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(communicated by S. McCullough)

Abstract. The class of analytic reproducing kernels

Kp(z,w) =
∞∑
n=0

f n(z)f n(w)

is considered where f n(z) = (1 − bnz)zn with bn = ( n+1
n+2 )p and p > 0 . In this case H(Kp)

consists of functions with domain D ∪ {1} . For each p , a concrete realization of H(Kp) is
provided. For the case p > 1/2 , H(Kp) is shown to have the factorization property and the
operator of multiplication by z is shown to be similar to a rank one perturbation of the unilateral
shift. A characterization of the multiplier algebra of H(Kp) is given for all values of p > 0 .

1. Introduction

The function K(z, w) is positive definite (denoted K � 0 ) on the set E×E if for
any finite collection z1, z2, · · · , zn in E ⊂ C and any complex numbers α1,α2, · · · ,αn ,

the sum
n∑

i,j=1

ᾱiαjK(zi, zj) is non-negative. It is well known that if K � 0 on E × E ,

then the set of functions in z given by⎧⎨
⎩

n∑
j=1

αjK(z, wj) : α1, · · · ,αn ∈ C, w1, · · · , wn ∈ E

⎫⎬
⎭

has dense span in a Hilbert space H(K) of functions on E with∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

αjK(z, wj)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
n∑

i,j=1

ᾱiαjK(wi, wj).

A fundamental property of H(K) is the Reproducing Property which states that
f (w) = 〈 f (z), K(z, w)〉 for every w in E and f in H(K) . Thus evaluation at w is a
bounded linear functional for each w in E .
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Conversely, it is well known that if F is a Hilbert space of functions defined on E
such that evaluation at w is a bounded linear functional for each w in E , then there is
a unique K defined on E × E such that F = H(K) . It follows from the reproducing
property that K(z, w) = K(w, z) . Hence if K is analytic in the first variable, then K
is coanalytic in the second variable. In this case K is an analytic kernel. It is well
known, see Adams, McGuire, and Paulsen [2], that if K is an analytic kernel with series

expansion K(z, w) =
∞∑

i,j=0

ai,jz
iw̄j about (0, 0) and A = [ai,j] is factored as A = BB∗ ,

then H(K) is identifiable with the range space of B in l2 . Recall the range space of
B is given by R(B) = {B�x : �x ∈ l2} with ||B�x||R(B) = ||�x||l2 . The column vectors

{bj}∞j=0 of B given by �bj =

⎛
⎜⎜⎝

b0, j

b1, j

b2, j
...

⎞
⎟⎟⎠ correspond to an orthonormal basis {f j(z)}∞j=0

of H(K) where f j(z) =
∑∞

i=0 bi,jzj . An important observation is that if K1 and K2 are
two such analytic kernels with associated factorizations A1 = B1B∗

1 and A2 = B2B∗
2 ,

then H(K1) ⊂ H(K2) if and only if the range of B1 is contained in the range of B2 .
In Shields [13], multiplication operators on analytic reproducing kernel Hilbert

spaces with kernels of the form K(z, w) =
∞∑

n=0

anz
nw̄n were extensively studied. In

these spaces the monomials {√anzn} form an orthonormal basis, and the operator Mz

of multiplication by z is a forward unilateral shift. Richter [12] extended the work of
Shields [13] to study the invariant subspace structure of multiplication by z on certain
Banach spaces, B , of analytic functions in which evaluation is continuous and for
which the following Factorization Property holds: if f ∈ B and f (λ ) = 0 , then there
exists g ∈ B such that (z − λ )g = f .

In Adams and McGuire [1], a study was begun of the spaces with kernels of the

form K(z, w) =
∞∑

n=0

f n(z)f n(w) where f n(z) = (an,0 + an,1z + · · · + an,JzJ)zn and J is

fixed. These spaces are known as bandwidth J spaces since the Taylor series expansion
of K(z, w) =

∑∞
i,j=0 ai,jziw̄j satisfies ai,j = 0 outside the band |i− j| � J . In this case,

the polynomials {f n(z)} form an orthonormal basis for H(K) . It was shown in Adams
and McGuire [1] that the behavior of the multiplication operators on these spaces can
be markedly different from the Shields case ( J = 0 ).

