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WEYL MATRIX FUNCTIONS AND INVERSE PROBLEMS

FOR DISCRETE DIRAC–TYPE SELF–ADJOINT SYSTEMS:

EXPLICIT AND GENERAL SOLUTIONS

B. FRITZSCHE, B. KIRSTEIN, I. ROITBERG, A. L. SAKHNOVICH

(communicated by F. Gesztesy)

Abstract. It is shown that the discrete Dirac-type self-adjoint system is equivalent to the block
Szegö recurrence. A representation of the fundamental solution is obtained, inverse problems on
the interval and semiaxis are solved. A Borg-Marchenko type result is obtained, too. Connections
with block Toeplitz matrices are treated

1. Introduction

The continuous self-adjoint Dirac-type system

dY
dx

(x, z) = i
(
zj + jV(x)

)
Y(x, z), j =

[
Ip 0
0 −Ip

]
, V =

[
0 v
v∗ 0

]
(1.1)

is a classical object of analysis with various applications (in mathematical physics and
nonlinear integrable equations, in particular). Here Ip is the p × p identity matrix and
v is a p × p matrix function. In this paper, we treat a discrete self-adjoint Dirac-type
system:

Wk+1(λ ) − Wk(λ ) = − i
λ

jCkWk(λ ) (k ∈ {0, 1, 2, . . .}) , (1.2)

where Ck are m × m matrices, m = 2p , which are Hermitian and j -unitary:

Ck = C∗
k , CkjCk = j, (1.3)

To see that (1.2) is a discrete analog of system (1.1), notice that (1.1) is equivalent
to a subclass of canonical systems Wx = izjH(x)W (see [41, 45] and the references
therein). One can follow also the arguments from [32], where the skew self-adjoint
discrete Dirac-type system has been studied and explicit solutions of the isotropic
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Heisenberg magnet model have been obtained. As suggested in [32] we introduce
matrix functions U and W by the relations

W(x, z) = U(x)Y(x, z),
dU
dx

(x) = −iU(x)jV(x), U(0) = Im. (1.4)

Since V is self-adjoint, we get from (1.4) that U is j -unitary, i.e., UjU∗ ≡ j . Now
(1.1) and the first relation in (1.4) yield

dW
dx

=
dU
dx

U−1W + iU
(
zj + jV

)
U−1W = izjHW, (1.5)

where H = jUU∗j = H∗ , HjH ≡ j . Compare system (1.2), where the matrices Ck

satisfy (1.3), and system (1.5) to see that (1.2) is an immediate discrete analog of (1.1).
When p = 1 and Ck > 0 , system (1.2) is equivalent to thewell-known self-adjoint

Szegö recurrence, which plays an important role in the orthogonal polynomials theory
and is also an auxiliary system for the Ablowitz-Ladik hierarchy (see, for instance,
[26, 27, 47] and various references therein). The equivalence of system (1.2), where
Ck > 0 and CkjCk = j , to the block (matrix-valued) Szegö recurrence studied in [15] -
[18] is given in Proposition 2.1.

Discrete analogs for the Dirac systems are also of independent interest (see, for
instance, [32] for applications to the isotropic Heisenberg magnet model). Weyl-
Titchmarsh theory of the discrete systems is treated in a series of recent interesting
papers by F. Gesztesy and coauthors. There are direct connections between Weyl
functions of the discrete self-adjoint Dirac-type systems and extensions of Toeplitz
matrices (see Section 6).

We consider a representation of the fundamental solution of system (1.2) and solve
direct and inverse problems directly in terms of the Weyl functions. Both explicit and
general solutions are obtained. First, we obtain explicit solutions of the direct and inverse
problems for system (1.2) for the case of the so called pseudo-exponential potentials
Ck (the case of the rational Weyl functions). Our case includes as a subcase the rapidly
decaying strictly pseudo-exponential potentials, see also Remark 4.5. Recall that dis-
crete and continuous systems with potentials, which belong to the subclass of the strictly
pseudo-exponential potentials, have been actively studied in [1]-[6], [8]-[10]. In particu-
lar, direct and inverse problems for Szegö recurrence on the semiaxis {0, 1, 2, . . .} with
scalar (p = 1 ) strictly pseudo-exponential potentials have been treated in [5, 6]. Direct
and inverse problems for pseudo-exponential potentials (continuous case) have been
studied in a series of Gohberg-Kaashoek-Sakhnovichpapers [29, 30] (see the references
therein and see also [24] for the case of the generalized pseudo-exponential potentials).
The case of the discrete skew-self-adjoint Dirac system has been studied in [32]. Notice
that similar to [29, 39] (see also [5, 6, 8, 29, 32]) we start our explicit constructions with
the explicit formula for the fundamental solution.

For a more general (non-rational) situation of the Weyl functions φ(z) =
∞∑
k=0

φkz
k

such that
∞∑
k=0

‖φk‖ < ∞ the direct problem for a block (matrix-valued) Szegö re-

currence on the semiaxis (including non-self-adjoint case and under some additional
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conditions) is treated in a recent important Alpay-Gohberg paper [7]. In Sections 5 and
6 we solve direct and inverse problems for the general type potentials Ck > 0 (and thus
for the general type self-adjoint block Szegö recurrence) on the interval and semiaxis.
A Borg-Marchenko type uniqueness result for system (1.2) is obtained, too. Connec-
tions with the well known Toeplitz matrices appear. For interesting discussions on the
connections between Toeplitz matrices, Szegö recurrencies and orthogonal polynomials
see also [3, 17, 18] and the references therein. Interesting spectral theoretical results on
the discrete canonical systems, where CkjCk = 0 , one can find in [35, 44]. A complete
Weyl theory for Jacobi matrices and various useful references are contained in [48].

2. Preliminaries

An important discrete analog for Dirac-type systems takes the form

Xk+1(z) = DkHk

[
zIp 0
0 Ip

]
Xk(z), (2.1)

where

Hk =
[

Ip −ρk

−ρ∗
k Ip

]
, Dk = diag

{(
Ip − ρkρ∗

k

)− 1
2 ,

(
Ip − ρ∗

k ρk

)− 1
2

}
, (2.2)

and the p × p matrices ρk are strictly contractive, that is ‖ρk‖ < 1 .
Notice that the matrices DkHk are j -unitary, i.e.,

DkHkjHkDk = HkDkjDkHk = j. (2.3)

System (2.1) can be rewritten in the form (1.2) by using the transformation

Wk(λ ) =
(
i − λ−1

)k
Uk

(
Im − i

λ
j
)
Xk(z), Ck = jUk+1jU

−1
k+1 = jUk+1U

∗
k+1j, (2.4)

where U0 := Im (m = 2p ),

Uk := (iH0D0j)(iH1D1j) × . . . × (iHk−1Dk−1j) (k > 0), z =
1 + iλ
1 − iλ

. (2.5)

A particular scalar case (p = 1 ) of system (2.1) is the well known Szegö recurrence,
where

Dk =
1√

1 − |ρk|2
I2, Hk =

[
1 −ρk

−ρk 1

]
> 0, |ρk| < 1. (2.6)

When p = 1 one easily removes the factor
(√

1 − |ρk|2
)−1

in (2.1) to obtain systems

as in [5, 6].
Coefficients ρk are called Schur (or sometimes Verblunsky) coefficients (see, for

instance, [17, 47] and various references therein). Notice that the matrices Ck given
by the second relation in (2.4) are positive definite. Vice versa, if the matrices Ck are
positive definite, the Szegö recurrence is uniquely recovered from system (1.2). The
same is true for the block Szegö recurrences (2.1).
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PROPOSITION 2.1. There is a one to one correspondence between the subclass of
systems (1.2), where the matrices Ck > 0 satisfy (1.3), and block Szegö recurrences
(2.1), where Hk and Dk are defined via (2.2) and ‖ρk‖ < 1 . This correspondence
is given by (2.4), (2.5) to map block Szegö recurrences into Dirac-type systems. The
inverse mapping of the Dirac-type systems into block Szegö recurrences is given by the
first relation in (2.4) and equalities

ρk = −
(
β̃2(k)−1β̃1(k)

)∗
, β̃(k) = [0, Ip]Rk, Rk =

(
jU∗

k CkUkj
) 1

2
. (2.7)

where β̃1(k) and β̃2(k) are p × p blocks of β̃(k) . We recover Hl and Dl (hence,
Ul+1 ) from ρl successively, starting from l = 0 .

Proof. By (2.5) the matrices Uk are j -unitary. Therefore, the matrices Ck defined
by the second relation in (2.4) are positive definite and CkjCk = j . The first relation in
(2.4) easily follows from (1.2), (2.1), the second relation in (2.4) and (2.5). Thus, the
first part of the proposition is proved.

