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A CLASS OF TRIDIAGONAL REPRODUCING KERNELS
GREGORY T. ADAMS AND PAUL J. MCGUIRE

(communicated by S. McCullough)

Abstract. The class of analytic reproducing kernels
e _
Kp(z,w) = an(z)fn(w)
n=0

is considered where f,(z) = (1 — buz)z" with b, = (%)p and p > 0. In this case H(Kp)

consists of functions with domain D U {1} . For each p, a concrete realization of H(Kp) is
provided. For the case p > 1/2, H(Kp) is shown to have the factorization property and the
operator of multiplication by z is shown to be similar to a rank one perturbation of the unilateral
shift. A characterization of the multiplier algebra of H(Kp) is given for all values of p > 0.

1. Introduction

The function K(z,w) is positive definite (denoted K >> 0) on the set E x E if for
any finite collection z1,23,- - ,z, in E C C and any complex numbers oy, ¢, - -+ , 0, ,

n
the sum Z 0;04K (z;,z) is non-negative. It is well known that if K > 0 on E x E,
ij=1
then the set of functions in z given by

n
Z%K(z,wj) cog, 0, €Cowy, oo w, €E
j=1

has dense span in a Hilbert space H(K) of functions on E with
2

Z OZJ'K(Z, Wj) = Z di%K(Wi, Wj).
Jj=1

ij=1

A fundamental property of H(K) is the Reproducing Property which states that
fw) ={(f(z),K(z,w)) forevery win E and f in H(K). Thus evaluation at w is a
bounded linear functional for each w in E.
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Conversely, it is well known that if F is a Hilbert space of functions defined on E
such that evaluation at w is a bounded linear functional for each w in E, then there is
aunique K defined on E x E such that F = H(K). It follows from the reproducing
property that K(z,w) = K(w,z). Hence if K is analytic in the first variable, then K
is coanalytic in the second variable. In this case K is an analytic kernel. It is well
known, see Adams, McGuire, and Paulsen [2], that if K is an analytic kernel with series

expansion K(z,w) = Za,- ;2w about (0,0) and A = [a;] is factored as A = BB*,
ij=0
then H(K) is identifiable with the range space of B in [>. Recall the range space of
B is given by Z(B) = {BxX: X € I*} with ||BX||%) = ||¥]|z. The column vectors
bo,

- by
{bj}%y of B given by b; = sz correspond to an orthonormal basis {f;(z)}7<,

of H(K) where f;(z) = Y = bi;2 . Animportant observation is that if K; and K, are
two such analytic kernels with associated factorizations A; = B1B] and A, = B,B;,
then H(K,) C H(K3) if and only if the range of B, is contained in the range of B;.

In Shields [13], multiplication operators on analytic reproducing kernel Hilbert

spaces with kernels of the form K(z,w) = Zanz”w" were extensively studied. In
n=0

these spaces the monomials {,/a,z"} form an orthonormal basis, and the operator M,
of multiplication by z is a forward unilateral shift. Richter [12] extended the work of
Shields [13] to study the invariant subspace structure of multiplication by z on certain
Banach spaces, &, of analytic functions in which evaluation is continuous and for
which the following Factorization Property holds: if f € % and f(A) = 0, then there
exists g € # suchthat (z—A)g=f.

In Adams and McGuire [1], a study was begun of the spaces with kernels of the

form K(z,w) = an(z)fn(w) where f,,(z) = (@no + an1z+ -+ anyz’)Z" and J is
n=0

fixed. These spaces are known as bandwidth J spaces since the Taylor series expansion
of K(z,w) = Y 7 gaijz'w satisfies a;; = 0 outside the band |i —j| < J. In this case,
the polynomials {f,,(z)} form an orthonormal basis for H(K) . It was shown in Adams
and McGuire [1] that the behavior of the multiplication operators on these spaces can
be markedly different from the Shields case (J =0).

