
Operators
and

Matrices
Volume 2, Number 3 (2008), 341–355

DAVIS–WIELANDT SHELLS OF OPERATORS

CHI-KWONG LI, YIU-TUNG POON AND NUNG-SING SZE

Dedicated to
Professor Yik-Hoi Au-Yeung

for his 70th birthday

(communicated by J. Pečarić)

Abstract. Basic properties of Davis-Wielandt shells are presented. Conditions on two operators
A and B with the same Davis-Wielandt shells are analyzed. Special attention is given to the case
when B is a compression of A , and when B = A∗ , At , or (A∗)t , where At is the transpose
of A with respect to an orthonormal basis. The results are used to study the point spectrum,
approximate point spectrum, and residual spectrum of the sum of two operators. Relation between
the geometrical properties of the Davis-Wielandt shells and algebraic properties of operators are
obtained. Complete descriptions of the Davis-Wielandt shells are given for several classes of
operators.

1. Introduction

Let B(H ) be the algebra of bounded linear operators acting on the Hilbert space
H . We identify B(H ) with Mn if H has dimension n . The numerical range of
A ∈ B(H ) is defined by

W(A) = {〈Ax, x〉 : x ∈ H , 〈 x, x〉 = 1};
see [4, 5, 6]. The numerical range is useful in studying matrices and operators. In
particular, the geometrical properties of W(A) often provide useful information on the
algebraic or analytic properties of A . For instance, W(A) = {μ} if and only if A = μI ;
W(A) ⊆ R if and only if A = A∗ ; W(A) has no interior point if and only if there are
a, b ∈ C with a �= 0 such that aA + bI is self-adjoint; see [4, 5, 6]. Moreover, there
are nice connections between W(A) and the spectrum σ(A) of the operator A . For
example, the closure of W(A) , denoted by cl (W(A)) , always contains σ(A) . If A
is normal, then cl (W(A)) = convσ(A) , where convσ(A) denotes the convex hull of
σ(A) . However, cl (W(A)) = convσ(A) does not imply that A is normal; see Problem
10 in [6, p.14].
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Motivated by theoretical study and applications, there have been many general-
izations of the numerical range; see [4, 5, 6]. One of these generalizations is the
Davis-Wielandt shell of A ∈ B(H ) defined by

DW(A) = {(〈Ax, x〉 , 〈Ax, Ax〉 ) : x ∈ H , 〈 x, x〉 = 1};
see [2, 3, 9]. Evidently, the projection of the set DW(A) on the first co-ordinate is W(A) .
So, DW(A) captures more information about the operator A than W(A) . For example,
in the finite dimensional case, normality of operators can be completely determined by
the geometrical shape of their Davis-Wielandt shells, namely, A ∈ Mn is normal if and
only if DW(A) is a polyhedron in C ×R identified with R3 . In [8], it was shown that
the Davis-Wielandt shell is a useful tool for characterizing the eigenvalues of matrices
in the set

{U∗AU + V∗BV : U, V ∈ Mn are unitary}
for given A, B ∈ Mn .

In this paper, we establish more results showing that the Davis-Wielandt shell
is useful in studying operators. In Section 2, we present some basic results for the
Davis-Wielandt shell. In Section 3, we obtain conditions on the operators A and B
such that DW(A) = DW(B) . We also compare the sets DW(A) , DW(A∗) , DW(At)
and DW((A∗)t) , where At is the transpose of A ∈ B(H ) with respect to a fixed
orthonormal basis. In Section 4, we obtain relations between DW(A) and different
kinds of spectra of A ∈ B(H ) . Furthermore, for A, B ∈ B(H ) , we use the Davis-
Wielandt shell to study the point spectrum, the approximate spectrum and the residual
spectrum of an operator of the form U∗AU +V∗BV , where U, V ∈ B(H ) are unitary
operators. In Section 5, we study the relation between the geometrical properties
of DW(A) and the algebraic properties of A ∈ B(H ) . Complete descriptions are
obtained for the Davis-Wielandt shells of several classes of operators.

2. Basic properties

We begin with the following observations.

THEOREM 2.1. Let A ∈ B(H ) .
(a) (μ, r) ∈ DW(A) if and only if there is an orthonormal pair of vectors x, y ∈ H

such that Ax = μx +
√

r − |μ|2y .
(b) The set DW(A) is bounded. In particular, DW(A) ⊆ P(A) with

P(A) = {(μ, r) ∈ C × [0,∞) : |μ|2 � r � ‖A‖2}.
(c) DW(A) = DW(U∗AU) for any unitary U ∈ B(H ) .
(d) For any α, β ∈ C , DW(αA + βI) equals

{(αμ + β , |α|2r + 2Re (αβ̄μ) + |β |2) : (μ, r) ∈ DW(A)},
which is the image of DW(A) under a real affine transform.

