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ON THE ABSOLUTELY CONTINUOUS SPECTRUM

OF STURM–LIOUVILLE OPERATORS WITH

APPLICATIONS TO RADIAL QUANTUM TREES

MICHAEL SCHMIED, ROBERT SIMS AND GERALD TESCHL

(communicated by F. Gesztesy)

Abstract. We consider standard subordinacy theory for general Sturm–Liouville operators and
give criteria when boundedness of solutions implies that no subordinate solutions exist. As appli-
cations, we prove a Weidmann-type result for general Sturm–Liouville operators and investigate
the absolutely continuous spectrum of radially symmetric quantum trees.

1. Introduction

Schrödinger operators on graphs (both discrete and continuous) have a long tradi-
tion in both the physics and mathematics literature. In particular, the literature on this
subject is quite extensive andwe only refer to [3, 4, 11, 12] and the references therein as a
starting point. For related results on random trees we refer to [1, 2]. The purpose of this
note is to investigate the relation of the growth of solutions with the spectral properties
for such quantum graphs. In [12] it was shown that if the graph is of sub-exponential
grow, then existence of a bounded solution implies that the corresponding energy is
in the spectrum. Moreover, for Schrödinger operators on the line it is well-known
([8, 13, 16]) that boundedness of solutions implies that the corresponding energy is in
the absolutely continuous spectrum. Our motivation was to prove such kind of results
for quantum trees. As a first step we consider radially symmetric quantum trees, that
is, trees whose branching and edge lengths depend only on the distance from the root,
which can be reduced to the study of general Sturm–Liouville equations with weights
([4, 14]).

Hence the purpose of this paper is twofold, to relate boundedness of solutions of
general Sturm–Liouville equations with the existence of purely absolutely continuous
spectrum and to apply these results to radially symmetric quantum trees.
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We begin by fixing our notation. We will consider Sturm–Liouville operators on
L2((a, b), r dx) with −∞ � a < b � ∞ of the form

τ =
1
r

(
− d

dx
p

d
dx

+ q
)
, (1.1)

where the coefficients p, q, r are real-valued satisfying

p−1, q, r ∈ L1
loc(a, b), p, r > 0. (1.2)

We will use τ to describe the formal differentiation expression and H for the operator
given by τ with separated boundary conditions at a and/or b .

If a (resp. b ) is finite and q, p−1, r are in addition integrable near a (resp. b ),
we will say a (resp. b ) is a regular endpoint. We will say τ respectively H is regular
if both a and b are regular.

For every z ∈ C \ σess(H) there is a unique (up to a constant) solution ua(z, x)
of τu = zu which is in L2 near a and satisfies the boundary condition at a (if any).
Similarly there is such a solution ub(z, x) near b .

For the purpose of investigating the absolutely continuous spectrum it is well-
known that it suffices to consider the case where one endpoint, say a , is regular. In this
case a key role is played the Weyl m -function

mb(z) =
pu′b(z, a)
ub(z, a)

(1.3)

which is a Herglotz function and satisfies

Im(mb(z)) = Im(z)
∫ b

a
|ub(z, x)|2r(x) dx, (1.4)

if ub(z, x) is normalized according to

ub(z, x) = c(z, x) + mb(z)s(z, x). (1.5)

Here c(z, x) and s(z, x) are the solutions of τu = zu corresponding to the initial
conditions c(z, a) = ps′(z, a) = 1 , s(z, a) = pc′(z, a) = 0 .

In addition, we will also need the Weyl m -functions mb,α(z) corresponding to the
boundary conditions

cos(α)f (a) − sin(α)pf ′(a) = 0. (1.6)

Then mb(z) = mb,0(z) corresponds to the Dirichlet boundary condition f (a) = 0 and
we have the following well-known relation

mb,α(λ ) =
cos(α − β)mb,β(λ ) + sin(α − β)
cos(α − β) − sin(α − β)mb,β (λ )

. (1.7)

We refer the interested reader to [7, 17, 19] for relevant background information.
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2. Subordinacy

In this section, we will present a streamlined approach to those aspects of the
method of subordinacy, as introduced by Gilbert and Pearson in [8] (see [5] for the case
of Sturm–Liouville operators, see also [6]), which pertain to the absolutely continuous
spectrum of the operator H defined in the previous section. As our applications involve
Sturm–Liouville equations, we will discuss this method in precisely that context. For
a more elementary approach under somewhat stronger assumptions (a kind of uniform
subordinacy) we refer to Weidmann [20]. Without loss of generality, we will assume
that a is regular and b is limit point.

