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TOEPLITZ–PLUS–HANKEL BEZOUTIANS AND INVERSES

OF TOEPLITZ AND TOEPLITZ–PLUS–HANKEL MATRICES

KARLA ROST

(communicated by A. Böttcher)

Abstract. In the present paper Bezoutian-type formulas for the inverses of Toeplitz-plus-Hankel
(T+H) matrices are presented which involve bases of kernels of associated rectangular T+H
matrices. Special Bezoutians of this type yield inverses of symmetric or skewsymmetric Toeplitz
matrices and vice versa. In the skewsymmetric case these formulas lead directly to splitting
formulas for inverses of centro-skewsymmetric T+H matrices.

1. Introduction

It is well known that the inverse of a (nonsingular) Toeplitz matrix

Tn = [ ai−j ] n
i,j=1

is the Toeplitz Bezoutian of two vectors u, v . In [7] it was shown that these vectors
form a basis of the kernel of the (non-square) Toeplitz matrix ∂Tn which is obtained
from Tn by cancelling the first row and adding a column to the right. Conversely,
the Toeplitz Bezoutian built from any basis of the kernel of this matrix ∂Tn is up to a
constant factor equal to the inverse of Tn. Similar observations can be made for Hankel
matrices Hn = [ bi+j ] .

In the present paperwemainly considermatrices Rn which are the sumof a Toeplitz
and a Hankel matrix, Rn = Tn + Hn. We call these matrices briefly T+H matrices.
In [8] it was discovered that inverses of such matrices possess a generalized Bezoutian
structure. These Bezoutians will be referred to as T+H-Bezoutians. Now the question
arises if it is possible to define for a nonsingular T+H matrix Rn again connected
matrices so that a basis of their kernels yield all parameters needed to construct the
inverse R−1

n . The starting point for dealing with this problem was given in [8]. In the
present paper we discuss which linear combinations of the vectors of any bases result
in the vectors involved in the Bezoutian formula for R−1

n .
To explain the content of the present paper, let us first present some definitions and

simple facts. Throughout the paper we consider matrices with entries from a given field
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F with a characteristic not equal to 2. In all what follows, let Jn stand for the n × n
matrix of the counteridentity

Jn =

⎡
⎣ 0 1

. .
.

1 0

⎤
⎦ .

For a vector u ∈ F
n we denote

uJ = Jnu , (1.1)

for an m × n matrix A ,
AJ = JmAJn .

A vector u is called symmetric if u = uJ , it is called skewsymmetric if uJ = −uJ . A
matrix A is called centrosymmetric if A = AJ and is called centro-skewsymmetric if
A = −AJ . A square Toeplitz matrix is centrosymmetric if and only if it is symmetric,
and it is centro-skewsymmetric if and only if it is skewsymmetric.

We adopt some further notation in Section 2. Section 3 is dedicated to the Toeplitz
case. After recalling basic inversion formulas in Subsection 3.1 we consider in Sub-
sections 3.2 and 3.3 inverses of symmetric and skewsymmetric Toeplitz matrices. In
both cases we present splitting formulas which involve special T+H-Bezoutians. These
kinds of Bezoutians were introduced in [14] and have the nice property that all their
rows and columns are either symmetric or skewsymmetric vectors. In particular, the
splitting representation of Subsection 3.3 seems to be new.

Section 4 is dedicated to the Toeplitz-plus-Hankel case. In Subsection 4.1 we give
the definition of a T+H-Bezoutian and discuss the uniqueness of this representation. In
the first part of Subsection 4.2 we show how to get the vectors needed in the Bezoutian
formula for the inverse of a T+H matrix from the bases of two associated (n−2)×(n+2)
T+H matrices. Here we present a perhaps new and systematic solution of this problem.

How to compute these bases efficiently is beyond the scope of the present paper.
For this question we refer to [18], [3], [15] and the references therein. Note that the idea
to take advantage from splitting the vectors into their symmetric and skewsymmetric
parts goes back to Delsarte and Genin [1], [2] (see also [17], [5]).

The last part of Subsection 4.2 is concentrated on the special cases of centrosym-
metric and centro-skewsymmetric T+H matrices. Here we show how the splitting
formulas for symmetric and skewsymmetric Toeplitz matrix inverses designed in Sub-
sections 3.2 and 3.3 directly lead to splitting formulas for inverses of centrosymmetric
and centro-skewsymmetric T+H matrices. Such splitting formulas have already been
presented in [14], [15]. But, in particular, the proof in the centro-skewsymmetric case
was more complicated than our proof presented here at the end of Subsection 4.2.

A justification to design inversion formulas for centrosymmetric and centro-
skewsymmetric T or T+H matrices with the help of some special, simply structured
T+H Bezoutians is that if F is the field of real or complex numbers, then these
Bezoutians have matrix representations that include only discrete Fourier matrices or
matrices of other trigonometric transformations and diagonal matrices. This allows to
carry out matrix-vector multiplication with computational complexity O(n log n) (see
[9], [10], [11], [12]).
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2. Notation

The Bezoutian concept is conveniently introduced in polynomial language. Let
�n(t), t ∈ F , be the vector

�n(t) = (tj)n−1
j=0 .

First we introduce “polynomial language" for vectors. For x = (xi)n
i=1 ∈ F

n , we
consider the polynomial

x(t) = �n(t)Tx =
n∑

k=1

xkt
k−1 ∈ F

n(t)

and call it the generating polynomial of x . Polynomial language for matrices means that
we introduce the generating polynomial of an m × n matrix A = [ aij ]m n

i=1,j=1 ∈ F
m×n

as the bivariate polynomial

A(t, s) = �m(t)TA�n(s) =
m∑

i=1

n∑
j=1

aij t
i−1sj−1.

The Hankel Bezoutian (shortly H-Bezoutian) of p, q ∈ F
n+1 is, by definition, the n×n

matrix B with generating function

B(t, s) =
p(t)q(s) − q(t)p(s)

t − s
. (2.1)

We write B = BezH(p, q). An n × n matrix B is called the Toeplitz Bezoutian
(T-Bezoutian) of p, q ∈ F

n+1 , B = BezT(p, q) , if its generating function is of the
form

B(t, s) =
p(t)q(s−1)sn − q(t)p(s−1)sn

1 − ts
. (2.2)

Notice that
(Jn+1p)(t) = p(t−1)tn.

It is well known that a nonsingular matrix is the inverse of a Toeplitz matrix (Hankel
matrix) if and only if it is a T-Bezoutian (H-Bezoutian).

We introduce the transformation ∇T : F
n×n → F

(n+1)×(n+1) in the language of
generating polynomials as follows:

(∇TB)(t, s) = (1 − ts)B(t, s).

Then a nonsingularmatrix B is the inverse of a Toeplitz matrix if and only if rank∇TB =
2 . Let Sn denote the (forward) shift in F

n ,

Sn =

⎡
⎢⎢⎢⎣

0 0 0
1 0 0

. . .
. . .