To prove the second part of the proposition notice that according to (2.7) we have
Rk > 0 . Next, assume that the second part of the proposition is true for all l < k . In
particular, the j -unitary matrix Uk is defined via (2.5), and so Rk > 0 is well-defined.
It follows that R2

kjR
2
k = j . Moreover, R2

k is unitary equivalent to a diagonal matrix
Dk > 0 :

R2
k = Û∗

k DkÛk, Û∗
k Ûk = ÛkÛ

∗
k = Im. (2.8)

Then, formula (2.8) implies that Û∗
k DkÛkjÛ∗

k DkÛk = j , i.e.,

D−1
k = JkDkJk, Jk := ÛkjÛ

∗
k , Jk = J∗k = J−1

k . (2.9)

Taking square roots in both parts of the first equality in (2.9) we get

D
− 1

2
k = JkD

1
2
k Jk , i.e.,

D
1
2
k JkD

1
2
k = Jk. (2.10)

By (2.8) we have Rk = Û∗
k D

1
2
k Ûk , and, taking into account (2.10), we get

RkjRk = Û∗
k D

1
2
k JkD

1
2
k Ûk = Û∗

k JkÛk = Û∗
k ÛkjÛ

∗
k Ûk = j. (2.11)

In particular, formula (2.11) yields

β̃(k)jβ̃(k)∗ = −Ip, (2.12)

and so β̃2(k) is invertible and ρ∗
k ρk < Ip . From (2.7) and (2.11) it follows that

jU∗
k CkUkj − j = R2

k − RkjRk = Rk(Im − j)Rk = 2β̃(k)∗β̃(k). (2.13)

According to (2.7) and (2.12) it is true that (Ip − ρ∗
k ρk)−1 = β̃∗

2 β̃2 . Hence, in view of
(2.2) and (2.7) we get

HkD
2
kHk − j = HkDk(Im − j)DkHk = 2β̃(k)∗β̃(k). (2.14)
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Formulas (2.13) and (2.14) imply

HkD
2
kHk = jU∗

k CkUkj. (2.15)

Notice that the second relation in (2.4) is equivalent to

Ck = jUkHkD
2
kHkU

∗
k j. (2.16)

Therefore, (2.15)means that (2.7) defines a transformation inverse to the transformation
defined by the second relation in (2.4). Moreover, (2.16) implies (2.14). By (2.14) we
have [−ρ∗

k Ip] = uβ̃(k) . Thus there is a unique ρk with the property (2.16).
As U0 = Im , the same proof as above is valid for l = 0 . In this way the second

part of proposition is proved by induction. �

REMARK 2.2. By the proof of Proposition 2.1 we obtain for any j -unitary matrix
C > 0 a representation C = HD2H , where H and D have the form (2.2). This
representation follows from the equality C

1
2 jC

1
2 = j , which is proved similar to RkjRk =

j , and from thewell-known (see, for instance, [17, 19])Halmos extension representation.

The spectral theory of discrete and continuous systems is strongly related to the
construction of the fundamental solutions (see, for instance, [6]-[10], [29, 30, 32, 34],
[39]-[45] and the references therein). The j -properties of the fundamental solutions
play an important role [10, 17, 21, 22, 23, 31, 34, 44, 45].

For the case of the explicit construction the version of the Bäcklund-Darboux
transformation (BDT) introduced in [37, 38, 39] proves to be very fruitful. Now we are
going to present a corresponding principle of constructing of sequences {Ck}∞k=0 .

Choose n > 0 , two n × n parameter matrices A (det A �= 0 ) and S0 = S∗0 , and
an n × m parameter matrix Π0 such that

AS0 − S0A
∗ = iΠ0jΠ∗

0 . (2.17)

Define recursively sequences {Πk} and {Sk} ( k > 0 ) by the relations

Πk+1 = Πk + iA−1Πkj, (2.18)

Sk+1 = Sk + A−1Sk(A∗)−1 + A−1ΠkΠ∗
k (A

∗)−1. (2.19)

It follows that the matrix identity

ASk+1 − Sk+1A
∗ = iΠk+1jΠ∗

k+1 (k � 0) (2.20)

is true. Following the lines of the discrete BDT version for the skew self-adjoint discrete
Dirac-type system presented in [32], we get the following result.

THEOREM 2.3. Suppose det Sr �= 0 (0 � r � N) . Then the fundamental solution
Wk+1 of system (1.2), where

Ck := Im + Π∗
k S

−1
k Πk −Π∗

k+1S
−1
k+1Πk+1, (2.21)

admits the representation

Wk+1(λ ) = wA(k + 1, λ )
(
Im − i

λ
j
)k+1

wA(0, λ )−1 (0 � k < N). (2.22)
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Here Wk+1 is normalized by the condition W0(λ ) = Im , and

wA(k, λ ) := Im − ijΠ∗
k S

−1
k (A − λ In)−1Πk, (2.23)

The right hand side of (2.23) with fixed k is a so called transfer matrix function in Lev
Sakhnovich form [43]-[45].

We say that a system (1.2), where the matrices Ck are given by (2.21), is deter-
mined by the parameter matrices A , S0 and Π0 .

Proof of Theorem 2.3 . Formula (2.22) easily follows from the equality

wA(k + 1, λ )
(
Im − i

λ
j
)

=
(
Im − i

λ
jCk

)
wA(k, λ ), (2.24)

which is basic for this proof. We shall derive now formula (2.24). Taking into account
(2.23), one can see that (2.24) is equivalent to the equality

− i
λ

j(Im − Ck) = −
(
Im − i

λ
jCk

)
ijΠ∗

k S
−1
k (A − λ In)−1Πk

+ ijΠ∗
k+1S

−1
k+1(A − λ In)−1Πk+1

(
Im − i

λ
j
)

, (2.25)

i.e., the Taylor coefficients at infinity of the matrix functions at both sides of (2.25)
coincide. Hence, by the series expansion

(A − λ In)−1 = −λ−1
∞∑
r=0

(
λ−1A

)r

and formula (2.18), formula (2.25) is equivalent to a family of identities:

Im − Ck = −Π∗
k S

−1
k Πk + Π∗

k+1S
−1
k+1Πk+1 (2.26)

and
KkA

r−2Πk = 0 (r > 0), (2.27)
where

Kk := Π∗
k+1S

−1
k+1(A

2 + In) −Π∗
k S

−1
k A2 + iCkjΠ∗

k S
−1
k A. (2.28)

Notice that (2.26) is immediate from (2.21). If we prove also Kk = 0 , then (2.27)
will follow, and so we will get (2.25) or equivalently (2.24), which implies (2.22). It
remains to show that Kk = 0 . For this purpose we shall rewrite (2.28) using (2.18) and
(2.21):

Kk = Π∗
k+1S

−1
k+1(A

2 + In) −Π∗
k S

−1
k A2 + ijΠ∗

k S
−1
k A + iΠ∗

k S
−1
k ΠkjΠ∗

k S
−1
k A

− iΠ∗
k+1S

−1
k+1

(
Πk + iA−1Πkj

)
jΠ∗

k S
−1
k A.

(2.29)

According to (2.20) we have iΠkjΠ∗
k S

−1
k = A − SkA∗S−1

k . Therefore, from (2.29) we
derive

Kk = Π∗
k+1S

−1
k+1

(
In + SkA

∗S−1
k A + A−1ΠkΠ∗

k S
−1
k A

)−Π∗
k A

∗S−1
k A + ijΠ∗

k S
−1
k A.

In view of (2.19) we simplify our last formula:

Kk = Π∗
k+1A

∗S−1
k A −Π∗

k A
∗S−1

k A + ijΠ∗
k S

−1
k A. (2.30)

Finally, by (2.18) and (2.30) we have Kk = 0 .
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PROPOSITION 2.4. Suppose det Sr �= 0 (0 � r � N) . Then the matrices Ck

(0 � k < N) given by (2.21) satisfy conditions (1.3).

Proof. The first equality in (1.3) is immediate. To prove the second equality notice
that by the standard calculations in S -node theory [43]-[45] (see also, for instance,
formula (2.10) in [24]) it follows from (2.17) and (2.19) that

wA(r, λ )∗jwA(r, λ ) = j + i(λ − λ )Π∗
r (A

∗ − λ In)−1S−1
r (A − λ In)−1Πr. (2.31)

In particular, we have
wA(r, λ )∗jwA(r, λ ) = j. r � 0. (2.32)

It is easily checked also that(
Im +

i
λ

j
)
j
(
Im − i

λ
j
)

=
(
1 +

1
λ 2

)
j. (2.33)

According to (2.24) formulas (2.32) and (2.33) yield the equality(
Im +

i
λ

Ckj
)
j
(
Im − i

λ
jCk

)
=

(
1 +

1
λ 2

)
j. (2.34)

Therefore the second equality in (1.3) holds. �

3. Auxiliary propositions

Recall that the invertibility of the Hermitian matrices Sk is essential for our con-
structions. On the other hand the important subcase of Szegö recursion corresponds to
system (1.2), where Ck > 0 . A natural condition, when all Sk > 0 and Ck > 0 is
given in our next proposition.

PROPOSITION 3.1. Let the parameter matrix S0 be positive definite, i.e., S0 > 0 .
Then we have

Sk > 0 (k � 0), Ck > 0 (k � 0). (3.1)

Proof. The inequalities for Sk in (3.1) follow from (2.19) by induction. To derive
the relations Ck > 0 , introduce first two block matrices:

G =
[

Sk Πk

Π∗
k cIm

]
, F =

[
A−1 aA−1Πk

0 −ibj

]
, (3.2)

where
a(2 + ac) = 1, b(1 + ac) = 1, (3.3)

and, moreover, c is sufficiently large so that G > 0 . We shall discuss the choice of
a and b satisfying (3.3) later on. According to (2.18), (2.19), (3.2) and (3.3), direct
calculations show that

G + FGF∗ =
[

Sk+1 Πk+1

Π∗
k+1 c(1 + b2)Im

]
. (3.4)
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As G + FGF∗ > G > 0 , we have G−1 > (G + FGF∗)−1 , and therefore, the
inequality holds also for the m × m right lower blocks of these matrices:

(
G−1

)
22

>(
(G + FGF∗)−1

)
22

. Finally, we obtain

((
G−1

)
22

)−1
<

((
(G + FGF∗)−1

)
22

)−1
. (3.5)

Taking into account (3.2), we can rewrite (3.5) in the form

cIm −Π∗
k S

−1
k Πk < c(1 + b2)Im −Π∗

k+1S
−1
k+1Πk+1. (3.6)

Let us fix c and choose a root a (0 < a < 1/2) , of the equation

a2 +
2
c
a − 1

c
= 0,

which is always possible. Putting also b = a(1−a)−1 , we see that relations (3.3) hold.
Moreover, the first relation in (3.3) means that a2c = 1 − 2a . Hence,

cb2 = ca2(1 − a)2 = (1 − 2a)(1 − a)2 < 1. (3.7)

From (3.6) and (3.7) it follows that

Im + Π∗
k S

−1
k Πk −Π∗

k+1S
−1
k+1Πk+1 > 0 (3.8)

Recall the definition (2.21) of Ck to see that inequality (3.8) implies Ck > 0 . �
In this section we shall need as well another property of Ck .