This paper is focused on a special class of tridiagonal kernels (J = 1) that bring
this difference into a sharper focus. The class is defined for each p > 0 and n € N
by setting f,(z) = (1 — byz)z" where b, = (%)P , resulting in the kernel K,,(z,w) =

Z fa(@)fa(w). Tt is straightforward to verify that the domain of K, is given by
n=0

2(K,) = {(z,w) : z,w € DU {1}}, that {b,} is a sequence of positive numbers that
increases to 1, and that K,(z,1) = >_° (1 — b,)(1 — byz)2".
The principle result of this paper is a functional decomposition of the space H(K),)



A CLASS OF TRIDIAGONAL REPRODUCING KERNELS 235

for p > 0. This decomposition allows us to determine that the operator M, is bounded

if and only if p > % and, in this case, to completely characterize the multiplier algebra
of H(K,). For 0 < p < % , we provide necessary and sufficient conditions for a
function ¢ to be a multiplier of H(K,). Additionally, we show that for p > 1, H(K,)
satisfies the factorization property of Richter [12]. From this it easily follows from [12]
that M is in the Cowen-Dougas class By, M; is a cellular indecomposable operator,
and that the invariant subspaces of M, are either of the form (1 —z)M where M = yH?>

for some inner function y or the span of (1 —z)M and the function K,(z,1) .
2. Main Results

Our first result shows that the functions in H(K,,) can be decomposed into (1 —z)
times an H” function plus a scalar multiple of the function K,(z,1). Our second
and more difficult result determines precisely which H? functions can occur in the
factorization and the dependency on p. Before proceeding, we include without proof a
lemma that contains a few obvious facts that will be useful in the proofs of these results.

LEMMA 2.1. Let & denote the collection of matrices with non-negative compo-
nents, let A x B denote the Schur or Hadamard product of the matrices A and B, and
let ¥ denote the collection of unit vectors in 12 whose components are non-negative.

(1) If A€ 2, then ||A[| = sup [|AV]].

VG +
(2) If Ar, Ay € P, then ||A)]| < [|A1 + Ao < []Ad]] + [|A2].
(3) IfA, Bez@withB—[b]and0<l<bjﬁk<y<ooforeachj,k,
then A||A]| < ||A *BJ| <

THEOREM 2.2. If f € H(K,), then f(z) = (1 — z)g(z) + aK,(z, 1) for some g
in the Hardy space H*(D) and o € C.

Proof. First note that if f € H(K,) and Q is the projection of H(K,) onto the
one dimensional span of K,,(z,1), then f = (I — Q)f + Of . Since

K1) \ K1) _ f(1)
of = < ’\/K 1 >\/Kp(1,1) _Kp(lyl)Kp(Z71)’

0)(1) = (Qf,Ky(z,1)) = f(1) = (f,Ky(z,1)) and ((I — Q)F)(1) = (U -
O)f,K,(z,1)) = 0. Thus it suffices to show that if f € H(K,) and f(1) =
(f,K (z7 )) =0, then f(z) = (1 —z)g(z) for some g € H*(D). Writing f(z) =
oo Ofn(z) = Y02 0 (1 — byz)z" we note that the condition that f (1) = 0 implies

2o @(l — b,) = 0. In order that
f@)=(0-2)g(2)=(1-2) Zg,,z” =go+ Z(g” — 1)z
n=0 n=1

for some g € H*(D) we must produce a sequence {g,} in /> such that

80 + Z(gn - gn—l)Zn = Z an(l - an)Zn =0y + Z((Xn - an—lbn—l)zn
n=1 n=0 n=1
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This leads to the recursion go = ¢ and g, = g,—1 + O — O—1b,—1 for n > 1.
Thus

g1 = go+ ou — opby = otp(1 — bo) + i,

=g+ —ob = O(o(l 71)0) Jqu(l 7b1) + o,

and the n” term is given by

n—1
8n = (Z Oﬂk(l - bk)) + o,
k=0

Since Y7 ox(1 — b)) =0, for n > 1 the sum

n—1 o]
Zak(l 7bk) = 720@(1 7bk) =0
k=0 k=n

and hence g, = o, — > ,, 0&(1 — by). Since {a,} is an > sequence, it suffices to

show {3°7° (1 —bi)}52, isan 2 sequence. Since

{iak(l—bk)} = Bp{an},2y
k=n n=1

where
1—by 1—b;y 1—>by
0 1—-b6; 1—5b,

0 0 0

it is enough to show that B, is a bounded matrix.
The tangent line approximationto f (x) = 1 —x” at x = 1 is givenby —p(x—1).