(e) Suppose A ∈ B(H ) is a direct sum of A1 ⊕ · · · ⊕ Am . Then

DW(A) = conv {DW(A1) ∪ · · · ∪ DW(Am)}.
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(f) The set DW(A) is closed if dimH is finite.

Proof. (a) The implication (⇐) is clear. Suppose (μ, r) ∈ DW(A) . Then there is
unit vector x ∈ H such that 〈Ax, x〉 = μ . Thus, Ax = μx + νy for some unit vector
y ∈ x⊥ with ν � 0 . As r = ‖Ax‖2 = |μ|2 + ν2 , the assertion holds.

(b) Suppose (μ, r) ∈ DW(A) . Evidently, r � ‖A‖2 . By (a), |μ|2 � r . So,
DW(A) ⊆ P(A) as asserted.

(c) – (f) can be verified readily. �
Next, we give a description of the DW(A) for A ∈ M2 .

THEOREM 2.2. Let A ∈ M2 with eigenvalues a1, a2 . Then DW(A) ⊆ C × R

(identified with R3 ) is an ellipsoid without the interior centered at (tr A, tr A∗A)/2 with
a (vertical) principal axis

{(tr A/2, r) : r � 0, |r − tr A∗A/2| � ‖A∗A − (tr A∗A)I/2‖};
the projection of DW(A) on the first co-ordinate equals the elliptical disk W(A) with
foci a1, a2 and minor axis of length

√
tr A∗A − |a1|2 − |a2|2 .

Consequently, DW(A) is convex if and only if A is normal. In such case, DW(A) is a
line segment joining (a1, |a1|2) and (a2, |a2|2) .

Using the convexity properties of the joint numerical range, see [7] for example,
we have the following result.

THEOREM 2.3. Suppose A ∈ B(H ) with dimH � 3 . Then DW(A) is convex.

Let A ∈ B(H ) and E = {ei : i ∈ I} be an orthonormal basis of H . The
transpose of A with respect to E is the operator At

E ∈ B(H ) defined by

〈At
E ei, ej〉 = 〈Aej, ei〉 .

We claim that
DW (At

E ) = {(μ, r) : (μ, r) ∈ DW(A∗)}.
To see this, let x =

∑
i xiei ∈ H . Define x =

∑
i xiei , where xi is the complex

conjugate of xi . For x =
∑

i xiei, y =
∑

i yiei ∈ H , we have

〈At
E x, y〉 =

∑
i

∑
j

xiyj〈At
E ei, ej〉 =

∑
j

∑
i

yjxi〈Aej, ei〉 = 〈Ay, x〉 .

Therefore, we have
〈At

E x, x〉 = 〈Ax, x〉 = 〈A∗x, x〉 ,

and

〈At
E x, At

E x〉 = 〈A
(
At

E x
)
, x〉 = 〈 (

At
E x

)
, A∗x〉

= 〈At
E x, A∗x〉 = 〈AA∗x, x〉 = 〈A∗x, A∗x〉 .

Hence, our claim follows.

By the above discussion, we see that DW (At
E ) is independent of E so that we

have the following.
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THEOREM 2.4. Let A ∈ B(H ) , and let At be the transpose of A with respect
to any orthonormal basis of H . Then

DW (At) = {(μ, r) : (μ, r) ∈ DW(A∗)}.

3. Comparison of Davis-Wielandt shells of two operators

In the following, we compare DW(A) and DW(B) for A and B acting on two
(possibly different) Hilbert spaces. We then apply the results to compare DW(A) ,
DW(A∗) , DW(At) , and DW((A∗)t) . Let us begin with the easy case when A, B ∈ M2 .

THEOREM 3.1. For A, B ∈ M2 , the following conditions are equivalent.
(a) DW(A) = DW(B)
(b) W(A) = W(B)
(c) A = U∗BU for some unitary U ∈ M2 .

Moreover, we have DW(A) = DW(At) and

DW(A∗) = DW((A∗)t) = {(μ̄, ν) : (μ, ν) ∈ DW(A)}.

The situation for higher dimensions is more intricate. We need the following
notation in our discussion. For A ∈ B(H ) , let

Lμ(A) = {r : (μ, r) ∈ DW(A)} ⊆ [0, ‖A‖2].

The upper boundary of DW(A) is the set

{(μ, r) : μ ∈ W(A), r = supLμ(A)}.

Similarly, we can define the lower boundary of DW(A) .
The following result is obvious.

THEOREM 3.2. Let A, B be bounded linear operators acting on twoHilbert spaces,
which may be different. Then DW(A) ⊆ DW(B) if and only if Lμ(A) ⊆ Lμ(B) for
each μ ∈ W(A) .

Next, we compare DW(A) with DW(B) for B = At, A∗ , or (A∗)t .

