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STIELTJES LIKE FUNCTIONS AND INVERSE PROBLEMS

FOR SYSTEMS WITH SCHRÖDINGER OPERATOR

SERGEY BELYI AND EDUARD TSEKANOVSKIĬ

(communicated by F. Gesztesy)

Abstract. A class of scalar Stieltjes like functions is realized as linear-fractional transformations
of transfer functions of conservative systems based on a Schrödinger operator Th in L2[a, +∞)
with a non-selfadjoint boundary condition. In particular it is shown that any Stieltjes function of
this class can be realized in the unique way so that the main operator A of a system is an accretive
(∗) -extension of a Schrödinger operator Th . We derive formulas that restore the system uniquely
and allow to find the exact value of a non-real parameter h in the definition of Th as well as a
real parameter μ that appears in the construction of the elements of the realizing system. An
elaborate investigation of these formulas shows the dynamics of the restored parameters h and μ
in terms of the changing free term γ from the integral representation of the realizable function.
It turns out that the parametric equations for the restored parameter h represent different circles
whose centers and radii are determined by the realizable function. Similarly, the behavior of the
restored parameter μ are described by hyperbolas.

1. Introduction

Realizations of different classes of holomorphic operator-valued functions in the
open right half-plane, unit circle, and upper half-plane, as well as inverse spectral
problems, play an important role in the spectral analysis of non-self-adjoint operators,
interpolation problems, and system theory. The literature on realization theory and
inverse spectral problems is too extensive to be discussed exhaustively in this note. We
refer, however, to [2], [3], [7], [8], [9], [10], [11], [12], [18], [21], [24], [28] and the literature
therein. A class of Herglotz-Nevanlinna functions is a rich source for many types of
realization problems. An operator-valued function V(z) acting on a finite-dimensional
Hilbert space E belongs to the class of operator-valued Herglotz-Nevanlinna functions
if it is holomorphic on C \ R , if it is symmetric with respect to the real axis, i.e.,
V(z)∗ = V(z̄) , z ∈ C \ R , and if it satisfies the positivity condition

ImV(z) � 0, z ∈ C+.
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It is well known (see e.g. [16], [17]) that operator-valuedHerglotz-Nevanlinna functions
admit the following integral representation:

V(z) = Q + Lz +
∫

R

(
1

t − z
− t

1 + t2

)
dG(t), z ∈ C \ R, (1.1)

where Q = Q∗ , L � 0 , and G(t) is a nondecreasing operator-valued function on R

with values in the class of nonnegative operators in E such that∫
R

(dG(t)x, x)E

1 + t2
< ∞, x ∈ E. (1.2)

The realization of a selected class of Herglotz-Nevanlinna functions is provided by a
linear conservative system Θ of the form{

(A − zI)x = KJϕ−
ϕ+ = ϕ− − 2iK∗x (1.3)

or

Θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
. (1.4)

In this system A , the main operator of the system, is a so-called (∗ )-extension, which is
a bounded linear operator from H+ into H− extending a symmetric operator A in H ,
where H+ ⊂ H ⊂ H− is a rigged Hilbert space. Moreover, K is a bounded linear
operator from the finite-dimensional Hilbert space E into H− , while J = J∗ = J−1

is acting on E , are such that Im A = KJK∗ . Also, ϕ− ∈ E is an input vector, ϕ+ ∈ E
is an output vector, and x ∈ H+ is a vector of the state space of the system Θ . The
system described by (1.3)-(1.4) is called a rigged canonical system of the Livšic type
[22] or the Brodskiı̆-Livšic rigged operator colligation, cf., e.g. [11], [12], [13]. The
operator-valued function

WΘ(z) = I − 2iK∗(A − zI)−1KJ (1.5)

is a transfer function (or characteristic function) of the system Θ . It was shown in [11]
that an operator-valued function V(z) acting on a Hilbert space E of the form (1.1)
can be represented and realized in the form

V(z) = i[WΘ(z) + I]−1[WΘ(z) − I] = K∗(AR − zI)−1K, (1.6)

where WΘ(z) is a transfer function of some canonical scattering ( J = I ) system Θ ,
and where the “real part” AR = 1

2 (A + A∗) of A satisfies AR ⊃ Â = Â∗ ⊃ A if and
only if the function V(z) in (1.1) satisfies the following two conditions:{

L = 0,
Qx =

∫
R

t
1+t2 dG(t)x when

∫
R

(dG(t)x, x)E < ∞.
(1.7)

In the current paper we are going to focus on an important subclass of Herglotz-
Nevanlinna functions, the so called Stieltjes like functions that also includes Stieltjes
functions. In Section 4 we specify a subclass of realizable Stieltjes operator-functions
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and show that any member of this subclass can be realized by a system of the form (1.4)
whose main operator A is accretive.

In Section 5 we introduce a class of Stieltjes like scalar functions. Then we rely
on the general realization results developed in Section 4 (see also [15]) to restore a
system Θ of the form (1.4) containing the Schrödinger operator in L2[a, +∞) with
non-self-adjoint boundary conditions

{
Thy = −y′′ + q(x)y
y′(a) = hy(a) ,

(
q(x) = q(x), Im h �= 0

)
.

We show that if a non-decreasing function σ(t) is the spectral distribution function of
positive self-adjoint boundary value problem

{
Aθy = −y′′ + q(x)y
y′(a) = θy(a)

and satisfies conditions

∞∫
0

dσ(t) = ∞,

∞∫
0

dσ(t)
1 + t

< ∞,

then for every real γ a Stieltjes like function

V(z) = γ +

∞∫
0

dσ(t)
t − z

can be realized in the unique way as a VΘ(z) function of a rigged canonical system
Θ containing some Schrödinger operator Th . In particular, it is shown that for every
γ � 0 a Stieltjes function V(z) with integral representation above can be realized by
a system Θ whose main operator A is an accretive (∗) -extension of a Schrödinger
operator Th .

On top of the general realization results,Section 5 provides the readerwith formulas
that allow to find the exact value of a non-real parameter h in the definition of Th of the
realizing system Θ . Similar investigation is presented in Section 6 to describe the real
parameter μ that appears in the construction of the elements of the realizing system.
A detailed study of these formulas shows the dynamics of the restored parameters
h and μ in terms of a changing free term γ in the integral representation of V(z)
above. It will be shown and graphically presented that the parametric equations for the
restored parameter h represent different circles whose centers and radii are completely
determined by the function V(z) . Similarly, the behavior of the restored parameter μ
are described by hyperbolas.
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2. Some preliminaries

For a pair of Hilbert spaces H1 , H2 we denote by [H1, H2] the set of all bounded
linear operators from H1 to H2 . Let A be a closed, densely defined, symmetric
operator in a Hilbert space H with inner product (f , g), f , g ∈ H . Consider the
rigged Hilbert space

H+ ⊂ H ⊂ H−,

where H+ = D(A∗) and

(f , g)+ = (f , g) + (A∗f , A∗g), f , g ∈ D(A∗).

Note that identifying the space conjugate to H± with H∓ , we get that if A ∈
[H+, H−] then A∗ ∈ [H+, H−].

DEFINITION 2.1. An operator A ∈ [H+, H−] is called a self-adjoint bi-extension
of a symmetric operator A if A = A∗ , A ⊃ A , and the operator

Âf = Af , f ∈ D(Â) = {f ∈ H+ : Af ∈ H }
is self-adjoint in H .

The operator Â in the above definition is called a quasi-kernel of a self-adjoint
bi-extension A (see [27]).

DEFINITION 2.2. An operator A ∈ [H+, H−] is called a (∗ )-extension (or correct
bi-extension) of an operator T (with non-empty set ρ(T) of regular points) if

A ⊃ T ⊃ A, A∗ ⊃ T∗ ⊃ A

and the operator AR = 1
2 (A + A

∗) is a self-adjoint bi-extension of an operator A .