0 1 0

⎤
⎥⎥⎥⎦ . (2.3)



388 KARLA ROST

For a matrix A of order n the matrix ∇TA can be written in the form

∇TA =
[

A − SnAST
n ∗

∗ ∗
]

=
[ ∗ ∗
∗ ST

n ASn − A

]
, (2.4)

and it is easy to see that A is a Toeplitz matrix if and only if the matrix of order n − 2
in the center of ∇TA is the zero matrix.

Analogously, in theHankel case one can consider the transformation ∇H : F
n×n →

F
(n+1)×(n+1) defined by

(∇HB)(t, s) = (t − s)B(t, s).

Hereafterwe denote by F
n
+, F n

− the subspaces of all symmetric, skewsymmetric vectors
of F

n , respectively. Let P± be the matrices

P± =
1
2
(In ± Jn) . (2.5)

These matrices are projections onto F
n
± and

P+ + P− = In, P+ − P− = Jn .

It is easy to see that a centrosymmetric matrix A ∈ F
n×n maps F

n
± to F

n
± , AP± =

P±AP±, whereas a centro-skewsymmetricmatrix A maps F
n± to F

n∓ , AP± = P∓AP± .

3. The Toeplitz case

3.1. Inverses of Toeplitz matrices

Recall that the inverse of a Toeplitz matrix

Tn = [ ai−j ] n
i,j=1

is a (nonsingular) T-Bezoutian B = BezT(u, v) (and vice versa). The question is how
to obtain the involved vectors u and v of F

n+1 . Starting with the Gohberg-Semencul
formula [4], where these vectors are given from the first and the last column of T−1

n ,
there are further possibilities discussed in the literature.

We recall now an approach which contains these possibilities as special cases
(compare [7]). To that aim we introduce the (n − 1) × (n + 1) Toeplitz matrix ∂Tn

obtained from Tn = [ ai−j ] n
i,j=1 after deleting the first row and adding another column

to the right by preserving the Toeplitz structure,

∂Tn =

⎡
⎢⎣

a1 a0 . . . a2−n a1−n
...

...
. . .

...
...

an−1 an−2 . . . a0 a−1

⎤
⎥⎦ . (3.1)

If Tn is nonsingular, then ∂Tn has a two-dimensional nullspace. Each basis of this
subspace is called a fundamental system for Tn . The reason for this notion is that any
fundamental system for Tn delivers the desired vectors u, v . To explain this we first
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mention the following fact. If span{u, v} = span{u1, v1} , in other words, if there is a
nonsingular 2 × 2 matrix ϕ such that

[ u1 v1 ] = [ u v ]ϕ , (3.2)

then
u1(t)vJ

1(s) − v1(t)uJ
1(s) = (detϕ) (u(t)vJ(s) − v(t)uJ(s)) .

Thus,
BezT (u1, v1) = (detϕ) BezT (u, v) .

In particular, the (nontrivial) T-Bezoutians BezT(u, v) and BezT(u1, v1) coincide if
and only if the vectors u, v and u1 , v1 are related via (3.2) with detϕ = 1 .

Now we recall the following basic inversion formula (see [7], Theorem 1.1 and
(1.47)). Denote by f the vector f = (a−i)n

i=1 whith a−n arbitrary and by {ek}n
k=1 the

canonical basis of F
n.

THEOREM 3.1. Let the equations

Tny = e1 and Tnz = fJ

be solvable. Then Tn is nonsingular, and

T−1
n = BezT(u, v) ,

where

u =
[

y
0

]
, v =

[ −z
1

]
. (3.3)

It is easy to see that {u, v} with u, v defined in (3.3) is a fundamental system
for Tn which satisfies the following normalization condition. If F is the 2 × (n + 1)
matrix

F =
[

a0 . . . a1−n a−n

0 . . . 0 1

]
,

then
F[ u v ] = I2 . (3.4)

A fundamental system {u, v} which satisfies (3.4) is called canonical. For every fixed
a−n the canonical fundamental system is unique.

Consider now a general fundamental system {u, v} . The matrix ϕ = F[ u v ] is
nonsingular. Indeed, suppose it is singular. Then there is a nontrivial linear combination
w(t) of u(t) and v(t) such that Fw = 0 . In particular, the highest order coefficient
vanishes, i.e. w ∈ F

n . Since w ∈ ker ∂Tn we conclude that Tnw = 0 , which means
that Tn is singular. Now the columns of [ u v ]ϕ−1 form a canonical fundamental
system, and we conclude the following.

THEOREM 3.2. Let {u, v} be a fundamental system for Tn . Then

T−1
n =

1
detϕ

BezT(u, v) ,

where ϕ = F[ u v ] .
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Now we present a modification of the latter result which is especially interesting
since the Levinson algorithm computes recursively the vectors under consideration
henceforth. Let Tn+1 = [ ai−j ] n+1

i,j=1 be a nonsingular Toeplitz extension of Tn , x−n+1 the

first and x+
n+1 the last column of T−1

n+1 . Then {x−n+1, x
+
n+1} is a fundamental systems

for Tn and

F
[

x−n+1 x+
n+1

]
=

[
1 0
∗ ξn+1

]
, (3.5)

where ξn+1 = eT
n+1x

+
n+1 �= 0.

COROLLARY 3.3. The inverse of the Toeplitz matrix Tn is given by

T−1
n =

1
ξn+1

BezT(x−n+1, x
+
n+1) .

3.2. Inverses of symmetric Toeplitz matrices

We discuss now the case of a nonsingular, symmetric Toeplitz matrix Tn . Since
TJ

n is equal to the transpose of Tn , a Toeplitz matrix is symmetric if and only if it is
centrosymmetric. Let

Tn+1 = [ a|i−j| ] n+1
i,j=1

be a nonsingular, symmetric Toeplitz extension of Tn . (Note that Tn+1 is nonsingular
with the exception of at most two values of an .)

Since xn+1 := x−n+1 = (x+
n+1)

J we have

T−1
n =

1
ξn+1

BezT(xn+1, xJ
n+1) .

Now we consider the vectors w±
n+1 = xn+1 ± xJ

n+1 ∈ F
n+1
± which are the solutions of

Tn+1w
±
n+1 = e1 ± en+1 .

Obviously, they form a fundamental system of Tn , and

F
[

w+
n+1 w−

n+1

]
=

[
1 1

w+
n+1(0) −w−

n+1(0)

]
.