Since lim,_ % =1, forlarge n, 1 — b, =1 — (%)P can be approximated by
fp(Z—E — 1) = ;&5 . A straightforward application of part (3) of Lemma 2.1 shows

that B, is bounded if and only if the matrix

rp r P
2 3 4
05 %
G=[0 o0 ¢
00 0
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is bounded. It is well known that the Cesaro operator

1 00 0
1 1
L1 o o
1 1 1
c=|5 5 35 0
L1111
7 % 4 1%

is bounded, see Brown, Halmos, Shields [7]. Let Qp denote the projection onto the first
canonical basis vector of /> and note C, = p(I — Qy)C*(I — Qo) is bounded which
establishes the result. ]

Our next result provides a more explicit description of the nature of the decom-
position of H(K,) that was obtained in Theorem 2.2. For convenience we will denote
the diagonal operator with diagonal entries given by the sequence {a,} by either of
Dlay,az,as,...] or D[{a,}].

THEOREM 2.3. If @, = {g € H*(D) : (1 — 2)g(z) € H(K,)}, then

(1) for p> 4, of = HA(D);

(2) for p =1, o, isdense in H*(D), but not equal to H*(D);

(3) for0<p < %, ), is the orthogonal complement in H*(D) of the span of

oo

{8p(2)} where g,(z) = Z(l —by)(n+2)P".
n=0

Proof. We begin with the case where p > % . In order to show that .27, = H?, it
suffices to show that the range of A is contained in the range of B where

10 0 - L 0 0
—(Ly
11 (3) 12 0
A= 0 -1 1 and B= 0 —(3) 1
0o 0 -1 0 0 f(%)p

By the Range Inclusion Theorem of Douglas [9], it suffices to show there exists a
bounded operator R = [r;;] such that A = BR. It is a straightforward computation to
show that R must be lower triangular, r;; = 1 for each i, and r;; = (ﬁ—%)”[(%)” —1]
for 0 < j < i— 1. To determine the values of p for which R is bounded, we will
produce a sequence of matrices, beginning with R and ending with a block Toeplitz
matrix, such that each matrix in the sequence is bounded if and only if its predecessor

in the sequence is. To begin, write R as [ — M where M = [m;;] satisfies

0, ifj > i
e { BTyl =)l ifj<i

i+1 Jj+2
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#s £ . . . .
Let o = l_é;ﬁ = £ ij and note that limj_,, oj = 1. Since the diagonal matrix
D[{a;}] is bounded and invertible the matrix M is bounded if and only if MD[{0;}] is
bounded. Note that

—~

MD[{5}] =

~—
=
—~
~—
=

G A0 Wi IS O
~—
=

Qe hlw R O O

[SIRSEN STaSENSTaS)
—
WIS Wit

—~
~—
=

SIE B O O O
=

us O O O O

—~
~—
=
I
—~

Let Ly = D[{(22)P=1}°)], L, = D[{1}2°], and D, = D[{n'"7}2°]. Itis straight-
forward to verify that MD[{c,}] = pD,(C — L,)L1D, " where C is the Cesaro matrix.

Since pD,L,L1D, " is a bounded matrix, it easily follows that MD[{c,}] is bounded
if and only if

D,CD,! =

1 00 0
1= 0 0 % % 0 0 - 0 0
0 7o A SRR A
0o 0 3 S o o 3!

7 7 % 1

is bounded. Our next goal is to show that D,CD, ! is bounded if and only if p > % .

By applying item (3) of Lemma 2.1, the boundedness of D,CD, ! can be shown
to be equivalent to the boundedness of E,,CIEI,_l where E, = D[11=P 21=p 21=P 4l=p,

oo atme glep o 81=P ] and C) is the lower triangular matrix

1 0 0 O
11
5 3 00
11 1

=2 2 2 0
L r 1 1
4 1 1

whose i, jth entry is 2% provided 2 <i < 2! and 1 <j<ifork=0,1,2,... .
By applying item (2) of Lemma 2.1 we can augment C; to obtain the equivalent
problem of the boundedness of the matrix E,CE, ' where E, = D[1'"7,2!"7 2!,
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4l=pr . 4l=p gl=r . 81=P . ] and C, is the matrix
1100]00O0O0
114310000
L1 1lo000
1 11 11 1 1
il 3131|3171 7171
G, =
1 11 1 11
i3 31|31 17171
1 11 11 11
1|31 31|31 7317171
1 11 11 11
1133|3131 7171

The matrix E,GE, ! can be better expressed in block lower triangular form as the
matrix C, = [(£)'77:M;,] where My, is the 2/ x 2¥ matrix each of whose entries is
1. Thatis

(%)1 "My 0 0 0
R e Rz e TRz R K
=
(D' P3Mag | (5 PgMay | (5 PiMan | O
Let v, be the unit vector v, = ——(1,1,...,1)” and note that, for each j and k,

