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Abstract. In this paper we calculate the higher-rank numerical range, as defined by Choi, Kribs
and

.
Zyczkowski, of selfadjoint operators and of nonunitary isometries on infinite-dimensional

Hilbert space.

1. Introduction

Numerical ranges of operators have been studied since the early 20th century. One
of the earliest results is that of Toeplitz and Hausdorff, who proved that the range of
the quadratic form associated with an operator, restricted to the unit sphere of Hilbert
space (i.e., the numerical range) is a convex subset of the complex plane (cf. [7]).
The numerical range has been the subject of much research and a lot is known about
it. There have also been several generalizations of the numerical range that have been
studied; see, for example, [5, 7, 11].

In the context of “quantum error correction”, Choi, Kribs and
.
Zyczkowski [3]

defined the rank- k numerical range of an n × n matrix A to be the the set

{λ ∈ C : PAP = λP, for some projection P of rank k }.
This set is also called the set of compression values. Evidently, λ is in this higher-rank
numerical range of a matrix A if and only if there exists an orthonormal basis such that,
in the matrix representation corresponding of A in this basis, the k × k submatrix in
the upper-left corner is just λ times the identity. Hence, the case k = 1 reduces to the
classical numerical range.

Studies of this rank- k numerical range have developed rapidly since [3] was first
circulated. Choi, Kribs and

.
Zyczkowski had calculated this higher-rank numerical range

for Hermitian matrices and put forward a conjecture on what the higher-rank numerical
range would be for the case of normal matrices [3]. Partial results on their conjecture
and a number of related results can be found in [1, 2]. The CKZ conjecture was settled
by Li and Sze in [10], where, among other things, they give an explicit expression for
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the higher-rank numerical range as the intersection of closed half-planes. This provided
an alternative proof to the question of convexity of the higher-rank numerical ranges,
which had been settled affirmatively by Woerdeman [16]. Other interesting results can
be found in [6, 8, 9, 10].

The purpose of this paper is to extend several of the above results to infinite-
dimensional Hilbert space and, also, to allow the projection to be of infinite rank. A
quick glance at the papers abovewill show the reader that many of the basic properties of
the higher-rank numerical range for matrices hold for operators on infinite-dimensional
Hilbert space as well. However, there are (at least) two cases in which a straight
application of the finite-dimensional techniques do not work: selfadjoint operators and
nonunitary isometries. We deal with those cases henceforth.

We should point out that there has been some research on extending some finite-
dimensional results to the infite-dimensional setting. For example, in [10], Li and Sze
prove convexity of the (finite) higher-rank numerical range for a bounded operator in
infinite dimensional Hilbert space (this had also been shown by Woerdeman [16]) and
they also give a concrete description of it as an intersection of planes determined by
the eigenvalues of certain compressions of the operator. Compare this to our Theorem
3.4, in which we give a description of the higher-rank numerical range of a selfadjoint
operator in terms of its spectral measure.

The present paper is divided as follows. In Section 2 we give the basic definitions
and theorems that we will use throughout. In Section 3, we extend the calculations in [3]
to obtain an expression for the higher-rank numerical range in the case of a selfadjoint
operator on infinite-dimensional Hilbert space. Our main theorem (Theorem 3.4) gives
an expression for the higher-rank numerical range of a selfadjoint operator A in terms
of the projection-valued spectral measure associated to A by one form of the spectral
theorem. Applications of this result include the calculation of the higher-rank numerical
range for the operator of multiplication by the independent variable on some L2 spaces.

In Section 4, we calculate the higher-rank numerical range for all nonunitary
isometries on Hilbert space (Theorem 4.5). We apply this to the calculation of the
higher-rank numerical range of some analytic Toeplitz operators (Corollary 4.6). We
also observe how this calculation extends to some unitary operators.

Lastly, we would like to point out that, with the appropriate modifications, many
of the results in Section 3 apply to unbounded operators. For simplicity, we only deal
with bounded operators throughout this paper.

2. Preliminaries

Throughout this paper H will denote a separable and infinite-dimensionalHilbert
space. Let us define N∞ as the set N ∪ {∞} . If n ∈ N∞ , whenever we say, for
example, that an operator is of rank n , we mean that its range is of dimension n if n
is finite, and we mean that its range is infinite-dimensional if n = ∞ . If n ∈ N∞ , a
space has codimension less that n if it has codimension at most n− 1 when n is finite,
and it has finite codimension when n = ∞ . The reader should interpret other uses of
n = ∞ accordingly.
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DEFINITION 2.1. Let A ∈ B(H ) and let n ∈ N∞ . We define the numerical range
of rank n to be the set

Λn(A) = {λ ∈ C : PAP = λP, for some projection P of rank n }.
Observe that λ ∈ Λn(A) if and only if there exists an orthonormal set {f j}n

j=1
such that

〈Af j, f k〉 = λδj,k.