The following facts are well-known: the self-adjoint operator H corresponding to
(1.1), with a suitable choice of boundary condition, is unitarily equivalent to multipli-
cation by λ in the space L2(R, dμ) , where μ is the measure associated to the Weyl
m -function. For this reason, the set

Ms = {λ ∈ R | lim sup
ε↓0

Im(mb(λ + iε)) = ∞} (2.1)

is a support for the singularly continuous spectrum of H , written as σsc(H) , and
moreover,

Mac = {λ ∈ R | 0 < lim sup
ε↓0

Im(mb(λ + iε)) < ∞} (2.2)

is aminimal support for the absolutely continuous spectrum,similarlywritten as σac(H) .
One also has that σac(H) can be recovered from the essential closure of Mac , that

is,

σac(H) = M
ess
ac = {λ ∈ R | | (λ − ε, λ + ε) ∩ Mac | > 0 for all ε > 0}, (2.3)

where |A| denotes the Lebesgue measure of the set A ⊂ R .
Before we begin our discussion of subordinacy, we present a crucial estimate on

the imaginary part of the Weyl m -function. Let

‖f ‖(a,x) =

√∫ x

a
|f (y)|2r(y)dy, x ∈ (a, b), (2.4)

denote the norm of f ∈ L2((a, x), rdy) . Also, for fixed λ ∈ R , let s(λ , x) (resp.
c(λ , x) ) denote the solution of (τ − λ )u = 0 satisfying a Dirichlet (resp. Neumann)
boundary condition at the regular endpoint a . Define ε : (a, b) → (0,∞) by setting

ε = ελ (x) =
(
2 ‖s(λ )‖(a,x) ‖c(λ )‖(a,x)

)−1
. (2.5)

As indicated by the notation above, ε depends on both λ and x , but we will often
suppress this in our notation below. Observe that for λ ∈ R fixed, the assumption that b
is limit point guarantees that there is a one-to-one correspondence between ε ∈ (0,∞)
and x ∈ (a, b) . The following estimate was proven by Jitomirskaya and Last:

LEMMA 2.1. ([9]) Fix λ ∈ R and define ε as in (2.5) above. The estimate

5 −
√

24 � |mb(λ + iε)| ‖s(λ )‖(a,x)

‖c(λ )‖(a,x)
� 5 +

√
24, (2.6)

is valid.
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We present a proof for the sake of completeness.

Proof. Let x � t � a . By variation of constants, the solution ub(λ + iε) , as
defined in (1.5), can be written as

ub(λ + iε)(t) = c(λ , t) − mb(λ + iε)s(λ )(t) (2.7)

−iε
∫ t

a

(
c(λ , t)s(λ , y) − c(λ , y)s(λ , t)

)
ub(λ + iε, y) r(y)dy.

Hence one obtains after a little calculation

‖c(λ ) − mb(λ + iε)s(λ )‖(a,x)

� ‖ub(λ + iε)‖(a,x) + 2ε‖s(λ )‖(a,x)‖c(λ )‖(a,x)‖ub(λ + iε)‖(a,x). (2.8)

Using the definition of ε and (1.4) we obtain

‖c(λ ) − mb(λ + iε)s(λ )‖2
(a,x) � 4‖ub(λ + iε)‖2

(a,x)

� 4‖ub(λ + iε)‖2
(a,b) =

4
ε
Im(mb(λ + iε))

� 8‖s(λ )‖(a,x)‖c(λ )‖(a,x)Im(mb(λ + iε)). (2.9)