The existence, description, and analog of von Neumann’s formulas for self-adjoint
bi-extensions and (∗ )-extensions were discussed in [27] (see also [4], [5], [11]). For
instance, if Φ is an isometric operator from the defect subspace Ni of the symmetric
operator A onto the defect subspace N−i , then the formulas below establish a one-to
one correspondence between (∗ )-extensions of an operator T and Φ

Af = A∗f + iR(Φ− I)x, A
∗f = A∗f + iR(Φ− I)y, (2.1)

where x, y ∈ Ni are uniquely determined from the conditions

f − (Φ + I)x ∈ D(T), f − (Φ + I)y ∈ D(T∗)

and R is the Riesz-Berezanskii operator of the triplet H+ ⊂ H ⊂ H− that maps H+
isometrically onto H− (see [27]). If the symmetric operator A has deficiency indices
(n, n) , then formulas (2.1) can be rewritten in the following form

Af = A∗f +
n∑

k=1

Δk(f )Vk, A
∗f = A∗f +

n∑
k=1

δk(f )Vk, (2.2)
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where {Vj}n
1 ∈ H− is a basis in the subspace R(Φ − I)Ni , and {Δk}n

1 , {δk}n
1 , are

bounded linear functionals on H+ with the properties

Δk(f ) = 0, ∀f ∈ D(T), δk(f ) = 0, ∀f ∈ D(T∗). (2.3)

Let H = L2[a, +∞) and l(y) = −y′′+q(x)y where q is a real locally summable
function. Suppose that the symmetric operator{

Ay = −y′′ + q(x)y
y(a) = y′(a) = 0

(2.4)

has deficiency indices (1,1). Let D∗ be the set of functions locally absolutely continuous
together with their first derivatives such that l(y) ∈ L2[a, +∞) . Consider H+ =
D(A∗) = D∗ with the scalar product

(y, z)+ =
∫ ∞

a

(
y(x)z(x) + l(y)l(z)

)
dx, y, z ∈ D∗.

Let
H+ ⊂ L2[a, +∞) ⊂ H−

be the corresponding triplet of Hilbert spaces. Consider operators{
Thy = l(y) = −y′′ + q(x)y
hy(a) − y′(a) = 0

,

{
T∗

h y = l(y) = −y′′ + q(x)y
hy(a) − y′(a) = 0

, (2.5)

{
Ây = l(y) = −y′′ + q(x)y
μy(a) − y′(a) = 0

, Imμ = 0.

It is well known [1] that Â = Â∗ . The following theorem was proved in [6].

THEOREM 2.3. The set of all (∗ )-extensions of a non-self-adjoint Schrödinger
operator Th of the form (2.5) in L2[a, +∞) can be represented in the form

Ay = −y′′ + q(x)y − 1
μ − h

[y′(a) − hy(a)] [μδ(x − a) + δ ′(x − a)],

A
∗y = −y′′ + q(x)y − 1

μ − h
[y′(a) − hy(a)] [μδ(x − a) + δ ′(x − a)].

(2.6)

In addition, the formulas (2.6) establish a one-to-one correspondence between the set of
all (∗ )-extensions of a Schrödinger operator Th of the form (2.5) and all real numbers
μ ∈ [−∞, +∞] .

DEFINITION 2.4. An operator T with the domain D(T) and ρ(T) �= ∅ acting on
a Hilbert space H is called accretive if

Re (Tf , f ) � 0, ∀f ∈ D(T).



270 S. V. BELYI AND E. R. TSEKANOVSKIĬ

DEFINITION 2.5. An accretive operator T is called [20] α -sectorial if there exists
a value of α ∈ (0, π/2) such that

cotα |Im (Tf , f )| � Re (Tf , f ), f ∈ D(T).

An accretive operator is called extremal accretive if it is not α -sectorial for any α ∈
(0, π/2) .

Consider the symmetric operator A of the form (2.4) with defect indices (1,1),
generated by the differential operation l(y) = −y′′ + q(x)y . Let ϕk(x, λ ) (k = 1, 2)
be the solutions of the following Cauchy problems:⎧⎨⎩ l(ϕ1) = λϕ1

ϕ1(a, λ ) = 0
ϕ′

1(a, λ ) = 1
,

⎧⎨⎩ l(ϕ2) = λϕ2

ϕ2(a, λ ) = −1
ϕ′

2(a, λ ) = 0
.

It is well known [1] that there exists a function m∞(λ ) (called the Weyl-Titchmarsh
function) for which

ϕ(x, λ ) = ϕ2(x, λ ) + m∞(λ )ϕ1(x, λ )

belongs to L2[a, +∞) .
Suppose that the symmetric operator A of the form (2.4) with deficiency indices

(1,1) is nonnegative, i.e., (Af , f ) � 0 for all f ∈ D(A)) . It was shown in [25] that the
Schrödinger operator Th of the form (2.5) is accretive if and only if

Re h � −m∞(−0). (2.7)

For real h such that h � −m∞(−0) we get a description of all nonnegative self-adjoint
extensions of an operator A . For h = −m∞(−0) the corresponding operator{

AK y = −y′′ + q(x)y
y′(a) + m∞(−0)y(a) = 0

(2.8)

is the Kreı̆n-von Neumann extension of A and for h = +∞ the corresponding operator{
AF y = −y′′ + q(x)y
y(a) = 0

(2.9)

is the Friedrichs extension of A (see [25], [6]).

3. Rigged canonical systems with Schrödinger operator

Let A be (∗ ) - extension of an operator T , i.e.,

A ⊃ T ⊃ A, A
∗ ⊃ T∗ ⊃ A

where A is a symmetric operator with deficiency indices (n, n ) and D(A) = D(T) ∩
D(T∗) . In what follows we will only consider the case when the symmetric operator A
has dense domain, i.e., D(A) = H .
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DEFINITION 3.1. A system of equations{
(A − zI)x = KJϕ−
ϕ+ = ϕ− − 2iK∗x ,

or an array

Θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
(3.1)

is called a rigged canonical system of the Livsic type or the Brodskiı̆-Livsic rigged
operator colligation if:

1) E is a finite-dimensional Hilbert space with scalar product (·, ·)E and the
operator J in this space satisfies the conditions J = J∗ = J−1 ,

2) K ∈ [E, H−] , ker K = {0} ,
3) Im A = KJK∗, where K∗ ∈ [H+, E] is the adjoint of K .

In the definition above ϕ− ∈ E stands for an input vector, ϕ+ ∈ E is an output
vector, and x is a state space vector in H . An operator A is called a main operator
of the system Θ , J is a direction operator, and K is a channel operator. An operator-
valued function

WΘ(λ ) = I − 2iK∗(A − λ I)−1KJ (3.2)

defined on the set ρ(T) of regular points of an operator T is called the transfer function
(characteristic function) of the system Θ , i.e., ϕ+ = WΘ(λ )ϕ− . It is known [25],[27]
that any (∗) -extension A of an operator T (A∗ ⊃ T ⊃ A) , where A is a symmetric
operator with deficiency indices (n, n) (n < ∞) , D(A) = D(T) ∩ D(T∗) , can be
included as a main operator of some rigged canonical system with dimE < ∞ and
invertible channel operator K .

