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CONVERGENCE AND DECOMPOSITION FOR TENSOR

PRODUCTS OF HILBERT SPACE OPERATORS

C. S. KUBRUSLY AND P. C. M. VIEIRA

(communicated by B. Magajna)

Abstract. It is shown that convergence of sequences of Hilbert space operators is preserved
by tensor product and the converse holds in case of convergence to zero under the semigroup
assumption. In particular, unlike ordinary product of operators, weak convergence is preserved
by tensor product. It is also shown that a tensor product of operators is a unilateral shift if and
only if it coincides with a tensor product of a unilateral shift and an isometry. These results lead
to a decomposition of a tensor product of contractions into an orthogonal direct sum of tensor
products of class C 00 , strongly stable tensor products, unilateral shift tensor products, and a
unitary tensor product.

1. Introduction

Let H and K be nonzero complex Hilbert spaces. We shall consider the
concept of tensor product space in terms of the single tensor product of vectors as a
conjugate bilinear functional on the Cartesian product of H and K . (See e.g., [4],
[10] and [11] — for an abstract approach see e.g., [1] and [14].) The single tensor prod-
uct of x ∈ H and y ∈ K is a conjugate bilinear functional x ⊗ y:H × K → C

defined by (x ⊗ y) (u, v) = 〈 x ; u〉 〈 y ; v〉 for every (u, v) ∈ H × K . The col-
lection of all (finite) sums of single tensors xi ⊗ yi with xi ∈ H and yi ∈ K ,
denoted by H ⊗ K , is a complex linear space equipped with an inner product
〈 ; 〉 :(H ⊗ K ) × (H ⊗ K ) → C defined, for arbitrary

∑N
i=1 xi ⊗ yi and∑M

j=1 wj ⊗ zj in H ⊗ K , by

〈 N∑
i=1

xi ⊗ yi ;
M∑

j=1

wj ⊗ zj

〉
=

N∑
i=1

M∑
j=1

〈 xi ; wj〉 〈 yi ; zj〉

(the same notation for the inner products on H , K and H ⊗ K ) . By an operator
we mean a bounded linear transformation of a normed space into itself. Let B[H ] ,
B[K ] and B[H ⊗ K ] be the normed algebras of all operators on H , K and
H ⊗ K . The tensor product on H ⊗ K of two operators T in B[H ] and S in
B[K ] is the operator T ⊗ S:H ⊗ K → H ⊗ K defined by
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(T ⊗ S)
N∑

i=1

xi ⊗ yi =
N∑

i=1

Txi ⊗ Syi for every
N∑

i=1

xi ⊗ yi ∈ H ⊗ K ,

which lies in B[H ⊗ K ] . The completion of the inner product space H ⊗ K ,
denoted by H ⊗̂ K , is the tensor product space of H and K . The extension of
T ⊗ S over the Hilbert space H ⊗̂ K , denoted by T ⊗̂ S , is the tensor product of
T and S on the tensor product space, which lies in B[H ⊗̂ K ] . For an expository
paper containing the essential properties of tensor products needed here, the reader is
referred to [6].

It is exhibited in Theorem 4 a decomposition of a tensor product contraction T ⊗̂ S
into an orthogonal direct sum of tensor products of class C 00 , strongly stable tensor
products, unilateral shift tensor products, and a unitary tensor product. This is done
after showing in Theorem 1 that weak, strong and uniform convergences are preserved
by tensor product. The case of convergence to zero is considered in Theorem 2, and the
converse is investigated in Theorem 3 under the semigroup assumption (i.e., for power
sequences). The above mentioned decomposition is also based on Lemma 1, which
ensures that a tensor product is a unilateral shift if and only if it coincides with a tensor
product of a unilateral shift and an isometry.

2. Convergence

A sequence {Tn} of operators in B[H ] converges uniformly, or strongly, or
weakly to an operator T in B[H ] if ‖Tn − T‖ → 0 , or ‖(Tn − T)x‖ → 0 for every
x in H , or 〈Tnx ; y〉 → 0 for every x and y in H (equivalently, 〈Tnx ; x〉 → 0 for
every x in the complex Hilbert space H ), and these will be denoted by Tn

u−→ T , or
Tn

s−→ T , or Tn
w−→ T , respectively. It is bounded if supn ‖Tn‖ < ∞ . Clearly,

Tn
u−→ T =⇒ Tn

s−→ T =⇒ Tn
w−→ T =⇒ sup

n
‖Tn‖ < ∞.