This paper is focused on a special class of tridiagonal kernels (J = 1) that bring
this difference into a sharper focus. The class is defined for each p > 0 and n ∈ N

by setting f n(z) = (1 − bnz)zn where bn = ( n+1
n+2 )

p , resulting in the kernel Kp(z, w) =
∞∑

n=0

f n(z)f n(w) . It is straightforward to verify that the domain of Kp is given by

D(Kp) = {(z, w) : z, w ∈ D ∪ {1}} , that {bn} is a sequence of positive numbers that
increases to 1 , and that Kp(z, 1) =

∑∞
n=0(1 − bn)(1 − bnz)zn .

The principle result of this paper is a functional decomposition of the space H(Kp)
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for p > 0 . This decomposition allows us to determine that the operator Mz is bounded
if and only if p > 1

2 and, in this case, to completely characterize the multiplier algebra
of H(Kp) . For 0 < p < 1

2 , we provide necessary and sufficient conditions for a
function φ to be a multiplier of H(Kp) . Additionally, we show that for p > 1

2 , H(Kp)
satisfies the factorization property of Richter [12]. From this it easily follows from [12]
that M∗

z is in the Cowen-Dougas class B1 , Mz is a cellular indecomposable operator,
and that the invariant subspaces of Mz are either of the form (1−z)M where M = ψH2

for some inner function ψ or the span of (1 − z)M and the function Kp(z, 1) .

2. Main Results

Our first result shows that the functions in H(Kp) can be decomposed into (1− z)
times an H2 function plus a scalar multiple of the function Kp(z, 1) . Our second
and more difficult result determines precisely which H2 functions can occur in the
factorization and the dependency on p . Before proceeding, we include without proof a
lemma that contains a few obvious facts that will be useful in the proofs of these results.

LEMMA 2.1. Let P denote the collection of matrices with non-negative compo-
nents, let A ∗ B denote the Schur or Hadamard product of the matrices A and B , and
let V+ denote the collection of unit vectors in l2+ whose components are non-negative.

(1) If A ∈ P , then ||A|| = sup
�v∈V+

||A�v|| .
(2) If A1 , A2 ∈ P , then ||A1|| � ||A1 + A2|| � ||A1|| + ||A2|| .
(3) If A , B ∈ P with B = [bj,k] , and 0 < λ � bj,k � γ < ∞ for each j , k ,

then λ ||A|| � ||A ∗ B|| � γ ||A|| .
THEOREM 2.2. If f ∈ H(Kp) , then f (z) = (1 − z)g(z) + αKp(z, 1) for some g

in the Hardy space H2(D) and α ∈ C .

Proof. First note that if f ∈ H(Kp) and Q is the projection of H(Kp) onto the
one dimensional span of Kp(z, 1) , then f = (I − Q)f + Qf . Since

Qf =

〈
f ,

Kp(z, 1)√
Kp(1, 1)

〉
Kp(z, 1)√
Kp(1, 1)

=
f (1)

Kp(1, 1)
Kp(z, 1),

(Qf )(1) = 〈Qf , Kp(z, 1)〉 = f (1) = 〈 f , Kp(z, 1)〉 and ((I − Q)f )(1) = 〈 (I −
Q)f , Kp(z, 1)〉 = 0 . Thus it suffices to show that if f ∈ H(Kp) and f (1) =
〈 f , Kp(z, 1)〉 = 0 , then f (z) = (1 − z)g(z) for some g ∈ H2(D) . Writing f (z) =∑∞

n=0 αnf n(z) =
∑∞

n=0 αn(1− bnz)zn we note that the condition that f (1) = 0 implies∑∞
n=0 αn(1 − bn) = 0 . In order that

f (z) = (1 − z)g(z) = (1 − z)
∞∑
n=0

gnz
n = g0 +

∞∑
n=1

(gn − gn−1)zn

for some g ∈ H2(D) we must produce a sequence {gn} in l2 such that

g0 +
∞∑

n=1

(gn − gn−1)zn =
∞∑
n=0

αn(1 − bnz)zn = α0 +
∞∑

n=1

(αn − αn−1bn−1)zn.
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This leads to the recursion g0 = α0 and gn = gn−1 + αn − αn−1bn−1 for n � 1 .
Thus

g1 = g0 + α1 − α0b0 = α0(1 − b0) + α1,

g2 = g1 + α2 − α1b1 = α0(1 − b0) + α1(1 − b1) + α2,

and the nth term is given by

gn =

(
n−1∑
k=0

αk(1 − bk)

)
+ αn.