Therefore, if a vector g of norm 1 is in the span of the vectors {f j}n
j=1 , then 〈Ag, g〉 =

λ .
This means that λ ∈ Λn(A) if and only if there is a basis of H in which the

matrix of A has λ I in its an upper-left corner, where I is the identity operator on
(sub)space of dimension n .

Observe that Λ1(A) is the classical numerical range; i.e., Λ1(A) = W(A) , where

W(A) = {〈Af , f 〉 : ‖f ‖ = 1}.
DEFINITION 2.2. Let H be a Hilbert space and n ∈ N∞ . We denote by Vn the

set of all isometries V : H −→ H such that the codimension of ranV is less than n .

The following proposition was proved for finite-dimensional Hilbert space in [3].
We include here the proof for the sake of completeness.

PROPOSITION 2.3. Let n ∈ N∞ and let A ∈ B(H ) . Then

Λn(A) ⊆
⋂

V∈Vn

W(V∗AV).

Proof. Let λ ∈ Λn(A) . Choose orthonormalvectors {f j}n
j=1 such that 〈Af j, f k〉 =

λδj,k . Let V ∈ Vn . Since ranV has codimension less than n , there exists a nonzero
vector g in the span of {f j}n

j=1 such that g = Vh for some h ∈ H . In fact, take g to
be of norm one. Then, ‖h‖ = ‖Vh‖ = ‖g‖ = 1 and also,

〈V∗AVh, h〉 = 〈AVh, Vh〉 = 〈Ag, g〉 = λ ,

since g is in the span of {f j}n
j=1 . Hence λ ∈ W(V∗AV) . Since V was an arbitrary

element of Vn , the result follows. �
We need to make a few comments on the classical numerical range. It is easily

seen and well-known (see, for example, Halmos [7]) that if A is an operator with
〈Af , f 〉 = λ for some |λ | = ‖A‖ and ‖f ‖ = 1 , then Af = λ f . We obtain the
following useful proposition quickly as a corollary.

PROPOSITION 2.4. Let n ∈ N∞ and A ∈ B(H ) . If λ ∈ Λn(A) is such that
|λ | = ‖A‖ , then λ is an eigenvalue of multiplicity at least n .

Proof. Choose an orthonormal set {f j}n
j=1 such that 〈Af j, f k〉 = λδj,k . It then

follows from the above remark that Af j = λ f j for all j . �
The following observation will also be useful. Recall that the numerical range of

a selfadjoint operator is a bounded interval in the real line.
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LEMMA 2.5. Let T ∈ B(H ) be selfadjoint, and let c be one of the endpoints of
W(T) . If c ∈ W(T) , then c is an eigenvalue of T .

Proof. Let d be the other endpoint of W(T) . The operator T − d is selfadjoint,
and W(T − d) is an interval having as its endpoints the set {0, c− d} . These two facts
imply that the norm of T − d equals |c− d| . Since c− d ∈ W(T − d) it follows from
the remark before Proposition 2.4 that c − d is an eigenvalue of T − d and hence that
c is an eigenvalue of T . �

Recall that a version of the spectral theorem says that, for a selfadjoint operator
T , there exists a projection-valued measure E (called a spectral measure), defined on
Borel subsets of R and supported on σ(T) , such that

T =
∫

R

x dE(x).

Recall also that, for f and g in H , we can define a complex measure Ef ,g by
Ef ,g(Δ) = 〈E(Δ)f , g〉 for every Borel subset Δ ⊆ R . In this case, we also have

〈Tf , g〉 =
∫

R

x dEf ,g(x).

Familiarity with the definition of the spectral measure and this version of the spectral
theorem is assummed in this paper. A good reference is Conway [4].

We will frequently use several properties of the spectral measure. Recall that
E(R) = I ; that for each measurable set Δ we have E(Δ) + E(R \ Δ) = I ; that
if Δ1 ⊆ Δ2 are measurable sets, then ran E(Δ1) ⊆ ranE(Δ2) ; and that, for each
increasing sequence an converging to a , we have that E(−∞, an]f → E(−∞, a)f for
all f ∈ H . All these properties can be found in [4].

We need the following technical lemma.

LEMMA 2.6. Let c < d . Assume that φ ∈ ranE(−∞, c] and ψ ∈ ranE[d,∞)
are both of norm one. Then,∫

R

x dEφ,φ(x) � c and
∫

R

x dEψ ,ψ(x) � d.

Also, we have ∫
R

x dEφ,ψ (x) = 0 and
∫

R

x dEψ ,φ(x) = 0.

Proof. Since φ is in ranE(−∞, c] , it follows that the (in this case, positive)
measure Eφ,φ is supported inside (−∞, c] . Since x � c in the support of Eφ,φ we
have ∫

R

x dEφ,φ(x) � c
∫

R

dEφ,φ(x) = c.