Combining this estimate with

‖c(λ ) − mb(λ + iε)s(λ )‖2
(a,x) �

(
‖c(λ )‖(a,x) − |mb(λ + iε)|‖s(λ )‖(a,x)

)2
(2.10)

shows (1 − t)2 � 8t , where t = |mb(λ + iε)|‖s(λ )‖(a,x)‖c(λ )‖−1
(a,x) . �

We now introduce the concept of subordinacy. A nonzero solution u of τu = zu
is called subordinate at b with respect to another solution v if

lim
x→b

‖u‖(a,x)

‖v‖(a,x)
= 0. (2.11)

It is easy to see that if u is subordinate with respect to v , then it is subordinate with
respect to any linearly independent solution. In particular, a subordinate solution is
unique up to a constant. Moreover, if a solution u(λ ) of τu = λu , λ ∈ R , is
subordinate, then it is real up to a constant, since both the real and the imaginary part
are subordinate. For z ∈ C \ R we know that there is always a subordinate solution at
b , namely ub(z, x) . The following result considers the case z ∈ R .

LEMMA 2.2. Let λ ∈ R . There is a solution u of τu = λu that is subordinate
at b if and only if mb(λ + iε) converges to a limit in R ∪ {∞} as ε ↓ 0 . Moreover,

lim
ε↓0

mb(λ + iε) =
cos(α)pu′(λ , a) + sin(α)u(λ , a)
cos(α)u(λ , a) − sin(α)pu′(λ , a)

(2.12)

in this case.
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Proof. We will consider the number α fixing the boundary condition (1.6) as a
parameter. Denote by sα(z, x) , cα(z, x) the solutions of τu = zu corresponding to
the initial conditions sα(z, a) = − sin(α) , ps′α(z, a) = cos(α) , cα(z, a) = cos(α) ,
pc′α(z, a) = sin(α) .

Let Lα be set of all λ ∈ R for which the limit limε↓0 mb,α(λ + iε) exists (finite
or infinite). Then (1.7) implies that Lα = Lβ . Hence L ≡ Lα is independent of α .
We set mb,α(λ ) = limε↓0 mb,α(λ + iε) for λ ∈ L .

Moreover, every solution can (up to a constant) bewritten as sβ(λ , x) for some β ∈
[0, π) . But by Lemma2.1 sβ (λ , x) is subordinate if and only if limε↓0 mb,β(λ+iε) = ∞
and this is the case if and only if

mb,α(λ ) =
cos(α − β)mb,β (λ ) + sin(α − β)
cos(α − β) − sin(α − β)mb,β (λ )

= − cot(α − β)

is a number in R ∪ {∞} . �
We are interested in N(τ) , the set of all λ ∈ R for which no subordinate solution

exists, that is,

N(τ) = {λ ∈ R | No solution of τu = λu is subordinate at b }. (2.13)

REMARK 2.3. Since the set, for which the limit limε↓0 mb(λ + iε) does not exist
(finite or infinite), is of zero spectral and Lebesgue measure, changing the lim in (2.11)
to a lim inf will affect N(τ) only on such a set (which is irrelevant for our purpose).

Then, as consequence of the previous lemma, we have

THEOREM 2.4. The set N(τ) is a minimal support for the absolutely continuous
spectrum of H . In particular,

σac(H) = N(τ)
ess

. (2.14)

Moreover, the set
{λ | s(λ , x) is subordinate at b } (2.15)

is a minimal support for the singular spectrum.

Proof. Without loss of generality we may assume mb(λ + i0) exists (finite or
infinite). But for those values of λ the cases Im(mb(λ + i0)) ∈ {0,∞} imply
λ �∈ N(τ) by Lemma 2.2. Thus we have 0 < Im(mb(λ + i0)) < ∞ if and only if
λ ∈ N(τ) and the first result follows since Mac is a minimal support for the absolutely
continuous spectrum.

On the other hand, s(λ , x) is subordinate if and only if mb(λ + i0) = ∞ and the
second result follows since Ms is a minimal support for the singular spectrum. �

Note that if (λ1, λ2) ⊆ N(τ) , then the spectrum of any self-adjoint extension H
of τ is purely absolutely continuous in the interval (λ1, λ2) .