Since
∑∞

k=0 αk(1 − bk) = 0 , for n � 1 the sum

n−1∑
k=0

αk(1 − bk) = −
∞∑
k=n

αk(1 − bk) = 0

and hence gn = αn −
∑∞

k=n αk(1 − bk) . Since {αn} is an l2 sequence, it suffices to
show {∑∞

k=n αk(1 − bk)}∞n=1 is an l2 sequence. Since

{ ∞∑
k=n

αk(1 − bk)

}∞

n=1

= Bp{αn}∞n=1

where

Bp =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − b0 1 − b1 1 − b2 · · ·
0 1 − b1 1 − b2 · · ·
0 0 1 − b2

. . .

0 0 0
. . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

it is enough to show that Bp is a bounded matrix.
The tangent line approximation to f (x) = 1− xp at x = 1 is given by −p(x− 1) .

Since limn→∞ n+1
n+2 = 1 , for large n , 1 − bn = 1 − ( n+1

n+2 )
p can be approximated by

−p( n+1
n+2 − 1) = p

n+2 . A straightforward application of part (3) of Lemma 2.1 shows
that Bp is bounded if and only if the matrix

Cp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p
2

p
3

p
4 · · ·

0 p
3

p
4 · · ·

0 0 p
4

. . .

0 0 0
. . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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is bounded. It is well known that the Cesaro operator

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1
2

1
2 0 0 · · ·

1
3

1
3

1
3 0 · · ·

1
4

1
4

1
4

1
4

. . .
...

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

is bounded, see Brown, Halmos, Shields [7]. Let Q0 denote the projection onto the first
canonical basis vector of l2 and note Cp = p(I − Q0)C∗(I − Q0) is bounded which
establishes the result. �

Our next result provides a more explicit description of the nature of the decom-
position of H(Kp) that was obtained in Theorem 2.2. For convenience we will denote
the diagonal operator with diagonal entries given by the sequence {an} by either of
D[a1, a2, a3, . . . ] or D[{an}] .

THEOREM 2.3. If Ap = {g ∈ H2(D) : (1 − z)g(z) ∈ H(Kp)} , then
(1) for p > 1

2 , Ap = H2(D) ;
(2) for p = 1

2 , Ap is dense in H2(D) , but not equal to H2(D) ;
(3) for 0 < p < 1

2 , Ap is the orthogonal complement in H2(D) of the span of

{gp(z)} where gp(z) =
∞∑

n=0

(1 − bn)(n + 2)pzn .

Proof. We begin with the case where p > 1
2 . In order to show that Ap = H2 , it

suffices to show that the range of A is contained in the range of B where

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
−1 1 0 · · ·
0 −1 1 · · ·
0 0 −1

. . .
...

...
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
−( 1

2 )
p 1 0 · · ·

0 −( 2
3 )

p 1 · · ·
0 0 −( 3

4 )
p . . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By the Range Inclusion Theorem of Douglas [9], it suffices to show there exists a
bounded operator R = [ri,j] such that A = BR . It is a straightforward computation to
show that R must be lower triangular, ri,i = 1 for each i , and ri,j = ( j+2

i+1 )
p[( j+1

j+2 )
p − 1]

for 0 � j � i − 1 . To determine the values of p for which R is bounded, we will
produce a sequence of matrices, beginning with R and ending with a block Toeplitz
matrix, such that each matrix in the sequence is bounded if and only if its predecessor
in the sequence is. To begin, write R as I − M where M = [mi,j] satisfies

mi,j =
{

0, if j � i;

( j+2
i+1 )

p[1 − ( j+1
j+2 )

p], if j < i.
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Let αj =
p

j+2

1−( j+1
j+2 )p

=
p

j+2

1−bj
and note that limj→∞ αj = 1 . Since the diagonal matrix

D[{αj}] is bounded and invertible the matrix M is bounded if and only if MD[{αj}] is
bounded. Note that

MD[{αj}] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
p
2 0 0 0 · · ·

p
2 (

2
3 )

p p
3 0 0 · · ·

p
2 (

2
4 )

p p
3 (

3
4 )

p p
4 0 · · ·

p
2 (

2
5 )

p p
3 (

3
5 )

p p
4 (

4
5 )

p p
5 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let L1 = D[{( n+1
n )p−1}∞n=1] , L2 = D[{ 1

n}∞n=1] , and Dp = D[{n1−p}∞n=1] . It is straight-
forward to verify that MD[{αn}] = pDp(C− L2)L1D−1

p where C is the Cesaro matrix.
Since pDpL2L1D−1

p is a bounded matrix, it easily follows that MD[{αn}] is bounded
if and only if

DpCD−1
p =

⎛
⎜⎜⎝

11−p 0 0 · · ·
0 21−p 0 · · ·
0 0 31−p · · ·
...