Analogously, since ψ ∈ ranE[d,∞) , it follows that the measure Eψ ,ψ is supported
inside [d,∞) and hence ∫

R

x dEψ ,ψ(x) � d.
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Now, to prove the last part of the lemma, it is enough to check that the measure Eφ,ψ is
zero everywhere. Indeed, observe that

〈E(Δ)φ,ψ〉 = 〈E(Δ ∩ (−∞, d))φ,ψ〉 + 〈E(Δ ∩ [d,∞))φ,ψ〉
= 〈φ, E(Δ ∩ (−∞, d))ψ〉 + 〈E(Δ ∩ [d,∞))φ,ψ〉
= 0 + 0,

since

ψ ∈ ranE[d,∞) = (ranE(−∞, d)))⊥

⊆ (ranE(Δ ∩ (−∞, d)))⊥

= kerE(Δ ∩ (−∞, d))

and

φ ∈ ranE(−∞, c] = (ranE(c,∞))⊥

⊆ (ranE[d,∞))⊥ ⊆ (ranE(Δ ∩ [d,∞)))⊥

= kerE(Δ ∩ [d,∞)).

Hence, ∫
R

x dEφ,ψ (x) = 0.

Similarly, one shows that ∫
R

x dEψ ,φ(x) = 0.

�
Observe that first part of above lemma still holds if we have c = d . The second part

also holds for c = d if, in addition,we ask that φ ∈ ranE(−∞, c) and ψ ∈ ranE[d,∞)
or we ask that φ ∈ ranE(−∞, c] and ψ ∈ ranE(d,∞) .

3. Selfadjoint Operators

For each fixed n ∈ N∞ , we define the sets An and Bn as

An := {a ∈ R : dim ranE(−∞, a] < n}

and
Bn := {b ∈ R : dim ranE[b,∞) < n}.

Observe that An and Bn are nonempty since all real numbers to the left of σ(T)
are in An and all real numbers to the right of σ(T) are in Bn . In fact, more is true.

PROPOSITION 3.1. Let T ∈ B(H ) be a selfadjoint operator. For n ∈ N∞ , let An

and Bn be as defined above. Then a � b for all a ∈ An and all b ∈ Bn .
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Proof. Suppose not. Then there exist a ∈ An and b ∈ Bn such that a > b . Since
a ∈ An we have dim ranE(−∞, a] < n . Since ranE(−∞, b) ⊆ ranE(−∞, a] , we
have that dim ranE(−∞, b) < n . Since b ∈ Bn we have dim ranE[b,∞) < n .

Since I = E(−∞, b) + E[b,∞) , this would imply that the dimension of H is
less than 2n . This is a contradiction. �

Wenowdefine αn = sup An and βn = inf Bn . The previous proposition guarantees
that αn � βn . The following observation turns out to be helpful.

LEMMA 3.2. Let n ∈ N and let αn and βn defined as above. If αn = βn then
αn /∈ An and βn /∈ Bn .

Proof. Assume that αn ∈ An and βn ∈ Bn . Then ranE(−∞,αn] and ranE[βn,∞)
have dimension less than n . But this implies that ranE(−∞,αn) and ranE[βn,∞)
have dimension less than n . Since αn = βn it follows that I = E(−∞,αn)+E[βn,∞)
which in turn implies that the dimension of H is less than 2n . This is a contradiction.

Assume αn /∈ An and βn ∈ Bn . Since αn = supAn , there exists an increasing
sequence {ak} in An such that ak → αn . But since dim ranE(−∞, ak] < n and
E(−∞, ak]f → E(−∞,αn)f for all f ∈ H , it follows that dim ranE(−∞,αn) < n
as well. We also have that βn ∈ Bn which implies that dim ranE[βn,∞) < n . But
again, we have that I = E(−∞,αn) + E[βn,∞) which implies that the dimension of
H is less than 2n , a contradiction.

The case βn /∈ Bn and αn ∈ An is handled similarly. �
Observe that only the first paragraph of proof above works if n = ∞ . So we can

only conclude that if α∞ = β∞ then α∞ /∈ A∞ or β∞ /∈ B∞ . We will see an
example where the conclussion of the lemma above fails for n = ∞ .

DEFINITION 3.3. For n ∈ N∞ , let An , Bn , αn and βn be as before. We define
the interval Ωn as Ac

n ∩ Bc
n . Equivalently,

Ωn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[αn, βn] if αn /∈ An and βn /∈ Bn,

[αn, βn) if αn /∈ An and βn ∈ Bn,

(αn, βn] if αn ∈ An and βn /∈ Bn,

(αn, βn) if αn ∈ An and βn ∈ Bn.

Observe that the previous lemma guarantees that Ωn is never empty for n ∈ N .
We will see an example where Ω∞ is empty.

We are now ready to prove our main result. A finite-dimensional version of this
was proved in [3].

THEOREM 3.4. Let T ∈ B(H ) be a selfadjoint operator and let n ∈ N∞ . Then

Λn(T) =
⋂

V∈Vn

W(V∗TV) = Ωn.