PROPOSITION 3.4. The inverse of a symmetric Toeplitz matrix Tn can be repre-
sented as a T-Bezoutian of a symmetric and a skewsymmetric vector,

T−1
n =

1
γ

BezT(w−
n+1, w

+
n+1) ,

where γ = w+
n+1(0) + w−

n+1(0) .
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Finally let us present an inversion formula for a symmetric Toeplitz matrix Tn

which involves a newkind ofBezoutians introduced in [14]. Firstwe recall the definition.
Let p, q ∈ F

n+2 be either both symmetric or both skewsymmetric. Then

Bsplit(t, s) =
p(t)q(s) − q(t)p(s)

(t − s)(1 − ts)

is a polynomial in t and s . The n×n matrix with the generating polynomial Bsplit(t, s)
will be called the split Bezoutian of p(t) and q(t) and denoted by Bezsplit(p, q) .
As we will see in the next section, split Bezoutians are special Toeplitz-plus-Hankel
Bezoutians. It is easy to see that Bezsplit(p, q) is a symmetric and centrosymmetric
matrix. If p and q are symmetric, then the columns and rows of the split Bezoutian are
symmetric, and we speak of a split Bezoutian of (+)-type. If p and q are skewsymmetric
then the columns and rows of the split Bezoutian are skewsymmetric, and we then refer
to a split Bezoutian of (− )-type. Hereafter instead of Bsplit we will often write B+ or
B−, respectivly. Matrices with a generating polynomial of the form

B±(t, s)
1 ∓ s
1 ± s

occur in the skewsymmetric case for even n . They have the property that all rows are
in F

n
± and all columns are in F

n
∓ .

Now let u+ ∈ F
n+1
+ , v− ∈ F

n+1
− form a fundamental system for the symmetric

Toeplitz matrix Tn , and let B be the (symmetric) T-Bezoutian B = BezT(u+, v−).

PROPOSITION 3.5. The matrices B± = BP± are split Bezoutians of (± )-type,

B± = ±1
2

Bezsplit(p±, q±) ,

where p+ and q+ are symmetric, and p− and q− are skewsymmetric vectors given
by

p±(t) = (t ± 1)u+(t) and q±(t) = (t ∓ 1)v−(t) . (3.6)

Proof. We compute the generating polynomial of B± = BP± ,

B±(t, s) =
1
2

(B(t, s) ± B(t, s−1)sn−1)

=
1
2

(
−u+(t)v−(s) + v−(t)u+(s)

1 − ts
± u+(t)v−(s) − v−(t)u+(s)

t − s

)

= ±1
2

(t ± 1)u+(t)(s ∓ 1)v−(s) − (t ∓ 1)v−(t)(s ± 1)u+(s)
(t − s)(1 − ts)

= ±1
2

(
Bezsplit(p±, q±)

)
(t, s).

(Note that in the proof we do not use the nonsingularity of B .) �
Clearly, B = BP+ + BP− , and the considerations above lead to the following

splitting of the inverse of Tn into a sum of two split Bezoutians of different type.
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COROLLARY 3.6. The inverse of a symmetric Toeplitz matrix Tn can be represented
in the form

T−1
n =

1
2γ

(Bezsplit(p+, q+) − Bezsplit(p−, q−)) ,

where p±, q± are defined in (3.6) with u+ = w+
n+1, v− = w−

n+1 and γ is defined in
Proposition 3.4.

3.3. Inverses of skewsymmetric Toeplitz matrices.

In the case of a nonsingular, skewsymmetric Toeplitz matrix Tn, n = 2m , a
Levinson-type algorithm can be used to compute vectors spanning the nullspace of
T2k−1 for k = 1, . . . , m (compare [13], [16]). So it is reasonable to ask for a funda-
mental system {u, v} consisting of vectors of this kind.

Let x be any vector spanning the nullspace of Tn−1 . From the relation TJ
n−1 =

−Tn−1 it follows that also the vector xJ belongs to the nullspace of Tn−1 . Thus x is
either symmetric or skewsymmetric. In [13] (compare also [14]) it was shown that the
latter is not possible: The vector x is symmetric. Now it is immediately clear that

u =

⎡
⎣ 0

x
0

⎤
⎦ ∈ ker ∂Tn .

Furthermore, let Tn+1 be any (n+1)×(n+1) skewsymmetric Toeplitz extension of Tn

and v a (symmetric) vector spanning the nullspace of Tn+1 . Since Tn is nonsingular,
we may assume that v is monic, i.e. eT

1 v = 1. Now {u, v} is a fundamental system
consisting of two symmetric vectors, and

F
[

u v
]

=
[
γ 0
0 1

]
, γ = [ a1 . . . an−1 ]x �= 0 .

Thus the inverse of the nonsingular, skewsymmetric Toeplitz matrix Tn is given by

T−1
n =

1
γ

BezT(u, v) .

In analogy to the symmetric case we define symmetric and skewsymmetric vectors by

p±(t) = (t ± 1)u(t) and q±(t) = (t ± 1)v(t) . (3.7)

Now we observe that the generating polynomial of the matrices B(±) = BezT(u, v)P±
can be represented in the form

B(±)(t, s) =
1
2

(
u(t)v(s) − v(t)u(s)

1 − ts
± u(t)v(s) − v(t)u(s)

s − t

)

= ±1
2

p∓(t)q±(s) − q∓(t)p±(s)
(t − s)(1 − ts)

.
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Since u(t) =
p+(t)
t + 1

we have p−(t) =
t − 1
t + 1

p+(t) , analogously, q−(t) =
t − 1
t + 1

q+(t) .

By putting these into B(±)(t, s) we obtain

B(±)(t, s) = ±1
2

B∓(t, s)
s ± 1
s ∓ 1

= ±1
2

t ∓ 1
t ± 1

B±(t, s) ,

which leads to the following splittings of T−1
n .

PROPOSITION 3.7. Let B± = Bezsplit(p±, q±) with p±, q± being defined in
(3.7). Then

T−1
n (t, s) =

1
2γ

(
B+(t, s)

1 − s
1 + s

− B−(t, s)
1 + s
1 − s

)

=
1
2γ

(
1 + t
1 − t

B−(t, s) − 1 − t
1 + t

B+(t, s)
)

. (3.8)

4. The Toeplitz-plus Hankel case

4.1. Toeplitz-plus-Hankel Bezoutians

Now we want to generalize results for Toeplitz or Hankel matrices to matrices
which are the sum of such structured matrices. In particular, we recall the fact known
from [8] that the inverse of a (nonsingular) matrix which is the sum of a Toeplitz plus a
Hankel matrix possesses again a Bezoutian structure, though in a generalized sense.

An n × n matrix B is called a Toeplitz-plus-Hankel Bezoutian, briefly T+H-
Bezoutian, if there are eight polynomials gi(t), fi(t) (i = 1, 2, 3, 4) of F

n+2(t) such
that

B(t, s) =

4∑
i=1

gi(t)fi(s)

(t − s)(1 − ts)
. (4.1)

In analogy to theHankel orToeplitz casewehere use the notation B = BezT+H((gi, fi)4
1) .

Clearly, H-Bezoutians or T-Bezoutians are also T+H-Bezoutians. Moreover, since the
generating polynomials of the flip matrix Jn and of the shift matrix Sn are

Jn(t, s) =
tn − sn

t − s
and Sn(t, s) =

t − tnsn−1

1 − ts
,

Jn is an H- and Sn is a T-Bezoutian. The sum Sn + Jn is a T+H-Bezoutian,

(Sn + Jn)(t, s) =
(tn + t2) − tn+1(s + sn−1) + (tn − 1)sn + t(sn+1 − s)

(t − s)(1 − ts)
.