THEOREM 3.3. Let A ∈ B(H ) . Then for each μ ∈ W(A) , the following
conditions hold:

(a) Lμ(At) = Lμ̄(A∗)
(b) Lμ(A) = Lμ̄((A∗)t)
(c) supLμ(A) = sup Lμ(At) = sup Lμ̄(A∗) = supLμ̄((A∗)t) .

Moreover, any one of the suprema is attained if and only if all the suprema are
attained.
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Proof. (a) follows from Theorem 2.4 and (b) follows from (a).
For (c), if dim H � 2 , then A is unitarily similar to At and the result follows.
Suppose dim H � 3 . Let (μ, r) ∈ DW(A) . Then there exists a unit vector

x ∈ H such that μ = 〈Ax, x〉 and r = 〈Ax, Ax〉 . Therefore, Ax = μx + νy for some
unit vector y ∈ x⊥ and ν =

√
r − |μ|2 so that there are a12, a22 ∈ C satisfying[ 〈Ax, x〉 〈Ay, x〉

〈Ax, y〉 〈Ay, y〉
]

=
[
μ a12

ν a22

]

and [ 〈A∗x, x〉 〈A∗y, x〉
〈A∗x, y〉 〈A∗y, y〉

]
=

[
μ ν
a12 a22

]
.

Since every matrix X ∈ M2 is unitarily similar to its transpose, there is a unitary

V =
[

v11 v12

v21 v22

]
∈ M2 such that

V∗
[

μ ν
a12 a22

]
V =

[
μ a12

ν a22

]
.

Then for z = v11x + v21y , we have

μ = 〈A∗z, z〉 and s = ‖A∗z‖2 � ν2 + |μ|2 = r.

Hence, (μ, s) ∈ DW(A∗) , and supLμ(A) � supLμ̄(A∗) . The reverse inequality can
be proved similarly.

From the proof, it is clear one of the suprema is attained if and only if both suprema
are attained.

The other equalities in (c) follow from (a), (b) and supLμ(A) = supLμ̄(A∗) . �
We have the following corollary.

COROLLARY 3.4. Let A ∈ B(H ) , and let T : C×R → C×R be the involution
map (μ, r) → (μ̄, r) .

(a) T will transform DW(A) to DW((A∗)t) .
(b) T will transform DW(At) to DW(A∗) .
(c) DW(A) and DW(At) have the same upper boundary.
(d) DW(A∗) and DW((A∗)t) have the same upper boundary.

Note that DW(A) �= DW(At) and the map (μ, r) → (μ̄ , r) does not transform
DW(A) to DW(A∗) . Here is an example.

EXAMPLE 3.5. Let H be an infinite dimensional Hilbert space with an orthonor-
mal basis {en}∞n=1 , and let S ∈ B(H) be the unilateral shift such that S(en) = en+1 for
n � 1 . Then S∗ = St is the backward shift such that St(e1) = 0 and St(en) = en−1

for n > 1 . We have

DW(S) = {(μ, 1) : μ ∈ C, |μ| < 1}
and

DW(St) = DW(S) ∪ {(μ, r) : μ ∈ C, |μ|2 � r < 1}.
Thus, the map T defined by (μ, r) → (μ̄, r) does not transform DW(S) to DW(St) .
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Verification. Note that |〈 Sx, x〉 | < 1 and 〈 Sx, Sx〉 = 1 for all unit vector x ∈ H .
Thus,

DW(S) ⊆ {(μ, 1) : μ ∈ C, |μ| < 1}. (1)

Since the projection of DW(S) to the first co-ordinate is W(S) and

{μ ∈ C : |μ| � 1} = σ(S) ⊆ cl (W(S)),

we see that the set inclusion (1) is actually a set equality.
Next, observe that ‖St‖ = 1 . By Theorem2.1 (b) andCorollary 3.4 (c), DW(S) ⊆

DW(St) and

DW(St) ⊆ DW(S) ∪ {(μ, r) ∈ C × [0,∞) : |μ|2 � r < 1}. (2)

For any μ ∈ C with |μ| < 1 , let x =
∑∞

k=1 μ
kek . Then Stx = μx so that (μ, |μ|2) ∈

DW(St) . Hence the convex set DW(St) has lower boundary {(μ, |μ|2) : μ ∈ C, |μ| <
1}. Consequently, the set inclusion in (2) is actually a set equality. �

Next we compare DW(A) and DW(A∗) , it suffices to compare Lμ(A) and
Lμ̄(A∗) . We have the following result.

