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SPECTRAL PERTURBATION BOUNDS

FOR SELFADJOINT OPERATORS I

KREŠIMIR VESELIĆ

(communicated by M. Omladič)

Abstract. We give general spectral and eigenvalue perturbation bounds for a selfadjoint operator
perturbed in the sense of the pseudo-Friedrichs extension. We also give several generalisations of
the aforementioned extension. The spectral bounds for finite eigenvalues are obtained by using
analyticity and monotonicity properties (rather than variational principles) and they are general
enough to include eigenvalues in gaps of the essential spectrum.

1. Introduction

The main purpose of this paper is to derive spectral and eigenvalue bounds for
selfadjoint operators. If a selfadjoint operator H in a Hilbert space H is perturbed
into

T = H + A (1)

with, say, a bounded A then the well-known spectral inclusion holds

σ(T) ⊆ {λ : dist(λ ,σ(H)) � ‖A‖} . (2)

Here σ denotes the spectrum of a linear operator. (Whenever not otherwise stated we
shall follow the notation and the terminology of [3].)

If H , A , T are finite Hermitian matrices then (1) implies

|μk − λk| � ‖A‖, (3)

where μk, λk are the non-increasingly ordered eigenvalues of T, H , respectively. (Here
and henceforth we count the eigenvalues together with their multiplicities.)

Whereas (2) may be called an upper semicontinuity bound the estimate (3) contains
an existence statement: each of the intervals [λk−‖A‖, λk+‖A‖] contains ’its own’ μk .

Mathematics subject classification (2000): 47A55.
Key words and phrases: Construction of selfadjoint operators, indefinite forms, perturbation od

eigenvalues, relative errors.
This work was partly done during the author’s stay at the University of Split, Faculty of Electrotechnical Engineering,

Mechanical Engineering and Naval Archtecture while supported by the National Foundation for Science, Higher Education
and Technological Development of the Republic of Croatia. Both the Foundation support and the kind hospitality of professor
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Colloquially, bounds like (2) may be called ’one-sided’ and those like (3) ’two-sided’.
As it is well-known (3) can be refined to another two-sided bound

minσ(A) � μk − λk � maxσ(A). (4)

In [9] the following ’relative’ two-sided bound was derived

|μk − λk| � b|λk|, (5)

provided that
|(Aψ ,ψ)| � b(|H|ψ ,ψ), b < 1.

This bound was found to be relevant for numerical computations. Combining (3) and
(5) we obtain

|μk − λk| � a + b|λk|, (6)

or, equivalently,
λk − a − b|λk| � μk � λk + a + b|λk|, (7)

provided that
|(Aψ ,ψ)| � a‖ψ‖2 + b(|H|ψ ,ψ), b < 1. (8)

One of our goals is to extend the bound (6) to general selfadjoint operators. Since
these may be unbounded we have to make precise what we mean by the sum (1). Now,
the condition (8) is exactly the one which guarantees the existence and the uniqueness
of a closed extension T of H + A , if, say, D(A) ⊇ D(|H|1/2) . The operator T is
called the pseudo-Friedrichs extension of H + A , see [3], Ch. VI. Th. 3.11. Further
generalisations of this construction are contained in [2, 6, 5]. All they allow A to be
merely a quadratic form, so (1) is understood as the form sum; note that the estimate
(8) concerns just forms. Particularly striking by its simplicity is the construction made
in [5] for the so-called quasidefinite operators (finite matrices with this property have
been studied in [8], cf. also the references given there). Let H, A be bounded and, in
the intuitive matrix notation,

H =
[

H+ 0
0 −H−

]
, A =

[
0 B
B∗ 0

]
, (9)

with H± positive definite. Then

T =
[

1 0
B∗H−1

+ 1

] [
H+ 0
0 −H− − B∗H−1

+ B

] [
1 H−1

+ B
0 1

]
(10)

with an obvious bounded inverse. This is immediately transferable to unbounded H, A
provided that F = H−1/2

+ BH−1/2
− is bounded. Indeed, then (10) can be rewritten as

T = |H|1/2

[
1 0
F∗ 1

] [
1 0
0 −1 − F∗F

] [
1 F
0 1

]
|H|1/2 (11)

which is selfadjoint as a product of factors which have bounded inverses. Note that in
(8) we have a = 0 and b = ‖F‖ and the latter need not be less than one!
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In fact, our first task will be to derive further constructions of operators defined as
form sums. One of them takes in (9)

A =
[

A+ B
B∗ A−

]
,

where A± are H± -bounded as in (8). So, we require b < 1 only for ’diagonal blocks’.
Another one exhibits ’off-diagonal dominance’ inasmuch as H± in (9) are a sort of
B -bounded. All these constructions as well as those from [3, 2, 6, 5] are shown to be
contained in a general abstract theorem which also helps to get a unified view of the
material scattered in the literature. This is done in Sect. 2.

As a rule each such construction will also contain a spectral inclusion like (2).
In Sect. 3 we will give some more inclusion theorems under the condition (8) as an
immediate preparation for eigenvalue estimates. In the proofs the quasidefinite structure
will be repeatedly used. Moreover, the decomposition (10) and the corresponding
invertibility property will be carried over to the Calkin algebra, thus allowing tight
control of the spectral movement including the monotonicity in gaps both for the total
and the essential spectra.

In Sect. 4 we consider two-sided bounds for finite eigenvalues. They are obtained
by using analyticity and monotonicity properties.1 In order to do this we must be able

(i) to count the eigenvalues (note that we may be in a gap of the essential spectrum)
and

(ii) to keep the essential spectrum away from the considered region.
The condition (i) is achieved by requiring that at least one end of the considered interval
be free from spectrumduring the perturbation (we speak od ’impenetrability’). This will
be guaranteed by one of the spectral inclusion theorems mentioned above. Similarly,
(ii) is guaranteed by analogous inclusions for the essential spectrum. Based on this we
first prove a monotonicity result for a general class of selfadjoint holomorphic families
and then establish the bound (6) as well as an analogous relative bound generalising
(4) which includes the monotonicity of eigenvalues in spectral gaps. Another result,
perhaps even more important in practice, is the one in which the form A is perturbed
into B with B − A small with respect to A (this corresponds to relatively small
perturbations of the potential in quantum mechanical applications). In this case the
necessary impenetrability is obtained by a continuation argument which assumes the
knowledge of the whole family H+ηA instead of the mere unperturbedoperator H+A .
All our eigenvalue bounds are sharp.

The corresponding eigenvector bounds as well as systematic study of applications
to various particular classes of operators will be treated in forthcoming papers.
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2. Construction of operators

Here we will give various constructions of selfadjoint operators by means of forms
(cf. [3, 2, 6, 5]). Sometimes our results will generalise the aforementioned ones only
slightly, but we will still give the proofs because their ingredients will be used in the
later work. We shall include non-symmetric perturbationswhenever the proofs naturally
allow such possibility.

DEFINITION 2.1. We say that the open interval (λ−, λ+) is a spectral gap of a
selfadjoint operator H , if this interval belongs to the resolvent set ρ(H) and its ends, if
finite, belong to the spectrum σ(H) . The essential spectral gap is defined analogously.

DEFINITION 2.2. We say that a sesquilinear form τ , defined in a Hilbert space
H on a dense domain D represents an operator T , if

T is closed and densely defined, (12)

D(T), D(T∗) ⊆ D (13)

(Tψ , φ) = τ(ψ , φ), ψ ∈ D(T), φ ∈ D , (14)

(ψ , T∗φ) = τ(ψ , φ), ψ ∈ D , φ ∈ D(T∗). (15)

PROPOSITION 2.3. A closed, densely defined operator T is uniquely defined by
(12)–(15). If τ is symmetric then T is selfadjoint.

Proof. Suppose that T1 satisfies (12)–(15). Then

(Tψ , φ) = τ(ψ , φ) = (ψ , T∗
1 φ), ψ ∈ D(T), φ ∈ D(T∗

1 ),

(T1ψ , φ) = τ(ψ , φ) = (ψ , T∗φ), ψ ∈ D(T1), φ ∈ D(T∗).

The first relation implies T1 ⊇ T and the second T ⊇ T1 . If τ is symmetric then by
(14) and (15) both T and T∗ are symmetric and therefore equal. �

Let H be selfadjoint in a Hilbert space H and let α(·, ·) be a sesquilinear form
defined on D such that

|α(ψ , φ)| � ‖H1/2
1 ψ‖‖H1/2

1 φ‖ ψ , φ ∈ D (16)

where D is a core for |H|1/2 and

H1 = a + b|H|, a, b real, b � 0, H1 positive definite. (17)

Then the formula

(Cψ , φ) = α(H−1/2
1 ψ , H−1/2

1 φ), ψ , φ ∈ D , (18)

defines a C ∈ B(H ) with
‖C‖ � 1 (19)
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(note that H1/2
1 D is dense in H ). The form α can obviously be extended to the form

αQ , defined on the subspace

Q = D(|H|1/2) = D(H1/2
1 ) (20)

by the formula
αQ(ψ , φ) = lim

n,m→∞α(ψn, φm) (21)

for any sequence ψn → ψ , φm → φ , H1/2
1 ψn → H1/2

1 ψ , H1/2
1 φm → H1/2

1 φ . Then
(16) holds for αQ on Q and

(Cψ , φ) = αQ(H−1/2
1 ψ , H−1/2

1 φ), ψ , φ ∈ H . (22)

The sesquilinear form for H is defined on Q as

h(ψ , φ) = (J|H|1/2ψ , |H|1/2φ) (23)

with
J = sign H. (24)

In general there may be several different sign functions J of H with J2 = 1 . The form
h does not depend on the choice of J . Note that h above represents the operator H in
the sense of Definition 2.2.