However, in general the sum of a T- and an H-Bezoutian BezH(u, v)+ BezT(g, f) is no
T+H-Bezoutian, since the rank of the matrix with the generating polynomial

(1 − ts)(u(t)v(s) − v(t)u(s)) + (t − s)(g(t)hJ(s) − h(t)gJ(s))
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is not expected to be less than or equal to 4 .
The T+H analogue of the transformations ∇H or ∇T is the transformation ∇T+H

mapping a matrix A = [ aij ]ni,j=1 of order n to a matrix of order n + 2 according to

∇T+HA = [ ai−1,j − ai,j−1 + ai−1,j−2 − ai−2,j−1 ]n+2
i,j=1 .

Here we put aij = 0 if i /∈ {1, 2, . . . , n} or j /∈ {1, 2, . . . , n} . Denoting Wn = Sn+ST
n

we have

∇T+HA =

⎡
⎣ 0 −eT

1 A 0
Ae1 AWn − WnA Aen

0 −eT
n A 0

⎤
⎦ . (4.2)

The generating polynomial of ∇T+HA is

(∇T+HA)(t, s) = (t − s)(1 − ts)A(t, s) . (4.3)

Hence a matrix B is a T+H-Bezoutian if and only if

rank∇T+HB � 4 .

Note that also T+H matrices can be characterized with this transformation: An n × n
matrix Rn is a T+H matrix if and only if the matrix of order n − 2 in the center of
∇T+HRn is the zero matrix.

Let us discuss the question under which conditions different vector systems
{gi, fi}4

i=1 , {g̃i, f̃i}4
i=1 produce the sameT+H-Bezoutian. Clearly, B = BezT+H((gi, fi)4

1)
is equal to B̃ = BezT+H((g̃i, f̃i)4

1) if and only if ∇T+HB = ∇T+HB̃ . Thus we can use
the following lemma to answer the question.

LEMMA 4.1. Let Gj, Fj (j = 1, 2) be full rank matrices of order m × r, n × r,
respectively, r = rankGj = rankFj . Then

G1F
T
1 = G2F

T
2 (4.4)

if and only if there is a nonsingular r × r matrix ϕ such that

G2 = G1ϕ , F1 = F2ϕT . (4.5)

Let B, B̃ be n × n T+H-Bezoutians and let ∇T+HB and ∇T+HB̃ allow the rank
decompositions

∇T+HB = GFT , ∇T+HB̃ = G̃F̃T ,

where G, G̃, F, F̃ are full rank matrices with

r = rankG = rankF � 4 , r̃ = rank G̃ = rank F̃ � 4 .

TheT+H-Bezoutians B and B̃ coincide if and only if r = r̃ and if there is a nonsingular
r × r matrix ϕ so that

G̃ = Gϕ , F = F̃ϕT .

To specify this for the nonsingular case we recall from [8] that if B is an n × n
matrix (n � 2) with rank ∇T+HB < 4 , then B is a singular matrix. In particular, if
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rank ∇T+HB < 4 then the first and the last rows (or the first and the last columns) of
B are linearly dependent. For T-(or H-)Bezoutians B , the condition rank ∇TB < 2
(or rank ∇HB < 2) leads to B ≡ 0 . But in the T+H case nontrivial T+H-Bezoutians
B with rank ∇T+HB < 4 exist. Examples are B = In + Jn and the split Bezoutians
introduced in Subsection 3.2.

Now we present the result for the nonsingular case.

PROPOSITION 4.2. The nonsingular T+H-Bezoutians

B = BezT+H((gi, fi)4
1) and B̃ = BezT+H((g̃i, f̃i)4

1)

coincide if and only if there is a nonsingular 4 × 4 matrix ϕ such that

[ g1 g2 g3 g4 ]ϕ = [ g̃1 g̃2 g̃3 g̃4 ]

and
[ f̃1 f̃2 f̃3 f̃4 ]ϕT = [ f1 f2 f3 f4 ] .

In [8] it was shown that, in analogy to the Toeplitz and Hankel cases, a nonsingular
matrix is an T+H-Bezoutian if and only if it is the inverse of a T+H matrix. To be
self-contained we recall the proof and start with the following part of this assertion.

THEOREM 4.3. Let B be a nonsingular T+H-Bezoutian. Then B−1 is a T+H
matrix.

Proof. We have rank ∇T+HB = 4 , and a rank decomposition of ∇T+HB is of the
form

∇T+HB =

⎡
⎣ 0

Be1

0

⎤
⎦ [ 1 ∗ 0 ]+

⎡
⎣ 0

Ben

0

⎤
⎦ [ 0 ∗ 1 ]−

⎡
⎣ 1

∗
0

⎤
⎦ [ 0 eT

1B 0 ]−
⎡
⎣ 0
∗
1

⎤
⎦ [ 0 eT

n B 0 ] ,

(4.6)
where ∗ stands for some vector of F

n . In particular, this means that there are vectors
zi ∈ F

n, i = 1, 2, 3, 4 such that

BWn − WnB = Be1 zT
1 + Ben zT

2 + z3 eT
1 B + z4 eT

n B .

Applying B−1 to both sides of the last equality leads to

B−1Wn − WnB
−1 = −(e1 zT

1B−1 + en zT
2B−1 + B−1z3 eT

1 + B−1z4 eT
n ) .

Thus, the matrix of order n − 2 in the center of ∇T+H(B−1) is the zero matrix. This
proves that B−1 is a T+H matrix. �

In the next subsection we will show that the converse is also true, i.e., the inverse
of a (nonsingular) T+H matrix is a T+H-Bezoutian.

4.2. Inverses of T+H-matrices

We now consider n × n matrices Rn which are the sum of a Toeplitz matrix
Tn = Tn(a) , a = (ai)n−1

i=1−n and a Hankel matrix Hn = Tn(b)Jn , b = (bi)n−1
i=1−n ,

Rn = Tn(a) + Tn(b)Jn =

⎡
⎢⎣

a0 . . . a1−n
...

. . .
...

an−1 . . . a0

⎤
⎥⎦ +

⎡
⎢⎣

b1−n . . . b0
... . .

. ...
b0 . . . bn−1

⎤
⎥⎦ . (4.7)
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Note that the chess-board matrices,

B =

⎡
⎢⎢⎢⎣

c b c · · ·
b c b · · ·
c b c · · ·
...

...
...

⎤
⎥⎥⎥⎦ (c, b ∈ F ) (4.8)

are both Toeplitz and Hankel matrices. Thus the representation (4.7) is not unique. We
want to prove that the inverse of a T+H matrix Rn is a T+H-Bezoutian and even more,
we want to present inversion formulas

R−1
n = BezT+H((gi, fi)4

1) .

Thus, we have to answer the question how to obtain the vectors gi, fi , i = 1, 2, 3, 4 .