THEOREM 3.6. Let A ∈ B(H ) . Then

DW(A∗) ⊆ {(μ̄, r) : (μ, r) ∈ DW(A)}
if and only if Lμ̄(A∗) ⊆ Lμ(A) for every μ ∈ W(A) . As a result,

DW(A∗) = {(μ̄, r) : (μ, r) ∈ DW(A)}
if and only if for every unit vector x ∈ H , there exist unit vectors y and z ∈ H such
that the following conditions are satisfied:

〈Ax, x〉 = 〈Ay, y〉 with ‖Ay‖ � ‖A∗x‖
and

〈Ax, x〉 = 〈Az, z〉 with ‖A∗z‖ � ‖Ax‖.
Proof. Note that

DW(A) = ∪μ∈W(A){(μ, r) : r ∈ Lμ(A)}
and

DW(A∗) = ∪μ∈W(A){(μ̄, r) : r ∈ Lμ̄(A∗)}.
Hence, DW(A∗) ⊆ {(μ̄, ν) : (μ, ν) ∈ DW(A)} if and only if Lμ̄(A∗) ⊆ Lμ(A) for
each μ ∈ W(A) .

Suppose DW(A∗) = {(μ̄, r) : (μ, r) ∈ DW(A)} , or equivalently, DW(A) =
{(μ, r) : (μ̄, r) ∈ DW(A∗)} . Let x ∈ H be a unit vector so that μ̄ = 〈A∗x, x〉
and r = ‖A∗x‖2 . Then r ∈ Lμ(A) so that there is a unit vector y ∈ H satisfying
〈Ax, x〉 = 〈Ay, y〉 and ‖Ay‖2 � r = ‖A∗x‖2 . On the other hand, if r̃ = ‖Ax‖2 , then
r̃ ∈ Lμ̄(A∗) . So, there exists a unit vector z ∈ H such that 〈Ax, x〉 = 〈Az, z〉 and
‖A∗z‖2 � r̃ = ‖Ax‖2 .
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Conversely, suppose for any unit vector x ∈ H there are unit vectors y and z
satisfying the said conditions. Then inf Lμ(A) = inf Lμ̄(A∗) , and any of the infima
is attained if and only if both infima are attained. By Theorem 3.3, supLμ(A) =
supLμ̄(A∗) , and any of the suprema is attained if and only if both suprema are attained.
Thus, Lμ(A) = Lμ̄(A∗) for every μ ∈ W(A) . Hence, DW(A∗) = {(μ̄, r) : (μ, r) ∈
DW(A)}. �

In the finite dimensional case, we have the following.

THEOREM 3.7. Let A ∈ Mn . Then

DW(A∗) = {(μ, r) : (μ, r) ∈ DW(A)}. (3)

Consequently, DW(A) = DW(At) and DW(A∗) = DW((A∗)t) .

Proof. The result for n = 2 follows easily from Theorem 3.1. For n � 3 , DW(A)
is always convex by Theorem 2.3. Suppose our assertion is not true. Assume that there
is (μ, r) ∈ DW(A) such that (μ, r) /∈ DW(A∗) . Then there is a unit vector x such
that (x∗Ax, x∗A∗Ax) = (x∗Hx − ix∗Gx, x∗A∗Ax) /∈ DW(A∗) , where H = (A + A∗)/2
and G = (A − A∗)/2i . By the separation theorem, there are a, b, c ∈ R such that

x∗(aA∗A + bH + cG)x > y∗(aAA∗ + bH + cG)y

for all unit vector y . We may perturb a if necessary to assume that a �= 0 . Then for
μ = (b + ic)/(2a) ,

x∗(A + μI)∗(A + μI)x = x∗(A∗A + (b/a)H + (c/a)G + |μ|2I)x
/∈ W(AA∗ + (b/a)H + (c/a)G + |μ|2I) = W((A + μI)(A + μI)∗).

This is a contradiction because

W((A + μI)∗(A + μI)) = W((A + μI)(A + μI)∗)

is the line segment [s2
n, s

2
1] , where s1 and sn are the largest and smallest singular values

of A + μI . Thus, equation (3) holds.
The last assertion follows from Corollary 3.4 and (3). �
Now, we compare DW(B) and DW(A) when B is a compression of A to a closed

subspace H1 of H , i.e., B = X∗AX where X : H1 → H such that X∗X = IH1 .
For the classical numerical range, we have W(B) ⊆ W(A) . On the contrary, DW(B)

may not be contained in DW(A) . For instance, if A =
[

0 1
1 0

]
and B = [0] , then

DW(B) = {(0, 0)} �⊆ {(t, 1) : t ∈ [−1, 1]} = DW(A).

Nevertheless, we have the following.

THEOREM 3.8. Suppose B is a compression of A ∈ B(H ) on the closed
subspace H1 . Then DW(B) ⊆ DW(A) if any one of the following holds.