THEOREM 2.4. Let H , α , C , D Q be as above and such that

Cζ = (H − ζ)H−1
1 + C (25)

is invertible in B(H ) for some ζ ∈ C . Then the form

τ = h + αQ (26)

represents a unique closed densely defined operator T whose domain is a core for
|H|1/2 and which is given by

T − ζ = H1/2
1 CζH

1/2
1 , (27)

T∗ − ζ = H1/2
1 C∗

ζH
1/2
1 , ζ ∈ C (28)

and, whenever C−1
ζ ∈ B(H ) ,

(T − ζ)−1 = H−1/2
1 C−1

ζ H−1/2
1 ∈ B(H ), (29)

(T∗ − ζ)−1 = H−1/2
1 C−∗

ζ H−1/2
1 ∈ B(H ). (30)

We call T the form sum of H and α and write

T = H + α. (31)

If α is symmetric then T is selfadjoint.
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Proof. In view of what was said above we may obviously suppose that D is
already equal to Q .2 We first prove that D(H1/2

1 CζH
1/2
1 ) is independent of ζ and is

dense in H . Indeed, for ζ , ζ ′ ∈ C and ψ ∈ D(H1/2
1 CζH

1/2
1 ) we have ψ ∈ Q and

Q � CζH
1/2
1 ψ = (H − ζ)H−1

1 H1/2
1 ψ + CH1/2

1 ψ

= (H − ζ ′)H−1/2
1 ψ + CH1/2

1 ψ + (ζ ′ − ζ)H−1/2
1 ψ

= Cζ ′H
1/2
1 ψ + (ζ ′ − ζ)H−1/2

1 ψ .

Thus, by (ζ ′−ζ)H−1/2
1 ψ ∈ Q we have Cζ ′H

1/2
1 ψ ∈ Q , hence ψ ∈ D(H1/2

1 Cζ ′H
1/2
1 ) .

Since ζ , ζ ′ are arbitrary D(H1/2
1 CζH

1/2
1 ) is indeed independent of ζ and (27) holds.

Now take ζ with C−1
ζ ∈ B(H ) . Then the three factors on the right hand side of (27)

have bounded, everywhere defined inverses, so (29) holds as well and T is closed. We

now prove that D(T) is a core for |H|1/2 or, equivalently, for H1/2
1 . That is, H1/2

1 D(T)
must be dense in H (see [3] III, Exercise 51.9). By taking ζ with C−1

ζ ∈ B(H ) we
have

H1/2
1 D(T) = H1/2

1 D(T − ζ) = H1/2
1

{
ψ ∈ Q : CζH

1/2
1 ψ ∈ Q

}
= C−1

ζ Q

and this is dense because Cζ maps bicontinuously H onto itself. In particular, D(T)
is dense in H . By

C∗
ζ = (H − ζ)H−1

1 + C∗

all properties derived above are seen to hold for T∗ as well. The identities (14), (15)
follow immediately from (27) by using the obvious identity

τ(ψ , φ) − ζ(ψ , φ) = (CζH
1/2
1 ψ , H1/2

1 φ), (32)

valid for any ψ , φ ∈ Q , ζ ∈ C . Finally, if α is symmetric then T, T∗ is also
symmetric and therefore selfadjoint. �

COROLLARY 2.5. Let H, α, τ, T be as in Theorem 2.4. Then

τ(ψ , φ) = (χ, φ)

for some ψ ∈ Q, χ ∈ H and all φ ∈ Q is equivalent to

ψ ∈ D(T), Tψ = χ.

Proof. We use the identity (32):

(C0H
1/2
1 ψ , H1/2

1 φ) = (χ, φ)

for all φ ∈ Q and the selfadjointness of H1/2
1 imply C0H

1/2
1 ψ ∈ Q = D(|H|1/2)

i.e. ψ ∈ D(|H|1/2C0H
1/2
1 ) = D(T) and |H|1/2C0H

1/2
1 ψ = Tψ = χ . �

2This assumption will be made throughout the rest of the paper, if not stated otherwise.
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REMARK 2.6. Although fairly general, Theorem 2.4 does not cover all relevant
form representations. If T = H + α and α1 is any bounded form, then τ1 = τ + α1

obviously generates a T1 in the sense of Def. 2.2 – we again write T = H + α + α1 –
while H, α + α1 need not satisfy the conditions of Theorem 2.4.

REMARK 2.7. If α is symmetric then (16) is equivalent to

|α(ψ ,ψ)| � ‖H1ψ‖2. (33)

In general, (33) implies (16) but with b replaced by 2b .

REMARK 2.8. By Proposition 2.3 the operator T = H + α does not depend on
the choice of a, b in the operator H1 from (17). Moreover, in the construction (27)
H1 may be replaced by any selfadjoint H2 = f (H) where f is a real positive-valued
function and

0 < m � a + b|λ |
f (λ )

� M < ∞.

Then
(T − ζ)−1 = H−1/2

2 D−1
ζ H−1/2

2 , (34)

where

Dζ = (H − ζ)H−1
2 + D,

D = H1/2
1 f (H)−1/2CH1/2

1 f (H)−1/2

and
Dζ = H1/2

1 f (H)−1/2CζH
1/2
1 f (H)−1/2

is invertible in B(H ) , if and only if Cζ is such.

COROLLARY 2.9. Let H , H1 = a + |H| , Q , C α = αQ , h and J be as in
(20)–(24) such that J +C is invertible in B(H ) . Then the form τ = h+α represents
a unique closed densely defined operator T = H + α in the sense of Remark 2.6.
Moreover, D(T) is a core for |H|1/2 and

T + aJ = H1/2
1 (J + C)H1/2

1 (35)

(and similarly for T∗ ).

Note that the preceding construction – in contrast to the related one in Theorem
2.4 does not give an immediate representation of the resolvent, except, if a = 0 .

In the following theorem we will use the well known formulae

σ(AB) \ {0} = σ(BA) \ {0}, (36)

(λ − BA)−1 =
1
λ

+
B(λ − AB)−1A

λ
(37)

Bf (AB) = f (BA)B, (38)

where A, B ∈ B(H ) and f is analytic on σ(AB) ∪ {0} .
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THEOREM 2.10. Let H , α , Q , C satisfy (16)–(22). Let, in addition,

C = Z∗
2 Z1, Z1,2 ∈ B(H ). (39)

Then Cζ from (25) is invertible in B(H ) , if and only if

Fζ = 1 + Z1H1(H − ζ)−1Z∗
2 . (40)

is such. In this case Theorem 2.4 holds and

(T − ζ)−1 = (H − ζ)−1 − H1/2
1 (H − ζ)−1Z∗

2 F−1
ζ Z1H

1/2
1 (H − ζ)−1. (41)

Proof. Cζ is invertible in B(H ) , if and only if

1 + H1(H − ζ)−1C = 1 + H1(H − ζ)−1Z∗
2 Z1

is invertible in B(H ) . Now,

σ(H1(H − ζ)−1Z∗
2 Z1) \ {0} = σ(Z1H1(H − ζ)−1Z∗

2 ) \ {0}
Hence Fζ is invertible in B(H ) if an only if Cζ is such. In this case (29) gives

(T − ζ)−1 = H−1/2
1 (1 + H1(H − ζ)−1Z∗

2 Z1)−1H1/2
1 (H − ζ)−1

= H−1/2
1

(
1−H1(H−ζ)−1Z∗

2 Z1(1+H1(H−ζ)−1Z∗
2 Z1)−1

)
H1/2

1 (H−ζ)−1

= (H − ζ)−1 − H1/2
1 (H − ζ)−1Z∗

2 F−1
ζ Z1H

1/2
1 (H − ζ)−1.

�
We now apply Theorem 2.4 to further cases in which the key operator Cζ from

(25) is invertible in B(H ) .

THEOREM 2.11. Let H be selfadjoint and let α satisfy (16) with b < 1 and (17).
Then the conditions of Theorem 2.4 are satisfied and ζ = λ + iη ∈ ρ(T) whenever

|η| >
a + |λ |b.√

1 − b2
(42)

Proof. To prove C−1
ζ =

(
(H − ζ)H−1

1 + C
)−1 ∈ B(H ) it is enough to show

‖H1(H − ζ)−1‖ < 1. (43)

for some ζ = λ + iη . Now,

‖(H − ζ)−1H1‖ � sup
ξ∈R

ψ(ξ , a, b, λ ,η), ψ(ξ , a, b, λ ,η) =
b|ξ |+ a√

(ξ − λ )2 + η2

A straightforward, if a bit tedious, calculation (see Appendix) shows

max
ξ

ψ =
1
|η|
√

(a + |λ |b)2 + b2η2 (44)
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Hence (42) implies (43). �
Another similar criterion for the validity of Theorem 2.4 — oft independent of that

of Theorem 2.11 — is given by the following

COROLLARY 2.12. Let H , α , C satisfy (16)–(18) and let

‖Z1H1(H − ζ)−1Z∗
2 ‖ < 1. (45)

for some ζ ∈ ρ(H) and with Z1,2 from (39). Then Theorem 2.10 applies.