THEOREM 1. Let {Tn} be a sequence of operators in B[H ] and let {Sn} be a
sequence of operators in B[K ] . Let T and S be operators in B[H ] and in B[K ] .

(a) If Tn
u−→ T and Sn

u−→ S, then Tn ⊗̂ Sn
u−→ T ⊗̂ S .

(b) If Tn
s−→ T and Sn

s−→ S, then Tn ⊗̂ Sn
s−→ T ⊗̂ S .

(c) If Tn
w−→ T and Sn

w−→ S, then Tn ⊗̂ Sn
w−→ T ⊗̂ S .

Proof. Recall that Tn ⊗ Sn − T ⊗ S = Tn ⊗ (Sn − S) + (Tn − T) ⊗ S for each
n , which still holds if ⊗ is replaced with ⊗̂ (see e.g., [6, Propositions 2(b 1 ,b 2 )
4(b 1 ,b 2 )]).

(a) If ‖Tn − T‖ → O (so that {Tn} is bounded) and ‖Sn − S‖ → O , then

‖Tn ⊗̂ Sn − T ⊗̂ S‖ � sup
n

‖Tn‖ ‖Sn − S‖ + ‖S‖ ‖Tn − T‖,

and hence ‖Tn ⊗̂ Sn − T ⊗̂ S‖ → 0 . That is, Tn ⊗̂ Sn
u−→ T ⊗̂ S .

(b) Take an arbitrary
∑N

i=1 xi ⊗ yi in H ⊗ K and observe that
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∥∥∥(Tn ⊗ Sn−T ⊗ S)
N∑

i=1

xi ⊗ yi

∥∥∥

� sup
n

‖Tn‖
N∑

i=1

‖xi‖
N∑

i=1

‖(Sn − S)yi‖ + ‖S‖
N∑

i=1

‖yi‖
N∑

i=1

‖(Tn − T)xi‖.

If Sn
s−→ S and Tn

s−→ T , then ‖(Tn ⊗ Sn − T ⊗ S)
∑N

i=1 xi ⊗ yi‖ → 0 , and so
Tn ⊗ Sn

s−→ T ⊗ S . Moreover, {Tn ⊗̂ Sn} is bounded (because supn ‖Tn ⊗̂ Sn‖ �
supn ‖Tn‖ supn ‖Sn‖ < ∞ ). As it is well-known, if a sequence of operators converges
strongly in a normed space, and if its extension is bounded in the completion, then
convergence holds in the completion of the space. Thus Tn ⊗̂ Sn

s−→ T ⊗̂ S .

(c) Similarly, and applying the Schwarz inequality,

∣∣∣〈(Tn ⊗ Sn − T ⊗ S)
N∑

i=1

xi ⊗ yi ;
N∑

i=1

xi ⊗ yi

〉∣∣∣

� sup
n

‖Tn‖
N∑

i=1

N∑
j=1

‖xi‖ ‖xj‖
N∑

i=1

N∑
j=1

|〈 (Sn − S)yi ; yj〉 |

+ ‖S‖
N∑

i=1

N∑
j=1

‖yi‖ ‖yj‖
N∑

i=1

N∑
j=1

|〈 (Tn − T)xi ; xj〉 |.

Thus |〈 (Tn ⊗ Sn − T ⊗ S)
∑N

i=1 xi ⊗ yi ;
∑N

i=1 xi ⊗ yi〉 | → 0 , whenever Sn
w−→ S and

Tn
w−→ T , and so Tn ⊗ Sn

w−→ T ⊗ S . The same argument applies for weak conver-
gence so that Tn ⊗̂ Sn

w−→ T ⊗̂ S . �

REMARK 1. The result in Theorem 1(c) does not mirror the ordinary product
counterpart. Indeed, Tn

w−→ T and Sn
w−→ S do not imply TnSn

w−→ TS (in fact, even
Tn

s−→ T and Sn
w−→ S do not imply TnSn

w−→ TS ). Sample: if V is a unilateral shift,
put T∗

n = Sn = Vn so that Tn
s−→ O , Sn

w−→ O , but TnSn = I for every n .