In particular, Λn(T) is always a convex set (nonempty if n �= ∞ ).
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Proof. The containment

Λn(T) ⊆
⋂

V∈Vn

W(V∗TV)

is the statement of Proposition 2.3 (observe that we do not need the hypothesis of
selfadjointness there). We need to prove two more containments.

⋂
V∈Vn

W(V∗TV) ⊆ Ωn (♣)

We prove this in several cases.
• Assume that αn ∈ An and βn ∈ Bn .
In this case we have that ranE(−∞,αn] and ranE[βn,∞) have dimension less

than n and hence ranE(αn,∞) and ranE(−∞, βn) have codimension less than n .
Thus there exists isometries Vαn and Vβn with ranges the (closed) infinite dimensional
subspaces ranE(αn,∞) and ranE(−∞, βn) respectively. Hence Vαn and Vβn are in
Vn . Observe also that VαnV

∗
αn

= E(αn,∞) and VβnV
∗
βn

= E(−∞, βn) . Notice also
that

V∗
αn

TVαn = V∗
αn

E(αn,∞) T E(αn,∞) Vαn .

Since Vαn is an isometry, we have

W(V∗
αn

E(αn,∞) T E(αn,∞) Vαn) ⊆ W(E(αn,∞) T E(αn,∞)).

These two facts imply that W(V∗
αn

TVαn) ⊆ W(E(αn,∞) T E(αn,∞)) . But, since we
know that

E(αn,∞) T E(αn,∞) =
∫

(αn,∞)
x dE(x),

it follows tha αn cannot be an eigenvalue of the operator E(αn,∞) T E(αn,∞) .
The integral above also gives

σ(E(αn,∞) T E(αn,∞)) ⊆ [αn,∞).

Also, since the closure of the numerical range of a selfadjoint operator equals the
convex hull of the spectrum of the operator, it follows that

W(E(αn,∞) T E(αn,∞)) ⊆ [αn,∞).

Now, Lemma 2.5 implies that if αn was in W(E(αn,∞) T E(αn,∞)) , then αn would
be an eigenvalue of E(αn,∞) T E(αn,∞) , which, as noted above, does not happen.
Hence

W(E(αn,∞) T E(αn,∞)) ⊆ (αn,∞),

and thus W(V∗
αn

TVαn) ⊆ (αn,∞) .
Analogously, we have that W(V∗

βn
TVβn) ⊆ (−∞, βn) . Then,

⋂
V∈Vn

W(V∗TV) ⊆ W(V∗
αn

TVαn) ∩ W(V∗
βn

TVβn) ⊆ (αn, βn) = Ωn,

which shows (♣ ) in this case.
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• Assume that αn ∈ An and βn /∈ Bn .

In this case we have that ranE(−∞,αn] has dimension less than n . Also, there
exists a decreasing sequence {bk} in Bn such that bk → βn . Hence, dim ranE[bk,∞)
has dimension less than n. Thus we have that ranE(αn,∞) and ranE(−∞, bk) have
codimension less than n .

As we did before, we find isometries Vαn , Vbk ∈ B(H ) such that VαnV
∗
αn

=
E(αn,∞) and VbkV

∗
bk

= E(−∞, bk) . As in the previous case, we can conclude that

W(V∗
αn

TVαn) ⊆ (αn,∞)

and
W(V∗

bk
TVbk) ⊆ (−∞, bk).

Hence,

⋂
V∈Vn

W(V∗TV) ⊆ W(V∗
αn

TVαn) ∩
∞⋂
k=1

W(V∗
bk

TVbk ) ⊆ (αn, βn] = Ωn,

which shows (♣ ) also in this case.

• Assume that αn /∈ An and βn ∈ Bn .

This case is done exactly as the previous case.

• Assume that αn /∈ An and βn /∈ Bn .

This case is done combining the techniques used in the previous two cases.

Ωn ⊆ Λn(T). (♠)

We also prove this in several cases.

• Assume that αn ∈ An and βn ∈ Bn .

In this case Ωn = (αn, βn) . Take λ ∈ Ωn = (αn, βn) . Choose a and b such
that αn < a < λ < b < βn . We have that ranE(−∞, a] and ranE[b,∞) have
dimension at least n . Let Φ be the n -dimensional space ran E(−∞, a] and Ψ be the
n -dimensional space ranE[b,∞) .

We choose an orthonormal set {φj}n
j=1 in Φ in such a way that 〈Tφj, φk〉 = 0

for j �= k . Indeed, if n is finite this can be achieved by observing that the operator
T compressed to the space Φ is a selfadjoint operator on a finite-dimensional space
and hence diagonalizable. If n = ∞ the condition can be achieved by choosing
φ1 to be any unit vector in Φ and then, inductively, choosing φs+1 ∈ Φ in such
a way that {φ1, φ2, . . . , φs, φs+1} is orthonormal and such that φs+1 is orthogonal
to {Tφ1, Tφ2, . . . , Tφs} ; clearly, T compressed to the space spanned by {φj}∞j=1 is
upper-triangular and hence, since T is selfadjoint, this matrix representation of the
compression of T is diagonal.