REMARK 2.5. As in [9] one can also give supports for the α continuous spectrum
of H , that is, the part which is absolutely continuous with respect to α -dimensional
Hausdorff measure.



422 MICHAEL SCHMIED, ROBERT SIMS AND GERALD TESCHL

We will now prove a simple lemma which enables one to show the lack of subor-
dinate solutions by verifying certain solution estimates.

LEMMA 2.6. Let the coefficients of τ satisfy the basic assumptions given above,
i.e. (1.2). Suppose that for any solution u of τu = λu there exists a constant C = C(u)
for which

lim sup
x→b

1
x

∫ x

a

|pu′(y)|2
r(y)

dy � C lim sup
x→b

1
x

∫ x

a
|u(y)|2r(y)dy. (2.16)

If, in addition, x−1‖u‖2
(a,x) is bounded for every solution u of τu = λu , then λ ∈ N(τ) .

Proof. Without loss of generality, we prove this result in the case that a = 0 .
Suppose, under the assumptions above, there were a subordinate solution u , and let v
be a second linearly independent solution with Wronskian

W[u1, v1](y) = u1(y)pv′1(y) − pu′1(y)v1(y) = 1 (2.17)

for all y ∈ (0, b) . Since u is subordinate we know

lim
x→b

x−1‖u‖2
(0,x)

x−1‖v‖2
(0,x)

= 0

and boundedness of x−1‖v‖2
(0,x) even implies x−1‖u‖2

(0,x) → 0 . Moreover, by (2.16)
we also have x−1‖r−1pu′‖2

(0,x) → 0 . But then

1 =
1
x

∫ x

0
W[u, v](y)dy � 1

x
‖u‖(0,x)‖r−1pv′‖(0,x) +

1
x
‖r−1pu′‖(0,x)‖v‖(0,x) → 0

gives the desired contradiction. �
The next result, which is a generalization of Simon [13, Lem. 3.1], demonstrates

an explicit estimate on the derivative of a solution to τu = λu in terms of the local
L2 norm of that solution. As a consequence, see Corollary 2.8, we are able to provide
conditions on the coefficients of τ which allow one to verify the assumption (2.16) of
Lemma 2.6.

For any interval [x − 1, x + 1] ⊂ (a, b) , define the quantities,

P(x) =
∫ x+1/2

x−1/2

1
p(y)

dy, (2.18)

and
r−(x) = inf

y∈[x−1,x+1]
r(y) and r+(x) = sup

y∈[x−1,x+1]
r(y). (2.19)

We will assume that for each such x , we have 0 < r−(x) � r+(x) < ∞ , and moreover,
we set

γ (x) =
r+(x)
r−(x)

. (2.20)
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LEMMA 2.7. Let the coefficients of τ satisfy the general assumptions (1.2), and let
u be a real-valued solution of τu = λu on (a,b). For any interval [x−1, x+1] ⊂ (a, b) ,
suppose that 0 < r−(x) � r+(x) < ∞ , where r±(x) are as defined in (2.19) above.
Then, the bound

(pu′)(x)2

r(x)
� γ (x)

∫ x+1

x−1

[
2

P(x) r(y)
+
∣∣∣∣ q(y)

r(y)
− λ

∣∣∣∣
]2

dy ·
∫ x+1

x−1
u2(y) r(y) dy.

(2.21)
holds, where P(x) and γ (x) are defined by (2.18) and (2.20), respectively.

Proof. Without loss of generality, we take a = −1 , and prove this result first at
x = 0 . The general result claimed in (2.21) will follow by translation.

To see this estimate for x = 0 , we introduce the function P0 : (a, b) → R by
setting

P0(x) =
∫ x

0

1
p(t)

dt.

Let f be any solution of τu = λu on [−1, 1] and take any number 0 � x � 1 .
Integration by parts yields

∫ x

0
(pf ′)′(y) [P0(x) − P0(y)] dy = f (x) − f (0) − (pf ′)(0) P0(x),

and similarly,

∫ 0

−x
(pf ′)′(y) [P0(−x) − P0(y)] dy = f (0) − f (−x) + (pf ′)(0) P0(−x).