Typically we will have

α(ψ , φ) = (V1ψ , V2φ), (46)

where V1,2 are linear operators defined on Q such that

Z1,2 = V1,2H
1/2
1 ∈ B(H ). (47)

In this case the formula (45) can be given a more familiar, if not always rigorous, form
(cf. [6])

‖V1(H − ζ)−1V∗
2 ‖ < 1.

REMARK 2.13. If α(ψ , φ) = (Aψ , φ) , where A is a linear operator defined on
D ⊆ D(H) , D a core for |H|1/2 then Theorem 2.11 applies and, by construction, the
obtained operator coincides with the one in [3] VI. Th. 3.11. The uniqueness of T as
an extension of H + A , proved in [3] makes no sense in our more general, situation.
Our notion of form uniqueness (which was used by [6] in the symmetric case) will
be appropriate in applications to both Quantum and Continuum Mechanics. Thus, our
Theorem 2.11 can be seen as a slight generalisation of [3]. On the other side, our proof
of Theorem 2.4 closely follows the one from [3].

Cor. 2.9 and Th. 2.10 are essentially Theorems. 2.1, 2.2 in [6] except for the
following: (i) our α need not be symmetric, (ii) we use a more general factorisability
(39) instead of (46) which is supposed in [6] and finally, (iii) we need no relative
compactness argument to establish Theorem 2.10. The fact that the mentioned results
from [6] are covered by our theory will facilitate to handle perturbations of the form α
which are not easily accessible, if α is factorised as in (46). The spectral inclusion
formula (42) seems to be new.

Thus, our Theorem 2.4 seems to cover essentially all known constructions thus
far.3

Next we give some results on the invariance of the essential spectrum.

THEOREM 2.14. Let H , h , α , C , D Q satisfy (16)–(24) with α symmetric.
(i) If the operator C is compact then Theorem 2.11 holds and σess(T) = σess(H) .
(ii) If Theorem 2.4 holds and H−1

1 C is compact then again σess(T) = σess(H) .

3There are two obvious extensions: (i) adding a bounded form (Remark 2.6) and (ii) multiplying T
by a bicontinuous operator. An example of the latter is T = H + α described in Cor. 2.9.
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Proof. In any of the cases (i), (ii) we can find a ζ for which C−1
ζ ∈ B(H ) (in

the case (i) this follows from the known argument that for a compact C the estimate
(16) will hold with arbitrarily small b ) so Theorem 2.4 holds anyway. By (29) we have

(T − ζ)−1 − (H − ζ)−1 = H−1/2
1

(
((H − ζ)H−1

1 + C)−1 − H1(H − ζ)−1
)
H−1/2

1

= H−1/2
1

(
(1 + A)−1 − 1

)
H1/2

1 (H − ζ)−1

where H−1
1 A = (H − ζ)−1C is compact and by C−1

ζ ∈ B(H ) also (1 + A)−1 ∈
B(H ) . Hence

(T − ζ)−1 − (H − ζ)−1 = −H−1/2
1 A(1 + A)−1H1/2

1 (H − ζ)−1

is compact and the Weyl theorem applies. �
Finally we borrow from [6] the following result which will be of interest for Dirac

operators with strong Coulomb potentials.

THEOREM 2.15. Let H , α , Q , C , V1,2 , Z1,2 , T be as in Theorem 2.10. Let, in
addition, Cζ from Theorem 2.4 be invertible in B(H ) and

1. H have a bounded inverse,
2. the operator Z∗

2 (H − ζ)−1Z1 be compact for some (and then all) ζ ∈ ρ(H) .
Then σess(T) ⊆ σess(H) .

The key invertibility of the operator Cζ can be achieved in replacing the require-
ment b < 1 in (16) by some condition on the structure of the perturbation. One such
structure is given, at least symbolically, by the matrix[

W+ B
B −W−

]
, (48)

where W± are accretive. Such operator matrices appear in various applications (Stokes
operator, Dirac operator, especially on a manifold ([5], [10]) and the like). Even more
general cases could be of interest, namely those where b < 1 in (16) is required to hold
only on the “diagonal blocks” of the perturbation α . We have

THEOREM 2.16. Let H , α = αQ , C , h satisfy (16)–(24) such that H has a
spectral gap (λ−, λ+) containing zero. Suppose

±�α(ψ ,ψ) � a±‖ψ‖2 + b±‖|H − d|1/2ψ‖2, ψ ∈ P±Q, (49)

a± > 0, 0 < b± < 1, (50)

α(ψ , φ) = α(φ,ψ), ψ ∈ P+Q, φ ∈ P−Q. (51)
where P± = (1 ± J)/2 . Finally, suppose

λ̂− = λ− + b−|λ−| < λ̂+ = λ+ − b+|λ+|. (52)

Then τ = h +α generates a closed, densely defined operator T with D(T) a core for
|H|1/2 and

(λ̂−, λ̂+) + iR ⊆ ρ(T). (53)
The operator T is selfadjoint, if α is symmetric.
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Proof. We split the perturbation α into two parts

α = χ + χ′

where χ is the ’symmetric diagonal part’ of α , that is,

αd(ψ , φ) = α(P+ψ , P+φ) + α(P−ψ , P−φ),

χ(ψ , φ) =
1
2

(
αd(ψ , φ) + αd(φ,ψ)

)
.

Symbolically,4

χ =
[
χ+ 0
0 −χ−

]
, h =

[
h+ 0
0 −h−

]
.

Now (49) and the standard perturbation result for closed symmetric forms ([3] Ch. VI,
Th. 3.6) implies h̃± = h± + χ± is symmetric, bounded from below by

±λ± − b±|λ±| − a±

and closed on Q . The thus generated selfadjoint operator H̃± has D(|H̃±|1/2) =
P±Q . Now,

τ = h + α = h̃ + χ′, h̃ =
[

h̃+ 0
0 −h̃−

]
.

We write

τ = h + α = h̃ + χ′, h̃ =
[

h̃+ 0
0 −h̃−

]
, H̃ =

[
H̃+ 0
0 −H̃−

]
,

where H̃ has a spectral gap contained in (λ̃−, λ̃+) and

J = sign (H̃ − d) = sign H, λ̃− < d < λ̃+.

We will apply Theorem 2.4 to H̃ , χ′ . We have first to prove that H̃, χ′ satisfy the
conditions (16), (17) (possibly with different constants a, b ). By (49) we have

0 � h± � a±
1 − b±

+
h̃±

1 − b±
.

Hence
|H| � c|H̃ − d|

for any d ∈ (λ̃−, λ̃+) and some c = c(d) . So, H̃, χ′ satisfy (16), (17) with |H|
replaced by |H̃ − d| . We take ζ = d + iη and set

T̃ − ζ = |H̃ − d|1/2Dζ |H̃ − d|1/2 (54)

Dζ = J − ζ |H̃ − d|−1 + D,

4Throughout this paperwewill freely usematrix notation for boundedoperators aswell as for unbounded
ones or forms whenever the latter are unambigously defined. The matrix partition refers to the orthogonal
decomposition H = P+H ⊕ P−H .
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(Dψ , φ) = χ′(|H̃ − d|−1/2ψ , |H̃ − d|−1/2φ),

D =
[

D+ F
F∗ −D−

]
.

By the construction we have

�χ′(P±ψ , P±ψ) = 0. (55)

Hence D± are skew Hermitian and

Dζ =
[

1 − iη(H̃+ − d)−1 + D+ F
F∗ −1 − i(d − H̃−)−1 − D−

]
where the first diagonal block is uniformly accretive and the second uniformly dissipa-
tive, so D−1

ζ ∈ B(H ) by virtue of the factorisation (10) which obviously holds in this
case, too. Thus,

(T − ζ)−1 = |H̃ − d|−1/2D̃−1
ζ |H̃ − d|1/2 ∈ B(H )

and Theorem 2.4 applies. Note also that |H|1/2 and |H̃|1/2 have the same set of cores.
�

COROLLARY 2.17. If in the preceding theorem we drop the condition (52) or even
the existence of the spectral gap of H we still have T = H +α but without the spectral
inclusion (53).

Proof. We first apply the preceding theorem to T̂ = Ĥ + α with Ĥ = H + δJ
and δ > 0 large enough to insure that (52) holds. Then set T = T̂ − δJ . �

REMARK 2.18. Theorem2.16 becomes particularly elegant, if we set a±, b± = 0 .
If, in addition, α is taken as symmetric then we have a ’quasidefinite form’ τ as was
mentioned in Sect. 1. In this case we require only the condition (16) with no restriction
on the size of a, b (for H,α non-negative this is a well-known fact).