PROPOSITION 3.2. Let relations (1.3) hold, and assume that Ck > 0 . Then we
have Ck ± j � 0 .

Proof. It follows from (1.3) that

(Ck + εj)j(Ck + εj) = 2ε
(

Ck +
1 + ε2

2ε
j

)
. (3.9)

If (Ck+εj)f = 0 , then by (3.9)wehave also
(
Ck + 1+ε2

2ε j
)

f = 0 , and so
(
1 − ε2

)
jf =

0 . Therefore, we have det(Ck + εj) �= 0 , when |ε| < 1 . Thus, the inequality Ck > 0
yields (Ck + εj) � 0 for |ε| � 1 . �

REMARK 3.3. Under the conditions of Proposition 3.1, formulas (2.18), (2.19),
and (2.21) explicitly define system (1.2), where the matrices Ck are positive definite
and j -unitary. The Schur coefficients of the corresponding Szegö recurrence are then
explicitly defined via (2.7). The matrices Uk in the third relation in (2.7) are iteratively
defined using (2.5).
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4. Weyl functions, direct and inverse
problem: the case of the pseudoexponential potentials

Guided by the definitions of the Weyl functions for Sturm-Liouville, Dirac-type
and canonical systems on the semiaxis (see, for instance, [33, 45] and the references
therein), we can define also corresponding modifications of Weyl functions for system
(1.2). Namely, let the matrices Ck > 0 satisfy (1.3). Then, a p× p matrix function ϕ
holomorphic in the lower halfplane C− is said to be a Weyl function for system (1.2)
on the semiaxis k ∈ {0, 1, 2, . . .} , if the inequality

∞∑
k=0

[ϕ(λ )∗ Ip]q(λ )kWk(λ )∗CkWk(λ )
[
ϕ(λ )

Ip

]
< ∞ (4.1)

holds, where q(λ ) = |λ 2|(|λ 2| + 1)−1 .

REMARK 4.1. Similar to the continuous case we have a summation formula:
r∑

k=0

q(λ )kWk(λ )∗CkWk(λ ) =
|λ 2| + 1

i(λ − λ )

(
q(λ )r+1Wr+1(λ )∗jWr+1(λ ) − j

)
. (4.2)

Indeed, according to (1.2) and (1.3) we have

Wk+1(λ )∗jWk+1(λ ) = Wk(λ )∗
(

Im +
i

λ
Ckj

)
j
(
Im − i

λ
jCk

)
Wk(λ )

= q(λ )−1Wk(λ )∗jWk(λ ) +
i(λ − λ )
|λ 2| Wk(λ )∗CkWk(λ ),

i.e.,
|λ 2| + 1

i(λ − λ)

(
q(λ )k+1Wk+1(λ )∗jWk+1(λ ) − q(λ )kWk(λ )∗jWk(λ )

)
= q(λ )kWk(λ )∗CkWk(λ ).

(4.3)

Formula (4.3) yields (4.2).
To construct the Weyl function, partition first our parameter matrix Π0 and the

matrix-function wA(0, λ ) , defined via the parametermatrices A , S0 , and Π0 satisfying
(2.17), into blocks:

Π0 = [Φ Ψ], wA(0, λ ) =
[

a(λ ) b(λ )
c(λ ) d(λ )

]
. (4.4)

Similar to the considerations in [29] it follows from (2.23) that

b(λ )d(λ )−1 = −iΦ∗S−1
0 (A× − λ In)−1Ψ, A× = A + iΨΨ∗S−1

0 . (4.5)

To calculate d(λ )−1 here, we use the following fact from system theory:(
Ip + C(λ In − A)−1B

)−1
= Ip − C

(
λ In − (A − BC)

)−1
B. (4.6)
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THEOREM 4.2. Let parameter matrices be fixed, assume S0 > 0 , and define
Ck by (2.21). Then system (1.2) is well-defined on the semiaxis and its unique Weyl
function, which satisfies (4.1), takes the form

ϕ(λ ) = −iΦ∗S−1
0 (A× − λ In)−1Ψ, A× = A + iΨΨ∗S−1

0 . (4.7)

Proof. By Proposition 3.1 system (1.2) is well-defined. Now, relations (4.5) imply
ϕ = bd−1 for the matrix function ϕ given by (4.7). According to (2.31) we have

wA(0, λ )∗jwA(0, λ ) � j (λ ∈ C−),

and it follows, in particular, that d(λ )∗d(λ ) � Ip + b(λ )∗b(λ ) . Therefore, we get

ϕ(λ )∗ϕ(λ ) < Ip (λ ∈ C−), (4.8)

and so ϕ is holomorphic in C− . Notice that the equality ϕ = bd−1 is equivalent to
the formula [

ϕ(λ )
Ip

]
= wA(0, λ )

[
0
Ip

]
d(λ )−1. (4.9)

Taking into account (4.9) and wA(r + 1, λ )∗jwA(r + 1, λ ) � j , we derive from repre-
sentation (2.22) of Wr+1(λ ) that

[ϕ(λ )∗ Ip]Wr+1(λ )∗jWr+1(λ )
[
ϕ(λ )

Ip

]
= |λ + i|2r+2|λ |−2r−2

(
d(λ )∗

)−1

× [0 Ip]wA(r + 1, λ )∗jwA(r + 1, λ )
[

0
Ip

]
d(λ )−1 < 0. (4.10)

By (4.2) and (4.10) the inequality

[ϕ(λ )∗ Ip]
r∑

k=0

q(λ )kWk(λ )∗CkWk(λ )
[
ϕ(λ )

Ip

]
<

|λ 2| + 1

i(λ − λ )
Ip (4.11)

is true. From (4.11) inequality (4.1) is immediate, i.e., ϕ defined by (4.7) is a Weyl
function.

Let us show that there is no other Weyl function. First notice that by Proposition
3.2 we have inequality W∗

s CsWs � W∗
s jWs . Now, use relation (4.3) to derive inequality

qsW∗
s jWs � qs−1W∗

s−1jWs−1 . From the inequalities above we get

q(λ )kWk(λ )∗CkWk(λ ) � j. (4.12)

Therefore, the following equality is immediate for any f ∈ Cp :

∞∑
k=0

f ∗[Ip 0]q(λ )kWk(λ )∗CkWk(λ )
[

Ip
0

]
f = ∞. (4.13)

According to (4.1) and (4.13), the dimension of the subspace L of Cm , such that for
all h ∈ L we have ∞∑

k=0

h∗q(λ )kWk(λ )∗CkWk(λ )h < ∞, (4.14)
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equals p . Now, suppose that there would be a Weyl function ϕ̃ �= ϕ , where ϕ is given

by (4.7). Then the columns of

[
ϕ(λ )

Ip

]
and the columns of

[
ϕ̃(λ )

Ip

]
would belong

to L . Therefore, dim L > p for those λ , where ϕ̃(λ ) �= ϕ(λ ) , which would be a
contradiction. �

REMARK 4.3. If S0 > 0 , then by (2.18)-(2.21) we can substitute parameter

matrices A , S0 and Π0 by the parameter matrices S
− 1

2
0 AS

1
2
0 , In and S

− 1
2

0 Π0 , which
determine the same system. For S0 = Ip formula (4.7) takes the form

ϕ(λ ) = −iΦ∗(A× − λ In)−1Ψ, A× = A + iΨΨ∗, (4.15)

and we have A× − (A×)∗ = i(ΦΦ∗ + ΨΨ∗) , det(A× − iΨΨ∗) �= 0 .
Recall also that by Proposition 3.1 the condition S0 > 0 implies (3.1).

EXAMPLE 4.4. Consider the simplest example: p = 1 , n = 1 , A = a ∈ R

(a �= 0 ), S0 = 1 . From (2.17) and (2.18) it follows that |Φ| = |Ψ| and

Πk =

[(
a + i

a

)k

Φ
(

a − i
a

)k

Ψ

]
, ΠkΠ∗

k = 2|Φ|2
(

a2 + 1
a2

)k

. (4.16)

Now, in view of S0 = 1 , (2.19) and the second relation in (4.16) one can check that

Sk = (kζ + 1)
(

a2 + 1
a2

)k

, ζ =
2|Φ|2
a2 + 1

. (4.17)

Finally, using (2.21), (4.16) and (4.17) we get the entries (Ck)ij of Ck :

(Ck)11 = (Ck)22 = 1 + ζ |Φ|2(kζ + 1)−1((k + 1)ζ + 1)−1, (4.18)

(Ck)21 = (Ck)12 = ΦΨ

(
(kζ + 1)−1

(
a + i
a − i

)k

− ((k + 1)ζ + 1)−1

(
a + i
a − i

)k+1
)

.