Rewriting things a bit, we find that

(pf ′)(0) [P0(x) − P0(−x)] = f (x) − f (−x) −
∫ x

0
(pf ′)′(y) [P0(x) − P0(y)] dy

+
∫ 0

−x
(pf ′)′(y) [P0(y) − P0(−x)] dy,

and since P0(x) − P0(y) � P0(x) − P0(−x) for every 0 � y � x (and similarly
P0(y) − P0(−x) � P0(x) − P0(−x) for every −x � y � 0 ), it is easy to see then

|(pf ′)(0)| � |f (x) − f (−x)|
P0(x) − P0(−x)

+
∫ x

−x
|(pf ′)′(y)| dy.

Integrating the above from 1/2 to 1 , we find the bound

|(pf ′)(0)| � 2
P(0)

∫ 1

−1
|f (y)| dy +

∫ 1

−1
|(pf ′)′(y)| dy, (2.22)
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where P(0) = P0(1/2)−P0(−1/2) as defined in (2.18) above. Multiplying both sides
of (2.22) by r+(0)−1/2 , it is clear that

√
γ−1(0) · |(pf ′)(0)|√

r(0)
� |(pf ′)(0)|√

r+(0)

� 2
P(0)

∫ 1

−1

|f (y)|√
r(y)

dy +
∫ 1

−1

|(pf ′)′(y)|√
r(y)

dy. (2.23)

If we set f = u , where we now regard u as a solution only over [−1, 1] , we find
that

|(pu′)(0)|√
r(0)

�
√
γ (0)

∫ 1

−1

[
2

P(0) r(y)
+
∣∣∣∣ q(y)

r(y)
− λ

∣∣∣∣
]
|u(y)|

√
r(y) dy. (2.24)

An application of Hölder yields,

(pu′)(0)2

r(0)
� γ (0)

∫ 1

−1

[
2

P(0) r(y)
+
∣∣∣∣ q(y)

r(y)
− λ

∣∣∣∣
]2

dy ·
∫ 1

−1
u2(y) r(y) dy.

(2.25)
The result claimed in Lemma 2.7 now follows by translation. If [x− 1, x + 1] ⊂ (a, b) ,
take f : [−1, 1] → R to be given by f (y) = u(x + y) . (2.21) follows after similarly
translating the coefficients p , q , and r . �

COROLLARY 2.8. Let (a, b) = (0,∞) . If the functions

γ (x),
1

P(x)2

∫ x+1

x−1

1
r(y)2

dy, and
∫ x+1

x−1

∣∣∣∣q(y)
r(y)

− λ
∣∣∣∣
2

dy (2.26)

are all bounded for x > 1 , then equation (2.16) holds. In this case, if all solutions of
τu = λu are bounded, in the sense that

√
ru is a bounded function, then λ ∈ N(τ) .

Proof. Clearly, if
√

ru is a bounded function, then x−1‖u‖(0,x) is bounded. Thus,
Lemma 2.6 can be applied if we verify (2.16).

Let γ+ , P+ and Q+ be the bounds on the quantities listed in (2.26) respectively.
It is easy to see that for any t > 1 ,

γ (t) ·
∫ t+1

t−1

[
1

P(t)r(s)
+
∣∣∣∣q(s)
r(s)

− λ
∣∣∣∣
]2

ds � 2γ+(P+ + Q+). (2.27)

Therefore, for all x > 1 ,∫ x

0

|pu′(t)|2
r(t)

dt =
∫ 1

0

|pu′(t)|2
r(t)

dt +
∫ x

1

|pu′(t)|2
r(t)

dt

�
∫ 1

0

|pu′(t)|2
r(t)

dt + 2γ+(P+ + Q+)
∫ x

1

∫ t+1

t−1
|u(s)|2r(s) ds dt,

(2.28)
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wherewe used bothLemma2.7 and the bound (2.27). Changing the order of integration,
we see that ∫ x

1

∫ t+1

t−1
|u(s)|2r(s)dsdt � 2

∫ x+1

1
|u(s)|2r(s)ds, (2.29)

and hence, (2.16) holds. �
In order to prove there is no subordinate solution of τu = λu , Lemma 2.6 requires

estimates of the derivative, i.e. ‖r−1pu′‖(a,x) , explicitly in terms of the solution ‖u‖(a,x) .
If the potential q satisfies a locally uniform L2 estimate, then Lemma 2.7 provides the
desired bounds.