There is an alternative proof of Theorem 2.16 which we now illustrate (we assume
for simplicity that a± = 0 ). Instead of the pair H, α consider JH = |H|, Jα where
Jα is the ’product form’ naturally defined by

Jα(ψ , φ) = α(ψ , Jφ)

As one immediately sees the new form

Jτ = Jh + Jα

is sectorial and its symmetric part Jh is closed non-negative, so by the standard theory
([3] Ch. VI. §3) Jτ generates a closed sectorial operator which we denote by JT .
Symbolically,

JT =
[

1 0
0 −1

] [
A+ B
B∗ −A−

]
=
[

A+ B
−B∗ A−

]
.
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The reason why we still stick at our previous proof is its constructivity (here we have
no direct access to the resolvent) as well as its ’symmetry’, (here even for a symmetric
α a detour through non-symmetric objects is made).

Another case in which Theorem 2.4 can be applied is the one in which (48) is
’off-diagonally dominant’ (cf. [10]). We set

H =
[

0 B
B∗ 0

]
(56)

where B is a closed, densely defined operator between the Hilbert spaces H− and
H+ . It is easy to see that H is selfadjoint on D(B∗) ⊕ D(B) (see [7], Lemma 5.3).
Denote by

B = U
√

B∗B (57)

the corresponding polar decomposition (see [3], Ch. VI, §2.7) and suppose that U is an
isometry from H− onto H+ . Then

H =
[

0 U
√

B∗B
U∗√BB∗ 0

]
=
[

0 U
U∗ 0

] [ √
BB∗

0
√

B∗B

]
= J|H|,

J2 = I.

The form α is defined as follows. Denoting

ψ =
[
ψ+
ψ−

]
, ψ+ ∈ D(B∗), ψ− ∈ D(B)

we set
α(ψ , φ) = α+(ψ+, φ+) − α−(ψ−, φ−) (58)

where α± , defined on D(B∗) , D(B) , respectively, are symmetric and non-negative.

THEOREM 2.19. Let H , α , B , U be as above. Let

α+(ψ ,ψ) � a+‖ψ‖2 + b+

(
(BB∗)1/2ψ ,ψ

)
, ψ ∈ D(B∗), (59)

α−(ψ ,ψ) � a−‖ψ‖2 + b−
(
(B∗B)1/2ψ ,ψ

)
, ψ ∈ D(B), (60)

for some a±, b± > 0 . Then τ = h + α generates a unique T = H + α in the sense
of Definition 2.2.

Proof. Since α is defined on

D(B∗) ⊕ D(B) = D(
√

BB∗) ⊕ D(
√

B∗B)

which is obviously a core for |H|1/2 we can use (21) to extend α to Q still keeping
the estimates (59), (60) and similarly with α± . (For simplicity we denote the extended
forms again by α,α± , respectively.)

We first consider the special case, in which B has an inverse in B(H+, H−) .
Then we can obviously assume that a± = 0 (by increasing the size of b± , if necessary,
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note that now both BB∗ , B∗B are positive definite). Clearly, H−1 ∈ B(H ) , so we
may use the representation T = |H|1/2(J + D)|H|1/2 with

J = sign H =
[

0 U
U∗ 0

]
and

D =
[

D+ 0
0 −D−

]
where D± are bounded symmetric non-negative. Now, we have to prove the bounded
invertibility of

J + D =
[

1 0
−D−U∗ 1

] [
U 0
0 U∗ + D−U∗D+

] [
U∗D+ 1
1 0

]
(61)

which, in turn, depends on the bounded invertibility of

U∗ + D−U∗D+

or, equivalently, of 1 + UD−U∗D+ . The latter is true because the spectrum of the
product of two bounded symmetric non-negative operators is known to be real and
non-negative.

In general we first apply Theorem 2.19 to τ1 = h1 + α where h1 belongs to[
0 B1

B∗
1 0

]
and

B1 = (
√

BB∗ + δ)U, δ > 0.

Indeed, by B∗
1B1 = B∗B + δ and B1B∗

1 = UB1B∗
1U

∗ + δ = BB∗ + δ (here we have
used the assumed isomorphy property of U ) the inequalities (58) are valid for B1 as
well. Thus, τ1 generates T1 and τ = τ1 + (τ − τ1) generates T the difference τ − τ1

being bounded. �

REMARK 2.20. If in the preceding theorem we have B−1 ∈ B(H+, H−) then
we can take a± = 0 and T−1 ∈ B(H ) follows. This is immediately seen from the
factorisation (61).

REMARK 2.21. The property of off-diagonal dominance was used in [10] for a
special Dirac operator with a bounded form α including the decomposition (61). This
decomposition has a similar disadvantage as the one described in Remark 2.18: it is
not symmetric i.e. it has not the form of a congruence like e.g. (10), but we know of no
better as yet.

If in (48) we drop the positive definiteness of, say, H− we still may have a positive
definite Schur complement. This gives one more possibility of constructing selfadjoint
operators.

THEOREM 2.22. Let τ be a symmetric sesquilinear form defined on a dense
subspace Q ⊆ H . Let P+, P− be an orthogonal decomposition of the identity such
that
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(i) P±Q ⊆ Q ,
(ii) τ , restricted to P+Q is closed and positive definite,
(iii)

sup
ψ∈P−Q,φ∈P+H , ψ ,φ �=0

|τ(ψ , H−1/2
+ φ)|

‖ψ‖‖φ‖ < ∞,

where H+ is the operator generated by τ in P+H ,
(iv) denoting by N ∈ B(P−H , P+H ) the operator, defined by (Nψ , φ) = τ(ψ , H−1/2

+ φ) ,
the form

P−Q � ψ , φ → −τ(ψ , φ) + (Nψ , Nφ) (62)
is closed and positive definite.

Then there exists a unique selfadjoint operator T such that
(a) D(T) ⊆ Q ,
(b) τ(ψ , φ) = (Tψ , φ), ψ ∈ D(T), φ ∈ Q.

The operator T is given by the formulae

T = WH1W
∗, (63)

W =
[

1 0

NH−1/2
+ 1

]
∈ B(H ), (64)

H1 =
[

H+ 0
0 −H̃−

]
, (65)

where H̃− is generated by the form (62).

Proof. Obviously

T−1 = W−∗H−1
1 W−1 ∈ B(H ),

where every factor is bounded. Also

W∗Q ⊆ Q, W−∗Q ⊆ Q,

D(T) ⊆ Q = D(|T1|1/2).
Now take

ψ =
[
ψ1

ψ2

]
∈ D(T),

[
φ1

φ2

]
∈ Q.

Then

(Tψ , φ) = (H1W
∗ψ , W∗φ)

=
(

H1

[
ψ1 + H−1/2

+ Nψ2

ψ2

]
,

[
φ1 + H−1/2

+ Nφ2

φ2

])
=

([
H1/2

+ ψ1 + Nψ2

−H̃1/2
− ψ2

]
,

[
H1/2

+ φ1 + Nφ2

H̃1/2
− φ2

])
= τ(ψ1, φ1) + (H1/2

+ ψ1, Nφ2) + (Nψ2, H
1/2
+ φ1)

+(Nψ2, Nφ2) + τ(ψ2, φ2) − (Nψ2, Nφ2).
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Now by (Nψ2, H
1/2
+ φ1) = τ(ψ2,ψ1) we obtain

(Tψ , φ) = τ(ψ , φ)

whereas the uniqueness follows from Proposition 2.3. �

3. More spectral inclusions

Some spectral inclusion results are already contained in the construction Theorems
2.11 and 2.16. They control the spectral gap at zero. In the sequel we produce additional
results valid for general spectral gaps. We restrict ourselves here and in the following
to symmetric forms α and therefore to selfadjoint operators T = H + α .

THEOREM 3.1. Let (λ−, λ+) be an open interval, contained in ρ(H) such that
λ± ∈ σ(H) (we allow λ± = ±∞ ) and let T = H + α satisfy Theorem 2.11. Let, in
addition, the open interval

I = (λ− + (a + b|λ−|), λ+ − (a + b|λ+|)) (66)

be non-void. Then I ⊆ ρ(T) .

Proof. Without loss of generality we may take λ+ > 0 (otherwise consider
−H,−T ). We supose first that both λ− and λ+ are finite. For d ∈ (λ−, λ+) we will
have

(T − d)−1 = H−1/2
1 ((H − d)H−1

1 + C)−1H−1/2 ∈ B(H ),

if
‖(H − d)−1H1‖ < 1.

Now,
‖(H − d)−1H1‖ = sup

λ �∈(λ−,λ+)
f (λ ),

f (λ ) =
b|λ | + a
|λ − d| .

We now compute the supremum above.
Case 1: λ− > 0 . Then d > 0 .