1. Fundamental systems. Besides the nonsingular T+H matrix Rn of (4.7) we
consider the (n − 2) × (n + 2) T+H matrices ∂T+HRn, ∂T+HRT

n obtained from Rn, RT
n

after deleting the first and last rows and adding one column to the right and one to the
left by preserving the T+H structure,

∂T+HRn =

⎡
⎢⎢⎢⎣

a2 a1 . . . a2−n a1−n

a3 a2 . . . a3−n a2−n
...

...
...

...
an−1 an−2 . . . a−1 a−2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

b1−n b2−n . . . b1 b2

b2−n b3−n . . . b2 b3
...

...
...

...
b−2 b−1 . . . bn−2 bn−1

⎤
⎥⎥⎥⎦ ,

(4.9)

∂T+HRT
n =

⎡
⎢⎢⎢⎣

a−2 a−1 . . . an−2 an−1

a−3 a−2 . . . an−3 an−2
...

...
...

...
a1−n a2−n . . . a1 a2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

b1−n b2−n . . . b1 b2

b2−n b3−n . . . b2 b3
...

...
...

...
b−2 b−1 . . . bn−2 bn−1

⎤
⎥⎥⎥⎦ .

(4.10)

Since Rn is nonsingular both matrices ∂T+HRn and ∂T+HRT
n are of full rank, which

means
dim ker ∂T+HRn = dimker ∂T+HRT

n = 4 .

In contrast to the Toeplitz case, where {u, v} is a basis of ker ∂Tn if and only if {uJ, vJ}
is a basis of ker ∂TT

n , a connection between the kernels of ∂T+HRn and ∂T+HRT
n is

not transparent.
Any systemof eight vectors {ui}4

i=1, {vi}4
i=1 , where {ui}4

i=1 is a basis of ker ∂T+HRn

and {vi}4
i=1 is a basis of ker ∂T+HRT

n , is called a fundamental system for Rn . (Note
that the notion of a fundamental system for T+H matrices was also introduced in [6], but
in a different way.) The reason for our definition here is that these vectors completely
determine the inverse R−1

n . In order to show this we consider first a special fundamental
system.
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Hereafter we use the following notation. For a given vector a = (aj)n−1
j=1−n we

define
a(±) = (a±j)n

j=1 , (4.11)

where a±n can be chosen arbitrarily. The n × n matrix in the center of ∇T+HRn

(compare (4.2))
∇(Rn) = RnWn − WnRn

allows a rank decomposition of the form

∇(Rn) = −(a(+)+bJ
(−))e

T
1−(aJ

(−)+b(+))eT
n +e1(a(−)+bJ

(−))
T+en(aJ

(+)+b(+))T .

(4.12)

Multiplying (4.12) fromboth sides by R−1
n we obtain a rank decomposition of ∇(R−1

n ) .

PROPOSITION 4.4. We have

∇ (
R−1

n

)
= x1yT

1 + x2yT
2 − x3yT

3 − x4yT
4 , (4.13)

where xi (i = 1, 2, 3, 4) are the solutions of

Rnx1 = a(+) + bJ
(−) , Rnx2 = aJ

(−) + b(+) , Rnx3 = e1 , Rnx4 = en , (4.14)

and yi (i = 1, 2, 3, 4) are the solutions of

RT
ny1 = e1 , RT

n y2 = en , RT
n y3 = a(−) + bJ

(−) , RT
ny4 = aJ

(+) + b(+) . (4.15)

According to (4.9), (4.10) we obtain the following fundamental system for Rn .

PROPOSITION 4.5. Let xi, yi ∈ F
n be defined by (4.14), (4.15). The vector system⎧⎨

⎩u1 =

⎡
⎣ 1

−x1

0

⎤
⎦ , u2 =

⎡
⎣ 0

−x2

1

⎤
⎦ , u3 =

⎡
⎣ 0

x3

0

⎤
⎦ , u4 =

⎡
⎣ 0

x4

0

⎤
⎦
⎫⎬
⎭ (4.16)

is a basis of ker ∂T+HRn , and the vector system⎧⎨
⎩v1 =

⎡
⎣ 0

y1

0

⎤
⎦ , v2 =

⎡
⎣ 0

y2

0

⎤
⎦ , v3 =

⎡
⎣ 1

−y3

0

⎤
⎦ , v4 =

⎡
⎣ 0

−y4

1

⎤
⎦
⎫⎬
⎭ (4.17)

is a basis of ker ∂T+HRT
n .

2. Inversion. The special fundamental systemof Proposition 4.5 delivers the parameters
needed in a Bezoutian formula for R−1

n . This basic inversion formula is the initial point
for our further considerations.

THEOREM 4.6. [8] Let Rn be the nonsingular T+H matrix (4.7) and {ui}4
i=1 ,

{vi}4
i=1 be the fundamental system for Rn given by (4.16), (4.14), (4.17), (4.15). Then

R−1
n is the T+H-Bezoutian with the generating polynomial

R−1
n (t, s) =

u3(t)v3(s) + u4(t)v4(s) − u1(t)v1(s) − u2(t)v2(s)
(t − s)(1 − ts)

. (4.18)
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Proof. Since x3 is the first, x4 the last column, yT
1 is the first, yT

2 the last row of
R−1

n we conclude from (4.2) that

∇T+HR−1
n =

⎡
⎢⎣

0 −yT
1 0

x3 ∇(R−1
n ) x4

0 −yT
2 0

⎤
⎥⎦ .

Taking (4.13) into account this leads to

∇T+HR−1
n = [−u1 − u2 u3 u4 ] [ v1 v2 v3 v4 ]T ,

where the vectors ui and vi are defined in (4.16), (4.17). Formula (4.18) follows now
from (4.3). �

In particular, this theorem shows that if we want to use the vectors of any fundamen-
tal system for Rn in a Bezoutian formula for the inverse R−1

n , then a “normalization”
of them is necessary. For this purpose we introduce the following (n+2)×4 matrices:

F = [ e1 en+2 f1 f2 ] , G = [ g1 g2 e1 en+2 ] ,

where
f1 = (a1−i + bi−n)

n+1
i=0 , f2 = (an−i + bi−1)

n+1
i=0 ,

g1 = (ai−1 + bi−n)
n+1
i=0 , g2 = (ai−n + bi−1)

n+1
i=0

with a±n, b±n arbitrarily chosen. We call a fundamental system {ui}4
i=1 , {vi}4

i=1 for
Rn canonical if

FT [ u1 u2 u3 u4 ] = GT [ v1 v2 v3 v4 ] = I4 . (4.19)

PROPOSITION 4.7. A fundamental system {ui}4
i=1 , {vi}4

i=1 for Rn is canonical if
and only if the ui are of the form (4.16), (4.14), and the vi are of the form (4.17), (4.15)
for i = 1, 2, 3, 4 .