(4.19)
The Weyl function of system (1.2), where the matrices Ck are given by (4.18) and
(4.19), is easily calculated using (4.15):

ϕ(λ ) = iΦΨ
(
λ − a − i|Ψ|2)−1

. (4.20)

REMARK 4.5. Notice that our matrices Ck are determined by the parameter matri-
ces A0 , S0 , and Π0 via formulas (2.18), (2.19), and (2.21). Similar to the continuous
case [29], the sets of matrices {Ck}k�0 are called pseudo-exponential potentials. In
view of (2.19), we require that 0 �∈ σ(A) (σ - spectrum). The class of the pseudo-
exponential potentials contains an important subclass of the strictly pseudo-exponential
potentials, which is characterized by the additional requirement σ(A) ⊂ C− . Such a
subclass has been treated for Szegö recurrence (p = 1 ) in [5, 6]. In particular, for the
strictly pseudo-exponential subcase the inequality |ϕ(λ )| < 1 for λ ∈ C− is true. On
the other hand, in the simple example above we have σ(A) = a ∈ R and |ϕ| = 1 for
λ = a .
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According to (4.7) and (4.8) the Weyl function ϕ is a rational, strictly proper matrix
function, which is contractive in C− . The rational, strictly proper matrix functions
admit non-unique representations ϕ(λ ) = C (λ In −A )−1B , which are called realiza-
tions. Here n is some natural number and C , A , and B are p× n , n× n , and n× p
matrices, respectively. (See, for instance, [11], [14].) As the matrix function ϕ is also
contracive in C− , so by the proof of Theorem 9.4 [30], there are such realizations

ϕ(λ ) = −iΦ̃∗(θ − λ In)−1Ψ̃ (4.21)

of ϕ that Φ̃ , θ , and Ψ̃ from these realizations satisfy the identity

θ − θ∗ = i(Φ̃Φ̃∗ + Ψ̃Ψ̃∗). (4.22)

A direct calculation shows also that formulas (4.21) and (4.22) yield Ip − ϕ∗ϕ � 0
for λ ∈ C− . So, realization (4.21), (4.22) is equivalent to the fact that the function is
rational, strictly proper, and contractive in C− .

THEOREM 4.6. A matrix function ϕ is the Weyl function of some system (1.2)
determined by the parameter matrices A , Π0 , and S0 > 0 if and only if it admits
representation (4.21), (4.22) such that det(θ − iΨ̃Ψ̃∗) �= 0 . In this case ϕ is the Weyl
function of some system (1.2), where Ck > 0 . To recover such system put

S0 = In, A = θ − iΨ̃Ψ̃∗, Φ = Φ̃, Ψ = Ψ̃, Π0 = [Φ Ψ], (4.23)

and define the matrices Ck by formula (2.21), where the matrices Πk and Sk ( k > 0 )
are given by formulas (2.18) and (2.19).

Proof. The necessity of the theorem’s conditions follows from Remark 4.3. Now,
suppose that these conditions are fulfilled. Then, from (4.22) and (4.23) it follows that
the identity (2.17) holds for the parameter matrices. Therefore, system (1.2) is defined.
So, by Theorem 4.2 ϕ is the Weyl function of this system. �

REMARK 4.7. The Weyl functions in the upper halfplane can be treated in a quite
similar way. That is, we define Weyl functions in C+ by the inequality

∞∑
k=0

[Ip ϕ(λ )∗]q(λ )kWk(λ )∗CkWk(λ )
[

Ip
ϕ(λ )

]
< ∞. (4.24)

Then the Weyl function of system (1.2), where matrices Ck are given by (2.21) and
S0 > 0 , takes the form

ϕ(λ ) = c(λ )a(λ )−1 = iΨ∗S−1
0 (A× − λ In)−1Φ, A× = A − iΦΦ∗S−1

0 . (4.25)

A definition of a Weyl function in C− can be also given in a more general form.
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DEFINITION 4.8. Let the matrices Ck > 0 satisfy (1.3). Then, a p × p matrix
function ϕ holomorphic in C− is said to be a Weyl function for system (1.2) on the
semiaxis k ∈ {0, 1, 2, . . .} , if the following inequality holds:

∞∑
k=0

[iϕ(λ )∗ Ip]q(λ )kKWk(λ )∗CkWk(λ )K∗
[ −iϕ(λ )

Ip

]
< ∞. (4.26)

Here K∗ = K−1 and q(λ ) = |λ 2|(|λ 2| + 1)−1 .

If K = In then inequality (4.26) coincides with inequality (4.1). In general, the choice
of the matrix K is related to the choice of the domain of the operator corresponding
to the Dirac system, and usually K is chosen so that the Weyl functions are Herglotz
functions. Further we assume that

K =
1√
2

[
Ip −Ip
Ip Ip

]
, (4.27)

Simple transformations show that the contractive Weyl function ϕI defined via (4.1)
and the Weyl function ϕK defined via (4.26) and (4.27) are connected by the relation

ϕK = −i(Ip − ϕI)(Ip + ϕI)−1. (4.28)

From (4.28) it follows that

ϕK(λ ) − ϕK(λ )∗ = −2i(Ip + ϕI(λ )∗)−1(Ip − ϕI(λ )∗ϕI(λ ))(Ip + ϕI(λ ))−1, (4.29)

λ ∈ C− . Thus, according to (4.8) and (4.29) ϕK is a Herglotz function with a
non-positive imaginary part in C− .

5. Weyl functions, direct and inverse problem on the interval: general case

In this section we shall consider the self-adjoint matricial discrete Dirac-type
system (1.2) on the interval k ∈ {0, 1, 2, . . .} . We assume that (1.3) holds and Ck > 0 .
It was shown in Proposition 2.1 that these properties yield Ck = jUkR2

kU
∗
k j , where

Rk = R∗
k and RkjRk = j . Hence, we get

Ck + j = jUk(R2
k + RkjRk)U∗

k j = jUkRk(Im + j)RkU
∗
k j = 2β̂(k)∗β̂(k), 0 � k � N,

where

β̂(k) = [Ip 0]RkU
∗
k j, β̂(k)jβ̂(k)∗ = Ip. (5.1)

Further we shall use these relations:

Ck = 2β̂(k)∗β̂(k) − j, β̂(k)jβ̂(k)∗ = Ip, 0 � k � N. (5.2)
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REMARK 5.1. Relations (5.2) are equivalent to the relations Ck > 0 and (1.3)
for 0 � k � N . Indeed, we have just derived (5.2) from Ck > 0 and CkjCk = j
(0 � k � N ), and vice versa: direct calculation shows that (5.2) yields (1.3). To
derive from (5.2) also the inequality Ck > 0 , choose a matrix β̆(k) such that

β̆(k)jβ̂(k)∗ = 0, β̆(k)jβ̆(k)∗ = −Ip. (5.3)

Notice, that in view of the second relation in (5.2), the maximal subspace, which is
j -orthogonal to the rows of β̂k , proves to be p -dimensional and j -negative, i.e., β̆(k)
always exists. According to (5.2) and (5.3) we have[

β̂(k)
β̆(k)

]
j

[
β̂(k)
β̆(k)

]∗
= j =

[
β̂(k)
β̆(k)

]∗
j

[
β̂(k)
β̆(k)

]
. (5.4)

Finally, by the first relation in (5.2) and by (5.4) we obtain

Ck = β̂(k)∗β̂(k) + β̆(k)∗β̆(k) =

[
β̂(k)
β̆(k)

]∗ [
β̂(k)
β̆(k)

]
> 0. (5.5)

From the second relation in (5.2), for k � 0 , it follows also that

det
(
β̂(k)jβ̂(k + 1)∗

)
�= 0, 0 � k � N − 1. (5.6)

Indeed, if (5.6) does not hold, we have β̂(k)jβ̂(k+1)∗f = 0 for some f �= 0 . Then, in
view of the second relations in (5.2) for k � 0 , we see that the linear span of the rows
of β̂k and of f ∗β̂k+1 forms a p + 1 -dimensional j -positive subspace of Cm , which is
impossible.

Similar to the continuous case [45], the Weyl functions of the discrete system on
the interval will be defined via Möbius (linear-fractional) transformation

ϕ(λ ) = i (W21(λ )R(λ ) + W22(λ )Q(λ )) (W11(λ )R(λ ) + W12(λ )Q(λ ))−1 , (5.7)

where R and Q are p × p analytic functions in the neighbourhood of λ = −i , and

W (λ ) = {Wij(λ )}2
i,j=1 = KWN+1(λ )∗. (5.8)

Here, the coefficients Wij of the Möbius transformation are the p × p blocks of W ,
the matrix K is given by (4.27) and

K∗ = K−1, KjK∗ = J, J =
[

0 Ip
Ip 0

]
. (5.9)

It is convenient to put β(k) := β̂(k)K∗ and rewrite (5.2) as

Ck = 2K∗β(k)∗β(k)K − j, β(k)Jβ(k)∗ = Ip, 0 � k � N. (5.10)

Similar to relations (5.2), by Remark 5.1 relations (5.10) are equivalent to Ck > 0 and
CkjCk = j for 0 � k � N . We shall need the following analog (for the self-adjoint
case) of Theorem 3.4 [42].
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THEOREM 5.2. Suppose W (W0(λ ) = Im) is the fundamental solution of system
(1.2), which satisfies conditions (5.10). Suppose also that a p× p matrix function ϕ is
given by formulas (5.7) and (5.8), where

det (W11(−i)R(−i) + W12(−i)Q(−i)) �= 0. (5.11)

Then system (1.2) satisfies (1.3), Ck > 0 (0 � k � N ), and the inequalities

det
(
β(k)Jβ(k + 1)∗

)
�= 0, 0 � k � N − 1 (5.12)

hold. Moreover, system (1.2) on the interval 0 � k � N is uniquely recovered from the

first N + 1 Taylor coefficients {αk}N
k=0 of iϕ

(
i

(
z + 1
z − 1

))
at z = 0 by the following

procedure.
First, introduce (N + 1)p × p matrices Φ1 , Φ2 :

Φ1 =

⎡⎢⎢⎣
Ip
Ip
· · ·
Ip

⎤⎥⎥⎦ , Φ2 =

⎡⎢⎢⎣
α0

α0 + α1

· · ·
α0 + α1 + . . . + αN

⎤⎥⎥⎦ . (5.13)

Then, introduce an (N + 1)p× 2p matrix Π and an (N + 1)p× (N + 1)p block lower
triangular matrix A by the blocks : Π = [Φ1 Φ2] ,

A := A(N) =
{

aj−k

}N

k,j=0
, ar =

⎧⎪⎨⎪⎩
0 for r > 0
i
2

Ip for r = 0

i Ip for r < 0

. (5.14)