λ � λ+ :

(
bλ + a
λ − d

)′
=

b(λ − d) − (bλ + a)
(λ − d)2

=
−db − a
(λ − d)2

, (67)

max
λ�λ+

f (λ ) =
bλ+ + a
λ+ − d

> b;

0 � λ � λ− :

(
bλ + a
d − λ

)′
=

b(d − λ ) + (bλ + a)
(λ − d)2

=
db + a

(λ − d)2
, (68)

max
0�λ�λ−

f (λ ) =
bλ− + a
d − λ−

>
a
d
;
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λ � 0 :

(−bλ + a
d − λ

)′
=

−b(d − λ ) + (−bλ + a)
(λ − d)2

=
−db + a
(λ − d)2

, (69)

sup
λ�0

f (λ ) =
{

a/d, a > db
b, a � db

Altogether,

max
λ �∈(λ−,λ+)

f (λ ) = max

{
bλ+ + a
λ+ − d

,
bλ− + a
d − λ−

}
and this is obviously less than one, if d ∈ I .

Case 2: λ− � 0 . Then d may be negative. By (67),

sup
λ�λ+

f (λ ) =

⎧⎨⎩
bλ+ + a
λ+ − d

a + db � 0

b, a + db � 0
(70)

By (69),

sup
λ�λ−

f (λ ) =

⎧⎨⎩
−bλ− + a
d − λ−

a > db

b, a � db
(71)

Again, both suprema are less than one, if d ∈ I . If one of λ± is infinite the proof
goes along the same lines and is simpler still. �

Tighter bounds can be obtained, if more is known on the perturbation α . If α is,
say, non-negative then

α = α0 + e0, e0 = inf
ψ

α(ψ ,ψ)
(ψ ,ψ)

and both α0 and e0 are non-negative. Now for

T = H + α = H1/2
1 (HH−1

1 + C)H1/2
1

we have
T − e0 = H + α0 = H1/2

1 (HH−1
1 + C0)H

1/2
1

where
C0 = C − e0H

−1
1

is again non-negative bur smaller than C , in particular,

minσ(C0) = 0.

Indeed,
(C0ψ ,ψ)
(ψ ,ψ)

=
α0(φ, φ)
(φ, φ)

(φ, φ)

‖H1/2
1 φ‖2

, ψ = H1/2
1 φ.

where

inf
φ

α0(φ, φ)
(φ, φ)

= 0, (72)
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sup
ψ

(φ, φ)

‖H1/2
1 φ‖2

< ∞.

In this way we can always extract away the trivial scalar part e0 of the perturbation
α (and similarly for a non-positive α ). In the following theorem we will therefore
suppose that

inf
φ

α0(φ, φ)
(φ, φ)

= 0, if α is non-negative, (73)

sup
φ

α0(φ, φ)
(φ, φ)

= 0, if α is non-positive. (74)

Then

minσ(C) = 0, if α is non-negative, (75)

maxσ(C) = 0, if α is non-positive. (76)

THEOREM 3.2. Let (λ− , λ+) , H , α , T , C be as in the previuos theorem and
let α satisfy (73, 74) above. If the interval

I = (λ− + c+(a + b|λ−|), λ+ + c−(a + b|λ+|)) (77)

where

c− = min(σ(C)) = inf
ψ

α(ψ ,ψ)

‖H1/2
1 ψ‖2

, c+ = max(σ(C)) = sup
ψ

α(ψ ,ψ)

‖H1/2
1 ψ‖2

, (78)

is not void then it is contained in ρ(T) .

Proof. We supose first that the interval (λ−, λ+) is finite. Then by virtue of (75)
or (76) this interval must contain I .

For every d ∈ I the complementary projections

P± =
1
2
(±sign (H − d) + 1))

obviously do not depend on d . In the corresponding matrix representation we have

(H − d) =
[

(H − d)+ 0
0 −(H − d)−

]
,

(H − d)H−1
1 =

[
(H − d)+(a + bH+)−1 0

0 −(H − d)−(a + bH−)−1

]
,

C =
[

C11 C12

C∗
12 C22

]
,

T − d = H1/2
1 ZH1/2

1

with

Z =
[

A C12

C∗
12 −B

]
,
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A = (H − d)+(a + bH+)−1 + C11, B = (H − d)−(a + bH−)−1 − C22

so that Z−1 ∈ B(H ) implies d ∈ ρ(T) . By the obvious identity

Z =
[

1 0
C∗

12A
−1 1

] [
A 0
0 −B − C∗

12A
−1C12

] [
1 A−1C12

0 1

]
we see that Z−1 ∈ B(H ) follows, if both operators A, B are positive definite, in
particular, if both

(H − d)+H−1
1+ + c− and (H − d)−H−1

1− − c+

are positive definite. This, in turn, is equivalent to

1 + c− sup
λ�λ+

a + b|λ |
λ − d

> 0 (79)

and

1 − c+ sup
λ�λ−

a + b|λ |
d − λ

> 0. (80)

Noting that (70) is valid for any possible value of λ− we may rewrite (79) as

λ+ − d + c−(a + bλ+) > 0 & 1 + c−b > 0.

Here the second inequality is fullfilled by 0 � b < 1, |c−| � 1 whereas the first is
implied by d ∈ I . Now for (79). If λ− > 0 then by (68) and (69) we have

sup
λ�λ−

a + b|λ |
d − λ

= max

{
bλ− + a
d − λ−

, b

}
and (80) can be written as

1 > c+ max

{
bλ− + a
d − λ−

, b

}
which is again guaranteed by d ∈ I . Here, too, the proof is even simpler, if one of
λ± is infinite. �

REMARK 3.3. (i) Neither of the above two theorems appears to be stronger or
weaker than the other – in spite of the fact that the interval I from Theorem 3.1 is
smaller than the one from Theorem 3.2. This lack of elegance is due to the fact that
relative bounds are not shift-invariant.

(ii) Both theorems can be understood as upper-semicontinuity spectral bounds.
According to Theorem 3.1 a boundary spectral point λ cannot move further than
±|λ |(a + b|λ |) . Similarly, by Theorem 3.2 λ can move as far as λ + c±(a + b|λ |) .
In particular, the spectrum moves monotonically even in spectral gaps: for, say, α
non-negative,

I = (λ− + c+(a + b|λ−|), λ+) . (81)

(iii) If T = H + A , A bounded then

I = (λ− + maxσ(A), λ+ + minσ(A)) .
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Bounds for the essential spectra. The proofs of the preceding two Theorems
have enough of algebraic structure to be transferable to the Calkin quotient C ∗ algebra
B(H )/C (H ) , where C (H ) is the ideal of all compact operators. Using this we
will now derive analogous bounds for the essential spectra.

We first list some simple facts which will be used. Let A be a semisimple
C ∗ algebra with the identity e . If p ∈ A , p �= e, is a projection then the subalgebra

Ap = {b ∈ A : bp = pb = b}
is again semisimple with the unit p . An element b ∈ A is invertible in Ap , if and
only if in A its spectrum has zero as an isolated point and the corresponding projection
is q = e − p . If A = B(H ) then Ap is naturally identified with B(pH ) . An
element b ∈ A is called positive, if its spectrum is non-negative. A sum of two positive
elements, one of which is invertible, is itself positive and invertible.

PROPOSITION 3.4. Let a = a∗ ∈ A be invertible and let p, q �= 0 be the
projections belonging to the positive and the negative part of σ(a) , respectively. Let
b = b∗ ∈ A and pbp = qbq = 0 . Then a + b is invertible.

Proof. The elements ap, aq are invertible with the inverses a(p), a(q) in Ap, Aq ,
respectively. Moreover both a(p) and −a(q) are positive. The fundamental identity
(the Schur-complement decomposition)

a + b = za0z
∗

with
z = e + qba(p), z−1 = e − qba(p),

a0 = ap + aq − qba(p)bq

is readily verified. Thus, we have to prove the invertibility of a0 in A . Obviously
ã = aq− qba(p)bq is invertible in Aq (being a sum of negative elements one of which
is invertible). Denoting by ã(q) its inverse in Aq we have

a−1
0 = a(p) + ã(q).

Indeed,
(a(p) + ã(q))(ap + ã) = (ap + ã)(a(p) + ã(q)) = p + q = e.

�
We now prove an analog of Theorem 3.2 for the essential spectrum.

THEOREM 3.5. Let (λ− , λ+) ∩ σess(H) = ∅ , λ± ∈ σess(H) and let T = H + α
satisfy Theorem 2.11 as well as (73,74), respectively. If the interval

I = (λ− + c+(a + b|λ−|), λ+ + c−(a + b|λ+|)) (82)

with
c− = min(σess(C)), c+ = max(σess(C)) (83)

is not void then I ∩ σess(T) = ∅ .
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Proof. Obviously, σess(C) = σ(Ĉ) , where

̂ : B(H ) → A

is the Calkin homomorphism. Whenever Cζ is invertible in B(H ) and in particular
for ζ = iη , |η| large (27) yields

r(ζ) = ̂(T − ζ)−1 = Ĥ−1/2
1 (D̂ + Ĉ)−1Ĥ−1/2

1 , (84)

D = (H − ζ)H−1
1 .