Analogously, choose an orthonormal set {ψj}n
j=1 in Ψ in such away that 〈Tψj,ψk〉 =

0 for j �= k . Observe that since ranE(−∞, a] and ranE[b,∞) are orthogonal sub-
spaces, we have that φk is orthogonal to ψj for every j and k .
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As seen in Lemma 2.6, we have that∫
R

x dEφj,φj(x) � a and
∫

R

x dEψj,ψj(x) � b.

Since λ ∈ (a, b) we know that, for each natural j < n+1 there exist real numbers
sj and tj , with s2

j + t2j = 1 such that

λ = s2
j

∫
R

x dEφj,φj(x) + t2j

∫
R

x dEψj,ψj(x).

Define the set {f j}n
j=1 to consist of the vectors f j := sjφj + tjψj . It is easily seen

that {f j}n
j=1 is an orthonormal set.

We now have

〈Tf j, f j〉 = s2
j 〈Tφj, φj〉 + sjtj 〈Tφj,ψj〉 + tjsj 〈Tψj, φj〉 + t2j 〈Tψj,ψj〉

= s2
j

∫
R

x dEφj,φj(x) + sjtj

∫
R

x dEφj,ψj(x)

+tjsj

∫
R

x dEψj,φj(x) + t2j

∫
R

x dEψj,ψj(x).

Since
∫

R
x dEφj,ψj(x) = 0 and

∫
R

x dEψj,φj(x) = 0 by Lemma 2.6, we have that

〈Tf jf j〉 = s2
j

∫
R

x dEφj,φj(x) + t2j

∫
R

x dEψj,ψj(x) = λ ,

as desired.
Also, for j �= k , we have

〈Tf j, f k〉 = sjsk 〈Tφj, φk〉 + sjtk 〈Tφj,ψk〉 + tjsk 〈Tψj, φk〉 + tjtk 〈Tψj,ψk〉
= sjsk 0 + sjtk

∫
R

x dEφj,ψk(x) + tjsk

∫
R

x dEψj,φk (x) + tjtk 0.

But as seen in Lemma 2.6, each of the integrals above is zero.
Therefore, 〈Tf j, f k〉 = λδj,k as desired, and hence λ ∈ Λn(T) which proves (♠ )

in this case.

• Assume that αn ∈ A and βn /∈ B .

In this case, Ωn = (αn, βn] . If αn = βn there is nothing to prove, so assume
αn < βn . Let λ ∈ Ωn . Choose a such that αn < a < λ � βn . We have
that ranE(−∞, a] and ranE[βn,∞) have dimension at least n . As in the previous
case, choose orthonormal sets {φj}n

j=1 in Φ := ranE(−∞, a] and {ψj}n
j=1 in Ψ :=

ranE[βn,∞) in such a way that 〈Tφj, φk〉 = 0 for all j �= k and 〈Tψj,ψk〉 = 0 for
all j �= k .

As seen in Lemma 2.6, we have that∫
R

x dEφj,φj(x) � a and
∫

R

x dEψj,ψj(x) � βn.
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Also, for each natural j < n + 1 choose real numbers sj and tj with s2
j + t2j = 1

such that

λ = s2
j

∫
R

x dEφj,φj(x) + t2j

∫
R

x dEψj,ψj(x).

As before, define the set {f j}n
j=1 as f j := sjφj + tjψj . Then {f j}n

j=1 is an orthonor-
mal set and one checks, exactly as before, that 〈Tf j, f k〉 = λδj,k . Hence λ ∈ Λn(T)
which proves (♠ ) in this case.

• Assume that αn /∈ A and βn ∈ B .
In this case, Ωn = [αn, βn) . The proof is done as in the previous case.

• Assume that αn /∈ A and βn /∈ B .
In this case Ωn = [αn, βn] . Choose λ ∈ Ωn = [αn, βn] . If αn < βn , this

case can be treated exactly as the previous cases, taking Φ := E(−∞,αn] and taking
Ψ := E[βn,∞) .

Thus assume that αn = βn . We know that ranE(−∞,αn] and ranE[βn,∞) have
both dimension at least n . If dim ranE(−∞,αn) is at least n , we can act as in previous
cases, with Φ := ranE(−∞,αn) and Ψ := ranE[βn,∞) .

Assume now that dim ranE(−∞,αn) is less than n . Then, if dim ranE(βn,∞)
is at least n , we can act as in previous cases, with Φ := ranE(−∞,αn] and Ψ :=
ranE(βn,∞) .