THEOREM 2. Let {Tn} and {Sn} be sequences of operators in B[H ] and B[K ] ,
respectively. If one of them converges to zero uniformly ( strongly, weakly ) and the
other is bounded, then {Tn ⊗̂ Sn} converges to zero uniformly ( strongly, weakly ) .

Proof. If ‖Tn‖ → 0 and supn ‖Sn‖ < ∞ (or vice versa), then ‖Tn ⊗̂ Sn‖ → 0
because ‖Tn ⊗̂ Sn‖ = ‖Tn ⊗ Sn‖ = ‖Tn‖ ‖Sn‖ for every n � 1 , which proves the
claimed result for uniform convergence. For strong and weak convergences take an
arbitrary vector

∑N
i=1 xi ⊗ yi in H ⊗ K . Note that

∥∥∥(Tn ⊗ Sn)
N∑

i=1

xi ⊗ yi

∥∥∥ � sup
n

‖Sn‖
N∑

i=1

‖Tnxi‖
N∑

i=1

‖yi‖.
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If {Tn} converges strongly to zero and if {Sn} is bounded (or vice versa), then∥∥(Tn ⊗ Sn)
∑N

i=1 xi ⊗ yi

∥∥ → 0 . Applying the same argument in the proof of Theorem
1(b) we get Tn ⊗̂ Sn

s−→ O . Similarly,

∣∣∣〈(Tn ⊗ Sn)
N∑

i=1

xi ⊗ yi ;
N∑

i=1

xi ⊗ yi

〉∣∣∣� sup
n

‖Sn‖
N∑

i=1

N∑
j=1

|〈Tnxi ; xj〉 |
N∑

i=1

N∑
j=1

‖yi‖ ‖yj‖.

If {Tn} converges weakly to zero and if {Sn} is bounded (or vice versa), then〈
(Tn ⊗ Sn)

∑N
i=1 xi ⊗ yi ;

∑N
i=1 xi ⊗ yi

〉 → 0 . Again, applying the same argument in
the proof of Theorem 1(c), it follows that Tn ⊗̂ Sn

w−→ O . �

REMARK 2. A tensor product sequence {Tn ⊗̂ Sn} may converge in every topology
and both sequences {Tn} and {Sn} may not converge in any topology (actually, both
sequences may not even be bounded). For instance, put Tn = nI if n is odd and
Tn = O if n is even, and Sn = O if n is odd and Sn = nI if n is even, so that
‖Tn ⊗̂ Sn‖ = ‖Tn‖‖Sn‖ = 0 . However, in general, we always have

inf
n
‖Tn‖ sup

n
‖Sn‖ � sup

n

(‖Tn‖‖Sn‖
)

= sup
n

‖Tn ⊗̂ Sn‖ (∗)

(if we declare that 0 · ∞ = 0 ). Theorem 3 below shows that, unlike the above example,
convergence to zero of power sequences (or, equivalently, of sequences having the
semigroup property) is transferred from the tensor product to one of the factors. First
we consider the following auxiliary result.

PROPOSITION 1. If the power sequence {Tn ⊗̂ Sn} is bounded, then so is one of
the power sequences {Tn} or {Sn} .

Proof. Since (T ⊗̂ S)n = Tn ⊗̂ Sn for every n � 0 , the above statement says that
if T ⊗̂ S is power bounded, then so is one of T or S . Indeed, suppose T ⊗̂ S is power
bounded so that infn ‖Tn‖ supn ‖Sn‖ < ∞ by (∗) . If one of T or S , say T , is not
power bounded, then infn ‖Tn‖ � 1 (since infn ‖Tn‖ < 1 implies ‖Tn‖ → 0 ; cf . (a)
in the proof of Theorem 3 below). Hence supn ‖Sn‖ � infn ‖Tn‖ supn ‖Sn‖ and so S is
power bounded. Similarly, if S is not power bounded, then T must be. �

Let {n}n�0 denote the self indexing of the set of all nonnegative integers N0

equipped with the natural order. We say that a subsequence {nk}k�0 of {n}n�0 is
of bounded increments if supk�0(nk+1 − nk) < ∞ , and that a Hilbert space operator
T is power incremented if either the power sequence {Tn} converges weakly to zero
or there exists a subsequence of bounded increments {nk}k�0 of {n}n�0 such that
lim supk |〈Tnkx ; y〉 | > 0 whenever 〈Tnx ; y〉 �→ 0 for some pair of vectors x and y .