By the spectral mapping principle r(ζ) is analytically continued onto the complement of
σess(T) . This complement contains all real ζ = d ∈ (λ−, λ+) for which (D̂ + Ĉ)−1 ∈
A . Obviously

σ(D̂) = f (σess(H)), f (λ ) =
λ − d

a + b|λ |
and D̂−1 ∈ A . Let p, q ∈ A be the projections corresponding to the positive and the
negative part of the spectrum of D̂ , respectively. As in Theorem 3.2 one proves that

ap = pD̂ + pĈp, −aq = −qD̂ − qĈq

are positive and invertible in Ap , Aq , respectively. Now apply Proposition 3.4 to

a = ap + aq, b = pĈq + qĈp

thus obtaining the invertibility in A of a + b = D̂ + Ĉ . �
In particular, the essential spectrum depends monotonically on α . Of course, if

C is compact then c± = 0 and we have (λ−, λ+) ∩ σess(T) = ∅ as was known from
Theorem 2.14.

There is an essential-spectrum analog of Theorem 3.1 as well:

THEOREM 3.6. Let (λ− , λ+) ∩ σess(H) = ∅ , λ± ∈ σess(H) and let T = H + α
satisfy Theorem 2.11. If the interval

I = (λ− + (a + b|λ−|), λ+ − (a + b|λ+|)) (85)

is not void then I ∩ σess(T) = ∅ .

The proof is similar as above and is omitted.

4. Finite eigenvalues

All forms in this section will be symmetric. The following theorem is a necessary
tool from the analytic perturbations which will be repeatedly used later on.

THEOREM 4.1. Let H , α = αε for ε from an open interval I satisfy the
conditions of Theorem 2.4 and such that αε is symmetric and C = Cε from (22) is real
analytic in ε ∈ I and

Cζ ,ε = (H − ζ)H−1
1 + Cε
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is invertible in B(H ) for all ζ from an open set O ⊆ C and all ε ∈ I . Then the
operator family Tε = T + αε is holomorphic in the sense of [3], Ch. VII, 1. Moreover,
the derivative of an isolated holomorphic eigenvalue λ (ε) of Tε with finite multiplicity
is given by

λ ′(ε) =
1
m

Tr
(
(H1/2

1 Pε)∗C′
εH

1/2
1 Pε

)
. (86)

Here m, Pε denotes the multiplicity and the spectral projection on the (total) eigenspace
for λ (ε) , respectively.

Proof. The formula (86) is plausible being akin to known analogous expressions
from the analytic perturbation theory ([3], Ch. VII). For completeness we provide a
proof in this more general situation.5

Let ε0 ∈ I and let Γ be a closed Jordan curve separating λ (ε0) from the rest of
σ(Tε0) . Let Γ1 ⊆ ρ(Tε0) be another curve connecting O and Γ . Take any connected
neighbourhood O0 of Γ ∪ Γ1 with O0 ⊆ ρ(Tε0) . According to [3], Ch. VII Th. 1.7
there exists a complex neighbourhood U0 of ε0 such that (λ − Tε)−1 is holomorhic
in O0 × U0 .

For λ ∈ O and ε ∈ U 0 we have

(λ − Tε)−1 = −H−1/2
1 C−1

λ ,εH
−1/2
1 ,

∂

∂ε
(λ − Tε)−1 = H−1/2

1 C−1
λ ,εC

′
εC

−1
λ ,εH

−1/2
1 .

Note that R(Pε) ⊆ Q and hence

H−1/2
1 C−1

λ ,εH
−1/2
1 Pε =

1
λ − λ (ε)

Pε .

By H1/2
1 Pε ∈ B(H ) we have

C−1
λ ,εH

−1/2
1 Pε =

1
λ − λ (ε)

H1/2
1 Pε ,

Pε
∂

∂ε
(λ − Tε)−1Pε =

1
(λ − λ (ε))2

(H1/2
1 Pε)∗C′

εH
1/2
1 Pε . (87)

On the other hand (see [3])

Pε =
1

2πi

∫
Γ
(λ − Tε)−1dλ ,

TεPε =
1

2πi

∫
Γ
λ (λ − Tε)−1dλ =

1
2πi

∫
Γ
λPε(λ − Tε)−1Pεdλ ,

λ (ε) =
1
m

Tr(TεPε).

5Our case is close to the holomorphic family of type (C) from [3], Ch. VII, §5.1 where no such details
are elaborated.
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Using P2
ε = Pε and P′

εPε = 0 we have

λ ′(ε) =
1

2πim
Tr

(∫
Γ
λPε

∂

∂ε
(λ − Tε)−1Pεdλ

)
(88)

(here the integration over λ and the differentiation over ε obviously commute). The
formula (87) can be analytically continued in λ ∈ O0 and inserted into (88). By using
the obvious identity

1
2πi

∫
Γ

λdλ
(λ − λ (ε))2

= 1

and taking trace we obtain (86). �
The preceding theorem is not general enough to cover all situations of interest:

THEOREM 4.2. Let Tε = H + αε be as in Theorem 4.1 above and let B(ε) be
a bounded symmetric family, analytic in ε . Let, in addition the set O contain a full
vertical half-line. Then the assertions of Theorem 4.1 hold true for Tε + B(ε) but
instead of (86) we have

λ ′(ε) =
1
m

Tr
(
(H1/2

1 Pε)∗C′
εH

1/2
1 Pε + PεB

′(ε)Pε

)
. (89)

Proof. We proceed as in the proof of Theorem 4.1 keeping in mind that the formula
(29) is not immediately applicable to Tε + B(ε) . We can take Γ1 so as to contain a
point λ0 ∈ O such that ‖B(ε0)(λ − Tε0)−1‖ < 1 . This insures λ ∈ ρ(Tε + B(ε)) for
λ ∈ O1 ⊆ O , ε ∈ U0 . Then

∂

∂ε
(λ − Tε − B(ε))−1 =

∂

∂ε

[
(λ − Tε)−1 (1 − B(ε)(λ − Tε)−1)−1

]
=

∂

∂ε
(λ − Tε)−1

(
1 − B(ε)(λ − Tε)−1

)−1

+ (λ − Tε)−1
(
1 − B(ε)(λ − Tε)−1

)−1

×
(

B′(ε)(λ − Tε)−1 + B(ε)
∂

∂ε
(λ − Tε)−1

)
× (1 − (λ − Tε)−1B(ε)

)−1

=
(
1−B(ε)(λ−Tε)−1

)−1 ∂

∂ε
(λ−Tε)−1

(
1−B(ε)(λ−Tε)−1

)−1

+ (λ − Tε − B(ε))−1 B′(ε) (λ − Tε − B(ε))−1

Then using (87)

Pε
∂

∂ε
(λ − Tε − B(ε))−1Pε =

1
(λ − λ (ε))2

[
(H1/2

1 Pε)∗C′
εH

1/2
1 Pε + PεB

′(ε)Pε

]
which leads to (89) as in the theorem above. �

The first application of Theorems 4.1, 4.2will be a result on monotonicity. We have
to assume that the spectrum under consideration is sufficiently protected from unwanted
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spectral points. We say that a real point d is impenetrable (essentially impenetrable)
for a selfadjoint family Tγ , γ from any set of indices, if d �∈ σ(Tγ ) (d �∈ σess(Tγ ) ).

THEOREM 4.3. Let Tε = H + αε be analytic in ε ∈ [ε0, ε1] in the sense
of Theorem 4.1.6 Let αε be non-decreasing in ε , let an open interval (d, d1) be
essentially impenetrable and one of its ends, say, d be impenetrable for Tε . Let

λ 1
1 � λ 1

2 � · · ·
be the eigenvalues in (d, d1) of Tε1 . Then the spectrum of Tε0 in (d, d1) consists of
the eigenvalues which can be ordered as

λ 0
1 � λ 0

2 � · · ·
and they satisfy

λ 0
k � λ 1

k , k = 1, 2, . . . (90)

Proof. For a fixed n let λ 1
1 , λ 1

2 � · · · � λ 1
n be the smallest n eigenvalues of

Tε1 . Any of them can be analytically continued to a neighbourhood of ε = ε1 . By
the assumed monotonicity (we use Theorem 4.1 with C′

ε � 0 as well as the assumed
impenetrabilities) this analytic continuation covers the whole of [ε0, ε1] i.e. we obtain
analytic non-decreasing functions

d < λ1(ε), λ2(ε), . . . λn(ε) < d1

as eigenvalues of Tε . By a permutation, piecewise constant in ε , we obtain

d < λ̂1(ε) � λ̂2(ε) � · · · � λ̂n(ε) < d1

which are continuous,piecewise analytic,7 still non-decreasing in ε and satisfy λ̂k(ε1) =
λ 1

k . By setting ε = ε0 we obtain n eigenvalues of Tε0

d < λ̂1(ε0) � λ̂2(ε0) � · · · � λ̂n(ε0) < d1

which obviously satisfy
λ̂k(ε0) � λ 1

k , k = 1, 2, . . . n.