Next, we recover the (N + 1)p× (N + 1)p matrix S as a unique solution of the matrix
identity

AS − SA∗ = iΠJΠ∗. (5.15)

This solution is invertible and positive, i.e., S > 0 .
Finally, the matrices β(k)∗β(k) (0 < k � N) are recovered using the formula

β(k)∗β(k) = Π∗P∗
k

(
PkSP∗

k

)−1
PkΠ−Π∗P∗

k−1

(
Pk−1SP∗

k−1

)−1
Pk−1Π, (5.16)

where Pk is a (k + 1)p × (N + 1)p matrix:

Pk =
[

I(k+1)p 0
]
. (5.17)

The matrix β(0)∗β(0) is given by the relation

β(0)∗β(0) = Π∗P∗
0

(
P0SP∗

0

)−1
P0Π. (5.18)

Now, the matrices Ck and system (1.2) are defined via the first equality in (5.10).
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Proof. Step 1. According to Remark 5.1 the relations Ck > 0 and (1.3) follow
from (5.10). The relations (5.12) follow from (5.6). Now, we will show that

Π∗S−1Π = B∗B, B := B(N) =

⎡⎢⎢⎣
β(0)
β(1)
· · ·
β(N)

⎤⎥⎥⎦ . (5.19)

Let

K(r) =

⎡⎢⎢⎣
K0(r)
K1(r)
· · ·

Kr(r)

⎤⎥⎥⎦ (5.20)

be the square matrix, where Kl(r) are p × (r + 1)p matrices of the form

Kl(r) = iβ(l)J[β(0)∗ . . .β(l − 1)∗ β(l)∗/2 0 . . . 0]. (5.21)

From (5.19)-(5.21) it follows that

K(r) − K(r)∗ = iB(r)JB(r)∗. (5.22)

By induction we shall show in the next step that K is similar to A :

K(r) = V−(r)A(r)V−(r)−1 (0 � r � N), (5.23)

where V−(r)±1 are block lower triangular matrices. Taking into account (5.23) and

multiplying both sides of (5.22) by V−(r)−1 from the left and by
(
V−(r)∗

)−1
from

the right, we get
A(r)S(r) − S(r)A(r)∗ = iΠ(r)JΠ(r)∗, (5.24)

S(r) := V−(r)−1
(
V−(r)∗

)−1
, Π(r) := V−(r)−1B(r). (5.25)

Moreover, Step 3 will show that matrix V−(N) can be chosen so that the equality

Π = [Φ1 Φ2] = V−(N)−1B(N) (5.26)

holds, i.e., Π = Π(N) . (Here Φ1 and Φ2 are given by (5.13).)
Identities (5.24) have unique solutions S(r) as the spectra of A(r) and A(r)∗ do

not intersect. (The statement follows from rewriting of (5.24) in the form

S(r)(A(r)∗−λ I)−1−(A(r)−λ I)−1S(r) = i(A(r)−λ I)−1Π(r)JΠ(r)∗(A(r)∗−λ I)−1,

and from the following integration of both sides of the obtained identity along a contour,
such that the spectra of A is inside and the spectra of A∗ outside it.) In particular, by
(5.15) and (5.24), using Π = Π(N) , one can see that S = S(N) . Hence, we derive
from (5.25) that S > 0 . As S = S(N) and Π = Π(N) , by (5.25) equality (5.19)
holds, too.

Notice that PlA = A(l)Pl for l � N . So, formula (5.15) yields the operator
identities

A(l)
(
PlSP∗

l

)− (
PlSP∗

l

)
A(l)∗ = iPlΠJΠ∗P∗

l . (5.27)
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Thus, substituting l instead of N into the proof of (5.19) we immediately prove

Π∗P∗
l

(
PlSP∗

l

)−1
PlΠ = B∗P∗

l PlB =
l∑

r=0

β(r)∗β(r) (l � N), (5.28)

and formulas (5.16) and (5.18) follow.
It remains only to prove (5.23) and (5.26).
Step 2. Now, we shall consider the block lower triangular matrices V−(k)

(k ∈ {0, 1, 2, . . .}) :

V−(0) = v−(0) = β1(0), V−(k) =
[

V−(k − 1) 0
X(k) v−(k)

]
(k > 0), (5.29)

where v−(k) are p× p matrices, where β1(k) and β2(k) are p× p blocks of β(k) =
[β1(k) β2(k)] , and where X(k) = [X0(k) X̃(k)] are p × kp matrices. Here X0(k)
are arbitrary p × p blocks, and the matrices X̃(k) , v−(k) are given by the formulas

X̃(k) = i
(
β(k)J[β(0)∗ . . . β(k − 1)∗]V−(k − 1)

[
I(k−1)p

0

]
− v−(k)[Ip . . . Ip]

)
×

(
A(k − 2) +

i
2
I(k−1)p

)−1
, (5.30)

v−(k) = β(k)Jβ(k − 1)∗v−(k − 1).

According to (5.14) we have A(0) = (i/2)Ip . From the second relation in (5.10) and
definitions (5.20) and (5.21) it is immediate that K(0) = (i/2)Ip , and so (5.23) is valid
for r = 0 . Assume that (5.23) is true for r = k− 1 , and let us show that (5.23) is true
for r = k , too. It is easy to see that

V−(k)−1 =
[

V−(k − 1)−1 0
−v−(k)−1X(k)V−(k − 1)−1 v−(k)−1

]
. (5.31)

Then, in view of definitions (5.14) and (5.29), our assumption implies

V−(k)A(k)V−(k)−1 =
[

K(k − 1) 0
Y(k) i

2 Ip

]
, (5.32)

where

Y(k) =
[
(X(k)A(k−1)+iv−(k)[Ip . . . Ip])

i
2
v−(k)

] [ V−(k−1)−1

−v−(k)−1X(k)V−(k−1)−1

]
.

Rewrite the product on the right-hand side of the last formula as

Y(k) =
(
X(k)

(
A(k − 1) − i

2
Ikp

)
+ iv−(k)[Ip . . . Ip]

)
V−(k − 1)−1. (5.33)

From (5.14) and (5.33) it follows that

Y(k) =
[(

X̃(k)
(
A(k − 2) +

i
2
I(k−1)p

)
+ iv−(k)[Ip . . . Ip]

)
iv−(k)

]
V−(k − 1)−1.

(5.34)
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Notice that the row [Ip . . . Ip] of identity matrices in (5.34) is one block smaller than in
(5.33). By (5.30) and (5.34) we have

Y(k) =iβ(k)J
[
[β(0)∗ . . . β(k − 1)∗] V−(k − 1)

[
I(k−1)p

0

]
β(k − 1)∗v−(k − 1)

]
× V−(k − 1)−1. (5.35)

Finally, formulas (5.29) and (5.35) imply

Y(k) = iβ(k)J[β(0)∗ . . . β(k − 1)∗] (k > 0). (5.36)

According to the second relation in (5.10) and formulas (5.21) and (5.36) we get[
Y(k)

i
2
Ip
]

= Kk(k). (5.37)

Now, using (5.20) and (5.37), one can see that the right-hand side of (5.32) equals
K(k) . Thus, (5.23) is true for r = k and, therefore, it is true for all 0 � r � n .

Step 3. To derive (5.26) we shall first prove that the matrices V−(r) given by
(5.29) and (5.30) can be chosen so that

V−(r)−1B1(r) =

⎡⎣ Ip
· · ·
Ip

⎤⎦ , B1(r) := B(r)
[

Ip
0

]
=

⎡⎣ β1(0)
· · ·
β1(r)

⎤⎦ . (5.38)

In other words, the blocks X0(r) , arbitrary till now, can be chosen so. Indeed, by the
definition in (5.19) and the first equality in (5.29) formula (5.38) is true for r = 0 .
Assume that (5.38) is true for r = k − 1 . Then, from (5.31) it follows that (5.38) is
true for r = k , if only

− v−(k)−1X(k)

⎡⎣ Ip
· · ·
Ip

⎤⎦ + v−(k)−1β1(k) = Ip. (5.39)

It implies that we get equality (5.38) for r = k by letting

X0(k) = β1(k) − v−(k) − X̃(k)

⎡⎣ Ip
· · ·
Ip

⎤⎦ . (5.40)

Hence, by a proper choice of the matrices X0(r) we obtain (5.38) for all r � N .
It remains to prove that

V−(N)−1B2(N) = Φ2, B2(N) :=

⎡⎣ β2(0)
· · ·
β2(N)

⎤⎦ . (5.41)

For that purpose we shall consider the matrix function WN+1(λ ) , which is used in (5.8)
to define the coefficients of the Möbius transformation (5.7). Namely, we shall prove
the transfer matrix function representation of WN+1(λ ) :

WN+1(λ ) =
(
λ + i
λ

)N+1

K∗wA

(
N,−λ

2

)
K, (5.42)
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where
wA(r, λ ) = I2p − iJΠ(r)∗S(r)−1

(
A(r) − λ I(r+1)p

)−1Π(r). (5.43)

Identity (5.24) implies an equality similar to (2.31), namely

wA(r,μ)∗JwA(r, λ ) = J + i(μ − λ )Π(r)∗
(
A(r)∗ − μI(r+1)p

)−1

× S(r)−1
(
A(r) − λ I(r+1)p

)−1Π(r). (5.44)

Moreover, according to factorization Theorem 4 from [43] (see also [45], p. 188) we
have

wA(r, λ ) =
(
I2p − iJΠ(r)∗S(r)−1P∗(PA(r)P∗ − λ Ip

)−1(
PS(r)−1P∗)−1

× PS(r)−1Π(r)
)
wA(r − 1, λ ), P = [0 . . . 0 Ip].