If one weakens the assumptions on the potential q , then one may still prove
that bounded solutions imply no subordinate solutions. In this case, however, explicit
derivative bounds are not readily available, and so Lemma 2.6 does not immediately
apply. Let q be written in terms of it’s positive and negative parts, i.e. as q = q+−q− .
For q , we will assume that

q+ ∈ L1
loc((a, b)) and sup

x∈(a,b)

∫ x+1

x

q−(t)
r(t)

dt < ∞. (2.30)

In terms of the coefficient p , we will suppose that

inf
x∈(a,b)

∫ x+1

x

r(t)
p(t)

dt = I− > 0. (2.31)

With r we assume

γ = sup
x∈(a,b)

r+(x)
r−(x)

< ∞, (2.32)

where r±(x) are as defined in (2.19).
We will prove the following result.

LEMMA 2.9. Let the coefficients of τ satisfy the general assumptions of (1.2).
Moreover, suppose that r is non-decreasing and each of (2.30), (2.31), and (2.32) hold.
In this case, if all solutions of τu = λu are such that

√
ru is bounded on (a, b) , then

λ ∈ N(τ) .

In the Schrödinger setting, i.e. in the case p = r = 1 , such a lemma was proven by
Stolz in [16, Lemma 4]. Our proof follows closely his ideas, but generalizes the setting
to the context of Sturm–Liouville equations. Lemma 2.9 is an immediate consequence
of the following two propositions.

PROPOSITION 2.10. Let the coefficients of τ satisfy the general assumptions of
(1.2). Moreover, suppose that r is non-decreasing and each of (2.30), (2.31), and (2.32)
hold. Fix λ ∈ R , and let u be a solution of τu = λu on (a, b) . If

√
ru is bounded

on (a, b) , then
√

r
−1

pu′ is also bounded on (a, b) .

PROPOSITION 2.11. Let the coefficients of τ satisfy the general assumptions of
(1.2). Moreover, suppose that both (2.31) and (2.32) hold. Fix λ ∈ R , and let u
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be a solution of τu = λu on (a, b) for which there exist constants C1 = C1(u) and
C2 = C2(u) such that

0 < C1 �
√

r(x)|u(x)| + |pu′(x)|√
r(x)

� C2 < ∞, (2.33)

for all x ∈ (a, b) . Then, there exists a constant C3 = C3(u) and an x0 ∈ (a, b) for
which ∫ x

a
|u(t)|2r(t)dt � C3|x − a|, (2.34)

for all b � x � x0.

Proposition 2.10 proves that if a solution is bounded, then so is it’s derivative.
There is no explicit estimate of the derivative in terms of the bounded solution, however.
Proposition 2.11 demonstrates that if the sum of the solution and it’s derivative are
bounded from above and below, then the L2 -norm of the solution grows linearly.

Given Proposition 2.10 and Proposition 2.11, it is easy to prove Lemma 2.9

Proof. (of Lemma 2.9) To prove that there are no subordinate solutions, we
will show that for any two solutions u1 and u2 of τu = λu there exists a constant
C = C(u1, u2) for which

lim
x→b

∫ x
a |u1(t)|2r(t)dt∫ x
a |u2(t)|2r(t)dt

� C > 0. (2.35)

By assumption,
√

ru2 is bounded on (a, b) , and therefore it is clear that∫ x

a
|u2(t)|2r(t)dt � C(u2)|x − a|, (2.36)

for all x ∈ (a, b) . We need only find a matching lower bound for u1 .
We have assumed that for all solutions u of τu = λu , the function