THEOREM 3. Let T be an operator in B[H ] and let S be an operator in B[K ] .
Consider the power sequences {Tn} and {Sn} . If {Tn ⊗̂ Sn} converges to zero
uniformly or strongly, then so does one of the sequences {Tn} or {Sn} . If {Tn ⊗̂ Sn}
converges to zero weakly, and one of T or S is power incremented, then one of the
sequences {Tn} or {Sn} converges to zero weakly.
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Proof. First recall that (T ⊗̂ S)n = Tn ⊗̂ Sn for each nonnegative integer n .

Part 1 : Uniform Convergence.

(a) If infn ‖Tn‖ < 1, then ‖Tn‖ → 0 .

Indeed, if infn ‖Tn‖< 1 , then there is a positive integer n0 such that ‖Tn0‖< 1 . Thus
(with r(T) denoting the spectral radius of any operator T in B[H ] ),

r(T)n0 = r(Tn0) � ‖Tn0‖ < 1 =⇒ r(T) < 1 ⇐⇒ ‖Tn‖ → 0.

Now suppose ‖Tn ⊗̂ Sn‖ → 0 and recall that ‖Tn ⊗̂ Sn‖ = ‖Tn‖‖Sn‖ for every n .

(b) If infn ‖Tn‖ > 0, then ‖Sn‖ → 0 .

In fact, infn ‖Tn‖ > 0 if and only if lim infn ‖Tn‖ > 0 (reason : ‖Tn+1‖ � ‖T‖‖Tn‖ ).
Since ‖Tn‖‖Sn‖ → 0 , it then follows that if lim infn ‖Tn‖ > 0 , then ‖Sn‖ → 0 . From
(a) and (b) we get the claimed result for uniform convergence.

Part 2 : Strong Convergence. If the sequence {Tn ⊗̂ Sn} converges strongly, then
it is bounded (i.e., T ⊗̂ S is power bounded, since (T ⊗̂ S)n = Tn ⊗̂ Sn ), and so is one
of {Tn} and {Sn} (i.e., one of T or S is power bounded) by Proposition 1. Thus, with
no loss of generality, suppose T is power bounded: supn ‖Tn‖ < ∞ .

(c) If lim infn ‖Tnx‖ = 0 for every x ∈ H , then ‖Tnx‖ → 0 for every x ∈ H .

Indeed, take any x ∈ H . If lim infn ‖Tnx‖ = 0 , then there exists a subsequence
{‖Tnkx‖} of {‖Tnx‖} such that limk ‖Tnkx‖ → 0 . Since supn ‖Tn‖ < ∞ , and since
Tm+n = TmTn for every m � 0 and n � 0 , this ensures that ‖Tnx‖ → 0 . Actually,

‖Tnx‖ � ‖Tn−nk‖ ‖Tnkx‖ � sup
n

‖Tn‖‖Tnkx‖ whenever n � nk.

Now suppose {Tn ⊗̂ Sn} converges strongly to zero. Since for each integer n � 0

‖(T ⊗̂ S)nx ⊗ u‖ = ‖Tnx ⊗ Snu‖ = ‖Tnx‖‖Snu‖
for every x ∈ H and u ∈ K , it follows that ‖Tnx‖‖Snu‖ → 0 for every x ∈ H and
u ∈ K , which ensures the next assertion.

(d) If lim infn ‖Tnx‖ > 0 for some x ∈ H , then ‖Snu‖ → 0 for every u ∈ K .

From (c) and (d) we get the claimed result for strong convergence.

Part 3 : Weak Convergence. Take an arbitrary x in H .

(e) If there exists a subsequence of bounded increments {nk}k�0 of {n}n�0

such that |〈Tnkx ; y〉 | → 0 for every y in H , then |〈Tnx ; x〉 | → 0 .
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Indeed, take any x ∈ H . Let {nk}k�0 be a subsequence of {n}n�0 , of bounded
increments, such that

|〈Tnkx ; y〉 | → 0 as k → ∞ for every y ∈ H .