(5.45)

Taking into account (5.14), (5.25), and (5.29) we obtain

(PA(r)P∗ − λ Ip)
−1 =

( i
2
− λ

)−1
Ip, PS(r)−1P∗ = v−(r)∗v−(r), (5.46)

PS(r)−1Π(r) = v−(r)∗PB(r) = v−(r)∗β(r). (5.47)
Substitute (5.46) and (5.47) into (5.45) to get

wA

(
r,
λ
2

)
=

(
I2p − 2i

i − λ
Jβ(r)∗β(r)

)
wA

(
r − 1,

λ
2

)
. (5.48)

From the definitions (5.14), (5.25), and (5.43) we also easily derive

wA

(
0,
λ
2

)
= I2p − 2i

i − λ
JB(0)∗B(0) = I2p − 2i

i − λ
Jβ(0)∗β(0). (5.49)

On the other hand system (1.2) with additional conditions (5.10) can be rewritten as

Wr+1(λ ) =
λ + i
λ

(
I2p − 2i

i + λ
jK∗β(r)∗β(r)K

)
Wr(λ ). (5.50)

In view of the normalization W(0) = I2p , formulas (5.48)-(5.50) imply (5.42).
From (5.42) and (5.44) it follows that

WN+1(λ )jWN+1(λ )∗ =
(
λ + i
λ

)N+1 (λ − i
λ

)N+1

j. (5.51)

Let us include the functions ϕ into consideration. Introduce

A (λ ) :=
∣∣∣∣ λ
λ + i

∣∣∣∣2N+2

[iϕ(λ )∗ Ip]KWN+1(λ )∗jWN+1(λ )K∗
[ −iϕ(λ )

Ip

]
. (5.52)

According to (5.7), (5.8), and (5.51) we have

A (λ ) =
∣∣∣∣λ − i

λ

∣∣∣∣2N+2 (
(W11(λ )R(λ ) + W12(λ )Q(λ ))∗

)−1

× (R(λ )∗R(λ ) − Q(λ )∗Q(λ )) (W11(λ )R(λ ) + W12(λ )Q(λ ))−1 .

(5.53)
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By (5.11) and (5.53) A is bounded in the neighbourhood of λ = −i :

‖A (λ )‖ = O(1) for λ → −i. (5.54)

Now, substitute (5.42) and (5.44) into (5.52) to obtain

A (λ ) =[iϕ(λ )∗ Ip]

⎛⎝J +
i
2
(λ − λ )Π(N)∗

(
A(N)∗ +

λ
2

I(N+1)p

)−1

S(N)−1

×
(

A(N) +
λ
2

I(N+1)p

)−1

Π(N)

)[−iϕ(λ )
Ip

]
.

(5.55)

Notice that S(N) > 0 . Hence, formulas (5.54) and (5.55) imply that∥∥∥∥(A(N) +
λ
2

I(N+1)p
)−1Π(N)

[ −iϕ(λ )
Ip

]∥∥∥∥ = O(1) for λ → −i. (5.56)

Recall that Π(N) = V−(N)−1B(N) and that A(N) is denoted by A . Now, represent
Π(N) in the block form

Π(N) = [Φ1(N) Φ2(N)], Φk(N) = V−(N)−1Bk(N) (k = 1, 2). (5.57)

According to (5.13) and (5.38) we have Φ1(N) = Φ1 . Hence, multiplying the matrix

functionon the left-hand side of (5.56)by i
(
Φ∗

1

(
A + λ

2 I(N+1)p
)−1 Φ1

)−1
Φ∗

1 we derive∥∥∥∥∥ϕ(λ )+i

(
Φ∗

1

(
A +

λ
2

I(N+1)p

)−1

Φ1

)−1

Φ∗
1

(
A +

λ
2

I(N+1)p

)−1

Φ2(N)

∥∥∥∥∥
= O

⎛⎝∥∥∥∥∥∥
(
Φ∗

1

(
A +

λ
2

I(N+1)p

)−1

Φ1

)−1
∥∥∥∥∥∥
⎞⎠ for λ → −i.

(5.58)

The matrix A + λ
2 I(N+1)p is easily inverted explicitly (see, for instance, formula (1.10)

in [40]). As a result one obtains

Φ∗
1

(
A +

λ
2

I(N+1)p

)−1

=
2

i + λ
[
q̂N q̂N−1 . . . q̂ Ip

]
, q̂ :=

λ − i
λ + i

Ip. (5.59)

Moreover, we get

Φ∗
1

(
A +

λ
2

I(N+1)p

)−1

Φ1 =
2

i + λ
(
q̂N+1 − Ip

)
(q̂ − Ip)

−1
. (5.60)

Let λ = i

(
z + 1
z − 1

)
, i.e., z =

(
λ + i
λ − i

)
. Then, we derive from (5.60) that

(
Φ∗

1

(
A +

λ
2

I(N+1)p

)−1

Φ1

)−1

=
(−izN+1 + O

(
z2N+2

))
Ip (z → 0). (5.61)
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Taking into account (5.59) and (5.61), we rewrite (5.58) as∥∥∥∥ϕ (
i

(
z + 1
z − 1

))
+ i(1 − z)

[
Ip zIp z2Ip . . .

]
Φ2(N)

∥∥∥∥ = O(zN+1) (5.62)

for z → 0 . From (5.13) and (5.62) it follows that Φ2(N) = Φ2 , i.e., (5.41) is true. As
Φ1(N) = Φ1 and Φ2(N) = Φ2 , so Π(N) = Π and formula (5.26) is finally proved.

�

DEFINITION 5.3. Let the matrices Ck satisfy (5.10). Then, a p × p matrix
function ϕ is said to be a Weyl function for system (1.2) on the interval 0 � k � N ,
if ϕ is holomorphic in C− and admits representation (5.7), where the pair [R , Q ] is
meromorphic in C− , well-defined at λ = −i , and nonsingular with j -property, i.e.,

R(λ )∗R(λ ) + Q(λ )∗Q(λ ) > 0, R(λ )∗R(λ ) � Q(λ )∗Q(λ ). (5.63)

The set of Weyl functions is denoted by N (N) .

Using notation (5.8), we deduce from (4.2) the inequality

q(λ )N+1W (λ )jW (λ )∗ � J, λ ∈ C−. (5.64)

According to [34] we can change the order of factors in (5.64):

q(λ )N+1W (λ )∗JW (λ ) � j, λ ∈ C−. (5.65)

Moreover, after excluding λ = −i , the inequality is strict

q(λ )N+1W (λ )∗JW (λ ) < j, λ ∈ C−\ − i. (5.66)

In view of (1.2), (5.8), (5.4), and (5.5), at λ = −i we get

W (−i) = KWN+1(i)∗ = (−2)N+1K
N∏

k=0

(
β̆∗

k β̆kj
)

. (5.67)

From the second relation in (5.3) and from (5.63) we, analogously to the proof of (5.6),
derive:

det [Ip Ip]jβ̆∗
0 �= 0, det β̆kjβ̆∗

k+1 �= 0, det β̆Nj

[
R(−i)
Q(−i)

]
�= 0. (5.68)

By (5.67) and (5.68) the next proposition is valid.

PROPOSITION 5.4. Let the pair [R , Q ] satisfy (5.63) Then inequality (5.11) is
fulfilled.

By Proposition 5.4 and the proof of Theorem 5.2 we get a corollary.
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COROLLARY 5.5. Weyl functions of system (1.2), which satisfies conditions (5.10),
are Herglotz functions and admit the Taylor representation

ϕ
(

i

(
z + 1
z − 1

))
= −i

(
ψ0 + (ψ1 − ψ0)z + . . . + (ψN − ψN−1)zN

)
+ O(zN+1),

(5.69)
where z → 0 and the p × p matrices ψk are the blocks of

Φ2 =

⎡⎢⎢⎣
ψ0

ψ1

. . .
ψN

⎤⎥⎥⎦ = V−(N)−1B(N). (5.70)

Proof. From (5.7), (5.63) and (5.65) it follows that

[Ip iϕ∗]J
[

Ip
−iϕ

]
� 0,

i.e., 
ϕ(λ ) � 0 for λ ∈ C− , and so ϕ is a Herglotz function.
By Proposition 5.4 the Weyl functions satisfy conditions of Theorem 5.2. Then,

by the second relation in (5.13) we have representation (5.69) of ϕ via the blocks of
Φ2 . By the proof of Theorem 5.2 we get also Φ2 = Φ2(N) , i.e., (5.70) holds. Here
V−(N) and B(N) are recovered from the matrices β(k) and do not depend on ϕ . �

REMARK 5.6. As Weyl functions ϕ satisfy conditions of Theorem 5.2, so the
procedure given in Theorem 5.2 provides a recovery of system (1.2) from a Weyl
function (i.e., provides a solution of the inverse problem on a finite interval).
The following proposition is also true:

PROPOSITION 5.7. The set N (N) (N > M) is imbedded in N (M) , i.e.,
N (N) ⊂ N (M) .