(a) H1 is an invariant subspace of A .
(b) H is finite dimensional and H ⊥

1 is an invariant subspace of A .
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Proof. If (a) holds, then A has operator matrix of the form

[
B C
0 D

]
, where B ∈

B(H1) and D ∈ B(H ⊥
1 ) . For any unit vector y ∈ H1 , let x = y⊕ 0 ∈ H1 ⊕H ⊥

1 .
Then 〈Ax, x〉 = 〈By, y〉 and 〈Ax, Ax〉 = 〈By, By〉 . Therefore, (〈By, y〉 , 〈By, By〉 ) ∈
DW(A) .

If (b) holds, then A has operator matrix of the form

[
B 0
C D

]
. By Theorem 3.7

and part (a), we have

DW(B) = DW(Bt) ⊆ DW(At) = DW(A)

as asserted. �
In Theorem 3.8 (b), the assumption on the dimension of H is indispensable as

shown by the following example.

EXAMPLE 3.9. Let H be an infinite dimensional Hilbert space with an orthonor-
mal basis {en}∞n=1 and S ∈ B(H) be the unilateral shift such that S(en) = en+1 for
n � 1 . Let H1 be the subspace spanned by e1 . Then with H = H1 ⊕ H ⊥

1 , S

has the form

[
B 0
C D

]
with B = [0] so that (0, 0) ∈ DW(B) . By Example 3.5,

DW(S) = {(μ, 1) : μ ∈ C, |μ| < 1} does not contain (0, 0) .

4. Spectra of operators

Denote by cl (S) and ∂S the closure and the boundary of a set S . Let A ∈ B(H) .
Recall that the point spectrum of A is the set σp(A) of eigenvalues of A . The residual
spectrum of A is the set σr(A) of complex number λ ∈ C such that the range of
λ I − A is not dense in H . The approximate point spectrum of A is the set σa(A) of
complex number λ ∈ C such that there exists a sequence of unit vectors {xn}∞1 in H
such that lim

n→∞ ‖(λ I − A)xn‖ = 0 . We have

σp(A) ⊆ σa(A), σ(A) = σa(A) ∪ σr(A) .

THEOREM 4.1. Suppose A ∈ B(H ) so that DW(A) ⊆ P with

P = {(μ, r) ∈ C × [0,∞) : |μ|2 � r}.
Then the following conditions hold.

(a) (μ, r) ∈ DW(A) ∩ ∂P if and only if μ ∈ σp(A) and r = |μ|2 .
(b) (μ, r) ∈ cl (DW(A)) ∩ ∂P if and only if μ ∈ σa(A) and r = |μ|2 .
(c) (μ, r) ∈ DW(A∗) ∩ ∂P if and only if μ ∈ σr(A) and r = |μ|2 .
(d) If DW(A) is closed, then σp(A) = σa(A) .

Proof. (a) Suppose (μ, r) ∈ DW(A) ∩ ∂P . Then r = |μ|2 . Thus, there is a
unit vector x ∈ H such that μ = 〈Ax, x〉 and |μ| = ‖Ax‖ . So, |〈Ax, x〉 | = ‖Ax‖ ,
and hence Ax = μx , i.e., μ ∈ σp(A) . Conversely, if Ax = μx , then (μ, |μ|2) ∈
DW(A) ∩ ∂P .
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To prove (b), suppose (μ, |μ|2) ∈ cl (DW(A)) . Then there is a sequence of
unit vectors {xn} in H such that (〈Axn, xn〉 , ‖Axn‖2) → (μ, |μ|2) . Suppose Axn =
μnxn + νnyn , where yn ∈ x⊥n is a unit vector and μn, νn ∈ C such that νn � 0 . Then
μn → μ and |μn|2 + |νn|2 → |μ|2 . We see that ‖Axn − μxn‖ → 0 . Thus, μ ∈ σa(A) .
For the converse, suppose μ ∈ σa(A) . Then there is a sequence of unit vectors {xn}
in H such that ‖Axn − μxn‖ → 0 . It follows that (〈Axn, xn〉 , ‖Axn‖2) → (μ, |μ|2) .
Thus, (μ, |μ|2) ∈ cl (DW(A)) ∩ ∂P .

Condition (c) follows from (a) and the fact that σr(A∗) = σp(A) ; see for example
[5, Chapter 9].

Condition (d) follows from (a) and (b). �
The following example illustrates Theorem 4.1 and shows that DW(A) is more

useful than W(A) in the study of the spectrum of A .

EXAMPLE 4.2. Let A = diag (−1, 1, 1/2, 1/3, · · · , 1/n, · · · ) . Then

σp(A) = {−1} ∪ {1/k : k = 1, 2, . . . }, σ(A) = σa(A) = {0} ∪ σp(A),

W(A) = [−1, 1], DW(A) = conv {(μ,μ2) : μ ∈ σp(A)},
DW(A) ∩ ∂P = {(μ,μ2) : μ ∈ σp(A)},

and
cl (DW(A)) ∩ ∂P = {(μ,μ2) : μ ∈ σ(A)}.