Since Tm+n = TmTn for every m � 0 and n � 0 , it follows that, for each j � 0 ,

|〈Tnk+jx ; x〉 | = |〈Tnkx ; T∗jx〉 | → 0 as k → ∞.

However, If {αn}n�0 is a sequence of nonnegative numbers, and if there exists a sub-
sequence of bounded increments {nk}k�0 of {n}n�0 such that αnk+j → 0 as k → ∞
for every j � 0 , then αn → 0 as n → ∞ . Thus

|〈Tnx ; x〉 | → 0 as n → ∞.

Now suppose {Tn ⊗̂ Sn} convergesweakly to zero and that one of T or S , say T (with
no loss of generality), is power incremented. Since, for each integer n � 0 ,

|〈 (T ⊗̂ S)nx ⊗ u ; y ⊗ v〉 | = |〈Tn ⊗̂ Snx ⊗ u ; y ⊗ v〉 | = |〈Tnx ; y〉 ||〈 Snu ; v〉 |

for every x, y ∈ H and u, v ∈ K , it follows that |〈Tnx ; y〉 ||〈 Snu ; v〉 | → 0 for every
x, y in H and u, v in K .

(f) If for every subsequence of bounded increments {nk}k�0 of {n}n�0 there

exists y in H such that |〈Tnkx ; y〉 | �→ 0 , then |〈 Snu ; u〉 | → 0 for every u in K .

Indeed, if the hypothesis in (f) holds, then it holds, in particular, for the whole se-
quence {n}n�0 so that |〈Tnx ; y〉 | �→ 0 for some y in H . Hence there exists a
subsequence of {nk}k�0 of {n}n�0 such that lim infk |〈Tnkx ; y〉 | > 0 . If T is power
incremented, then we may assume that {nk}k�0 is of bounded increments. Since
|〈Tnx ; y〉 ||〈 Snu ; v〉 | → 0 , it follows that |〈Tnkx ; y〉 ||〈 Snku ; v〉 | → 0 , and therefore
|〈 Snku ; v〉 | → 0 for every u, v in K . Thus take an arbitrary u in K . Since {nk}k�0

is a subsequence of bounded increments of {n}n�0 such that |〈 Snku ; v〉 | → 0 for every
v in K , it follows by (e) that

|〈 Snu ; u〉 | → 0 as n → ∞.

From (e) and (f) we get the claimed result for weak convergence. �

An operator T is uniformly, strongly or weakly stable if the power sequence {Tn}
converges uniformly, strongly or weakly to zero . Preservation of uniform stability can
be viewed as a consequence of the spectrum formula σ(T ⊗̂ S) = σ(T) · σ(S) for a pair
operators [2] . Preservation of strong stability as in [3, Theorem 1] and [7, Proposition
1] is a particular case of Theorems 2 and 3. It still remains open whether weak stability
in Theorem 3 holds without the power increment assumption.
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3. Decompositions

Let T∗∈ B[H ] denote the adjoint of T ∈ B[H ] . A contraction is an operator
T such that ‖T‖ � 1 . If T is a contraction, then the sequence {T∗nTn} converges
strongly. Let AT ∈ B[H ] be the strong limit of {T∗nTn} . The following basic prop-
erties of AT will be required in the sequel (see [5, Chapter 3]): O � AT � I (i.e.,
AT is a nonnegative contraction) and ‖AT‖ = 1 if AT �= O . Moreover, if AT = AT∗ ,
then AT is a projection, (i.e., AT = A2

T ). Furthermore, a contraction T is strongly
stable if and only if AT = O . According to [13] a C 0· -contraction (or a contraction of
class C 0· ) is a strongly stable contraction (i.e., a contraction T with AT = O ), and a
C 00 -contraction (or a contraction of class C 00 ) is a strongly stable contraction whose
adjoint also is strongly stable (i.e., a contraction T with AT = AT∗ = O ).

COROLLARY 1. If T and S are Hilbert space contractions, then

(a) A
T ⊗̂ S

= AT ⊗̂ AS.