It was also established [25], [27] that

VΘ(λ ) = K∗(Re A − λ I)−1K (3.3)

is a Herglotz-Nevanlinna operator-valued function acting on a Hilbert space E , satisfy-
ing the following relation for λ ∈ ρ(T), Imλ �= 0

VΘ(λ ) = i[WΘ(λ ) − I][WΘ(λ ) + I]−1J. (3.4)

Alternatively,
WΘ(λ ) = (I + iVΘ(λ )J)−1(I − iVΘ(λ )J)

= (I − iVΘ(λ )J)(I + iVΘ(λ )J)−1.
(3.5)

Let us recall (see [27], [6]) that a symmetric operator with dense domain D(A) is
called prime if there is no reducing, nontrivial invariant subspace on which A induces
a self-adjoint operator. It was established in [26] that a symmetric operator A is prime
if and only if

c.l.s.
λ �=λ

Nλ = H . (3.6)

We call a rigged canonical system of the form (3.1) prime if

c.l.s.
λ �=λ̄ , λ∈ρ(T)

Nλ = H .
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One easily verifies that if system Θ is prime, then a symmetric operator A of the system
is prime as well.

The following theorem [6] establishes the connectionbetween two rigged canonical
systems with equal transfer functions.

THEOREM 3.2. Let Θ1 =
(

A1 K1 J
H+1 ⊂ H1 ⊂ H−1 E

)
and

Θ2 =
(

A2 K2 J
H+2 ⊂ H2 ⊂ H−2 E

)
be two prime rigged canonical systems of the

Livsic type with
A1 ⊃ T1 ⊃ A1, A

∗
1 ⊃ T∗

1 ⊃ A1,

A2 ⊃ T2 ⊃ A2, A
∗
2 ⊃ T∗

2 ⊃ A2,
(3.7)

and such that A1 and A2 have finite and equal defect indices.
If

WΘ1(λ ) = WΘ2(λ ), (3.8)
then there exists an isometric operator U from H1 onto H2 such that U+ = U|H+1 is
an isometry1 from H+1 onto H+2 , U∗

− = U∗
+ is an isometry from H−1 onto H−2 ,

and
UT1 = T2U, A2 = U−A1U

−1
+ , U−K1 = K2. (3.9)

COROLLARY 3.3. Let Θ1 and Θ2 be the two prime systems from the statement of
theorem 3.2. Then the mapping U described in the conclusion of the theorem is unique.

Proof. First let us make an observation that if Θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
is a prime rigged canonical system such that U−A = AU+ and U−K = K , where U
is an isometry mapping described in theorem 3.2, then U = I . Indeed, it is well known
[27] that

(Re A − λ I)−1KE = Nλ . (3.10)
We have

U(Re A − λ I)−1Ke = U+(Re A − λ I)−1Ke

= (Re A − λ I)−1U−Ke

= (Re A − λ I)−1Ke, ∀e ∈ E, λ �= λ̄ .

Combining the above equation with (3.6) and (3.10) we obtain U = I .
Now let Θ1 and Θ2 be the two prime systems from the statement of theorem

3.2. Suppose there are two isometric mappings U1 and U2 guaranteed by theorem 3.2.
Then the relations

A2 = U−,1A1U
−1
+,1, U−,1K1 = K2, A2 = U−,2A1U

−1
+,2, U−,2K1 = K2,

lead to
A1U

−1
+,1U+,2 = U−1

−,1U−,2A1, U−1
−,1U−,2K = K.

1It was shown in [6] that the operator U+ defined this way is an isometry from H+1 onto H+2 . It is
also shown there that the isometric operator U∗ : H+2 → H+1 uniquely defines operator U− = (U∗)∗ :
H−1 → H−2 .
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Since Θ1 is prime then U−1
1 U2 = I and hence U1 = U2 . This proves the uniqueness

of U . �
Now we shall construct a rigged canonical system based on a non-self-adjoint

Schrödinger operator. One can easily check that the (∗ )-extension

Ay = −y′′ + q(x)y − 1
μ − h

[y′(a) − hy(a)] [μδ(x − a) + δ ′(x − a)], Im h > 0

of the non-self-adjoint Schrödinger operator Th of the form (2.5) satisfies the condition

Im A =
A − A∗

2i
= (., g)g, (3.11)

where

g =
(Im h)

1
2

|μ − h| [μδ(x − a) + δ ′(x − a)] (3.12)

and δ(x−a), δ ′(x−a) are the delta-function and its derivative at the point a . Moreover,

(y, g) =
(Im h)

1
2

|μ − h| [μy(a) − y′(a)], (3.13)

where

y ∈ H+, g ∈ H−, H+ ⊂ L2(a, +∞) ⊂ H−

and the triplet of Hilbert spaces is as discussed in theorem 2.3. Let E = C , Kc =
cg (c ∈ C) . It is clear that

K∗y = (y, g), y ∈ H+ (3.14)

and Im A = KK∗. Therefore, the array

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
(3.15)

is a rigged canonical system with the main operator A of the form (2.6), the direction
operator J = 1 and the channel operator K of the form (3.14). Our next logical step
is finding the transfer function of (3.15). It was shown in [6] that

WΘ(λ ) =
μ − h

μ − h

m∞(λ ) + h
m∞(λ ) + h

, (3.16)

and

VΘ(λ ) =
(m∞(λ ) + μ) Im h

(μ − Re h) m∞(λ ) + μRe h − |h|2 . (3.17)
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4. Realization of Stieltjes functions

Let E be a finite-dimensional Hilbert space. The scalar versions of the following
definition can be found in [19].

DEFINITION 4.1. We will call an operator-valued Herglotz-Nevanlinna function
V(z) ∈ [E, E] by a Stieltjes function if V(z) admits the following integral representation

V(z) = γ +

∞∫
0

dG(t)
t − z

, (4.1)

where γ � 0 and G(t) is a non-decreasing on [0, +∞) operator-valued function such
that ∞∫

0

(dG(t)e, e)E

1 + t
< ∞, ∀e ∈ E.

Alternatively (see [19]) an operator-valued function V(z) is Stieltjes if it is holo-
morphic in Ext [0, +∞) and

Im [zV(z)]
Im z

� 0. (4.2)

The theorem 4.2 below was stated in [14], [15] and we present its proof for the
convenience of a reader.

THEOREM 4.2. Let Θ be a prime system of the form (3.1). Then an operator-
valued function VΘ(z) defined by (3.3), (3.4) is a Stieltjes function if and only if the
main operator A of the system Θ is accretive.

Proof. Let us assume first that A is an accretive operator, i.e. (Re Ax, x) � 0 , for
all x ∈ H+ . Let {zk} ( k = 1, ..., n ) be a sequence of non-real complex numbers and
hk be a sequence of vectors in E . Let us denote

Khk = δk, xk = (Re A − zkI)−1δk, x =
n∑

k=1

xk. (4.3)

Since (Re Ax, x) � 0 , we have

n∑
k,l=1

(Re Axk, xl) � 0. (4.4)

By formal calculations one can have

Re Axk = δk + zk(Re A − zkI)−1δk,

and
n∑

k,l=1

(Re Axk, xl) =
n∑

k,l=1

[
(δk, (Re A−zlI)−1δl)+(zk(Re A−zkI)−1δk, (Re A−zkI)−1δl)

]
.
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Using obvious equalities(
(Re A − zkI)−1Khk, Khl

)
=
(
Vθ(zk)hk, hl

)
E
,

and (
(Re A − z̄lI)−1(Re A − zkI)−1Khk, Khl

)
=
(

Vθ(zk) − Vθ(z̄l)
zk − z̄l

hk, hl

)
E

,

we obtain

n∑
k,l=1

(Re Axk, xl) =
n∑

k,l=1

(
zkVθ(zk) − z̄lVθ(z̄l)

zk − z̄l
hk, hl

)
E

� 0. (4.5)

The choice of zk was arbitrary, which means that VΘ(z) is a Stieltjes function (see [3]).
Now we prove necessity. Since Θ is a prime system then A is a prime symmetric

operator. Then the equivalence of (4.5) and (4.4) implies that (Re Ax, x) � 0 for any
x from c.l.s.{Nz} , z �= z̄ . As we have already mentioned above, a symmetric operator
A with the equal deficiency indices is prime if and only if for all λ �= λ̄

c.l.s. {Nλ} = H .