Let A ∈ B(H) . The unitary similarity orbit of A is denoted by

U (A) = {U∗AU : U∗U = I = UU∗}.
In the following, we study different kinds of spectra of operators in

U (A) + U (B) = {X + Y : (X, Y) ∈ U (A) × U (B)}.
In [8], we considered A, B ∈ Mn and proved that a complex number μ is an eigenvalue
of some C ∈ U (A) + U (B) if and only if DW(A) ∩ DW(μI − B) �= ∅ . Here, we
extend the result to infinite dimensional operators, and consider the different types of
spectra. Let

σ(A, B) = {μ ∈ C : μ ∈ σ(C) for some C ∈ U (A) + U (B)} .

Similarly, define σp(A, B) , σa(A, B) and σr(A, B) . Evidently,

σ(A, B) = σa(A, B) ∪ σr(A, B) . (1)

THEOREM 4.3. Let A, B ∈ B(H ) . Then

σp(A, B) = {μ ∈ C : DW(A) ∩ DW(μI − B) �= ∅} (2)

and

σr(A, B) = σp(A∗, B∗) = {μ ∈ C : DW(A∗) ∩ DW((μI − B)∗) �= ∅}. (3)
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Proof. In [8], (2) was proved for the finite dimensional case. The argument can be
easily adapted to the general case as follows. If μ ∈ σp(A, B) , then there are unitary
operators U, V ∈ B(H ) and a unit vector x ∈ H such that (U∗AU+V∗BV)x = μx .
Let U∗AUx = (μI − V∗BV)x = αx + βy with α, β ∈ C and unit vector y ∈ x⊥ .
Thus

(α, |α|2 + |β |2) ∈ DW(U∗AU) ∩ DW(μI − V∗BV)
= DW(A) ∩ DW(μI − B).

Conversely, if (ν, r) ∈ DW(A)∩DW(μI−B) , then there are unit vectors x, x̂, y, ŷ ∈ H

with x̂ ∈ x⊥ and ŷ ∈ y⊥ such that Ax = νx +
√

r − |ν|2x̂ and (μI − B)y =
νy +

√
r − |ν|2ŷ . Let U = I and V ∈ B(H ) be unitary such that Vx = y and

Vx̂ = ŷ . Then (U∗AU + V∗BV − μI)x = 0 so that μ ∈ σp(A, B) .

Next, suppose μ ∈ C . By the fact that σp(T∗) = σr(T) for any T ∈ B(H ) , we
have

μ ∈ σr(A, B)
⇔ μ ∈ σr(C) for some C ∈ U (A) + U (B)
⇔ μ ∈ σp(C∗) for some C∗ ∈ U (A∗) + U (B∗)
⇔ DW(A∗) ∩ DW((μI − B)∗) �= ∅. �

For σa(A, B) , we have the following.

THEOREM 4.4. If μ ∈ σa(A, B) then cl (DW(A)) ∩ cl (DW(μI − B)) �= ∅ .

Proof. Suppose μ ∈ σa(A, B) . Then there exist unitaries U and V ∈ B(H ) and
a sequence of unit vectors {xn}∞1 in H such that

lim
n→∞ ‖(μI − (U∗AU + V∗BV))xn‖ = 0.

Let un = Uxn and vn = Vxn . Then

(〈U∗AUxn, xn〉 , 〈U∗AUxn, U
∗AUxn〉 )

= (〈Aun, un〉 , 〈Aun, Aun〉 ) ∈ DW(A)

and

(〈V∗(μI − B)Vxn, xn〉 , 〈V∗(μI − B)Vxn, V
∗(μI − B)Vxn〉 )

= (〈 (μI − B)vn, vn〉 , 〈 (μI − B)vn, (μI − B)vn〉 ) ∈ DW(μI − B) .

Since

|〈V∗(μI − B)Vxn, xn〉 − 〈U∗AUxn, xn〉 |
= |〈 (μI − (U∗AU + V∗BV))xn, xn〉 |
� ‖(μI − (U∗AU + V∗BV))xn‖
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and

|〈V∗(μI − B)Vxn, V
∗(μI − B)Vxn〉 − 〈U∗AUxn, U

∗AUxn〉 |
= |〈 (μI − (U∗AU + V∗BV))xn, V

∗(μI − B)Vxn〉
+〈U∗AUxn, (μI − (U∗AU + V∗BV))xn〉 |

� ‖(μI − (U∗AU + V∗BV))xn‖‖μI − B‖
+‖A‖‖(μI − (U∗AU + V∗BV))xn‖,

we have

lim
n→∞ |〈V∗(μI − B)Vxn, xn〉 − 〈U∗AUxn, xn〉 |

= lim
n→∞ |〈V∗(μI − B)Vxn, V

∗(μI − B)Vxn〉 − 〈U∗AUxn, U
∗AUxn〉 |

= 0 .