Proof. If {ui}4
i=1 and {vi}4

i=1 form a canonical system then (4.19) means, in
particular, that the first component of u1 and v3 as well as the last component of u2

and v4 are one. The first and last components of the other vectors are zero. Hence
there are vectors xi, yi ∈ F

n such that ui, vi are of the form (4.16), (4.17). Now by
(4.19) we have

[ I+−f1 I+−f2 ]T [ x3 x4 ] =
[

1 0
0 1

]
, (4.20)

where for a given vector h = (hi)n+1
i=0 ∈ F

n+2 the vector I+−h ∈ F
n is defined by

I+−h = (hi)n
i=1. (4.21)

Since
(I+−f1)T = eT

1Rn , (I+−f2)T = eT
nRn ,

and since

⎡
⎣ 0

x3

0

⎤
⎦ ,

⎡
⎣ 0

x4

0

⎤
⎦ are in ker ∂T+HRn , equality (4.20) leads to

Rnx3 = e1 , Rnx4 = en .
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Moreover,

⎡
⎣ 1

−x1

0

⎤
⎦ ∈ ker ∂T+HRn means that Rnx1 = a(+) + bJ

(−) and

⎡
⎣ 0

−x2

1

⎤
⎦ ∈

ker ∂T+HRn means that Rnx2 = aJ
(−) + b(+) . Similar arguments show that yi , i =

1, 2, 3, 4 , are the solutions of (4.15), and the necessity part of the proof is complete.
If {ui}4

i=1 , {vi}4
i=1 are of the form (4.16), (4.14), and (4.17), (4.15) then, obvi-

ously, (4.19) is satisfied. �
Given an arbitrary fundamental system {ũi}4

i=1 , {ṽi}4
i=1 we define two 4 × 4

nonsingular matrices ΓF,ΓG ,

FT [ ũ1 ũ2 ũ3 ũ4 ] = ΓF , GT [ ṽ1 ṽ2 ṽ3 ṽ4 ] = ΓG .

We conclude that by

[ u1 u2 u3 u4 ] = [ ũ1 ũ2 ũ3 ũ4 ]Γ−1
F (4.22)

and

[ v1 v2 v3 v4 ] = [ ṽ1 ṽ2 ṽ3 ṽ4 ]Γ−1
G (4.23)

a canonical fundamental system {ui}4
i=1, {vi}4

i=1 is given. Note that for fixed a±n, b±n

the canonical fundamental system is unique. The following becomes clear.

THEOREM 4.8. Let Rn be the nonsingular T+H matrix (4.7) and {ũi}4
i=1 , {ṽi}4

i=1
be a fundamental system for Rn . Then the inverse R−1

n is the T+H-Bezoutian (4.18),
where {ui}4

i=1 , {vi}4
i=1 are given by (4.22), (4.23).

Let Rn be given by (4.7). Hereafter we also use a representation of Rn which
involves the projections P± = 1

2 (In ± Jn) onto F
n
± and the vectors

c = (cj)n−1
j=1−n = a + b , d = (dj)n−1

j=1−n = a − b ,

namely

Rn = Tn(c)P+ + Tn(d)P− . (4.24)

Instead of the solutions xi of (4.14) and the solutions yi of (4.15) we consider now the
solutions of the following equations the right hand sides of which depend on c, d and
c̃ = aJ + b , d̃ = aJ − b :

Rnw1 =
1
2
(c(+) + cJ

(−)) , Rnw2 =
1
2
(d(+) − dJ

(−)) ,

Rnw3 = P+e1 , Rnw4 = P−e1 (4.25)

and

RT
n z1 = P+e1 , RT

n z2 = P−e1 , RT
n z3 =

1
2
(̃c(+) + c̃J

(−)) ,

RT
n z4 =

1
2
(d̃(+) − d̃J

(−)) , (4.26)
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where we use the notation (4.11). We introduce the vectors

ŭ1 =

⎡
⎣ 1
−2w1

1

⎤
⎦ , ŭ2 =

⎡
⎣ 1
−2w2

−1

⎤
⎦ , ŭ3 =

⎡
⎣ 0

w3

0

⎤
⎦ , ŭ4 =

⎡
⎣ 0

w4

0

⎤
⎦ ,

v̆1 =

⎡
⎣ 0

z1

0

⎤
⎦ , v̆2 =

⎡
⎣ 0

z2

0

⎤
⎦ , v̆3 =

⎡
⎣ 1
−2z3

1

⎤
⎦ , v̆4 =

⎡
⎣ 1
−2z4

−1

⎤
⎦ .

(4.27)

Now an inversion formula which involves these vectors follows from formula (4.18).

PROPOSITION 4.9. Let Rn be the nonsingular T+H matrix (4.24). Then the inverse
R−1

n is given by

R−1
n (t, s) =

ŭ3(t)v̆3(s) + ŭ4(t)v̆4(s) − ŭ1(t)v̆1(s) − ŭ2(t)v̆2(s)
(t − s)(1 − ts)

, (4.28)

where {ŭi}4
i=1 , {v̆i}4

i=1 are defined in (4.27).

Proof. Since
[ ŭ1 ŭ2 ŭ3 ŭ4 ] = [ u1 u2 u3 u4 ]ϕ

and
[ v̆1 v̆2 v̆3 v̆4 ] = [ v1 v2 v3 v4 ]ϕ−1 ,

where ϕ is the block diagonal matrix

ϕ = diag

([
1 1
1 −1

]
,
1
2

[
1 1
1 −1

])
,

the proposition follows from Proposition 4.2 and (4.18). �
3. Inversion of symmetricT+Hmatrices. Nowwe consider the inversion of symmetric
T+H matrices. It is easy to see that a T+H matrix is symmetric if and only if the Toeplitz
part has this property. Let Rn be a nonsingular, symmetric T+H matrix (4.7). Then
the solutions of (4.14) and (4.15) coincide,

y1 = x3 , y2 = x4 , y3 = x1 , y4 = x2 .

Using the inversion formula (4.18), R−1
n is given by the vectors {ui}4

i=1 of (4.16),

R−1
n (t, s) =

u3(t)u1(s) − u1(t)u3(s) + u4(t)u2(s) − u2(t)u4(s)
(t − s)(1 − ts)

. (4.29)

Since a = aJ we have c = c̃ , d = d̃ , and the inversion formula (4.28) can be
simplified as well,

R−1
n (t, s) =

ŭ3(t)ŭ1(s) − ŭ1(t)ŭ3(s) + ŭ4(t)ŭ2(s) − ŭ2(t)ŭ4(s)
(t − s)(1 − ts)

. (4.30)

If we have any basis {ũi}4
i−1 of ker ∂T+HRn , it remains to compute ΓF , and {ui}4

i=1
is given by (4.22).
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4. Inversion of centrosymmetricT+H matrices. If Rn from (4.7) is centrosymmetric,
i.e. RJ

n = Rn , then in view of Tn(a)J = Tn(aJ) ,

Rn =
1
2
(Rn + RJ

n) = Tn

(
1
2
(a + aJ)

)
+ Tn

(
1
2
(b + bJ)

)
Jn .