Therefore we can conclude that (Re Ax, x) � 0 for any x ∈ H+ and hence A is an
accretive operator. �

A system Θ of the form (3.1) is called an accretive system if its main operator A

is accretive.
Now we define a certain class S0(R) of realizable Stieltjes functions. At this point

we need to note that since Stieltjes functions form a subset of Herglotz-Nevanlinna
functions then we can utilize the conditions (1.7) to form a class S(R) of all realizable
Stieltjes functions (see also [15]). Clearly, S(R) is a subclass of N(R) of all realizable
Herglotz-Nevanlinna functions described in details in [11] and [12]. To see the spec-
ifications of the class S(R) we recall that aside of integral representation (4.1), any
Stieltjes function admits a representation (1.1). Applying condition (1.7) we obtain

Q =
1
2

[Vθ(−i) + V∗
θ (−i)] = γ +

∫ +∞

0

t
1 + t2

dG(t). (4.6)

Combining the second part of condition (1.7) and (4.6) we conclude that

γ e = 0, (4.7)

for all e ∈ E such that ∫ ∞

0
(dG(t)e, e)E < ∞. (4.8)

holds. Consequently, (4.7)-(4.8) is precisely the condition for V(z) ∈ S(R) .
We are going to focus though on the subclass S0(R) of S(R) whose definition is

the following.
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DEFINITION 4.3. An operator-valued Stieltjes function V(z) ∈ [E, E] is said to
be a member of the class S0(R) if in the representation (4.1) we have∫ ∞

0
(dG(t)e, e)E = ∞. (4.9)

for all non-zero e ∈ E .

We note that a function V(z) can belong to class S0(R) and have an arbitrary
constant γ � 0 in the representation (4.1).

The following statement [15] is the direct realization theorem for the functions of
the class S0(R) .

THEOREM 4.4. Let Θ be an accretive system of the form (3.1). Then the operator-
function VΘ(z) of the form (3.3), (3.4) belongs to the class S0(R) .

Proof. To see that VΘ(z) is a Stieltjes operator-function we merely apply theorem
4.2 to system Θ .

Now we will show that VΘ(z) belongs to S0(R) . It was shown in [11] and [12]
that E∞ = K−1L , where L = H � D(A) and

E∞ =
{

e ∈ E :
∫ +∞

0
(dG(t)e, e)E < ∞

}
.

But D(A) = H and consequently L = {0} . Next, E∞ = {0} ,∫ ∞

0
(dG(t)e, e)E = ∞,

for all non-zero e ∈ E , and therefore Vθ(z) ∈ S0(R) . �
The inverse realization theorem can be stated and proved (see [15]) for the classes

S0(R) as follows.

THEOREM 4.5. Let an operator-valued function V(z) belong to the class S0(R) .
Then V(z) admits a realization by an accretive prime system Θ of the form (3.1) with
D(T) �= D(T∗) and J = I .

Proof. We have already noted that the class of Stieltjes function lies inside the
wider class of all Herglotz-Nevanlinna functions. Thus all we actually have to show
is that S0(R) ⊂ N0(R) , where N0(R) is subclass of realizable Herglotz-Nevanlinna
functions described in [12], and that the realizing system constructed in [12] appears
to be an accretive system. The former is rather obvious and follows directly from the
definition of the class S0(R) . To see that the realizing system is accretive we need to
apply theorem 4.2 to Vθ(z) = V(z) , where VΘ(z) is related to the model system Θ that
was constructed in [12]. As it was also shown in [11] and [12], the symmetric operator
A of the model system Θ is prime and hence (3.6) takes place. We are going to show
that in this case the system Θ is also prime, i.e.,

c.l.s.
λ �=λ̄ , λ∈ρ(T)

Nλ = H . (4.10)
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Consider the operator Uλ0λ = (Ã−λ0I)(Ã−λ I)−1 , where Ã is an arbitrary self-adjoint
extension of A . By a simple check one confirms that Uλ0λNλ0 = Nλ . To prove (4.10)
we assume that there is a function f ∈ H such that

f ⊥ c.l.s.
λ �=λ̄ , λ∈ρ(T)

Nλ .

Then (f , Uλ0λg) = 0 for all g ∈ Nλ0 and all λ ∈ ρ(T) . But accretiveness of the
system Θ implies that there are regular points of T in the upper and lower half-planes.
This leads to a conclusion that the function φ(λ ) = (f , Uλ0λg) ≡ 0 for all λ �= λ̄ .
Combining this with (3.6) we conclude that f = 0 and thus (4.10) holds. �

5. Restoring a non-self-adjoint Schrödinger operator Th

In this section we are going to use the realization results for Stieltjes functions
developed in section 4 to obtain the solution of inverse spectral problem for Schrödinger
operator of the form (2.5) in L2[a, +∞) with non-self-adjoint boundary conditions{

Thy = −y′′ + q(x)y
y′(a) = hy(a) ,

(
q(x) = q(x), Im h �= 0

)
. (5.1)

In particular, we will show that if a non-decreasing function σ(t) is the spectral function
of positive self-adjoint boundary value problem{

Aθy = −y′′ + q(x)y
y′(a) = θy(a) (5.2)

and satisfies conditions
∞∫
0

dσ(t) = ∞,

∞∫
0

dσ(t)
1 + t

< ∞, (5.3)

then for every γ � 0 a Stieltjes function

V(z) = γ +

∞∫
0

dσ(t)
t − z

can be realized in the unique way as a VΘ(z) function of an accretive rigged canonical
system Θ with some Schrödinger operator Th .

Let H = L2[a, +∞) and l(y) = −y′′+q(x)y where q is a real locally summable
function. We consider a symmetric operator with defect indices (1, 1){

B̃y = −y′′ + q(x)y
y′(a) = y(a) = 0

(5.4)

together with its positive self-adjoint extension of the form{
B̃θy = −y′′ + q(x)y
y′(a) = θy(a) (5.5)
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defined in H = L2[a, +∞) . A non-decreasing function σ(λ ) defined on [0, +∞) is
called the distribution function (see [23]) of an operator pair B̃θ , B̃ , where B̃θ of the
form (5.5) is a self-adjoint extension of symmetric operator B̃ of the form (5.4), and if
the formulas

ϕ(λ ) = Uf (x),

f (x) = U−1ϕ(λ ),
(5.6)

establish one-to-one isometric correspondence U between Lσ2 [0, +∞) and L2[a, +∞) .
Moreover, this correspondence is such that the operator B̃θ is unitarily equivalent to
the operator

Λσϕ(λ ) = λϕ(λ ), (ϕ(λ ) ∈ Lσ2 [0, +∞)) (5.7)

in Lσ2 [0, +∞) while symmetric operator B̃ in (5.4) is unitarily equivalent to the sym-
metric operator

Λ0
σϕ(λ ) = λϕ(λ ), D(Λ0

σ) =
{
ϕ(λ ) ∈ Lσ2 [0, +∞) :

∫ +∞

0
ϕ(λ )dσ(λ ) = 0

}
.

(5.8)

DEFINITION 5.1. A scalar Herglotz-Nevanlinna function V(z) is called Stieltjes
like function if it has an integral representation (4.1) with an arbitrary (not necessarily
non-negative) constant γ .

We are going to introduce a new class of realizable scalar Stieltjes like functions
whose structure is similar to that of S0(R) of section 4.