Passing to a subsequence of {xn}∞1 , if necessary, we may assume that there are c ∈ C

and r ∈ R such that

lim
n→∞〈U∗AUxn, xn〉 = c = lim

n→∞〈V∗(μI − B)Vxn, xn〉

and

lim
n→∞〈U∗AUxn, U

∗AUxn〉 = r = lim
n→∞〈V∗(μI − B)Vxn, V

∗(μI − B)Vxn〉 .

Hence, (c, r) ∈ cl (DW(A)) ∩ cl (DW(μI − B)) . �

COROLLARY 4.5. Suppose A, B ∈ B(H ) such that both DW(A) and DW(B)
are closed. Then

σp(A, B) = σa(A, B). (4)

Proof. Suppose A , B ∈ B(H ) such that both DW(A) and DW(B) are closed.
Let μ ∈ σa(A, B) . For a unit vector x ∈ H , let (〈Bx, x〉 , 〈Bx, Bx〉 ) = (cx, rx) . Then
we have

〈 (μI − B)x, x〉 = μ − 〈Bx, x〉 = μ − cx

〈 (μI − B)x, (μI − B)x〉 = |μ|2 − μ〈 x, Bx〉 − μ〈Bx, x〉 + 〈Bx, Bx〉
= |μ|2 − μcx − μcx + rx .

Therefore, DW(μI − B) is a continuous image of the compact set DW(B) . Hence,
DW(μI − B) is closed. We have

μ ∈ σa(A, B)
⇒ cl (DW(A)) ∩ cl (DW(μI − B)) �= ∅
⇒ DW(A) ∩ DW(μI − B) �= ∅
⇒ μ ∈ σp(A, B).

This establishes (4). �
The following example shows that the converse of Theorem 4.4 may not hold.
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EXAMPLE 4.6. Let {en}∞1 be an orthonormalbasis of H . Define A, B ∈ B(H )
by A = diag (0, 1, 1, . . . ) , and B = diag (1, 1/2, 1/3, . . . ) with respect to the basis
{en}∞1 . Then

(0, 0) ∈ DW(A) ∩ cl (DW(0I − B)) and 0 �∈ σa(A, B).

Verification. Clearly, (0, 0) ∈ DW(A) ∩ cl (DW(0I − B)) . Suppose there exist a
unitary U and a sequence {xn} of unit vectors such that

lim
n→∞ ‖(A + U∗BU)xn‖ = 0.

Let

xn =
∞∑
k=1

xnk ek and Ue1 = u =
∞∑
k=1

ukek.

Then
lim

n→∞ ‖(A + U∗BU)xn‖ = 0

⇒ lim
n→∞ ‖(UA + BU)xn‖ = 0

⇒ lim
n→∞ ‖(UA − U + U + BU)xn‖ = 0

⇒ lim
n→∞ ‖U(A − I)xn + (I + B)Uxn‖ = 0.

Since

‖U(A − I)xn + (I + B)Uxn‖ � ‖(I + B)Uxn‖ − ‖U(A − I)xn‖
� ‖Uxn‖ − ‖xn1u‖ = 1 − |xn1| ,

we have

lim
n→∞ |xn1| = 1 ⇒ lim

n→∞ ‖(xn − xn1e1)‖ = 0 .

Since

‖(UA + BU)xn‖ � ‖(UA + BU)(xn1e1)‖ − ‖(UA + BU)(xn − xn1e1)‖
� |xn1|‖Bu‖ − ‖(UA + BU)‖‖(xn − xn1e1)‖

and

‖(UA + BU)xn‖ � ‖(UA + BU)(xn1e1)‖ + ‖(UA + BU)(xn − xn1e1)‖
� ‖Bu‖ + ‖(UA + BU)‖‖(xn − xn1e1)‖ ,

we have

lim
n→∞ ‖(A + U∗BU)xn‖ = ‖Bu‖ =

√√√√ ∞∑
k=1

|uk|2
k2

> 0 ,

which is a contradiction. �
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The next example shows that DW(A) ∩ DW(μI − B) may or may not be empty
for μ ∈ σa(A, B) .

EXAMPLE 4.7. Let H be an infinite dimensional Hilbert space with an orthonor-
mal basis {en}∞n=1 and S∗ ∈ B(H) be the backward shift defined in Example 3.5. Then
(0, 0) ∈ DW(S∗) and (1, 1) /∈ DW(S∗) . If (A, B) = (S∗, 0) , then 0, 1 ∈ σa(A, B) .
However, DW(A) ∩ DW(0I − B) �= ∅ while DW(A) ∩ DW(1I − B) = ∅ .