...
...

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1
2

1
2 0 0 · · ·

1
3

1
3

1
3 0 · · ·

1
4

1
4

1
4

1
4

. . .
...

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1p−1 0 0 · · ·
0 2p−1 0 · · ·
0 0 3p−1 · · ·
...

...
...

. . .

⎞
⎟⎟⎠

is bounded. Our next goal is to show that DpCD−1
p is bounded if and only if p > 1

2 .

By applying item (3) of Lemma 2.1, the boundedness of DpCD−1
p can be shown

to be equivalent to the boundedness of EpC1E−1
p where Ep = D[11−p, 21−p, 21−p, 41−p,

. . . , 41−p, 81−p, . . . , 81−p, . . . ] and C1 is the lower triangular matrix

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1
2

1
2 0 0 · · ·

1
2

1
2

1
2 0 · · ·

1
4

1
4

1
4

1
4

. . .
...

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

whose i, j th entry is 2−k provided 2k � i < 2k+1 and 1 � j � i for k = 0, 1, 2, . . . .
By applying item (2) of Lemma 2.1 we can augment C1 to obtain the equivalent

problem of the boundedness of the matrix EpC2E−1
p where Ep = D[11−p, 21−p, 21−p,
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41−p, . . . , 41−p, 81−p, . . . , 81−p, . . . ] and C2 is the matrix

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 · · ·
1
2

1
2

1
2 0 0 0 0 · · ·

1
2

1
2

1
2 0 0 0 0 · · ·

1
4

1
4

1
4

1
4

1
4

1
4

1
4 · · ·

1
4

1
4

1
4

1
4

1
4

1
4

1
4 · · ·

1
4

1
4

1
4

1
4

1
4

1
4

1
4 · · ·

1
4

1
4

1
4

1
4

1
4

1
4

1
4 · · ·

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix EpC2E−1
p can be better expressed in block lower triangular form as the

matrix Cp = [( 2j

2k )1−p 1
2j Mj,k] where Mj,k is the 2j × 2k matrix each of whose entries is

1 . That is

Cp =

⎡
⎢⎢⎢⎢⎢⎢⎣

( 1
1 )

1−pM0,0 0 0 0 · · ·
( 2

1 )
1−p 1

2M1,0 ( 2
2 )

1−p 1
2M1,1 0 0 · · ·

( 4
1 )

1−p 1
4M2,0 ( 4

2 )
1−p 1

4M2,1 ( 4
4 )

1−p 1
4M2,2 0 · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let �vk be the unit vector �vk = 1√
2k

(1, 1, . . . , 1)T and note that, for each j and k ,

Mj,k : C2k → C2j
is rank 1 with ker(Mj,k)⊥ = C�vk . Thus if Pk : C2k → C2k

is the
projection Pk �wk = 〈 �wk,�vk〉�vK , then

Cp

⎛
⎜⎜⎝

�w0

�w1

�w2
...

⎞
⎟⎟⎠ = Cp

⎛
⎜⎜⎝

P0�w0

P1�w1

P2�w2
...

⎞
⎟⎟⎠ .

Hence, for the purposes of determining the boundedness of Cp , it suffices to consider

the action of Cp on vectors of the form �x =

⎛
⎜⎜⎝
α0�v0

α1�v1

α2�v2
...