DEFINITION 5.2. A Stieltjes like function V(z) is said to be a member of the class
SL0(R) if it admits an integral representation

V(z) = γ +
∫ ∞

0

dσ(t)
t − z

,
(
γ ∈ (−∞, +∞)

)
, (5.9)

where non-decreasing function σ(t) satisfies the following conditions∫ ∞

0
dσ(t) = ∞,

∫ ∞

0

dσ(t)
1 + t

< ∞. (5.10)

Consider the following subclasses of SL0(R) .

DEFINITION 5.3. A function V(z) ∈ SL0(R) belongs to the class SLK
0 (R) if∫ ∞

0

dσ(t)
t

= ∞. (5.11)

DEFINITION 5.4. A function V(z) ∈ SL0(R) belongs to the class SLK
01(R) if∫ ∞

0

dσ(t)
t

< ∞. (5.12)

The following theorem describes the realization of the class SL0(R) .
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THEOREM 5.5. Let V(z) ∈ SL0(R) and the function σ(t) be the distribution
function of an operator pair B̃θ of the form (5.4) and B̃ of the form (5.5). Then there
exist unique Schrödinger operator Th ( Im h > 0 ) of the form (5.1), operator A given
by (2.6), operator K as in (3.14), and the rigged canonical system of the Livsic type

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
, (5.13)

of the form (3.15) so that V(z) is realized by Θ .

Proof. Since σ(t) is the distribution function of the positive self-adjoint operator,
then (see [23]) we can completely restore the operator B̃θ of the form (5.5) as well
as a symmetric operator B̃ of the form (5.4). It follows from the definition of the
distribution function above that there is operator U defined in (5.6) establishing one-
to-one isometric correspondence between Lσ2 [0, +∞) and L2[a, +∞) while providing
for the unitary equivalence between the operator B̃θ and operator of multiplication by
independent variable Λσ of the form (5.7). Taking this into account, we realize (see
[11]) a Herglotz-Nevanlinna function V(z) with a rigged canonical system

ΘΛ =
(

Λ Kσ 1
H σ

+ ⊂ Lσ2 [0, +∞) ⊂ H σ
− C

)
.

Following the steps for construction of the model system described in [11], we note that

Λ = ReΛ + iKσ(Kσ)∗

is a correct (∗ )-extension of an operator Tσ such that Λ ⊃ Tσ ⊃ Λ0
σ where Λ0

σ is
defined in (5.8). The real part ReΛ is a self-adjoint bi-extension of Λ0

σ that has a
quasi-kernel Λσ of the form (5.7). The operator Kσ in the above system is defined by

Kσc = c · α, c ∈ C, α ∈ H σ
− .

In addition we can observe that the function η(λ ) ≡ 1 belongs to the space H σ− . To
confirm this we need to show that (x, 1) defines a continuous linear functional for every
x ∈ H σ

+ . It was shown in [11], [12] that

H σ
+ = D(Λ0

σ)�
{

c1

1 + t2

}
�
{

c2t
1 + t2

}
, c1, c2 ∈ C.

Consequently, every vector x ∈ H σ
+ has three components x = x1 + x2 + x3 according

to the decomposition above. Obviously, (x1, 1) and (x2, 1) yield convergent integrals
while (x3, 1) boils down to ∫ ∞

0

t
1 + t2

dσ(t).

To see the convergence of the above integral we notice that

t
1 + t2

=
t − 1

(1 + t2)(t + 1)
+

1
1 + t

� 1
1 + t2

+
1

1 + t
.
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The integrals taken of the last two expressions on the right side converge due to (1.2) and
(5.10), and hence so does the integral of the left side. Thus, (x, 1) defines a continuous
linear functional for every x ∈ H σ

+ , and hence 1 ∈ H σ
− .

The state space of the system ΘΛ is H σ
+ ⊂ Lσ2 [0, +∞) ⊂ H σ− , where H σ

+ =
D
(
(Λ0

σ)∗
)
. By the realization theorem [11] we have that V(z) = VΘΛ(z) .

We can also show that the system ΘΛ is a prime system. In order to do so we need
to show that

c.l.s.
λ �=λ̄ , λ∈ρ(Tσ )

Nλ = Lσ2 [0, +∞), (5.14)

where Nλ are defect subspaces of the symmetric operator Λ0
σ . It is known (see [11])

that Λ0
σ is a prime operator. Hence we can follow the reasoning of the proof of theorem

4.5 and only confirm that operator Tσ has regular points in the upper and lower half-
planes. To see this we first note that non-negative operator Λ0

σ has no kernel spectrum
[1] on the left real half-axis. Then we apply Theorem 1 of [1] (see page 149 of vol. 2 of
[1]) that gives the complete description of the spectrum of Tσ . This theorem implies
that there are regular points of Tσ on the left real half-axis. Since ρ(Tσ) is an open
set we confirm the presence of non-real regular points of Tσ in both half-planes. Thus
(5.14) holds and ΘΛ is a prime system.

Applying theorem 3.2 on unitary equivalence to the isometry U defined in (5.6)
we obtain a triplet of isometric operators U+ , U , and U− , where

U+ = U
∣∣
H σ

+
, U∗

− = U∗
+.

This triplet of isometric operators will map the rigged space H σ
+ ⊂ Lσ2 [0, +∞) ⊂ H σ−

into another rigged Hilbert space H+ ⊂ Lσ2 [a, +∞) ⊂ H− . Moreover, U+ is an
isometry from H σ

+ = D(Λ0∗
σ ) onto H+ = D(B̃∗) , and U∗

− = U∗
+ is an isometry

from H σ
+ onto H− . This is true since the operator U provides the unitary equivalence

between the symmetric operators B̃ and Λ0
σ .

Now we construct a system

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
where K = U−Kσ and A = U−ΛU−1

+ is a correct (∗ )-extension of operator T =
UTσU−1 such that A ⊃ T ⊃ B̃ . The real part Re A contains the quasi-kernel B̃θ . This
construction of A is unique due to the theorem on the uniqueness of a (∗ )-extension for
a given quasi-kernel (see [27]). On the other hand, all (∗ )-extensions based on a pair
B̃ , B̃θ must take form (2.6) for some values of parameters h and μ . Consequently,
our function V(z) is realized by the system Θ of the form (5.13) and

V(z) = VΘΛ(z) = VΘ(z).
�

REMARK 5.6. Applying corollary 3.3 to themapping U defined by (5.6)weobtain
that the operator U in the above theorem is unique. The uniqueness of the operator
U leads to an interesting observation. Let uk(x, λ ) , (k = 1, 2) be the solutions of the
following Cauchy problems:
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u1(a, λ ) = 0
u′1(a, λ ) = 1

,

⎧⎨⎩ l(u2) = λu2

u2(a, λ ) = 1
u′2(a, λ ) = 0

.

Traditionally, (see [23]) a non-decreasing function σ(λ ) defined on [0, +∞) is called
the distribution function of a self-adjoint operator B̃θ of the form (5.5) if the formulas

ϕ(λ ) = Uf (x) =
∫ +∞

a
f (x)u(x, λ ) dx,

f (x) = U−1ϕ(λ ) =
∫ +∞

0
ϕ(λ )u(x, λ ) dσ(λ ),

(5.15)

where u(x, λ ) = u1(x, λ ) + θu2(x, λ ) , establish one-to-one isometric correspondence
U between Lσ2 [0, +∞) and L2[a, +∞) such that the operator B̃θ in (5.5) is unitarily
equivalent to the operator Λσ in (5.7). It is easily seen that if the mapping U in (5.15)
has a property that symmetric operators B̃ in (5.4) and Λ0

σ in (5.8) are also unitarily
equivalent w.r.t. U , then the unitary operator appearing in the proof of Theorem 5.5
coincides with the one defined by the formulas (5.15). Indeed, assuming that there is
another mapping Ũ provided by Theorem 3.2 on unitary equivalence for the systems
ΘΛ and Θ we would violate the uniqueness of the operator U , and thus Ũ = U .