_ VE
My : € — 7 isrank 1 with ker(My)t = Cv;. Thusif P, : €2 — C2' is the
projection Pywy = (W, Vi) Vi , then

Wo Powy
Wi Piw)
CP M_;z = CI’ P 2 \/Uz

Hence, for the purposes of determining the boundedness of C,, it suffices to consider
Vo
avi

the action of C, on vectors of the form X = | .5 | where {4} € I*. Since
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k+ o,
2y; we see that

M]kvk =27
(D' o0 7o
((%)1 1% o (2)r Lo al) Vi

(Brri2¥a+ @ ri2e o+ ()7 i2F w)n

[ (o0
( _p+2050+051)\71
= ( —2ptl O(0+27p+% oy +Olz) Vo

3p+2 O(()+2 2p+1 o +2- p+2062+0(3)

It is now apparent that C, is bounded if and only if the Toeplitz operator

! 0 0 0 7
2—(p=3%) 1 0 0
Ty= | 272—2) 2-=3) | 0

1
with symbol ¢(z Z 2™ m is bounded. Since T} is bounded
if and only if p > %, the proof that <%, = H*(D) for p > % is now complete.

Additionally, we have shown that .27, # Hz( ) if p < % We next show that JZfPJ‘ is
{0} 1fp—— and Cg, if p < 3
To this end, first note that

fn+1(1) n(Z) 7fn(1) n+1(Z) n+1)( an)Zn _ (1 _ bl)(l _ bn+1Z)Zn+l
burt)2 o (bubuit = D+ (1= by)byy™
)Z"( (1 = buy1) — (1 = by)bpy1z)

n(2),

wr12) isin @, C H*(D). Suppose now that
D) inner product of ¢, with g, yields

(1-
(1-
(1-
(1—-2)
where g,(z) = 2'((1 — bp1) — (1 — ()

0 = D020 1" € ;- . Taking the H>

0= <¢p7gn> = Yn(l - bn+1) - Yn+l(1 - bn)bﬂ+1'
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Thus, for n =0,1,2,...,

o (1 - bn+1) 1
%1+1 - (1 — bn) anrl %1
which leads to
(1 B bn) 1
(1 —bg) biby---b,

. _ (2 —by ~ _p___1 ;
Since bib,---b, = (HZ)P and 1 e Ty » Ve obtain

Yn = Yo-

D
"R T )

277 (n+2)" .

It is now apparent that {y,} € % if and only if p < % Since yn is comparable to

(1—by)(n+2),if welet g, = 302 (1 —by,)(n+2)P2" for p < L, then we have that

0, if p>
) C Cr
Cgy, ifp<

SIS

To complete the proof, it remains to show that .7, is the orthogonal complement
of {Cgp} if 0<p<i.If g€ {g,}*.then g(z) = > 7 anz" with

Zanl— (n+2) =0.

We must show that f(z) = (1 —z)g(z) = a0+ Do (@n — an—1)2" is in H(K,).
Note that if f € H(K,), then f(z) = Y20 Bufu(z) = D oo Bu(1 — bu2)2" = Po +

> o(By — Bu—1bn—1)7" for some sequence {B,}°, € I>.
In order that this occur, we must have By = ag and, for n > 1,

Bn =a, + anlbnfl — dp—1-
This recursion leads to 1 = a; — (1 — bg)ap and, for n > 1,

B. = an—[(1 —bu_1)an—1+by—1(1 —by_2)an—2
F oot (Byiby_z - by)(1 = bo)ag]

n p
= a, — |:(1 — bnfl)(lnfl + <m> (1 — bnfz)(lnfz

+ (Z; i)p (1= bys)t_s + -+ (%)p (1- bo)ao]

— (ni 1),, [gak(l bk +2)
— o+ (ni l)p [iak(l bk +2)

k=n
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This last equality follows from the fact that > ° a,(1 — b,)(n + 2)P = 0. We can
express this in matrix form as

Bo ao

g; =(I+ By) Z;

where
(1—bo) (3)" (1=b)(2)" (1=b2) (3)" (1=03)(3)" - ]
B (1-b1)(3) (1=b)(2) (1—b3)(3)
=10 0 (=02 () (1=b3) (3)

As we observed earlier in the proof, 1 — b, ~ n% for large n. Hence B is bounded
if and only if the matrix B; is bounded where

=1 3p—1 4qp—1 5p—1
0 3p—1p—p gr—lp—p 5sp=lop—p ...