⎞
⎟⎟⎠ where {αk} ∈ l2 . Since
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Mj,k�vk = 2
k+j
2 �vj we see that

Cp�x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

( 1
1 )

1−p α0 �v0(
( 2

1 )
1−p 1

2 2
0+1
2 α0 + ( 2

2 )
1−p 1

2 2
1+1
2 α1

)
�v1(

( 4
1 )

1−p 1
4 2

0+2
2 α0 + ( 4

2 )
1−p 1

4 2
1+2
2 α1 + ( 4

4 )
1−p 1

4 2
2+2
2 α2

)
�v2

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(α0 �v0(
(2−p+ 1

2 α0 + α1

)
�v1(

2−2p+1 α0 + 2−p+ 1
2 α1 + α2

)
�v2(

2−3p+ 3
2 α0 + 2−2p+1 α1 + 2−p+ 1

2α2 + α3

)
�v3

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is now apparent that Cp is bounded if and only if the Toeplitz operator

Tφ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

2−(p− 1
2 ) 1 0 0

2−2(p− 1
2 ) 2−(p− 1

2 ) 1 0

2−3(p− 1
2 ) 2−2(p− 1

2 ) 2−(p− 1
2 ) 1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with symbol φ(z) =
∞∑
n=0

2−n(p− 1
2 )zn =

1

1 − 2−(p− 1
2 )z

is bounded. Since Tφ is bounded

if and only if p > 1
2 , the proof that Ap = H2(D) for p > 1

2 is now complete.
Additionally, we have shown that Ap �= H2(D) if p � 1

2 . We next show that A ⊥
p is

{0} if p = 1
2 and Cgp if p < 1

2 .
To this end, first note that

f n+1(1)f n(z) − f n(1)f n+1(z) = (1 − bn+1)(1 − bnz)zn − (1 − bn)(1 − bn+1z)zn+1

= (1 − bn+1)zn + (bnbn+1 − 1)zn+1 + (1 − bn)bn+1z
n+2

= (1 − z)zn( (1 − bn+1) − (1 − bn)bn+1z )
= (1 − z)gn(z),

where gn(z) = zn((1 − bn+1) − (1 − bn)bn+1z) is in Ap ⊂ H2(D) . Suppose now that
φp =

∑∞
n=0 γnz

n ∈ A ⊥
p . Taking the H2(D) inner product of φp with gn yields

0 = 〈 φp, gn〉 = γn(1 − bn+1) − γn+1(1 − bn)bn+1.



A CLASS OF TRIDIAGONAL REPRODUCING KERNELS 241

Thus, for n = 0, 1, 2, . . . ,

γn+1 =
(1 − bn+1)
(1 − bn)

1
bn+1

γn

which leads to

γn =
(1 − bn)
(1 − b0)

1
b1b2 · · · bn

γ0.

Since b1b2 · · · bn = ( 2
n+2 )

p and 1−bn
1−b0

≈ p
(1−b0)

1
n+2 , we obtain

γn ≈ p
(1 − b0)

2−p(n + 2)p−1γ0.

It is now apparent that {γn} ∈ l2 if and only if p < 1
2 . Since γn is comparable to

(1− bn)(n + 2)p , if we let gp =
∑∞

n=0(1− bn)(n + 2)pzn for p < 1
2 , then we have that

A ⊥
p ⊂

{
0, if p � 1

2

Cgp, if p < 1
2

.

To complete the proof, it remains to show that Ap is the orthogonal complement
of {Cgp} if 0 < p < 1

2 . If g ∈ {gp}⊥ , then g(z) =
∑∞

n=0 anzn with

∞∑
n=0

an(1 − bn)(n + 2)p = 0.

We must show that f (z) = (1 − z)g(z) = a0 +
∑∞

n=1(an − an−1)zn is in H(Kp) .
Note that if f ∈ H(Kp) , then f (z) =

∑∞
n=0 βnf n(z) =

∑∞
n=0 βn(1 − bnz)zn = β0 +∑∞

n=0(βn − βn−1bn−1)zn for some sequence {βn}∞n=0 ∈ l2 .
In order that this occur, we must have β0 = a0 and, for n � 1 ,

βn = an + βn−1bn−1 − an−1.

This recursion leads to β1 = a1 − (1 − b0)a0 and, for n > 1 ,

βn = an − [(1 − bn−1)an−1 + bn−1(1 − bn−2)an−2

+ · · · + (bn−1bn−2 · · · b1)(1 − b0)a0]

= an −
[
(1 − bn−1)an−1 +

(
n

n + 1

)p

(1 − bn−2)an−2

+
(

n − 1
n + 1

)p

(1 − bn−3)an−3 + · · · +
(

2
n + 1

)p

(1 − b0)a0

]

= an −
(

1
n + 1

)p
[

n−1∑
k=0

ak(1 − bk)(k + 2)p

]

= an +
(

1
n + 1

)p
[ ∞∑

k=n

ak(1 − bk)(k + 2)p

]
.
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This last equality follows from the fact that
∑∞

n=0 an(1 − bn)(n + 2)p = 0 . We can
express this in matrix form as

⎛
⎜⎜⎝
β0

β1

β2
...