THEOREM 5.7. Let V(z) ∈ SL0(R) satisfy the conditions of theorem 5.5. Then
the operator Th in the conclusion of the theorem 5.5 is accretive if and only if

γ 2 + γ
∫ ∞

0

dσ(t)
t

+ 1 � 0. (5.16)

The operator Th is α -sectorial for some α ∈ (0, π/2) if and only if the inequality
(5.16) is strict. In this case the exact value of angle α can be calculated by the formula

tanα =

∫∞
0

dσ(t)
t

γ 2 + γ
∫∞

0
dσ(t)

t + 1
. (5.17)

Proof. It was shown in [26] that for the system Θ in (5.13) described in the
previous theorem the operator Th is accretive if and only if the function

Vh(z) = −i[W−1
Θ (−1)WΘ(z) + I]−1[W−1

Θ (−1)WΘ(z) − I]

= −i
1 − [(m∞(z) + h̄)/(m∞(z) + h)][(m∞(−1) + h)/(m∞(−1) + h̄)]
1 + [(m∞(z) + h̄)/(m∞(z) + h)][(m∞(−1) + h)/(m∞(−1) + h̄)]

,

(5.18)
is holomorphic in Ext [0, +∞) and satisfies the following inequality

1 + Vh(0) Vh(−∞) � 0. (5.19)

Here WΘ(z) is the transfer function of (5.13). It is also shown in [26] that the operator
Th is α -sectorial for some α ∈ (0, π/2) if and only if the inequality (5.19) is strict
while the exact value of angle α can be calculated by the formula

cotα =
1 + Vh(0) Vh(−∞)
|Vh(−∞) − Vh(0)| . (5.20)
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According to theorem 5.5 and equation (3.5)

WΘ(z) = (I − iV(z)J)(I + iV(z)J)−1.

By direct calculations one obtains

WΘ(−1) =
1 − i

[
γ +

∫∞
0

dσ(t)
t+1

]
1 + i

[
γ +

∫∞
0

dσ(t)
t+1

] , W−1
Θ (−1) =

1 + i
[
γ +

∫∞
0

dσ(t)
t+1

]
1 − i

[
γ +

∫∞
0

dσ(t)
t+1

] . (5.21)

Using the following notations

a = γ +
∫ ∞

0

dσ(t)
t + 1

and b = γ +
∫ ∞

0

dσ(t)
t

,

and performing straightforward calculations we obtain

Vh(0) =
a − b
1 + ab

and Vh(−∞) =
a − γ
1 + aγ

. (5.22)

Substituting (5.22) into (5.20) and performing the necessary steps we get

cotα =
1 + bγ
b − γ

=
γ 2 + γ

∫∞
0

dσ(t)
t + 1∫∞

0
dσ(t)

t

. (5.23)

Taking into account that b − γ > 0 we combine (5.19), (5.20) with (5.23) and this
completes the proof of the theorem. �

COROLLARY 5.8. Let V(z) ∈ SL0(R) satisfy the conditions of theorem 5.5. Then
the operator Th in the conclusion of theorem 5.5 is accretive if and only if

1 + V(0) V(−∞) � 0. (5.24)

The operator Th is α -sectorial for some α ∈ (0, π/2) if and only if the inequality
(5.24) is strict. In this case the exact value of angle α can be calculated by the formula

tanα =
|V(−∞) − V(0)|
1 + V(0) V(−∞)

. (5.25)

Proof. Taking into account that

V(0) = γ +
∫ ∞

0

dσ(t)
t

,

V(z) = VΘ(z) , and VΘ(−∞) = γ , we use (5.16) and (5.17) to obtain (5.24) and
(5.25). �
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THEOREM 5.9. Let V(z) ∈ S0(R) and satisfy the conditions of theorem 5.5.
Then the system Θ of the form (5.13) is accretive and its symmetric operator A of the
form (2.4) is such that its Kreı̆n-von Neumann extension AK of the form (2.8) does not
coincide with its Friedrichs extension AF of the form (2.9).

Proof. The proof of the fact that Θ is accretive directly follows from the theorems
4.2 and 5.5. The second part follows from the theorem in [25] that states that a positive
symmetric operator A admits a non-self-adjoint accretive extension T if and only if
AF and AK do not coincide. �

Below we will derive the formulas for calculation of the boundary parameter h in
the restored Schrödinger operator Th of the form (5.1). We consider two major cases.

Case 1. In the first case we assume that
∫∞

0
dσ(t)

t < ∞ . This means that our
function V(z) belongs to the class SLK

01(R) . In what follows we denote

b =
∫ ∞

0

dσ(t)
t

and m = m∞(−0).

Suppose that b � 2 . Then the quadratic inequality (5.16) implies that for all γ such
that

γ ∈
(
−∞,

−b −√
b2 − 4

2

]
∪
[
−b +

√
b2 − 4

2
, +∞

)
(5.26)

the restored operator Th is accretive. Clearly, this operator is extremal accretive if

γ =
−b ±√

b2 − 4
2

.

In particular if b = 2 then γ = −1 and the function

V(z) = −1 +
∫ ∞

0

dσ(t)
t − z

is realized using an extremal accretive Th .
Now suppose that 0 < b < 2 . For every γ ∈ (−∞, +∞) the restored operator

Th will be accretive and α -sectorial for some α ∈ (0, π/2) . Consider a function V(z)
defined by (5.9). Conducting realizations of V(z) by operators Th for different values
of γ ∈ (−∞, +∞) we notice that the operator Th with the largest angle of sectorialilty
occurs when

γ = −b
2
, (5.27)

and is found according to the formula

α = arc tan
b

1 − b2/4
. (5.28)

This follows from the formula (5.17), the fact that γ 2 + γ b + 1 > 0 for all γ , and the
formula

γ 2 + γ b + 1 =
(
γ +

b
2

)2

+
(

1 − b2

4

)
.
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Now we will focus on the description of the parameter h in the restored operator Th .
It was shown in [6] that the quasi-kernel Â of the realizing system Θ from theorem

5.5 takes a form {
Ây = −y′′ + qy
y′(a) = ηy(a)

, η =
μRe h − |h|2
μ − Re h

(5.29)

On the other hand, since σ(t) is also the distribution function of the positive self-adjoint
operator, we can conclude that Â equals to the operator B̃θ of the form (5.5). This
connection allows us to obtain

θ = η =
μRe h − |h|2
μ − Re h

. (5.30)

Assuming that
h = x + iy

we will use (5.30) to derive the formulas for x and y in terms of γ . First, to eliminate
parameter μ , we notice that (3.16) and (3.5) imply

WΘ(λ ) =
μ − h

μ − h

m∞(λ ) + h
m∞(λ ) + h

=
1 − iV(z)
1 + iV(z)

. (5.31)

Passing to the limit in (5.31) when λ → −∞ and taking into account that V(−∞) = γ
and m∞(−∞) = ∞ we obtain2

μ − h

μ − h
=

1 − iγ
1 + iγ

.

Let us denote

a =
1 − iγ
1 + iγ

. (5.32)

Solving (5.32) for μ yields

μ =
h − ah̄
1 − a

.

Substituting this value into (5.30) after simplification produces

x + iy − a(x − iy)x − (x2 + y2)(1 − a)
x + iy − a(x − iy) − x(1 − a)

= θ.