REMARK 4.8. Example 4.6 and Example 4.7 show that a necessary and sufficient
condition for μ ∈ σa(A, B) cannot be described by

DW(A) ∩ DW(μI − B) �= ∅, DW(A) ∩ cl (DW(μI − B)) �= ∅
nor

cl (DW(A)) ∩ cl (DW(μI − B)) �= ∅.

5. Special operators

In this section, we study the relationship between the geometrical properties of
DW(A) and the algebraic properties of A ∈ B(H ) . In particular, we give complete
descriptions of the Davis-Wielandt shells for several classes of operators.

It is well known that for A ∈ B(H ) , W(A) = {λ} if and only if A = λ I ; W(A)
is a line segment if and only if A is essentially self-adjoint, i.e., there are a, b ∈ C with
a �= 0 such that aA + bI is self-adjoint; see [4, 5, 6]. Using these results, we have the
following.

THEOREM 5.1. Let A ∈ B(H ) .
(a) A is essentially self-adjoint if and only if DW(A) is a subset of a plane perpen-

dicular to the (x, y) -plane if we identify C × R with R3 .
(b) There are α, β ∈ C with α �= 0 such that αA + βI is a nonzero orthogonal

projection P �= I if and only if DW(A) is a nondegenerate line segment.

Proof. (a) The implication (⇒ ) is clear. Conversely, if DW(A) is a subset of
a plane perpendicular to the (x, y) -plane, then W(A) is a subset of a straight line in
the complex plane. Then there are α, β ∈ C with α �= 0 such that W(αA + βI) =
αW(A) + β ⊆ R . It follows that αA + βI is self-adjoint.

(b) The implication (⇒ ) is clear. Conversely, suppose that DW(A) is a nonde-
generate line segment. By (a), A is essentially self-adjoint. If σ(A) has more than two
points, then cl (DW(A)) has more than two points in the set {(μ, |μ|2) : μ ∈ C} so
that DW(A) is not a line segment by convexity. Clearly, σ(A) cannot be a singleton.
Thus, σ(A) has two points and the result follows. �

COROLLARY 5.2. Let A ∈ B(H ) .
(a) A is self-adjoint if and only if DW(A) is a subset of the (x, z) -plane if we identify

C × R with R3 .
(b) A is a non-scalar orthogonal projection if and only if DW(A) is the line joining

(0, 0) and (1, 1) .
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(c) A = λ I if and only if DW(A) = {(λ , |λ |2)} .

THEOREM 5.3. Let A ∈ B(H ) . Then there are α, β ∈ C such that α �= 0 and
αA + βI is an isometry if and only if DW(A) is a subset of a plane not perpendicular
to the (x, y) -plane when C × R is identified with R3 .

Proof. Suppose B = αA + βI is an isometry for some α, β ∈ C with α �= 0 .
Then

DW(B) ⊆ {(μ, 1) : μ ∈ C}.
By Theorem 2.1 (d), DW(A) = DW(α−1(B − βI)) is a subset of

{(α−1(μ − β), |α|−2(|β |2 − 2Re (μβ̄) + 1) ) : μ ∈ C},
which is a subset of a plane not perpendicular to the (x, y) -plane if we identify C × R

with R3 .
Conversely, suppose DW(A) ⊆ {(x + iy, z) : ax + by + cz = d} with c �= 0 . Let

β = (a + ib)/(2c) . By Theorem 2.1 (d), DW(A + βI) consists of points in C × R

with the second co-ordinate equal to

(ax + by + cz)/c + |β |2 = d/c + |β |2,
where (x + iy, z) ∈ DW(A) . Thus, ‖(A + βI)v‖2 = d/c + |β |2 for every unit vector
v ∈ H . Equivalently, A + βI is a multiple of an isometry. �

We can say a little bit more for DW(A) when A ∈ B(H ) is an isometry.

THEOREM 5.4. Suppose A ∈ B(H ) is an isometry. Then

DW(A) = {(μ, 1) : μ ∈ W(A)}.
If A has a compression equal to the shift operator S defined in Example 3.5 so that
DW(S) = {(μ, 1) : μ ∈ C, |μ| < 1} , then

DW(A) = DW(S) ∪ {(μ, 1) : μ ∈ σp(A)}. (1)

Proof. Suppose A ∈ B(H ) is an isometry. The first assertion follows from
the fact that the projection of DW(A) to its first co-ordinate equals W(A) , and that
‖Ax‖ = 1 for all unit vectors x ∈ H .

If S is a compression of A , then A has an operator matrix of the form[
S B
0 C

]

as A is an isometry. By Theorem 3.8 (a),

DW(S) ⊆ DW(A) ⊆ DW(S) ∪ {(μ, 1) : μ ∈ C, |μ| = 1}.
Moreover, for μ ∈ C with |μ| = 1 , we have (μ, 1) ∈ DW(A) if and only if μ ∈ σp(A)
by Theorem 4.1 (a). We get (1). �
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