If both AT and AS are nonzero, then

(b) A
T ⊗̂ S

= A(T ⊗̂ S)∗ implies AT = AT∗ and AS = AS∗ ,

(c) A
T ⊗̂ S

= A2
T ⊗̂ S

implies AT = A2
T and AS = A2

S.

Proof. (a) Since T ⊗̂ S is a contraction in B[H ⊗̂ K ] whenever T and S are
contractions in B[H ] and B[K ] , it follows that the sequence {(T ⊗̂ S)∗n(T ⊗̂ S)n}
converges strongly to a nonnegative contraction A

T ⊗̂ S
in B[H ⊗̂ K ] . Since

T∗nTn s−→ AT , S∗nSn s−→ AS,
and

(T ⊗̂ S)∗n(T ⊗̂ S)n = (T∗n ⊗̂ S∗n)(Tn ⊗̂ Sn) = T∗nTn ⊗̂ S∗nSn,

it follows by Theorem 1 that

(T ⊗̂ S)∗n(T ⊗̂ S)n s−→ AT ⊗̂ AS,

and so A
T ⊗̂ S

= AT ⊗̂ AS by uniqueness of the strong limit.

(b) Since (T ⊗̂ S)∗ = T∗ ⊗̂ S∗ is a contraction, the sequence {(T ⊗̂ S)n(T ⊗̂ S)∗n}
convergesstrongly to A(T ⊗̂ S)∗ = A

T∗ ⊗̂ S∗ = AT∗ ⊗̂ AS∗ by (a). If A
T ⊗̂ S

= A(T ⊗̂ S)∗ ,

then AT ⊗̂ AS = AT∗ ⊗̂ AS∗ by (a). If both AT and AS are nonzero, then AT = αAT∗
and AS = α−1AS∗ for some nonzero scalar α [12, Proposition 2.1], and ‖AT‖ =
‖AT∗‖ = 1 . Thus |α| = 1 . Since AT � O , it follows that α > 0 , and so α = 1 .
Thus AT = AT∗ and AS = AS∗ .

(c) If A
T ⊗̂ S

= A2
T ⊗̂ S

, then AT ⊗̂ AS = (AT ⊗̂ AS)2 = A2
T ⊗̂ A2

S by (a), which

implies that AT = αA2
T and AS = α−1A2

S for some nonzero scalar α [12, Proposition
2.1], whenever both AT and AS are nonzero. In this case, ‖AT‖ = ‖AS‖ = 1 so that
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‖A2
T‖ � 1 , ‖A2

S‖ � 1 , and hence α = 1 because AT and AS are nonnegative. Thus
AT = A2

T and AS = A2
S . �

REMARK 3. Consider the assertions in Corollary 1. According to assertion (a)
A

T ⊗̂ S
= O if and only if either AT = O or AS = O . The converse to assertions (b)

and (c) hold trivially by (a) — since (AT ⊗̂ AS)2 = A2
T ⊗̂ A2

S . The implications in (b)
and (c) do not hold if one of AT or AS is zero.

LEMMA 1. A tensor product T ⊗̂ S in B[H ⊗̂K ] is a unilateral shift if and
only if T ⊗̂ S = J ⊗̂V where J is an isometry in B[H ] and V is a unilateral shift in
B[K ] , or T ⊗̂ S=V ⊗̂ J where V is a unilateral shift in B[H ] and J is an isometry
in B[K ] .

Proof. A unilateral shift is precisely an isometry whose adjoint is strongly stable
(cf . [5, Lemma 6.1]). Thus T ⊗̂ S is a unilateral shift if and only if

T ⊗̂ S is an isometry and (T ⊗̂ S)∗n s−→ O.

But, for any pair of nonzero operators T and S ,

T ⊗̂ S is an isometry ⇐⇒ T ⊗̂ S = J1 ⊗̂ J2,

where, J1 and J2 are isometries in B[H ] and B[K ] (see e.g., [8, Lemma 4(b)]),
and

(J1 ⊗̂ J2)∗n s−→ O ⇐⇒ J∗n
1

s−→ O or J∗n
2

s−→ O

(Theorems 2 and 3). Thus T ⊗̂ S is a unilateral shift if and only if T ⊗̂ S = J1 ⊗̂ J2 ,
where J1 and J2 are isometries and one of them has a strongly stable adjoint. Equiva-
lently, J1 and J2 are isometries and one of them is a unilateral shift. �

The closing result exhibits a decomposition of a tensor product of contractions for
which the strong limit A

T ⊗̂ S
is a projection. Here ⊕ stands for orthogonal direct sum,

and ∼= stands for unitary equivalence.