We conclude the following (compare [14]).

PROPOSITION 4.10. Let Rn be an n×n T+H matrix. Then the following assertions
are equivalent.

1. Rn is centrosymmetric.
2. In the representation (4.7) (resp. (4.24)) the Toeplitz matrices Tn(a) and Tn(b)

(resp. Tn(c) and Tn(d) ) are symmetric.
3. In the representation (4.7) (resp. 4.24)) a and b (resp. c and d ) are symmetric

vectors.

COROLLARY 4.11. A centrosymmetric T+H matrix Rn is also symmetric.

Moreover, in the centrosymmetric case the representation (4.24) can be written in
the form

Rn = P+Tn(c)P+ + P−Tn(d)P− . (4.31)

Now we specify the results for general T+H matrices to centrosymmetric T+H matrices
Rn . Since Rn is symmetric we can use the simplifications of the previous subsection.
Furthermore, we observe that the right hand sides of the first and the third equations
of (4.25) are symmetric and that those of the second and the fourth equations are
skewsymmetric if we choose

cn = c−n, dn = d−n .

Since centrosymmetric matrices map symmetric (skewsymmetric) vectors into sym-
metric (skewsymmetric) vectors, we conclude that the solutions w1, w3 of (4.25) as
well as their extensions ŭ1, ŭ3 of (4.27) are symmetric, whereas w2, w4 and ŭ2, ŭ4

are skewsymmetric vectors. This leads to further simplications of the inversion formula
(4.30). But before presenting the result let us introduce a more unified notation, where
the subscript + designates symmetric and the subscript − skewsymmetric vectors in
the fundamental system,

u+ =

⎡
⎣ 0

w3

0

⎤
⎦ , u− =

⎡
⎣ 0

w4

0

⎤
⎦ , v+ =

⎡
⎣ 1

−2w1

1

⎤
⎦ , v− =

⎡
⎣ 1

−2w2

−1

⎤
⎦ . (4.32)

Here wi are the solutions of (4.25) which turn obviously into pure Toeplitz equations,

Tn(c)w1 = P+c(+) , Tn(d)w2 = P−d(+) ,

Tn(c)w3 = P+e1 , Tn(d)w4 = P−e1 . (4.33)

Note that these equations have unique symmetric or skewsymmetric solutions. Thus,

u±(t)v±(s) − v±(t)u±(s)
(t − s)(1 − ts)
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are polynomials, and the inversion formula (4.30) can be rewritten as a sum of a split
Bezoutian of (+)-type and a split Bezoutian of (− )-type. Thus, we arrive at the
following.

THEOREM 4.12. Let Rn be a nonsingular, centrosymmetric T+H matrix given
by (4.24) and u±, v± be the vectors of F

n+2
± defined in (4.32), where the wi are the

unique symmetric or skewsymmetric solutions of the Toeplitz equations (4.33). Then

R−1
n = B+ + B− ,

where B± are the split Bezoutians of (±) -type given by

B± = Bezsplit(u±, v±) .

Similar ideas as those of Subsection 3.2 lead to a slight modification of the last
theorem. We extend the nonsingular centrosymmetric T+H matrix Rn given by (4.24)
to a nonsingular centrosymmetric T+Hmatrix Rn+2 such that Rn is its central submatrix
of order n :

Rn+2 = Tn+2(c)P+ + Tn+2(d)P− . (4.34)

Here c and d are extensions of the original vectors c and d by appropriate components

c−n = cn , d−n = dn and c−n−1 = cn+1 , d−n−1 = dn+1 .

Let x±n+2, x
±
n be the unique symmetric or skewsymmetric solutions of

Tn+2(c)x+
n+2 = P+e1 , Tn(c)x+

n = P+e1 ,
Tn+2(d)x−n+2 = P−e1 , Tn(d)x−n = P−e1 .

(4.35)

(Note that x+
n = w3 , x−n = w4 . The solutions x±n+2 are up to a constant factor equal to

the vectors v± .)

COROLLARY 4.13. [15] Let Rn+2 be a nonsingular, centrosymmetric extension
(4.34) of Rn . Then the equations (4.35) have unique symmetric or skewsymmetric
solutions and

R−1
n (t, s) =

1
r+

B+(t, s) +
1
r−

B−(t, s) ,

where B± = Bezsplit(x±n+2, u±) , r± are the first components of x±n+2 , and u± =⎡
⎣ 0

x±n
0

⎤
⎦ .

If Tn(c) and Tn(d) are nonsingular then Rn is nonsingular. Indeed, taking (4.31)
into account, the equality Rnu = 0 leads to

P+Tn(c)P+u = −P−Tn(d)P−u .

Hence P+u = 0 and P−u = 0 , which means u = 0 . The converse is not true. Take,
for example, c = (1, 1, 1) and d = (−1, 1,−1) . Then T2(c) and T2(d) are singular,
whereas R2 = 2I2 is nonsingular. One might conjecture that for a nonsingular Rn there
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is always a representation (4.24) with nonsingular Tn(c) and Tn(d) . For n = 2 this is
true, but this fails to be true for greater n (see [14]).

Let us consider besides Rn = Tn(a) + Tn(b)Jn the matrix R−
n = T(a) − T(b)Jn .

If Rn is represented in the form (4.31) then the corresponding representation of R−
n is

R−
n = P+Tn(d)P+ + P−Tn(c)P− ,

which means that the roles of c and d are interchanged. We conclude the following.

PROPOSITION 4.14. The (symmetric) Toeplitz matrices Tn(c) and Tn(d) are
nonsingular if and only if both Rn and R−

n are nonsingular.

Proof. We have already shown that the nonsingularity of Tn(c) and Tn(d) implies
the nonsingularity of Rn . The nonsingularity of R−

n follows by the same arguments.
It remains to show that the singularity of Tn(c) (or Tn(d) ) leads to the singularity of
Rn or R−

n . Let u be a nontrivial vector such that Tn(c)u = 0 . We split u into its
symmetric and skewsymmetric parts,

u = u+ + u− (u± ∈ F
n
±).

Clearly, at least one of the vectors u+ or u− is nonzero, and Tn(c)u+ = Tn(c)u− = 0 .
Since

Rnu+ = Tn(c)u+ , R−
n u− = Tn(c)u−

we obtain that Rn or R−
n is singular. This is also obtained if we assume that Tn(d) is

singular. �
5. Inversion of centro-skewsymmetricT+H matrices. Finally we consider the special
case of a T+H matrix Rn which is centro-skewsymmetric, Rn = −RJ

n . Since detA =
(−1)n det A for an n × n centro-skewsymmetric matrix A all centro-skewsymmetric
matrices of odd order are singular. Hence we here consider mainly matrices of even
order. The centro-skewsymmetric counterpart of Proposition 4.10 is as follows (see
[14]).

PROPOSITION 4.15. Let Rn be an n×n T+H matrix. Then the following assertions
are equivalent.