Thus we may assume that both ranE(−∞,αn) and ranE(βn,∞) have dimension
less than n . But this implies that ranE({αn}) is infinite-dimensional and hence that
λ = αn = βn is an eigenvalue of infinite multiplicity. Hence, taking {f j}n

j=1 to be an
orthonormal set of eigenvectors corresponding to λ we see that 〈Tf s, f t〉 = λδs,t , an
hence we have shown (♠ ), as desired. �

We also obtain as a corollary the following surprising result. Notice that we do not
need selfadjointness.

COROLLARY 3.5. Let A ∈ B(H ) and n ∈ N . Then Λn(A) is nonempty.

Proof. Write A as A = T1 + iT2 with T1 and T2 selfadjoint. Choose N ∈ N

such that 2n − 1 � N . By the theorem above, there exists a real number λ such
that λ ∈ ΛN(T1) ; i.e., there exists an orthonormal set {f 1, f 2, . . . , f N} such that
〈T1f j, f k〉 = λδj,k . Thus, if M is the subspace generated by {f 1, f 2, . . . , f N} , it
follows that the compression of T1 to M is just λ times the identity on M .

But then, the compression of the operator T2 to the N -dimensional subspace M
is also selfadjoint and hence, since 2n − 1 � N , it follows by [3, Theorem 2.4] that
there exists an orthonormal set {g1, g2, . . . , gn} in M such that 〈T2gj, gk〉 = μδj,k

for some real number μ . But this implies that 〈Agj, gk〉 = 〈T1gj, gk〉 + i 〈T2gj, gk〉 =
λδj,k + iμδj,k = (λ + iμ)δj,k , which shows that λ + iμ ∈ Λn(A) . �

The previous result can be obtained in a different way. Let N be large enough
such that 4n − 3 � N . Taking the compression of T into an N -dimensional subspace
and applying [3, Corollary 2.5] to this compression we obtain our corollary.

We should also point out that the above corollary was obtained independently in
[8].

The following observation should be made.
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COROLLARY 3.6. Let T ∈ B(H ) be selfadjoint. Then, Λ∞(T) =
∞⋂
n=1

Λn(T) .

Proof. The inclusion
∞⋂

n=1

Λn(T) ⊇ Λ∞(T)

is trivial. So let λ ∈ ⋂∞
n=1 Λn(T) . This means that λ ∈ Λn(T) for all n ∈ N and

by Theorem 3.4, it follows that λ /∈ An and λ /∈ Bn for each n ∈ N , where An

and Bn are as used in Theorem 3.4. This means that dim ranE(−∞, λ ] � n and
dim ranE[λ ,∞) � n . Since this occurs for all n ∈ N we have that ran E(−∞, λ ] and
ranE[λ ,∞) are both infinite-dimensional.

If ranE(−∞, λ ) is infinite-dimensional, we can act as in Theorem3.4 to construct
orthonormal sets {φj}∞j=1 in Φ := ranE(−∞, λ ) and {ψj}∞j=1 in Ψ := ranE[λ ,∞) ,
and construct the desired orthonormal set {f j}∞j=1 from them. Thus assume that
ranE(−∞, λ ) is finite-dimensional.

If ranE(λ ,∞) is infinite-dimensional,we can act as beforewith Φ := ranE(−∞, λ ]
and Ψ := ranE(λ ,∞) . Thus assume also that ranE(λ ,∞) is finite-dimensional.

But this implies that ranE({λ}) is infinite-dimensional. Hence λ is an eigenvalue
of infinitemultiplicity and if {f j}∞j=1 is an orthonormal set of eigenvectors corresponding
to λ , we have that 〈Tf s, f t〉 = λδs,t , as desired. �

Is the equality
∞⋂

n=1

Λn(T) = Λ∞(T)

true also for nonselfadjoint operators T ? We conjecture it is, but we have not been able
to prove it.

Note added: After this paper was submitted, Li, Poon and Sze [9] answered the
above question affirmatively.

One can calculate higher-rank numerical ranges for specific operators by using the
above theorem.

For example, if P is an orthogonal projection onto some subspace M of the
infinite-dimensional Hilbert space H , then one easily checks (directly, or by applying
Theorem 3.4) that Λn(P) = [0, 1] if n � min{dimM , dimM⊥} , that Λn(P) = {0}
if dimM < n � dimM⊥ and Λn(P) = {1} if dimM⊥ < n � dimM .

Another application is to a diagonal selfadjoint operator T . Suppose that T has
negative eigenvalues λ1 � λ2 � λ3 � · · · and positive eigenvalues μ1 � μ2 � μ3 �
· · · , where all eigenvalues are repeated according to multiplicity. One easily checks that
λn(T) = [λn,μn] for n ∈ N . On the other hand, if all eigenvalues of T are positive, say
μ1 � μ2 � μ3 � · · · and μk → 0 , then Λn(T) = (0,μn] for n ∈ N and Λ∞(T) = ∅ .
By the way, this provides the example promised after Lemma 3.2 and also the example
promised before Theorem 3.4. Other distributions of eigenvalues for T are handled
similarly.
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Another interesting case is the operator Mx : L2[0, 1] −→ L2[0, 1] ofmultiplication
by the independent variable. Its is easy to show using Theorem 3.4 that Λn(Mx) equals
the open interval (0, 1) for any n ∈ N∞ .

