

(d0j + dij) � 0 for all i ∈ N.

Now define B = (bij)i,j∈N0 by

bij =

⎧⎨
⎩

d00 for i = j = 0,
dij for i, j ∈ N with i 
= j,

dii + βi for i, j ∈ N with i = j.

Then the columns of B are eventually zero, so B is an operator on (c00, K) . Further,
B satisfies the algebraic condition, and so does B − A . Also, B and B − A are
positive. Therefore, both B and B− A are (o)-continuous. Thus, A = B− (B − A) is
(o)-continuous and the proof is complete.

(k) The space Ln(c00, K) is a band in Lr(c00, K) .
We show the equivalent assertion, namely that the set N of matrix representations of
elements of Ln(c00, K) is a band in R . We use the embedding in Y and the fact that
disjointness in Y is the entrywise disjointness. According to (d) and (e), the map F
embeds R order densely into Y . Due to (j), an element A ∈ R is in N if and only
if F(A)i0 = 0 for all i ∈ N . The set {B = (bij)i∈N,j∈N0 ∈ Y: bi0 = 0 for all i ∈ N} is a
band in Y . Since the restriction property (R) for bands holds, F(R) ∩ B is a band in
F(R) . Accordingly, N is a band in R .

We conclude that Ln(l∞0 ) is a band in the pre-Riesz space Lr(l∞0 ) .

In the previous example the Riesz completion shows to be an appropriate tool to
deal with spaces of operators on a vector lattice that is not Dedekind complete. If X is
a Dedekind complete vector lattice, Ogasawara’s theorem states that Ln(X) is a band
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in Lr(X) . The above example may be seen as an instance of this theorem in the more
general setting of pre-Riesz spaces. Thus we arrive at the following question for a vector
lattice X :

If Lb(X) is pre-Riesz (e. g., Archimedean and directed), which conditions on X
ensure that Ln(X) is a band in Lb(X) ?
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