Then a fortiori
λ 0

k � λ̂k(ε0) � λ 1
k , k = 1, 2, . . . n. (91)

and n is arbitrary. The fact that there exists the smallest eigenvalue λ 0
1 of Tε0 is due

to the impenetrability of the point d . �

REMARK 4.4. Note that, in fact, the theorem above asserts the existence of at least
that much eigenvalues of Tε0 as the λ 1

k . Obviously, if we assume that both interval
ends are impenetrable, then Theorem 4.3 applies in both directions and the eigenvalues
of Tε0 and Tε1 have the same cardinality which is finite.

6Analyticity in a closed interval means the same in a complex neighbourhood of that interval.
7A real function f is called piecewise analytic on an open interval J , if it is real-analytic on J \S

where S is a discrete set and f has analytic continuation from each side of any point from S , but the two
continuatons need not to coincide.
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REMARK 4.5. Theorem 4.3 also holds under the conditions of Theorem 4.2, if we
assume that the form αε + B(ε) is non-decreasing.

COROLLARY 4.6. Let in Theorem 4.3 αε = α0 + εα1 and let in (90) the equality
hold for some k . Then there is ψ �= 0 with

Tε1ψ = Tε0ψ = λ 1
k ψ , (92)

Proof. By the assumption, and using the inequalities (91) from the proof of
Theorem 4.3 we obtain

λk = λ̂k(ε) = λ̂k(ε0) = λ̂k(ε1), for all ε ∈ [ε0, ε1].

Thus, λ̂k(ε) is constant in ε ∈ [ε0, ε1] . Now (86) yields

Tr(H1/2
1 Pε)∗C1H

1/2
1 Pε = 0 (93)

for ε from a neighbourhood of ε1 , where Pε is the (total) projection belonging to the
spectral point λk(ε) , ε < ε1 and

Cε = C0 + εC1

with C′
ε = C1 non-negative. Thus, (93) implies

C1H
1/2
1 Pε = 0

and, in particular,
α1(ψ , φ) = 0, for all φ ∈ Q,

where Tεψ = λ 1
k ψ for all ε , in particular, Tε0ψ = Tε1ψ = λ 1

k ψ = λ 0
k ψ . �

The existence of an impenetrable point d was crucial in Theorem 4.3. It can be
guaranteed by one of the spectral inclusions, contained in Theorems 2.16, 3.1, 3.2;
each of them contains some restrictions on the size of α in comparison to H . Deeper
reaching criteria will compare an ’unknown’ α with a known α0 , which has desired
properties:

DEFINITION 4.7. let H , α = α0 � 0 , Q be as in (16), (17), (20).8 Set

A = {α : D(α) ⊇ Q, |α| � cα0, c < 1}. (94)

We call α0 H -regular, if the following four conditions are fulfilled:
1. Each α ∈ A satisfies the conditions of Theorem 2.4,
2. σess(H+α) ⊆ σess(H) = (−∞,−m]∪ [m,∞) for some m > 0 and all α ∈ A ,
3. For some δ > 0 and all η with 0 � η < 1

(−m,−m + δ ] ⊆ ρ(H + ηα0) (95)

4. maxσ(C0) = 0 , where C0, C are generated by (18) and α0, α , respectively.

8Of course, α0 � 0 would do as well. Our definition of the regularity is, in fact, modeled after a
standard situation in the applications: the Dirac operator with the attractive Coulomb potential.
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THEOREM 4.8. Let α0 be H -regular and α ∈ A , α � 0 . Then

(−m,−m + δ ] ⊆ ρ(H + ηα), 0 � η � 1

with m, δ from Definition 4.7.

Proof. Take η0 ∈ (0, 1] such that for a, b from (16) we have η0b < 1 and

−m + δ < m + η0c
0
−(a + bm)

where c0− = minσ(C0) . Then the conditions of Theorems 2.11, 3.2 hold for H + αε,η
with

αε,η = (1 − ε)ηcα0 + εηα,

( c from Def. 4.7) uniformly in 0 � η � η0 , 0 � ε � 1 ; this follows from

cα0 � αε,η � 0.

Obviously, αε,η belongs to A and is non-decreasing in ε and non-increasing in η .
By Theorem 3.2 we have

(−m,−m + δ ] ⊆ (−m, m + ηc0
−(a + bm)) ⊆ ρ(H + αε,η),

0 � η � η0 , 0 � ε � 1 . By

H + αε,η − ζ = H1/2
1 ((H − ζ)H−1

1 + (1 − ε)ηC + εηcC0)H
1/2
1

we see that H+αε,η is continuous in the sense of the uniform resolvent topology jointly
in ε,η ∈ [0, 1] and the same is true for σ(H + αε,η) (see [3] Ch. V. Th. 4.10). Thus,
the set

S = {η ∈ [0, 1] : (−m,−m + δ ] ⊆ ρ(H + αε,η) for all ε ∈ [0, 1]}
is open in [0, 1] and it obviously contains [0,η0] . We will prove that the component of
S containing [0,η0] is equal to [0, 1] . If this were not so then this component would
read [0,η1) , η0 � η1 < 1 . In this case there would exist an ε1 such that

σ(H + αε1,η1) ∩ (−m,−m + δ ] �= ∅ (96)

whereas
(−m,−m + δ ] ⊆ ρ(H + αε,η) (97)

for all η < η1 and all ε ∈ [0, 1] .
Now, by the mentioned spectral continuity we would still have (−m,−m + δ) ⊆

ρ(H + αε,η1) for all ε ∈ [0, 1] , more precisely, −m + δ = λ1(ε1,η1) , where λ1(ε,η)
denotes the lowest eigenvalue of H+αε,η in (−m, m) . Thus, Theorem4.3 is applicable
to the family

[0, ε1] � ε → H + αε,η1

and by (95) we would have

− m + δ < λ1(0,η1) � λ1(ε1,η1) � −m + δ (98)
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– a contradiction. Now take in (97) ε = 1 which gives the statement of our theorem.
�

The theorem above can be regarded as an abstract analog of a result of Wüst [11],
obtained for the Dirac operator with the Coulomb interaction α0 .

COROLLARY 4.9. If α0 is regular then any non-positive α ∈ A is regular also.

COROLLARY 4.10. Let α0 be H -regular and 0 � β � α ∈ A . Then the
spectrum of H + α , H + β in (−m, m) consists of the eigenvalues

λ1 � λ2 � · · ·
μ1 � μ2 � · · ·

respectively, and
λk � μk, k = 1, 2 . . . (99)

holds.

Proof. By Theorem 4.8 we have (−m,−m + δ) ⊆ ρ(Tε) where

Tε = H + (1 − ε)α + εβ , 0 � ε � 1,

(1 − ε)α + εβ ∈ A .

Now Theorem 4.3 applies and (99) follows. �

THEOREM 4.11. Let α0 be H -regular and let

|α − cα0| � −εcα0, (100)

ε < min{1,
1
c
− 1}.

Then the spectrum of H + α in (−m, m) consists of the eigenvalues

μ1 � μ2 � · · ·
and they satisfy

λk((1 + ε)c) � μk � λk((1 − ε)c), k = 1, 2 . . . (101)

where
λ1(η) � λ2(η) � · · ·

are the eigenvalues of H + ηα0 .

Proof. (100) can be written as

(1 + ε)cα0 � α � (1 − ε)cα0,

from which it follows α � 0 and

0 � α � c1α0
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with c1 = (1 + ε)c < 1 . Thus, α ∈ A . Now apply Corollary 4.10 to the operators

H + (1 + ε)cα0, H + α, H + (1 − ε)cα0

and (101) follows. �

REMARK 4.12. The estimates (101) are sharp: by taking the perturbation β =
(1 ± ε)α the equality on the respective side in (101) is obtained. The bound (101) is
particularly useful, if the eigenvalues λ (η) are explicitly known as functions of η as
is the case with several important quantum mechanical systems.

Let us now turn to the promised bound (7). We will combine the monotonicity
fromTheorem4.3with one of the spectral inclusion results above to insure the necessary
impenetrabilities. There are quite few of the latter, so we will present the most typical
cases.

THEOREM 4.13. Let H,α, T, C be as in Theorem 2.11 and α symmetric. Let
I = (λ−−, λ++) be an essential spectral gap for H and λ−+ the lowest eigenvalue
of H in I such that the open interval

I− = (λ−− + a + b|λ−−|, λ−+ − a − b|λ−+|) (102)

is non-void. Furthermore, let either
(i) λ+− be the highest eigenvalue of H in I such that the open interval

I+ = (λ+− + a + b|λ+−|, λ++ − a − b|λ++|) (103)

is non-void or
(ii) the form α satisfy the conditions of Theorem 2.14.

By
λ1 = λ−+ � λ2 � · · ·

denote the (finite or infinite) sequence of the eigenvalues of H in I . Set

λ̃ =
{
λ++ − a − b|λ++|, in case (i)
λ++, in case (ii)

Then the spectrum of T in Ĩ = (λ−− + a + b|λ−|, λ̃ ) consists of the eigenvalues

μ1 � μ2 � · · ·
and they satisfy (7) in the following sense: in the case (i) λ ’s and μ ’s have the same
cardinality and (7) holds for all of them whereas in the case (ii) (7) holds as long as
λk + a + b|λk| < λ++ .