4. Nonunitary Isometries

Throughout this section, let W denote a nonunitary isometry on H . For each
k ∈ N , let Mk be the subspace defined by

Mk :=
(
ranWk

)⊥
,

and let M := M1 = (ranW)⊥ . We also define Pk to be the orthogonal projection
onto Mk

The statement of following lemma is a part of the proof of the Wold decomposition.
It can be found in [14, p. 3].

LEMMA 4.1. Let W be a nonunitary isometry, let k ∈ N and let Mk be as above.
Then,

Mk = M ⊕ WM ⊕ W2M ⊕ · · · ⊕ Wk−1M .

Observe that M , and hence Mk could be finite-dimensional. The following
calculation will also be useful.

LEMMA 4.2. Let k ∈ N , k � 2 . Let f : Rk −→ R be a function defined by

f (r0, r1, r2, . . . , rk−1) = r0r1 + r1r2 + r2r3 + · · · + rk−2rk−1,

and let

K :=

⎧⎨
⎩(r0, r1, . . . , rk−1) ∈ R

k : ri � 0,

k−1∑
j=0

r2
j = 1

⎫⎬
⎭ .

Then f (K) = [0, qk] , for some number qk such that 1 − 1
k � qk � 1 .

Proof. Since K is compact and connected and f is continuous, it follows that f (K)
is a compact interval in R . For (r0, r1, . . . , rk−1) ∈ K , clearly f (r0, r1, . . . , rk−1) � 0 .
Also, since f (1, 0, 0, . . . , 0) = 0 , the interval f (K) is of the form [0, qk] for some
nonnegative number qk . By the Cauchy–Schwarz inequality, we obtain

k−2∑
j=0

rjrj+1 �

⎛
⎝k−2∑

j=0

r2
j

⎞
⎠

1/2 ⎛
⎝k−2∑

j=0

r2
j+1

⎞
⎠

1/2

� 1,

for (r0, r1, . . . , rk−1) ∈ K . Thus qk � 1 . Lastly, observe that ( 1√
k
, 1√

k
, . . . , 1√

k
) ∈ K

and

f

(
1√
k
,

1√
k
, . . . ,

1√
k

)
= (k − 1)

1
k

= 1 − 1
k
,

from which it follows that qk � 1 − 1
k . �
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The number qk in the lemma above can be explicitly calculated. It turns out that

qk = 1
2

√
2 + 2 cos( 2π

k+1 ) . We will not use this expression here.

To find the higher-rank numerical range of a nonunitary isometry W , it will be
useful to calculate the numerical range of some compressions of W .

PROPOSITION 4.3. For each k ∈ N , k � 2 . Define the operator Rk : Mk −→ Mk

to be the restriction to Mk of the operator PkW . Then the numerical range Λ1(Rk)
contains the closed disk {z ∈ D : |z| � 1 − 1

k} .

Proof. Let λ ∈ {z ∈ D : |z| � 1 − 1
k} . Then λ = reiθ for some 0 � r � 1 − 1

k
and θ ∈ [0, 2π) . By Lemma 4.2, there exists (r0, r1, . . . , rk−1) , with rj � 0 and
r2
0 + r2

1 + · · · + r2
k−1 = 1 , such that

r0r1 + r1r2 + r2r3 + · · · + rk−2rk−1 = r.

Choose φ ∈ M with ‖φ‖ = 1 and, for each s = 0, 1, 2, . . . , k−1 , define the functions
f s = rse−isθφ ∈ M . Define also f = f 0 +Wf 1 +W2f 2 + · · ·+Wk−1f k−1 . By Lemma
4.1, the vector f is in Mk and

‖f ‖2 = ‖f 0‖2 + ‖f 1‖2 + · · · + ‖f k−1‖2 = r2
0 + r2

1 + · · · + r2
k−1 = 1.

But now

〈Rkf , f 〉 = 〈PkWf , f 〉 = 〈Wf , f 〉 =
k−1∑
s=0

k−1∑
t=0

〈
Ws+1f s, W

tf t
〉
.

By Lemma 4.1, since f s and f t are in M , we have that
〈
Ws+1f s, Wtf t

〉
= 0 , unless

s + 1 = t in which case
〈
Ws+1f s, Wtf t

〉
= 〈 f s, f t〉 . Thus

〈Rkf , f 〉 =
k−2∑
s=0

〈 f s, f s+1〉

=
k−2∑
s=0

〈
rse

−isθφ, rs+1e
−i(s+1)θφ

〉

=
k−2∑
s=0

rsrs+1e
i(−s+(s+1))θ‖φ‖2

= reiθ ,

and therefore, 〈Rkf , f 〉 = λ for some f ∈ Mk of norm 1 . �
The ideas behind the above proposition and the following theorem came from the

calculation of the numerical range for the unilateral shift on �2 .