Proof. By (4.2) we have

q(λ )N+1WN+1(λ )∗jWN+1(λ ) � q(λ )M+1WM+1(λ )∗jWM+1(λ ), λ ∈ C+. (5.71)

Insert the length N of the interval into the notation W :

W (N, λ ) = W (λ ) = KWN+1(λ )∗. (5.72)

From (5.71) and (5.72) it follows that

q(λ )N−M
(
W (M, λ )−1W (N, λ )

)∗
jW (M, λ )−1W (N, λ ) � j. (5.73)

Moreover, in view of (1.2) and (5.72) we have

W (M, λ )−1W (N, λ ) =
N∏

k=M+1

(
Im +

i
λ

Ckj
)

, (5.74)
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and the expression on the left-hand side of (5.74) is analytic at λ = −i . Suppose now
that ϕ ∈ N (N) is a Weyl function generated by some pair [R, Q] , which satisfies
(5.63). Then, according to (5.63), (5.73) and (5.74) the pair[

R̃(λ )
Q̃(λ )

]
= W (M, λ )−1W (N, λ )

[
R(λ )
Q(λ )

]
(5.75)

satisfies conditions of Definition 5.3 too. Moreover, it is easy to see that

i
(
W21(M, λ )R̃(λ ) + W22(M, λ )Q̃(λ )

)(
W11(M, λ )R̃(λ ) + W12(M, λ )Q̃(λ )

)−1

= i (W21(N, λ )R(λ ) + W22(N, λ )Q(λ )) (W11(N, λ )R(λ ) + W12(N, λ )Q(λ ))−1

= ϕ(λ ),

(5.76)

which completes the proof. �
Theorem 5.2 and Proposition 5.7 imply a Borg-Marchenko type result:

THEOREM 5.8. Let ϕ̃ and ϕ̂ be Weyl functions of the two discrete Dirac-type
systems (1.2), which satisfy conditions (5.10). Denote by C̃k (0 � k � Ñ ) the potentials
Ck of the first system and by Ĉk (0 � k � N̂ ) the potentials of the second system.

Denote the Taylor coefficients of iϕ̃
(
i
(

z+1
z−1

))
and iϕ̂

(
i
(

z+1
z−1

))
at z = 0 by {α̃k}

and {α̂k} , respectively, and assume that α̃k = α̂k for all k � N � min{Ñ, N̂} . Then
we have C̃k = Ĉk for k � N .

Proof. According to Proposition 5.7, ϕ̃ and ϕ̂ are Weyl functions of the first
and second systems, respectively, on the interval 0 � k � N . By Theorem 5.2 these
systems on the interval 0 � k � N are uniquely recovered by the first N + 1 Taylor
coefficients of the Weyl functions. �

The present interest in the Borg-Marchenko type uniqueness results was initiated by
a series of papers by F. Gesztesy, B. Simon and coauthors (see, for instance, [28, 46]).
Further results and various references, including the most recent ones, one can find
in [12, 13]. Both local and global versions of the Borg-Marchenko type uniqueness
theorems for CMV operators were obtained in [13]. A procedure for the unique recovery
of the reflectionless matrix-valued Jacobi operators from their spectrum was given in
[12]. (The characterisation of the non-unique recovery of the related reflectionless
supersymmetric Dirac operators was given in [12] too.) One can also find in [12] the
results on the asymptotic expansions of the half and full-line Weyl-Titchmarsh functions
for Jacobi operators and supersymmetric Dirac operators. In the next Section we shall
treat the expansions of the Weyl functions for our systems (1.2) and their connections
with the Toeplitz matrices.

6. Toeplitz matrices and Dirac systems on the semiaxis

By [36], p. 116 it is easy to recover a block Toeplitz matrix S which satisfies
(5.15), where the blocks Φ1 and Φ2 of Π are given by (5.13). Namely, we have

S = {sj−k}N
k,j=0, s−k = αk = s∗k (k > 0), s0 = s∗0 = α0 + α∗

0 . (6.1)
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Moreover, this S is a unique solution of (5.15). A description of all extensions of S
preserving the number of negative eigenvalues, which uses the transfer matrix function
wA , is given in [36] (see also Theorem 4.1 in [40]). It is given in terms of the linear
fractional transformation

ϕ̂(λ ) =
(
R̂(λ )w11(λ ) + Q̂(λ )w21(λ )

)−1(
R̂(λ )w12(λ ) + Q̂(λ )w22(λ )

)
, (6.2)

where {wkj(λ )}2
k,j=1 = wA(N, λ ) , the transfermatrix function wA is defined by formula

(2.23), and the meromorphic pairs
[
R̂, Q̂

]
have J -property, i.e.,

R̂(λ )R̂(λ )∗+Q̂(λ )Q̂(λ )∗ > 0, R̂(λ )Q̂(λ )∗+Q̂(λ )R̂(λ )∗ � 0, λ ∈ C+. (6.3)

In particular, for the case S > 0 , which is treated here, thematrix functions ϕ̂
(
− i(z + 1)

2(z − 1)

)
are always analytic at z = 0 and admit the Taylor representation

ϕ̂
(
− i(z + 1)

2(z − 1)

)
= ŝ0 + ŝ−1z + ŝ−2z

2 + . . . (6.4)

Our next statement is a reformulation of Theorem 4.1 [40] for the subcase S > 0 .

THEOREM 6.1. Assume that S = {sj−k}N
k,j=0 > 0 , and fix α0 such that α0 +α∗

0 =
s0 . Using (5.13), (5.43), and (6.1) introduce Π = [Φ1 Φ2] and {wkj(λ )}2

k,j=1 =

wA(N, λ ) . Now, let matrix functions ϕ̂ be given by (6.2), where the pairs
[
R̂, Q̂

]
satisfy (6.3) and are well defined at λ = i

2 . Then the Taylor coefficients ŝ−k at z = 0

of the matrix functions ϕ̂
(
− i(z + 1)

2(z − 1)

)
satisfy relations

ŝ−k = s−k (0 < k � N), ŝ0 = α0. (6.5)

Moreover, putting s−k = s∗−k = ŝ−k for k > N , we have {sj−k}M
k,j=0 � 0 for all

M > N . In other words, the Taylor coefficients of the matrix functions ϕ̂
(
− i(z + 1)

2(z − 1)

)
generate nonnegative extensions of S . All the nonnegative extensions of S are generated
in this way.

For results related to Theorem 6.1 we refer to the series of papers [20].
Taking into account that wA(N, λ )JwA(N, λ )∗ = J , we derive the equality ϕ̂ = ϕ̃

for the matrix function

ϕ̃(λ ) = −
(
w12(λ )∗R̃(λ )+w22(λ )∗Q̃(λ )

)(
w11(λ )∗R̃(λ )+w21(λ )∗Q̃(λ )

)−1
, (6.6)

where

R̃(λ )∗R̃(λ ) + Q̃(λ )∗Q̃(λ ) > 0, R̂(λ )Q̃(λ ) + Q̂(λ )R̃(λ ) = 0, λ ∈ C+. (6.7)

Notice also that relations (6.3) and (6.7) yield

R̃(λ )∗Q̃(λ ) + Q̃(λ )∗R̃(λ ) � 0, (6.8)
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and vice versa relations (6.7) and (6.8) yield the second relation in (6.3). Hence,
Theorem 6.1 can be reformulated in terms of the linear fractional transformations (6.6),
where [R̃, Q̃] have J -property (6.8). Finally, use (5.8), (5.9) and (5.42) to rewrite
(5.7) in the form

iϕ(λ ) = −
(
w12(−λ/2)∗R̃(−λ/2) + w22(−λ/2)∗Q̃(−λ/2)

)
×

(
w11(−λ/2)∗R̃(−λ/2) + w21(−λ/2)∗Q̃(−λ/2)

)−1
,

(6.9)

where we put [
R̃(−λ/2)
Q̃(−λ/2)

]
= K

[
R(λ )
Q(λ )

]
. (6.10)

Here, formula (6.10) is a one to one mapping of the pairs satisfying (5.63) into pairs
satisfying the first relation in (6.7) and relation (6.8). By (6.6) and (6.9) we have

ϕ̂
(
− i(z + 1)

2(z − 1)

)
= ϕ̃

(
− i(z + 1)

2(z − 1)

)
= iϕ

(
i
(z + 1)
(z − 1)

)
Therefore Theorem 6.1 can be

rewritten.

THEOREM 6.2. Assume that S = {sj−k}N
k,j=0 > 0 , fix α0 such that α0 +α∗

0 = s0 ,
and introduce W via (5.8) and (5.42). Let matrix functions ϕ be given by (5.7), where
the pairs [R, Q] satisfy (5.63) and are well defined at λ = −i . Then iϕ(−i) = α0 , and

the next following Taylor coefficients αk at z = 0 of thematrix functions iϕ
(

i
(z + 1)
(z − 1)

)
satisfy the relations

αk = s−k (0 < k � N). (6.11)
Moreover, putting s−k = s∗k = αk for k > N , we have {sj−k}M

k,j=0 � 0 for all M > N .

In other words, the Taylor coefficients of the matrix functions iϕ
(

i
(z + 1)
(z − 1)

)
generate

nonnegative extensions of S . All the nonnegative extensions of S are generated in this
way.

REMARK 6.3. By Definition 5.3 and Theorem 6.2 the Weyl functions from the
Weyl disk N (N) generate all the nonnegative extensions of S . It provides, in particular,
an alternative proof of Proposition 5.7.

Consider system (1.2), which satisfies (5.10) on the semiaxis k ∈ {0, 1, 2, . . .} .
Recall that the equalities in (5.10) are equivalent to Ck > 0 , CkjCk = j , and that β(k)
in (5.10) is given by the formulas β(k) = β̂(k)K∗ and (5.1).

THEOREM 6.4. Let system (1.2) be given on the semiaxis k ∈ {0, 1, 2, . . .} and
let matrices Ck satisfy (5.10). Then, there is a unique function ϕ∞ , which belongs to
all the Weyl discs N (N) :

∞⋂
N=0

N (N) = ϕ∞. (6.12)

Proof. According to Corollary 5.5 the matrices {Ck}N
k=0 (N < ∞ ) or equivalently

the matrices {β(k)}N
k=0 uniquely define the blocks {s−k}N

k=0 , where s−k = αk =
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ψk − ψk−1 for k > 0 and s0 = α0 + α∗
0 (α0 = ψ0 ). Moreover, by Proposition 5.7

these s−k do not depend on N � k , and so system (1.2) on the semiaxis determines an
infinite sequence {s−k}∞k=0 . By Theorem 5.2 we have {sj−k}N

k,j=0 > 0 for all N � 0 .
Apply now Theorem 6.2 to see that

iϕ
(

i
(z + 1)
(z − 1)

)
= α0 +

∞∑
k=1

s−kz
k = iϕ∞

(
i
(z + 1)
(z − 1)

)
, (6.13)

i.e., this ϕ belongs to
⋂∞

N=0 N (N) . Moreover, as the sequence {s−k}∞k=0 is unique,
so by Theorem 6.2 the function ϕ ∈ ⋂∞

N=0 N (N) is unique. �
Recall that a Weyl function on the semiaxis is defined by Definition 4.8, where K

is given by formula (4.27). Theorem 6.4 yields our next result.