1. Rn is centro-skewsymmetric.
2. There is a representation (4.7) (resp. (4.24)) such that the Toeplitz matrices Tn(a)

and Tn(b) (resp. Tn(c) and Tn(d) ) are skewsymmetric.
3. There is a representation (4.7) (resp. (4.24)) such that a and b (resp. c and d )

are skewsymmetric vectors.

In the remaining part of this subsection we only use such representations. In this
case (4.24) can be rewritten as

Rn = P−Tn(c)P+ + P+Tn(d)P− .

Its transposed matrix is given by

RT
n = −(P−Tn(d)P+ + P+Tn(c)P−) ,

and we have c̃ = −d and d̃ = −c in equations (4.26).
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In general, Rn is neither symmetric nor skewsymmetric, and thus a connection
between the solutions of (4.25) and (4.26) is not obvious. If we choose cn = −c−n

and dn = −d−n than c(−) = −c+ , d(−) = −d(+) . Hence the right-hand sides of
the equations (4.25), (4.26) are either symmetric or skewsymmetric. Since Rn as a
centro-skewsymmetric matrix maps F

n
± to F

n
∓ , we obtain that the solutions are also

either symmetric or skewsymmetric. Let us indicate these symmetry properties again
by denoting

w+ = w1 , w− = w2 , x− = w3 , x+ = w4 ,
x̃− = z1 , x̃+ = z2 , w̃+ = z3 , w̃− = z4.

Since these symmetries pass to the augmented vectors ŭj , v̆j of (4.27) we set

v+ = ŭ1 , v− = ŭ2 , u− = ŭ3 , u+ = ŭ4 ,
ṽ+ = v̆3 , ṽ− = v̆4 , ũ− = v̆1 , ũ+ = v̆2 .

(4.36)

The equations (4.25), (4.26) turn into Toeplitz equations,

Tn(c)x+ = P−e1 , Tn(c)w+ = P−c(+) ,

Tn(d)x− = P+e1 , Tn(d)w− = P+d(+) (4.37)

and
Tn(c)x̃− = −P+e1 , Tn(c)w̃− = P+c(+) ,

Tn(d)x̃+ = −P−e1 , Tn(d)w̃+ = P−d(+) . (4.38)

According to Proposition 4.9 and (4.3), R−1
n is given by the augmented vectors (4.36)

of these solutions via

∇T+HR−1
n = u−ṽT

+ − v+ũT
− − v−ũT

+ + u+ṽT
− . (4.39)

Note that for a nonsingular matrix Rn all equations (4.37) and (4.38) are uniquely
solvable. Indeed we observe that x = x+ − x̃− is a solution of Tn(c)x = e1 and
w = w+ − w̃− is a solution of Tn(c)w = cJ

(−) . Taking Theorem 3.1 into account we
obtain the nonsingularity of Tn(c). Analogously, Tn(d) is nonsingular. This leads to
the following conclusion revealing an essential difference between the centrosymmetric
and centro-skewsymmetric cases (see [14]).

PROPOSITION 4.16. For a centro-skewsymmetric T+H matrix

Rn = T(a) + T(b)Jn = T(c)P+ + T(d)P−

with skewsymmetric vectors a, b, c, d , the following assertions are equivalent.
1. Rn is nonsingular.
2. R−

n = T(a) − T(b)Jn is nonsingular.
3. T(c) and T(d) are nonsingular.

COROLLARY 4.17. Let Rn be nonsingular. Then

R−1
n = Tn(c)−1P− + Tn(d)−1P+ = P−Tn(c)−1 + P+Tn(d)−1 . (4.40)
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Now we use Proposition 3.7 twice for Tn = Tn(c) and for Tn = Tn(d) . All
numbers, vectors, and matrices are designated by the upscript c respective d. In
particular, xc is any vector spanning the nullspace of Tn−1(c) , the monic vector vc

spans the nullspace of Tn+1(c) , so that {uc, vc} with uc(t) = txc(t) is a fundamental
system for Tn(c) , γ c = [ c1 . . . cn−1 ]xc , pc

±(t) = (t ± 1)uc(t), qc
±(t) = (t ± 1)vc(t) .

Inversion formula (3.8) looks now as follows:

Tn(c)−1(t, s) =
1

2γ c (Bc
+(t, s)

1 − s
1 + s

− Bc
−(t, s)

1 + s
1 − s

) ,

where Bc
± = Bezsplit(pc

±, qc
±) . In such a manner also Tn(d)−1 can be represented. By

putting these representations into (4.40) we obtain the following splitting of R−1
n .

PROPOSITION 4.18.

R−1
n (t, s) =

1
2γ c Bc

+(t, s)
1 − s
1 + s

− 1
2γ d Bd

−(t, s)
1 + s
1 − s

.

A splitting formula of this form has been already presented in [14]. But there the
proof is based on connections between the solutions of (4.37) and (4.38). Let us recall
the results for the augmented vectors:

u+(t) =
1 + t
1 − t

ũ−(t) , v+(t) =
1 + t
1 − t

ṽ−(t).

Replacing c by d we obtain

ũ+(t) =
1 + t
1 − t

u−(t) , ṽ+(t) =
1 + t
1 − t

v−(t).

Inserting these into (4.39) leads to the following splitting formula given in [14]:

R−1
n (t, s) = B+(t, s)

s − 1
s + 1

+ B−(t, s)
s + 1
s − 1

,

where
B± = Bezsplit(u±, v±) .

This inversion formula is, obviously, identical with the representation of R−1
n in Propo-

sition 4.18.
To present the skewsymmetric counterpart of Corollary 4.13 let us extend the

nonsingular centro-skewsymmetric T+H matrix Rn given by (4.24) to a nonsingular
centro-skewsymmetric T+H matrix Rn+2 such that Rn is its central submatrix of order
n :

Rn+2 = Tn+2(c)P+ + Tn+2(d)P− , (4.41)
where c and d are extensions of the original vectors c and d by appropriate components
c−j = −cj , d−j = −dj (j = n, n + 1) . Let x±n+2, x

±
n be the unique symmetric or

skewsymmetric solutions of

Tn+2(c)x−n+2 = P+e1 , Tn(c)x−n = P+e1 ,
Tn+2(d)x+

n+2 = P−e1 , Tn(d)x+
n = P−e1 .

(4.42)

Note that x±n = −x̃± , and thus −u± are the augmented vectors defined by u±(t) =
tx±n (t) . The solutions x±n+2 are up to a constant factor equal to the vectors v± .
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COROLLARY 4.19. [15] Let Rn+2 be a nonsingular, centro-skewsymmetric exten-
sion (4.41) of Rn . Then the equations (4.42) have unique symmetric or skewsymmetric
solutions and

R−1
n (t, s) =

1
r+

B+(t, s)
s − 1
s + 1

+
1
r−

B−(t, s)
s + 1
s − 1

,

where B± = Bezsplit(x±n+2, u±) and r± are the first components of x±n+2 .
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