⎞
⎟⎟⎠ = (I + B1)

⎛
⎜⎜⎝

a0

a1

a2
...

⎞
⎟⎟⎠

where

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 − b0)
(

2
1

)p
(1 − b1)

(
3
1

)p
(1 − b2)

(
4
1

)p
(1 − b3)

(
5
1

)p · · ·
0 (1 − b1)

(
3
2

)p
(1 − b2)

(
4
2

)p
(1 − b3)

(
5
2

)p · · ·
0 0 (1 − b2)

(
4
3

)p
(1 − b3)

(
5
3

)p · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As we observed earlier in the proof, 1 − bn ≈ p
n+2 for large n . Hence B1 is bounded

if and only if the matrix B2 is bounded where

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2p−1 3p−1 4p−1 5p−1 · · ·
0 3p−12−p 4p−12−p 5p−12−p · · ·
0 0 4p−13−p 5p−13−p · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Breaking B2 into blocks in the same manner as was done earlier, we see that the
boundedness of B2 is equivalent to the boundedness of B3 where

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2p−1M0,0 4p−1M0,1 8p−1M0,2 16p−1M0,3 · · ·
0 4p−12−pM1,1 8p−12−pM1,2 16p−12−pM1,3 · · ·
0 0 8p−14−pM2,2 16p−14−pM2,3 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Recalling the estimate that ||Mn,m|| = 2
n+m

2 reduces the boundedness of B3 to the
boundedness of the Toeplitz matrix

Tψ =

⎡
⎢⎢⎢⎢⎢⎢⎣

2p− 2
2 22p− 3

2 23p− 4
2 24p− 5

2 · · ·
0 2p−1 22p− 3

2 23p− 4
2 · · ·

0 0 2p−1 22p− 3
2 · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.



A CLASS OF TRIDIAGONAL REPRODUCING KERNELS 243

Since the symbol ψ(z) =
∑∞

n=0 2n(p− 1
2 )− 1

2 zn is bounded for p < 1
2 , the Toeplitz matrix

is bounded and the proof is complete. �
The complete decomposition can now be summarized in the following corollary.

COROLLARY 2.4. The space H(Kp) decomposes as follows.
(1) If p > 1

2 , then H(Kp) = (1 − z)H2(D) + CKp(z, 1) .
(2) If p = 1

2 , then H(Kp) = (1−z)Ap+CKp(z, 1) where Ap is dense in H2(D) ,
but not equal to H2(D) .

(3) If 0 < p < 1
2 , then H(Kp) = (1 − z)Ap + CKp(z, 1) where Ap is the

orthogonal complement in H2(D) of the function

gp(z) =
∞∑
n=0

(1 − bn)(n + 2)pzn.

Recall that an analytic function φ is a multiplier of H(Kp) if φf ∈ H(Kp)
whenever f ∈ H(Kp) . Our next goal is to give a characterization of the multipliers of
H(Kp) . Before doing so we establish a few simple facts about H(Kp) .

PROPOSITION 2.5. The following statements hold.
(1) For p > 0 , Kp(z, 1) extends continuously to ∂D .
(2) If 1

2 < p < ∞ , then f (z) = 1 belongs to H(Kp) .
(3) If 0 < p < ∞ , then H(Kp) ⊂ H2(D) .

Proof. Note that

Kp(z, 1) =
∞∑
n=0

f n(1)f (z)

=
∞∑
n=0

(
1 −

(
n + 1
n + 2

)p)(
1 −

(
n + 1
n + 2

)p

z

)
zn

= 1 −
(

1
2

)p

+
∞∑

n=0

[
1 −

(
n + 1
n + 2

)p

−
(

n
n + 1

)p

+
(

n
n + 1

)2p
]

zn

= 1 −
(

1
2

)p

+
∞∑

n=0

[(
1 −

(
n

n + 1

)p)2

+
(

n
n + 1

)p

−
(

n + 1
n + 2

)p
]

zn.