Proof. We introduce an auxiliary family

T̃ε = H + α̃ε ,

α̃ε = ε(a + bĥ) + (1 − ε)α, 0 � ε � 1,
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where ĥ is the closed form belonging to the operator |H| . This family satisfies the
conditions of Theorem 2.11 uniformly in ε :

|α̃ε(ψ ,ψ)| � ε(a + bĥ)(ψ ,ψ) + (1 − ε)(a + bĥ)(ψ ,ψ) = (a + bĥ)(ψ ,ψ)

and the operator C̃ε , constructed from T̃ε according to (18) is here given by

(C̃εψ , φ) = α̃ε(H
−1/2
1 ψ , H−1/2

1 φ) = ((ε + (1 − ε)C)ψ , φ),

so, C̃ε = ε + (1 − ε)C is holomorphic with ‖C̃ε‖ � 1 and C̃′
ε = 1 − C is non-

negative. In particular, T̃ε fulfills the conditions of Theorem 4.1 as well as Theorem
3.1, uniformly in ε ∈ [0, 1] . Thus, I− is impenetrable for T̃ε . We now show that any
open interval (d, d1) with d ∈ I− and

d1

{ ∈ I+, in case (i)
= λ++, in case (ii)

is essentially impenetrable for T̃ε . To this end we introduce another auxiliary family

H + ε(a + bĥ) = H + εH1

to which both Theorem 2.11 and Theorem 3.1 hold, again uniformly in ε . Therefore
its spectrum in Ĩ consists of the eigenvalues

λ1 + ε(a + b|λ1|) � λ2 + ε(a + b|λ2|) � · · ·
In particular, Ĩ is essentially impenetrable for H + εH1 . The form sum T̃ε = H + α̃ε
can obviously be represented as another form sum

T̃ε = (H + εH1) + (1 − ε)α (104)

again in the sense of Theorems 2.4 and 2.11. Indeed, using the the functional calculus
we obtain the operator inequality (a proof is provided in the Appendix)

H1 � a
1 − εb

+
b|H + εH1|

1 − εb
, (105)

hence

|(1 − ε)α(ψ ,ψ)| � 1 − ε
1 − εb

a‖ψ‖2 +
(1 − ε)b‖|H + εH1|1/2ψ‖2

1 − εb
� a‖ψ‖2 + b‖|H + εH1|1/2ψ‖2.

Furthermore, the form sum (104) satisfies the conditions of Theorem 2.14. As a matter
of fact, the operator C̃ , defined by

(C̃ψφ) = α((a + b|H + εH1|)−1/2ψ , (a + b|H + εH1|)−1/2φ)

satisfies
(a + b|H + εH1|)−1C̃ = BH−1

1 CB
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where H−1
1 C is known to be compact and by (105)

B = H1/2
1 (a + b|H + εH1|)−1/2

is bounded. Thus, (d, d1) is essentially impenetrable for T̃ε in the case (ii). The
case (i) is even simpler: due to the impenetrability from both sides for H + εH1 the
cardinalities of the eigenvalues of H and H + H1 are finite and equal, the same is then
true of T and H + H1 now due to the impenetrability from both sides for T̃ε . Now
all conditions of Theorem 4.3 are fulfilled for the family T̃ε for which T̃0 = T and
T̃1 = H + H1 . Hence the eigenvalues of T in Ĩ are

μ1 � μ2 � · · · ,

they are at least as much as those λk + a + b|λk| which are smaller than λ̃ and
they satisfy the right hand side of (7). To obtain the other we use the form α̃ε =
−ε(a + bĥ) + (1 − ε)α . �

REMARK 4.14. (i) In the proof above the right hand side of the inequality (7) had
to be proved first because this step guarantees the existence of the perturbed eigenvalues.
This asymetry is natural and is due to the fact that in general only the left end of the
’window’ (d, d1) is assumed as impenetrable (case (ii)). The other direction is handled
by considering H = −H . (ii) The restrictive condition that λk + a + b|λk| be smaller
than λ̃ is trivially fulfilled for all k , if λ++ = ∞ .

An analogous result holds under the conditions of Theorem 3.2.

THEOREM 4.15. Let H,α, T, C be as in Theorem 2.11 and α symmetric and
let, in addition, α satisfy (73), (74) with c± from (78). Let I = (λ−−, λ++) be an
essential spectral gap for H and λ−+ the lowest eigenvalue of H in I such that the
open interval

I− = (λ−− + c+(a + b|λ−−|), λ−+ + c−(a + b|λ−+|)) (106)

is non-void. Furthermore, let either
(i) λ+− be the highest eigenvalue of H in I such that the open interval

I+ = (λ+− + c+(a + b|λ+−|), λ++ + c−(a + b|λ++|)) (107)

is non-void or
(ii) the form α satisfy the conditions of Theorem 2.14.

By
λ1 = λ−+ � λ2 � · · ·

denote the (finite or infinite) sequence of the eigenvalues of H in I . Set

λ̃ =
{
λ++ + c−(a + b|λk|), in case (i)
λ++, in case (ii)

Then the spectrum of T in Ĩ = (λ−− + a + b|λ−|, λ̃ ) consists of the eigenvalues

μ1 � μ2 � · · ·
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and they satisfy

λk + c−(a + b|λk|) � μk � λk + c+(a + b|λk|). (108)

in the following sense: in the case (i) λ ’s and μ ’s have the same cardinality and (7)
holds for all of them whereas in the case (ii) (7) holds as long as λk + c+(a + b|λk|) <
λ++ .

We omit the proof, it follows the lines of the one of Theorem 4.13 above. The only
difference in the proof is the form α̃ε which now reads

α̃ε = c±ε(a + bĥ) + (1 − ε)α.

Also, Remark 4.14 applies accordingly.

REMARK 4.16. If in the preceding theorem the form α is non-negative then the
bound (108) reads

0 � μk − λk � c+(a + b|λk|) � a + b|λk|. (109)

The preceding theorems cover perturbation estimates already known: by setting
a = 0 the bound (7) was obtained in [9] for finite matrices. Also by setting b = 0 we
have T = H + A , A ∈ B(H ) , C = A/a ; here (108) gives the mentioned bound (4).
Both (7) and (108) are sharp, they obviously become equalities on scalars.

Positioning of an impenetrable point is user dependent; usually a most convenient
choice is to take broad spectral gaps. In the most notorious case of a positive definite
H with a compact inverse the impenetrability from below is trivially fulfilled.

The proofs of Theorem 4.13 and 4.15 consist of two main ingredients:
1. upper semicontinuity bounds for general spectra from Theorem 3.6, 3.5 and
2. lower semicontinuity bounds for finite eigenvalues, obtained by the construction

of monotone holomorphic operator families.
So, we may say that in order to fully control the eigenvalues in a gap by using

(7) or (108) have to ’pay a price’, that is, the perturbation should be so small as to
insure that the impenetrability conditions (102), (103), (106), (107), respectively, are
fulfilled. These expressions as well as the estimates in (7) or (108) use the same bound
±(a + b|λ |) , so the price is completely adequate. This fact may be seen as a mark of
the naturality of the obtained bounds.

5. Appendix

Proof of (44). Obviously the point ξ = 0 is a local minimum of ψ(·, a, b, λ ,η) .
By

ψ(−ξ , a, b, λ ,η) = ψ(ξ , a, b,−λ ,η)

it is sufficient to take λ � 0 . We distinguish two cases.
ξ � 0 :

ψξ =
−ξ(a + λb) + (λ 2 + η2)b + λa

((ξ − λ )2 + η2)3/2
.
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The maximum is reached at

ξ = ξ0 = λ +
η2b

a + λb

and it is equal to

ψ(ξ0, a, b, λ ,η) =
1
|η|
√

(a + λb)2 + η2b2

and this is (44).
ξ � 0 :

ψξ =
−ξ(a − λb) − (λ 2 + η2)b + λa

((ξ − λ )2 + η2)3/2
.

The maximum is reached at

ξ = ξ1 = λ − η2b
a − λb

and it is equal to

ψ(ξ1, a, b, λ ,η) =
1
|η|
√

(a − λb)2 + η2b2,

provided that a > λb and

λ � bη2

a − λb
,

otherwise the maximum is reached on the boundary {−∞, 0} . All three values are
obviously less than (44) which is the sought global maximum. �

Proof of (105). For real λ we have

|λ + ε(a + b|λ |)| =
{

λ + ε(a + bλ ), λ � 0
|λ + ε(a − bλ )|, λ � 0

Thus, for λ � 0

λ =
−εa

1 + bε
+

|λ + ε(a + b|λ |)|
1 + bε

� εa
1 − bε

+
|λ + ε(a + b|λ |)|

1 − bε
and for λ � 0

|λ + ε(a + b|λ |)| = |εa + λ (1 − bε)| � −εa − λ (1 − bε)

hence

−λ � εa
1 − bε

+
|λ + ε(a + b|λ |)|

1 − bε
.

Altogether

|λ | � εa
1 − bε

+
|λ + ε(a + b|λ |)|

1 − bε
.

Taking corresponding functions of H we obtain (105). �
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