After straightforward calculations targeting to represent numerator and denominator of
the last equation in standard form one obtains the following relation

x − γ y = θ. (5.33)

2The fact that m∞(−∞) = ∞ (with the assumption m∞(0) < ∞ considered in this paper for
the corresponding nonnegative Schrödinger operator) follows from (2.6), (3.17), (3.12), and (5.23) when
Re h = −m∞(0) , μ = ∞ as well as from

VΘ(λ ) =
(
(Re A − λ I)−1g, g

)
=

Im h
m∞(λ) − m∞(0)

and the relation VΘ(−∞) = 0 established in [6], [15].
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It was shown in [26] that the α -sectorialilty of the operator Th and (5.20) lead to

tanα =
Im h

Re h + m∞(−0)
=

y
x + m∞(−0)

. (5.34)

Combining (5.33) and (5.34) one obtains

x − γ (x tanα + m∞(−0) tanα) = θ,

or

x =
θ + γm∞(−0) tanα

1 − γ tanα
.

But tanα is also determined by (5.17). Direct substitution of

tanα =
b

1 + γ (γ + b)

into the above equation yields

x = θ +

[
θ + m∞(−0)

]
bγ

1 + γ 2
.

Using the short notation and finalizing calculations we get

h = x + iy, x = θ +
γ [θ + m]b

1 + γ 2
, y =

[θ + m]b
1 + γ 2

. (5.35)

At this point we can use (5.35) to provide analytical and graphical interpretation of the
parameter h in the restored operator Th . Let

c = (θ + m)b.

Again we consider three subcases.
Subcase 1: b > 2 Using basic algebra we transform (5.35) into

(x − θ)2 +
(
y − c

2

)2
=

c2

4
. (5.36)

Since in this case the parameter γ belongs to the interval in (5.26), we can see that h
traces the highlighted part of the circle on the figure 1 as γ moves from −∞ towards
+∞ .

Figure 1. b > 2
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We also notice that the removedpoint (θ, 0) corresponds to the value of γ = ±∞ while

the points h1 and h2 correspond to the values γ1 = −b−
√

b2−4
2 and γ2 = −b+

√
b2−4

2 ,
respectively (see figure 2.).

Figure 2. γ interval

Subcase 2: b < 2 For every γ ∈ (−∞, +∞) the restored operator Th will be
accretive and α -sectorial for some α ∈ (0, π/2) . As we have mentioned above, the
operator Th achieves the largest angle of sectorialilty when γ = − b

2 . In this particular
case (5.35) becomes

h = x + iy, x =
θ(4 − b2) − 2b2m

4 + b2
, y =

4(θ + m)b
4 + b2

. (5.37)

The value of h from (5.37) is marked on the figure 3.

Figure 3. b < 2

Subcase 3: b = 2 The behavior of parameter h in this case is depicted on the
figure 4. It shows that in this case the function V(z) can be realized using an extremal
accretive Th when γ = −1 . The value of the parameter h according to (5.35) then
becomes

h = x + iy, x = −m, y = θ + m. (5.38)

Clockwise direction of the circle again corresponds to the change of γ from −∞ to
+∞ and the marked value of h occurs when γ = −1 .
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Figure 4. b = 2

Now we consider the second case.
Case 2. Here we assume that

∫∞
0

dσ(t)
t = ∞ . This means that our function V(z)

belongs to the class SLK
0 (R) and b = ∞ . According to theorem 5.7 and formulas

(5.16) and (5.17), the restored operator Th is accretive if and only if

γ � 0,

and α -sectorial if and only if γ > 0 . It directly follows from (5.17) that the exact
value of the angle α is then found from

tanα =
1
γ

. (5.39)

The latter implies that the restored operator Th is extremal if γ = 0 . This means that
a function V(z) ∈ SLK

0 (R) is realized by a system with an extremal operator Th if and
only if

V(z) =

∞∫
0

dσ(t)
t − z

. (5.40)

On the other hand since γ � 0 the function V(z) is a Stieltjes function of the class
S0(R) . Applying realization theorems from [15] we conclude that V(z) admits real-
ization by an accretive system Θ of the form (3.1) with AR containing the Krein-von
Neumann extension AK as a quasi-kernel. Here AK is defined by (2.8). This yields

θ = −m∞(−0) = −m. (5.41)

As in the beginning of the previous case we derive the formulas for x and y , where
h = x + iy . Using (5.30) and (5.33) leads to{

θ = μx−(x2+y2)
μ−x ,

x = θ + γ y.
(5.42)

Solving this system for x and y leads to

x =
θ + μγ 2

1 + γ 2
, y =

(μ − θ)γ
1 + γ 2

. (5.43)
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Combining (5.42) and (5.43) gives

x =
−m + μγ 2

1 + γ 2
, y =

(m + μ)γ
1 + γ 2

. (5.44)

Figure 5. b = ∞
To proceed, we first notice that our function V(z) satisfies the conditions of

theorem 4.8 of [6]. Indeed, the inequality

μ � (Im h)2

m∞(−0) + Re h
+ Re h,

turns into

μ =
y2

x − m
+ x,

if you use θ = −m and the first equation in (5.42). Applying theorem 4.8 of [6] yields

∞∫
0

dσ(t)
1 + t2

=
Im h

|μ − h|2

⎛⎜⎜⎜⎜⎝ sup
y∈D(AK)

|μy(a) − y′(a)|(∞∫
a

(|y(x)|2 + |l(y)|2) dx

) 1
2

⎞⎟⎟⎟⎟⎠
2

. (5.45)

Taking into account that

μy(a) − y′(a) = (μ + m)y(a)

and setting

c1/2 = sup
y∈D(AK)

|y(a)|(∞∫
a

(|y(x)|2 + |l(y)|2) dx

) 1
2

, (5.46)

we obtain

Im h
|μ − h|2 (μ + m)2 c =

∞∫
0

dσ(t)
1 + t2

. (5.47)
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Figure 6. γ � 0

Considering that Im h = y and combining (5.47) with (5.44) we use straightfor-
ward calculations to get

μ = −m +
(

1
γ c

) ∞∫
0

dσ(t)
1 + t2

.

Let

ξ =
1
c

∫ ∞

0

dσ(t)
1 + t2

. (5.48)

Then the last equation becomes

μ = −m +
ξ
γ

. (5.49)

Applying (5.49) on (5.44) yields

x = −m +
γ ξ

1 + γ 2
, y =

ξ
1 + γ 2

, γ � 0. (5.50)

Following the previous case approach we transform (5.50) into

(x + m)2 +
(

y − ξ
2

)2

=
ξ 2

4
. (5.51)

The connection between the parameters γ and h in the accretive restored operator Th

is depicted in figures 5. and 6. As we can see h traces the highlighted part of the circle
clockwise on the figure 5 as γ moves from 0 towards +∞ .

As we mentioned earlier the restored operator Th is extremal if γ = 0 . In this
case formulas (5.50) become

x = −m, y = ξ , γ = 0, (5.52)

where ξ is defined by (5.48).

6. Realizing systems with Schrödinger operator

Nowoncewe described all the possible outcomes for the restored accretive operator
Th , we can concentrate on the main operator A of the system (5.13). We recall that A

is defined by formulas (2.6) and beside the parameter h above contains also parameter
μ . We will obtain the behavior of μ in terms of the components of our function V(z)
the same way we treated the parameter h . As before we consider two major cases
dividing them into subcases when necessary.
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Case 1. Assume that b =
∫∞

0
dσ(t)

t < ∞ . In this case our function V(z) belongs
to the class SLK

01(R) . First we will obtain the representation of μ in terms of x and y ,
where h = x + iy . We recall that

μ =
h − ah̄
1 − a

,

where a is defined by (5.32). By direct computations we derive that

a =
1 − γ 2

1 + γ 2
− 2γ

1 + γ 2
i, 1 − a =

2γ 2

1 + γ 2
+

2γ
1 + γ 2

i,

and

h − ah̄ =
(

2γ 2

1 + γ 2
x +

2γ
1 + γ 2

y

)
+
(

2
1 + γ 2

y +
2γ

1 + γ 2
x

)
i.