B2=1¢9 o #1370 =13 L

Breaking B, into blocks in the same manner as was done earlier, we see that the
boundedness of B, is equivalent to the boundedness of B3 where

ZP_IMQ() 4P—1M071 8P—1M0’2 16p_1M0’3

0 4p—12—pM1’1 8p—12—pM1’2 16p—12—pM1’3
B3 = 0 0 8p7147pM272 1617*14*[)M273
Recalling the estimate that ||M,,,|| = 2“3 reduces the boundedness of Bj to the

boundedness of the Toeplitz matrix
w3 Q=3 Wi W3
0 vl 2%—3 2%

0 0 7=l %3
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Since the symbol y(z) = 3°°°,27(=2)= 12 is bounded for p < 1, the Toeplitz matrix
is bounded and the proof is complete. |
The complete decomposition can now be summarized in the following corollary.
COROLLARY 2.4. The space H(K,) decomposes as follows.
(1) If p> %, then H(K,) = (1 — 2)H*(D) 4+ CK,(z, 1).
(2) Ifp= 1%, then H(K,) = (1—2),+CK,(z, 1) where <, is densein H*(D)),
but not equal to H*(D).
(3)If 0 < p < %, then HK,) = (1 —2)4, + CK,(z,1) where 7, is the
orthogonal complement in H*(D) of the function

o0

g(x) =Y (1 —b,)(n+2)2"

n=0

Recall that an analytic function ¢ is a multiplier of H(K,) if ¢f € H(K,)
whenever f € H(K,). Our next goal is to give a characterization of the multipliers of
H(K,) . Before doing so we establish a few simple facts about H(K),).

PROPOSITION 2.5. The following statements hold.

(1) For p >0, K,(z,1) extends continuously to 9D .
(2) If  <p < oo, then f(z) = 1 belongsto H(K,).
(3) If 0 < p < ¢, then H(K,) C H*(D).

Proof. Note that

Ky(z,1) = gfn(l)f(Z)

(-0 ()
) () GG
()20 G)) ) - ()

Earlier it was observed that for large enough n, 1 — (n’ﬁ)p < % . In similar fashion
it is easy to verify that, for large n,
2p

) - G) < aers

Thus the series converges absolutely on 9D and part (1) of the proposition follows.

To establish (2), note that 1 =2, (ﬁ)pfn (z) where

{fulz) = (1 - (:i;)pz> '}

+
[\S)

n

7"

[ L[]

(=}

n=
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. . . 2
is our set of orthonormal basis vectors. Since Y~ (ﬁ) Y
1 € H(Kp).

Likewise it is easy to see that H(K,) C H*(D) since

[e’} o0 )4
;Oﬂnfn(Z) =0y + ; |:an - <nnﬁ) OCn1:| Zn

and the latter is in H?(D) whenever {a,} is an I? sequence. O

<oof0r%<p<oo,

THEOREM 2.6. For p > %, the function ¢ is a multiplier of H(K,) if and only if
¢ € H*® and
¢(z) — ¢(1)

2
p— € H*(D).

Proof. Assume ¢ is a multiplier. Since 1 € #(K,), Corollary 2.4 allows us to
write ¢(z) — ¢(1) = (1 — 2)g(z) + oK, (z, 1) for some g € H*. Evaluating at z = 1
implies & = 0. Therefore w € H*(D).

In general Hilbert function spaces it is well known, see section 2.3, page 21 of [4],
thatif ¢ is a multiplier, then the multiplication operator M, is bounded, K,(z,A) is an
eigenvector of the adjoint Mj with eigenvalue m, and consequently ¢ is bounded
on the domain. Thus ¢ € H*°.

Conversely, assume that ¢ € H* and w € H*(D). Clearly ¢ maps

(z— DH(D) into (z — 1)H*(D) and -
¢(z) — ¢(1)

#(2)Kp(z, 1) = (z— 1) p— Ky(z, 1) + ¢(1)Kp(z, 1).
Since K,(z, 1) is continuous on the closed disk D, w&(z, 1) isin H*(D) and

it follows from Corollary 2.4 that ¢(z) multiplies K, (z, 1) into #(K,). O

COROLLARY 2.7. For p > % , the multiplication operator M, on H(K,) is bounded
and similar to a rank one perturbation of the unilateral shift.