THEOREM 6.5. Let system (1.2) be given on the semiaxis k � 0 and let matrices
Ck satisfy (5.10). Then, the matrix function ϕ∞ given by (6.12) is the unique Weyl
function of system (1.2) on the semiaxis.

Proof. By (5.7) and (6.12), we have[ −iϕ∞(λ )
Ip

]
= JW (r + 1, λ )

[
R(λ )
Q(λ )

]
(6.14)

for all r � 0 and for some depending on r pairs [R, Q] , which satisfy (5.63). In view
of (5.8), (5.9), (5.51), and (6.14) we obtain

[iϕ∞(λ )∗ Ip]
(
q(λ )r+1KWr+1(λ )∗jWr+1(λ )K∗ − J

) [−iϕ∞(λ )
Ip

]
= i (ϕ∞(λ ) − ϕ∞(λ )∗) +

( |λ 2 + 1|2
|λ |2(|λ |2 + 1)

)r+1

[R(λ )∗ Q(λ )∗]j
[

R(λ )
Q(λ )

]
.

(6.15)

Now, formulas (5.63) and (6.15) imply

[iϕ∞(λ )∗ Ip]
(
q(λ )r+1KWr+1(λ )∗jWr+1(λ )K∗ − J

) [−iϕ∞(λ )
Ip

]
� i

(
ϕ∞(λ ) − ϕ∞(λ )∗

)
.

(6.16)

It follows from (4.2) and (6.16) that

r∑
k=0

[iϕ∞(λ )∗ Ip]q(λ )kKWk(λ )∗CkWk(λ )K∗
[−iϕ∞(λ )

Ip

]
� |λ |2 + 1

λ − λ

(
ϕ∞(λ ) − ϕ∞(λ )∗

)
.

(6.17)

Finally, by (6.17) the inequality (4.26) is immediate, and ϕ∞ given by (6.12) is a Weyl
function.
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To prove the uniqueness of the Weyl function notice that by Proposition 3.2 and
by relation (4.3) we have

qkW∗
k CkWk � qkW∗

k jWk � qk−1W∗
k−1jWk−1 � . . . � W∗

0 jW0 = j (λ ∈ C−). (6.18)

Hence, in view of (6.18) we obtain

r∑
k=0

[Ip Ip]q(λ )kKWk(λ )∗CkWk(λ )K∗
[

Ip
Ip

]
� 2(r + 1)Ip,

and it follows that
∞∑
k=0

[Ip Ip]q(λ )kKWk(λ )∗CkWk(λ )K∗
[

Ip
Ip

]
= ∞. (6.19)

Taking into account Definition 4.8 and inequality (6.19), we can show the uniqueness
of the Weyl function similar to the proof of the uniqueness in Theorem 4.2. �

Now, we formulate a solution of the inverse problem.

THEOREM 6.6. The set of the Weyl functions ϕ(λ ) of systems (1.2), given on the
semiaxis k � 0 and such that the matrices Ck satisfy (5.10), coincides with the set of
functions ϕ such that

iϕ
(

i
(z + 1)
(z − 1)

)
= α0 +

∞∑
k=1

s−kz
k (6.20)

are Caratheodory matrix functions in the unit disk and {sj−k}N
k,j=0 > 0 for all 0 �

N < ∞ (s0 := α0 + α∗
0 ) . These systems (1.2) are uniquely recovered from their Weyl

functions via the procedure given in Theorem 5.2.

Proof. According to Theorem 6.5 the Weyl function on the semiaxis is also a Weyl
function on the intervals. Hence, the procedure to construct a solution of the inverse
problem follows from Theorem 5.2. It follows from Theorem 5.2 also, that the matrices
{sj−k}N

k,j=0 generated by the Weyl functions are positive definite.
Hence, it remains to show that all the functions such that (6.20) holds and

{sj−k}r
k,j=0 > 0 ( r � 0 ) are Weyl functions. Indeed, fixing such a matrix func-

tion ϕ , we get a sequence of matrices S(r) = {sj−k}r
k,j=0 > 0 . Therefore we get a

sequence of the transfer matrix functions wA(r, λ ) of the form (5.43), where

Π(r) =

⎡⎢⎢⎣
Ip α0

Ip α0 + s−1

. . . . . .
Ip α0 + s−1 + . . . + s−r

⎤⎥⎥⎦ , (6.21)

and (5.24) holds. Compare formulas (5.43) ( r = 0 ) and (5.49), and compare also
formulas (5.45) and (5.48) to get

β(r)∗β(r) = Π(r)∗S(r)−1P∗ (PS(r)−1P∗)−1
PS(r)−1Π(r) (r � 0). (6.22)
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In view of the matrix identity (5.24) we have

PS(r)−1Π(r)JΠ(r)∗S(r)−1P∗ = −iP
(
S(r)−1A(r) − A(r)∗S(r)−1

)
P∗

= PS(r)−1P∗.
(6.23)

Thus, we can put

β(r) :=
(
PS(r)−1P∗)− 1

2 PS(r)−1Π(r) (r � 0), (6.24)

so that the matrices β(r) will satisfy (6.22) and the second relation in (5.10). Therefore
formulas Cr = 2Kβ(r)∗β(r)K− j define a system of our class on the semiaxis. Similar
to the proof of Theorem 5.2 we derive from (6.22) the equality (5.42). Compare now
Definition 5.3 and Theorem 6.2 to see that ϕ ∈ N (N) for any N . According to
Theorems 6.4 and 6.5 it means that ϕ is the Weyl function. �

Formula (6.24) provides a somewhat different way in comparison with formulas
(5.16) and (5.18) way to recover system (1.2).

Finally, consider the upper halfplane and define holomorphic Weyl functions in
C+ via relations (4.26) and (4.27), too. Put

N (N) := {ϕ(λ )∗ : ϕ ∈ N (N)}. (6.25)

REMARK 6.7. Similar to the proof that ϕ̂ = ϕ̃ , where ϕ̂ and ϕ̃ are given by (6.2)
and (6.6), respectively, one can show that the set N (N) consists of linear fractional
transformations (5.7), where the pairs [R, Q] are meromorphic in C+ , are well defined
at λ = i , and have the property

R(λ )∗R(λ ) + Q(λ )∗Q(λ ) > 0, R(λ )∗R(λ ) � Q(λ )∗Q(λ ), λ ∈ C+. (6.26)

In view of Remark 6.7, we obtain in C+ the analog of Theorem 6.5, and the proof is
similar.

THEOREM 6.8. Let system (1.2) be given on the semiaxis k � 0 and let matrices
Ck satisfy (5.10). Then, the matrix function ϕ∞(λ )∗ =

⋂∞
N=0 N (N) is the unique

Weyl function in C+ of system (1.2) on the semiaxis.

Proof. Substitute ϕ∞(λ )∗ instead of ϕ∞(λ ) into (6.15) and take into account
(6.26) to derive

[iϕ∞(λ ) Ip]
(
J − q(λ )r+1KWr+1(λ )∗jWr+1(λ )K∗

) [−iϕ∞(λ )∗

Ip

]
� i

(
ϕ∞(λ ) − ϕ∞(λ )∗

)
.

(6.27)

Now, inequalities (6.17) and (4.26) are straightforward, i.e., ϕ∞(λ )∗ is aWeyl function.
Instead of (6.18) we use the inequality

q(λ )kWk(λ )∗CkWk(λ ) � −q(λ )kWk(λ )∗jWk(λ ) � −j (λ ∈ C+), (6.28)
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which yields inequality

∞∑
k=0

[Ip − Ip]q(λ )kKWk(λ )∗CkWk(λ )K∗
[

Ip
−Ip

]
= ∞. (6.29)

The uniqueness of the Weyl function follows from (6.29) �
Theorem 6.8 for the scalar case p = 1 has been proved earlier in [25, 31] (see also

Theorem 3.2.11 [47]).
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[31] L. GOLINSKII, P. NEVAI, Szegö difference equations, transfer matrices and orthogonal polynomials
on the unit circle, Comm. Math. Phys. 223 (2001), 223–259.

[32] M.A. KAASHOEK, A.L. SAKHNOVICH, Discrete skew self-adjoint canonical system and the isotropic
Heisenberg magnet model, J. Functional Anal. 228 (2005), 207–233.

[33] B.M. LEVITAN, I.S. SARGSJAN, Introduction to spectral theory: selfadjoint ordinary differential
operators, Translations of Mathematical Monographs, Vol. 39, American Mathematical Society,
Providence, R.I., 1975.

[34] V.P. POTAPOV, The multiplicative structure of J -contractive matrix functions Am. Math. Soc.
Transl. II Ser. 15 (1960), 131–243.

[35] J. ROVNYAK, L.A. SAKHNOVICH, Some indefinite cases of spectral problems for canonical systems
of difference equations, Linear Algebra Appl. 343/344 (2002), 267–289.

[36] A.L. SAKHNOVICH, On the continuation of the block Toeplitz matrices, Functional Analysis (Ul-
janovsk) 14 (1980), 116–127.

[37] A.L. SAKHNOVICH, Exact solutions of nonlinear equations and the method of operator identities,
Linear Algebra Appl. 182 (1993), 109–126.

[38] A.L. SAKHNOVICH, Dressing procedure for solutions of nonlinear equations and the method of
operator identities, Inverse Problems 10 (1994), 699–710.
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