Earlier it was observed that for large enough n , 1 − (
n

n+1

)p
< 2p

n+1 . In similar fashion
it is easy to verify that, for large n ,∣∣∣∣

(
n

n + 1

)p

−
(

n + 1
n + 2

)p∣∣∣∣ <
2p

(n + 1)(n + 2)
.

Thus the series converges absolutely on ∂D and part (1) of the proposition follows.
To establish (2), note that 1 =

∑∞
n=0

(
1

n+1

)p
f n(z) where

{f n(z) =
(

1 −
(

n + 1
n + 2

)p

z

)
zn}
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is our set of orthonormal basis vectors. Since
∑∞

n=0

(
1

n+1

)2p
< ∞ for 1

2 < p < ∞ ,
1 ∈ H(KP) .

Likewise it is easy to see that H(Kp) ⊂ H2(D) since

∞∑
n=0

αnf n(z) = α0 +
∞∑

n=1

[
αn −

(
n

n + 1

)p

αn−1

]
zn

and the latter is in H2(D) whenever {αn} is an l2 sequence. �

THEOREM 2.6. For p > 1
2 , the function φ is a multiplier of H(Kp) if and only if

φ ∈ H∞ and
φ(z) − φ(1)

z − 1
∈ H2(D).

Proof. Assume φ is a multiplier. Since 1 ∈ H (Kp) , Corollary 2.4 allows us to
write φ(z) − φ(1) = (1 − z)g(z) + αKp(z, 1) for some g ∈ H2 . Evaluating at z = 1

implies α = 0 . Therefore φ(z)−φ(1)
z−1 ∈ H2(D) .

In general Hilbert function spaces it is well known, see section 2.3, page 21 of [4],
that if φ is a multiplier, then the multiplication operator Mφ is bounded, Kp(z, λ ) is an
eigenvector of the adjoint M∗

φ with eigenvalue φ(λ ) , and consequently φ is bounded
on the domain. Thus φ ∈ H∞ .

Conversely, assume that φ ∈ H∞ and φ(z)−φ(1)
z−1 ∈ H2(D) . Clearly φ maps

(z − 1)H2(D) into (z − 1)H2(D) and

φ(z)Kp(z, 1) = (z − 1)
φ(z) − φ(1)

z − 1
Kp(z, 1) + φ(1)Kp(z, 1).

Since Kp(z, 1) is continuous on the closed disk D , φ(z)−φ(1)
z−1 Kp(z, 1) is in H2(D) and

it follows from Corollary 2.4 that φ(z) multiplies Kp(z, 1) into H (Kp) . �

COROLLARY 2.7. For p > 1
2 , themultiplication operator Mz on H(Kp) is bounded

and similar to a rank one perturbation of the unilateral shift.

Proof. That Mz is bounded is immediate from the theorem above. Part (1) of
Corollary 2.4 establishes that Mz is a rank one perturbation of the unilateral shift since
Mz acts as the unilateral shift on (1 − z)H2 . �

THEOREM 2.8. For p > 1
2 , H(Kp) has the factorization property for λ ∈ D :

f (λ ) = 0 implies f (z) = (z − λ )g(z) for g ∈ H(Kp) .

Proof. Suppose f (λ ) = 0 for some λ ∈ D and f ∈ H(Kp) . By Corollary 2.4

f (z) = (1 − z)h(z) + f (1)
K(z, 1)
K(1, 1)

for some h ∈ H2 . Hence h(λ ) = − f (1)
(1−λ )

K(λ ,1)
K(1,1) . Note

g(z) = h(z) +
f (1)

(1 − λ )
K(z, 1)
K(1, 1)

∈ H2
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and g(λ ) = 0 . Since H2 has the factorization property, there exists r ∈ H2 such that
g(z) = (z − λ )r(z) . So

h(z) = (z − λ )r(z) − f (1)
(1 − λ )

K(z, 1)
K(1, 1)

and

(1 − z)h(z) = (z − λ )(1 − z)r(z) − (1 − z)
f (1)

(1 − λ )
K(z, 1)
K(1, 1)

= f (z) − f (1)
K(z, 1)
K(1, 1)

.

Hence

f (z) = (z − λ )(1 − z)r(z) +
[
−(1 − z)

f (1)
(1 − λ )

+ f (1)
]

K(z, 1)
K(1, 1)

= (z − λ )(1 − z)r(z) + f (1)
[
(−1 + z + 1 − λ )

(1 − λ )

]
K(z, 1)
K(1, 1)

= (z − λ )
[
(1 − z)r(z) +

f (1)
(1 − λ )

K(z, 1)
K(1, 1)

]
.