Plugging the last two equations into the formula for μ above and simplifying we obtain

μ = x +
1
γ

y. (6.1)

We recall that during the present case x and y parts of h are described by the formulas
(5.35).

Once again we elaborate in three subcases.
Subcase 1: b > 2 As we have shown this above, the formulas (5.35) can be

transformed into equation of the circle (5.36). In this case the parameter γ belongs to
the interval in (5.26), the accretive operator Th corresponds to the values of h shown
in the bold part of the circle on the figure 1 as γ moves from −∞ towards +∞ .

Substituting the expressions for x and y from (5.35) into (6.1) and simplifying
we get

μ = θ +
(θ + m)b

γ
. (6.2)

The connection between values of γ and μ is depicted on the figure 7.

Figure 7. b > 2
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We note that μ = 0 when γ = − (θ+m)b
θ . Also, the endpoints

γ1 =
−b −√

b2 − 4
2

and γ2 =
−b +

√
b2 − 4

2

of γ -interval (5.26) are responsible for the μ -values

μ1 = θ +
(θ + m)b

γ1
and μ2 = θ +

(θ + m)b
γ2

.

The values of μ that are acceptable parameters of operator A of the restored system
make the bold part of the hyperbola on the figure 7. It follows from theorem 4.2 that
the operator A of the form (2.6) is accretive if and only if γ � 0 and thus μ sweeps
the right branch on the hyperbola. We note that figure 7 shows the case when −m < 0 ,
θ > 0 , and θ > −m . Other possible cases, such as (−m < 0 , θ < 0 , θ > −m ),
(−m < 0 , θ = 0 ), and (m = 0 , θ > 0 ) require corresponding adjustments to the
graph shown in the picture 7.

Subcase 2: b < 2 For every γ ∈ (−∞, +∞) the restored operator Th will be
accretive and α -sectorial for some α ∈ (0, π/2) . As we have mentioned above, the
operator Th achieves the largest angle of sectorialilty when γ = − b

2 . In this particular
case (5.35) becomes

h = x + iy, x =
θ(4 − b2) − 2b2m

4 + b2
, y =

4(θ + m)b
4 + b2

.

Substituting γ = b/2 into (6.1) we obtain

μ = −(θ + 2m). (6.3)

This value of μ from (6.3) is marked on the figure 8. The corresponding operator A

of the realizing system is based on these values of parameters h and μ .

Figure 8. b < 2 and b = 2
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Subcase 3: b = 2 The behavior of parameter μ in this case is also shown on the
figure 8. It was shown above that in this case the function V(z) can be realized using
an extremal accretive Th when γ = −1 . The values of the parameters h and μ then
become

h = x + iy, x = −m, y = θ + m, μ = −(θ + 2m).

The value of μ above is marked on the left branch of the hyperbola and occurs when
γ = −1 = −b/2 .

Case 2. Again we assume that
∫∞

0
dσ(t)

t = ∞ . Hence V(z) ∈ SLK
0 (R) and

b = ∞ . As we mentioned above the restored operator Th is accretive if and only if
γ � 0 and α -sectorial if and only if γ > 0 . It is extremal if γ = 0 . The values of x ,
y , and μ were already calculated and are given in (5.50) and (5.49), respectively. That
is

x = −m +
γ ξ

1 + γ 2
, y =

ξ
1 + γ 2

, μ = −m +
ξ
γ

, γ � 0.

where ξ is defined in (5.48). Figure 9. gives graphical representation of this case.
Only the right bold branch of hyperbola shows the values of μ in the case b = ∞ . If
m = 0 then

μ =
ξ
γ

and the graph should be adjusted accordingly.

Figure 9. b = ∞
In the case when γ = 0 and Th is extremal we have

x = −m, y = ξ , μ = ∞, h = −m + iξ , (6.4)

and according to (2.6) we have

Ay = −y′′ + q(x)y + [(−m + iξ)y(a) − y′(a)]δ(x − a), (6.5)

that is the main operator of the realizing system.
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Example

We conclude this paper with simple illustration. Consider a function

V(z) =
i√
z
. (6.6)

A direct check confirms that V(z) is a Stieltjes function. It was shown in [23] (see pp.
140-142) that the inversion formula

σ(λ ) = C + lim
y→0

1
π

∫ λ

0
Im

(
i√x + iy

)
dx (6.7)

describes the distribution function for a self-adjoint operator{
B̃0y = −y′′

y′(0) = 0.

The corresponding to B̃0 symmetric operator is{
B0y = −y′′

y(0) = y′(0) = 0.
(6.8)

It was also shown in [23] that σ(λ ) = 0 for λ � 0 and

σ ′(λ ) =
1

π
√
λ

for λ > 0. (6.9)

By direct calculations one can confirm that

V(z) =
∫ ∞

0

dσ(t)
t − z

=
i√
z
,

and that ∫ ∞

0

dσ(t)
t

=
∫ ∞

0

dt
πt3/2

= ∞.

It is also clear that the constant term in the integral representation (4.1) is zero, i.e.
γ = 0 .

Let us assume that σ(t) satisfies our definition of spectral distribution function of
the pair B0 , B̃0 given in the section 5. Operating under this assumption, we proceed
to restore parameters h and μ and apply formulas (5.50) for the values γ = 0 and
m = −θ = 0 . This yields x = 0 . To obtain y we first find the value of∫ ∞

0

dσ(t)
1 + t2

=
1√
2
,

and then use formula (5.46) to get the value of c . This yields c = 1/
√

2 . Consequently,

ξ =
1
c

∫ ∞

0

dσ(t)
1 + t2

= 1,
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and hence h = yi = i . From (5.49) we have that μ = ∞ and (6.5) becomes

A y = −y′′ + [iy(0) − y′(0)]δ(x). (6.10)

The operator Th in this case is {
Thy = −y′′

y′(0) = iy(0).

The channel vector g of the form (3.12) then equals

g = δ(x), (6.11)

satisfying

Im A =
A − A∗

2i
= KK∗ = (., g)g,

and channel operator Kc = cg , ( c ∈ C ) with

K∗y = (y, g) = y(0). (6.12)

The real part of A

Re A y = −y′′ − y′(0)δ(x)
contains the self-adjoint quasi-kernel{

Ây = −y′′

y′(0) = 0.

A system of the Livs̆ic type with Schrödinger operator of the form (5.13) that realizes
V(z) can now be written as

Θ =
(

A K 1
H+ ⊂ L2[a, +∞) ⊂ H− C

)
.

where A and K are defined above. Now we can back up our assumption on σ(t) to be
the spectral distribution function of the pair B0 , B̃0 . Indeed, calculating the function
VΘ(z) for the system Θ above directly via formula (3.17) with μ = ∞ and comparing
the result to V(z) gives the exact value of h = i . Using the reasoning of remark 5.6 we
confirm that σ(t) is the spectral distribution function of the pair B0 , B̃0 .

REMARK 6.1. All the derivations above can be repeated for a Stieltjes like function

V(z) = γ +
i√
z
, −∞ < γ < +∞, γ �= 0

with very minor changes. In this case the restored values for h and μ are described as
follows:

h = x + iy, x =
γ

1 + γ 2
, y =

1
1 + γ 2

, μ =
1
γ

.

The dynamics of changing h according to changing γ is depicted on the figure 5 where
the circle has the center at the point i/2 and radius of 1/2 . The behavior of μ is
described by a hyperbola μ = 1/γ (see figure 9 with θ = 0 ). In the case when γ > 0
our function becomes Stieltjes and the restored system Θ is accretive. The operators
A and K of the restored system are given according to the formulas (2.6) and (3.14),
respectively.
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