Proof. That M, is bounded is immediate from the theorem above. Part (1) of
Corollary 2.4 establishes that M is a rank one perturbation of the unilateral shift since
M, acts as the unilateral shift on (1 —z)H?. O

THEOREM 2.8. For p > %, H(K,) has the factorization property for A € D:

f(A) =0 implies f(z) = (z — A)g(z) for g € H(K}).
Proof. Suppose f(A) =0 forsome A € D and f € H(K,). By Corollary 2.4

K(z 1
£16) = (1= () +£ (D )
for some h € H?. Hence h(A) = — L) KLY Note

1—1) K(1,D)
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and g(A) = 0. Since H* has the factorization property, there exists » € H? such that
g(2) =(z—A)r(z). So

and
(1-2)h(z)=(z—A)1 —2)r(z) — (1 Z)(lfili) Ili((i 11))
=/ —f(1)11§((? i))
Hence

f@)=@=2)1-2r(x) + {(1 -390 _1,1) +f(1)} K(1,1)

— (= )12+ )[R X

=(z—A) {(1 —2)r(z) + ({(11 i((“))}
)

Since Corollary 2.4 implies (1 —z)r(z) + ook isin H (K}) , factorization holds
forall A € D. O

The following corollary follows at once from Theorem 2.10 and Section 3 of
Richter|[12].

COROLLARY 2.9. If p > %, then

(1) M isin the Cowen-Dougas class B ;

(2) M, is a cellular indecomposable operator;

(3) The invariant subspaces of M are either of the form (1 — z)M where M =
WH? for some inner function y or the span of the function K,(z,1) and a
subspace of the form (1 —z)M.

THEOREM 2.10. If 0 < p < 3, then ¢ is a non-trivial multiplier of H(K,) if and
only if

(1) ¢ cH>;

(2) WK, (z,1) isin Ay;

(3) there exists a constant A € C suchthat (¢ —A,M}"g,) ;o = 0 forall n > 0,

where g,(z) = Z(l —b,)(n+2)z
n=0

Proof. First, assume that ¢ is a multiplier. As in the p > % case, it is well

known (see [4]) that ¢ is bounded. Since H(K,) = (1 —z)A, + CK,(z,1) where
A, = H?> © Cg,, we can write
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Hence
¢(z) — 9(1)
z—1
To establish the third condition, first note that if ¢ is a multiplier, then it is easy
to see that ¢A, C A, . For simplicity we write the function g, = Z;Z o CnZ" Where
¢n = (1 = by)(n+ 2)P. Next, observe that for each n > 0, h,(z) = fz—z +7" isin A,
since (A, gp) 2 = 0. Hence

K,(z,1) = K,(1,1)h(z) € A,.

0@)n(2) = =20(2) +2'0(2)
0
isin A, which implies

0= < (P(Z)hn(z)v gp(z)> H?

=~ 209, 8@ 1 + (20(). (D) -

Thus, forall n > 0,

Cn

(2"0(2),8p(2)) 12 = g<¢(z)>gp(z)>H2~
Note that ¢ is a multiplier if and only if ¢ — A is also a multiplier for all A € C.
Condition (3) results on letting A be such that (¢ —A,g,) 2 =0.

For the converse, first note that since ¢ is a multiplier if and only if ¢ —A isalsoa
multiplier, we may reduce to the case where A = 0. Next, note that conditions (1) and
(3) imply that ¢(z)p(z) is orthogonal in H? to g, for every polynomial p(z). Since
the polynomials are dense in H?, this means ¢(z)h(z) isin A, forevery h € H*>. In
particular, A, C A, . Since

H(K,) = (1 —2)A, + CK,(z, 1),

it suffices to show ¢(z)K,(z, 1) € H(K,). By condition (2), <D(ZZ:?(UKP(Z, 1) isin A,.
Hence

[0(z) = 9(D)]K, (2, 1) = (z = 1)h(z)
forsome h € A,. Thus ¢(2)K,(z,1) = (z— 1)h(z) + ¢(1)K,(z, 1) isin H(K,) and ¢
is a multiplier. |

COROLLARY 2.11. If 0 < p < %, and g, is a cyclic vector for M}, then H(K),)
has no non-trivial multipliers.

Although characterizations of the cyclic vectors for the backward shift exist in the
literature (see Garcia [11] and Douglas, Shapiro, and Shields [10]), applying the criteria
to particular functions is often quite difficult. The authors were unable to determine
whether or not g, is a cyclic vector for M} and must leave this as an open question.
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