Since Corollary 2.4 implies (1 − z)r(z) + f (1)
(1−λ )

K(z,1)
K(1,1) is in H(Kp) , factorization holds

for all λ ∈ D . �
The following corollary follows at once from Theorem 2.10 and Section 3 of

Richter[12].

COROLLARY 2.9. If p > 1
2 , then

(1) M∗
z is in the Cowen-Dougas class B1 ;

(2) Mz is a cellular indecomposable operator;
(3) The invariant subspaces of Mz are either of the form (1 − z)M where M =

ψH2 for some inner function ψ or the span of the function Kp(z, 1) and a
subspace of the form (1 − z)M .

THEOREM 2.10. If 0 < p < 1
2 , then φ is a non-trivial multiplier of H(Kp) if and

only if
(1) φ ∈ H∞ ;
(2) φ(z)−φ(1)

z−1 Kp(z, 1) is in Ap ;
(3) there exists a constant λ ∈ C such that 〈 φ−λ , M∗n

z gp〉 H2 = 0 for all n � 0 ,

where gp(z) =
∞∑

n=0

(1 − bn)(n + 2)pzn .

Proof. First, assume that φ is a multiplier. As in the p > 1
2 case, it is well

known (see [4]) that φ is bounded. Since H(Kp) = (1 − z)Ap + CKp(z, 1) where
Ap = H2 � Cgp , we can write

φ(z)
Kp(z, 1)
Kp(1, 1)

= (z − 1)h(z) + φ(1)
Kp(z, 1)
Kp(1, 1)

.
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Hence
φ(z) − φ(1)

z − 1
Kp(z, 1) = Kp(1, 1)h(z) ∈ Ap.

To establish the third condition, first note that if φ is a multiplier, then it is easy
to see that φAp ⊂ Ap . For simplicity we write the function gp =

∑∞
n=0 cnzn where

cn = (1 − bn)(n + 2)p . Next, observe that for each n � 0 , hn(z) = − cn
c0

+ zn is in Ap

since 〈 hn, gp〉 H2 = 0 . Hence

φ(z)hn(z) = −cn

c0
φ(z) + znφ(z)

is in Ap which implies

0 = 〈 φ(z)hn(z), gp(z)〉 H2

= −cn

c0
〈 φ(z), gp(z)〉 H2 + 〈 znφ(z), gp(z)〉 H2 .

Thus, for all n � 0 ,

〈 znφ(z), gp(z)〉 H2 =
cn

c0
〈 φ(z), gp(z)〉 H2 .

Note that φ is a multiplier if and only if φ − λ is also a multiplier for all λ ∈ C .
Condition (3) results on letting λ be such that 〈 φ − λ , gp〉 H2 = 0 .

For the converse, first note that since φ is a multiplier if and only if φ−λ is also a
multiplier, we may reduce to the case where λ = 0 . Next, note that conditions (1) and
(3) imply that φ(z)p(z) is orthogonal in H2 to gp for every polynomial p(z) . Since
the polynomials are dense in H2 , this means φ(z)h(z) is in Ap for every h ∈ H2 . In
particular, φAp ⊂ Ap . Since

H(Kp) = (1 − z)Ap + CKp(z, 1),

it suffices to show φ(z)Kp(z, 1) ∈ H(Kp) . By condition (2), φ(z)−φ(1)
z−1 Kp(z, 1) is in Ap .

Hence
[φ(z) − φ(1)]Kp(z, 1) = (z − 1)h(z)

for some h ∈ Ap . Thus φ(z)Kp(z, 1) = (z− 1)h(z) + φ(1)Kp(z, 1) is in H(Kp) and φ
is a multiplier. �

COROLLARY 2.11. If 0 < p < 1
2 , and gp is a cyclic vector for M∗

z , then H(Kp)
has no non-trivial multipliers.

Although characterizations of the cyclic vectors for the backward shift exist in the
literature (see Garcia [11] and Douglas, Shapiro, and Shields [10]), applying the criteria
to particular functions is often quite difficult. The authors were unable to determine
whether or not gp is a cyclic vector for M∗

z and must leave this as an open question.
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