THEOREM 4.4. Let n ∈ N∞ be fixed and let W be a nonunitary isometry. Then
D ⊆ Λn(W) .
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Proof. Let λ ∈ D . Choose k large enough such that 1− 1
k � |λ | . By Proposition

4.3, there exists f ∈ Mk , ‖f ‖ = 1 such that 〈Rkf , f 〉 = λ , where Rk is the operator
PkW restricted to Mk as in the statement of that proposition. Observe that, since
f ∈ Mk , we have 〈Rkf , f 〉 = 〈PkWf , f 〉 = 〈Wf , f 〉 and thus 〈Wf , f 〉 = λ .

For natural j < n+ 1 , define gj ∈ H as gj = W(j−1)(k+1)f . We first observe that
{gj}n

j=1 is an orthonormal set. Indeed

〈 gs, gs〉 =
〈
W(s−1)(k+1)f , W(s−1)(k+1)f

〉
= 〈 f , f 〉 = 1,

and, for s > t ,

〈 gs, gt〉 =
〈
W(s−1)(k+1)f , W(t−1)(k+1)f

〉
=

〈
W(s−t)(k+1)f , f

〉
= 0

since f ∈ Mk = (ranWk)⊥ .
The theorem will be proved if we can show that 〈Wgs, gt〉 = λδs,t . First, observe

that
〈Wgs, gs〉 =

〈
WW(s−1)(k+1)f , W(s−1)(k+1)f

〉
= 〈Wf , f 〉 = λ .

If s > t , we have

〈Wgs, gt〉 =
〈
WW(s−1)(k+1)f , W(t−1)(k+1)f

〉

=
〈
W(s−t)(k+1)+1f , f

〉

=
〈
WkW(s−t)(k+1)+1−kf , f

〉
= 0,

since f ∈ (ran Wk)⊥ . If s < t , we obtain

〈Wgs, gt〉 =
〈
WW(s−1)(k+1)f , W(t−1)(k+1)f

〉

=
〈
f , W(t−s)(k+1)−1f

〉

=
〈
f , WkW(t−s−1)(k+1)f

〉
= 0,

since f ∈ (ran Wk)⊥ . This finishes the proof. �
We are now ready to state our main result of this section.

THEOREM 4.5. Let W be a nonunitary isometry and let n ∈ N∞ . Then

Λn(W) = D ∪ {λ ∈ S1 : dim ker(W − λ ) � n}.

Proof. As proved above, D ⊆ Λn(W) . Recall also that Λn(W) ⊆ Λ1(W) , and
that Λ1(W) ⊆ D since ‖W‖ = 1 . Thus we have

D ⊆ Λn(W) ⊆ D.
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By Proposition 2.4, if λ ∈ Λn(W) and |λ | = 1 then dimker(W − λ ) � n thus we
have

Λn(W) ⊆ D ∪ {λ ∈ S1 : dim ker(W − λ ) � n}.
But it is also clear that if λ ∈ S1 is an eigenvalue of multiplicity n , then λ ∈ Λn(W)
and hence we obtain the reverse containment. �

An immediate corollary of the theorem above gives the higher-rank numerical
range of Toeplitz operators on the Hardy-Hilbert space. The relevant definitions can be
found, for example, in [12].

COROLLARY 4.6. Let H2 be the classical Hardy–Hilbert space, let θ be a
nonconstant inner function and let Tθ be the Toeplitz operator on H2 with symbol θ .
Then, Λn(Tθ) = D for all n ∈ N∞ .

Proof. It is easily verified that Tφ is a nonunitary isometry and it is well known
that analytic Toeplitz operators do not have eigenvalues. �

Let us close with one more consequence of the above theorem. It is easily seen
that if M is an invariant subspace for an operator T ∈ B(H ) , then

Λn
(
T∣∣M

) ⊆ Λn(T).

In particular, if T is a unitary operator and M is a nonreducing invariant subspace,
then T∣∣M is a nonunitary isometry and hence Theorem 4.5 implies that D ⊆ Λn(T)

for all n ∈ N∞ .
A normal operator such that all its invariant subspaces are reducing is called

completely normal (see [13, p. 22]). It can be shown that a unitary operator W is not
completely normal if and only if there exists a reducing subspace M such that W∣∣M
is a bilateral shift. See [15] (or consult [13, p. 24]).

The above two paragraphs imply the following result.

COROLLARY 4.7. Let W be a unitary operator. Suppose there exists a reducing
subspace M such that W∣∣M is a bilateral shift. Then

Λn(W) = D ∪ {λ ∈ S1 : dim ker(W − λ ) � n},

for all n ∈ N∞ .

In particular, if W is the bilateral shift on �2(Z) , we have λn(W) = D for all
n ∈ N∞ .
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