THEOREM 4. Let T and S be contractions on H and K and consider the tensor
product T ⊗̂ S on H ⊗̂ K .

(a) If A
T ⊗̂ S

= A2
T ⊗̂ S

, then T ⊗̂ S ∼= B ⊕ G ⊕ V ⊕ U,

where B is a C 00 -contraction, G is a C 0· -contraction ( i.e., a strongly stable contrac-
tion ) , V is a unilateral shift, and U is a unitary operator.

(b) If AT ⊗̂ S = A(T ⊗̂ S)∗ , then T ⊗̂ S ∼= B ⊕ U.

Proof. Suppose T and S are contractions. If one of AT or AS is zero, then
A

T ⊗̂ S
is zero, which means that T ⊗̂ S is strongly stable, and so (a) holds with

T ⊗̂ S = B ⊕ G and (b) holds with T ⊗̂ S = B . Thus suppose both AT and AS are
nonzero.
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(a) If AT ⊗̂ S = A2
T ⊗̂ S

, then AT = A2
T and AS = A2

S by Corollary 1. Moreover,

AT = A2
T =⇒ T = GT ⊕ VT ⊕ UT ,

AS = A2
S =⇒ S = GS ⊕ VS ⊕ US,

where GT and GS are C 0· -contractions, VT and VS are unilateral shifts, and UT and
US are unitary operators [9, Theorem 1]. Therefore (see [6, Eq . (14),(16)]),

T ⊗̂ S∼=(GT ⊗̂GS) ⊕ (GT ⊗̂VS) ⊕ (GT ⊗̂US)

⊕(VT ⊗̂GS) ⊕ (VT ⊗̂VS) ⊕ (VT ⊗̂US)

⊕(UT ⊗̂GS) ⊕ (UT ⊗̂VS) ⊕ (UT ⊗̂US),

which yields the decomposition in (a) with

B = (VT ⊗̂ GS) ⊕ (GT ⊗̂ VS),

G = (GT ⊗̂ GS) ⊕ (GT ⊗̂ US) ⊕ (UT ⊗̂GS),

V = (VT ⊗̂ VS) ⊕ (VT ⊗̂ US) ⊕ (UT ⊗̂ VS) and U = UT ⊗̂ US.

Since GT and GS are strongly stable, it follows by Theorem 2 that both VT ⊗̂ GS

and GT ⊗̂ VS are strongly stable. Since VS and VT are unilateral shifts, their adjoint
are strongly stable, and another application of Theorem 2 ensure that (VT ⊗̂ GS)∗ and
(GT ⊗̂ VS)∗ are strongly stable . Thus the contractions VT ⊗̂ GS and GT ⊗̂ VS are of
class C 00 , and so is their direct sum B . Theorem 2 also ensures that all the direct
summands of G are strongly stable, and so is G itself. Lemma 1 says that all the
direct summands of V are unilateral shifts, and so V is a unilateral shift (of higher
multiplicity). Finally, U clearly is unitary once UT and US are.

(b) If A
T ⊗̂ S

= A(T ⊗̂ S)∗ , then AT = AT∗ and AS = AS∗ by Corollary 1. Moreover,

AT = AT∗ =⇒ T = BT ⊕ UT ,

AS = AS∗ =⇒ S = BS ⊕ US,

where BT and BS are C 00 -contractions, and UT and US are unitary operators [9,
Corollary 1]. Thus, as before,

T ⊗̂ S ∼= (BT ⊗̂BS) ⊕ (BT ⊗̂US) ⊕ (UT ⊗̂BS) ⊕ (UT ⊗̂US),

which yields the decomposition in (b) with

B = (BT ⊗̂ BS) ⊕ (BT ⊗̂ US) ⊕ (UT ⊗̂ BS) and U = UT ⊗̂ US,

where B is a C 00 -contraction because both BT and BS are, and U is unitary because
both UT and US are. �
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