√
ru is

bounded. By Proposition 2.10, the same is then true for
√

r
−1

pu′ . Thus, for u1 the
upper bound √

r(x)|u1(x)| + |pu′1(x)|√
r(x)

� C(u1), (2.37)

follows from Proposition 2.10. It is also easy to derive a lower bound. Let v1 be
the solution of τu = λu for which the Wronskian of u1 and v1 is 1 . Then for all
x ∈ (a, b) ,

1 = W[u1, v1](x) = u1(x)pv′1(x) − pu′1(x)v1(x), (2.38)

and thus

1 �
√

r(x)|u1(x)| · |pv′1(x)|√
r(x)

+
|pu′1(x)|√

r(x)
·
√

r(x)|v1(x)|

� C2(v1)

(√
r(x)|u1(x)| + |pu′1(x)|√

r(x)

)
, (2.39)
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yields the desired, pointwise, lower bound. C2(v1) is just the maximum of the bound
on

√
r|v1| and

√
r
−1|pv′1| . The lower bound on the L2 norm now follows from

Proposition 2.11. We have proven Lemma 2.9 �

We remark that, as was pointed out in [16], the above proof of Lemma 2.9 demon-
strates that boundedness of solutions implies that τ is limit point at b ; since the norm
of all solutions grows linearly.

Proof. (of Proposition 2.10) Since the coefficients (and λ ) are real, it is sufficient
to prove this result for real valued solutions u . It is also technically advantageous to
extend the solution u considered in the statement of Proposition 2.10 to a function
which is bounded on R . To do so, we extend the differential expression τ to τ̃ defined
on all of R by setting r = p = 1 for all x ∈ R \ (a, b) and for such values of x take
q(x) = q0 , a constant for which λ −q0 > 0 . In this case, the continuation of u beyond
(a, b) , i.e. the solution ũ of τ̃u = λu which equals u on (a, b) , is bounded; as is it’s
derivative.

Denote by S+ = {x ∈ R : u(x) � 0} and similarly S− = {x ∈ R : u(x) � 0} .

We will prove that
√

r
−1

pu′ is bounded on S+ ; boundedness on S− will then follow
by considering the solution v = −u .

The proof that
√

r
−1

pu′ is bounded on S+ goes via contradiction. If
√

r
−1

pu′ is
unbounded on S+ , then either:
i) For every n ∈ N , there exists ξn ∈ S+ with pu′(ξn) � n

√
r(ξn) ,

or
ii) For every n ∈ N , there exists ξn ∈ S+ with pu′(ξn) � −n

√
r(ξn) .

By reflection, i.e. considering v(x) = u(−x) for similarly reflected coefficients,
the case of ii) will follow from i). Assume i).

Let ξn be as in the statement of i) and take x such that [ξn, x] ⊂ S+ . It is easy to
see then that

u(x) − u(ξn) =
∫ x

ξn

r(t)
p(t)

pu′(t)√
r(t)

1√
r(t)

dt

=
∫ x

ξn

r(t)
p(t)

[
pu′(ξn) +

∫ t
ξn

(pu′)′(s) ds√
r(t)

]
1√
r(t)

dt

=
∫ x

ξn

r(t)
p(t)

[
pu′(ξn) +

∫ t
ξn

(q(s) − λ r(s)) u(s) ds√
r(t)

]
1√
r(t)

dt. (2.40)

We will focus on the quantity in the brackets above. Clearly,

pu′(ξn)√
r(t)

� n
√

r(ξn)√
r(t)

� n, (2.41)
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since r is increasing. Moreover, we also have that∫ t

ξn

(q(s) − λ r(s)) u(s) ds � −
∫ t

ξn

√
r(s)

(
q(s)
r(s)

− λ
)

−

√
r(s)u(s) ds

� −C(u)
√

r(t)
∫ t

ξn

(
q(s)
r(s)

− λ
)

−
ds

� −C
√

r(t) (x − ξn + 1), (2.42)

for all t � x . Here we have used that the negative part of q/r is locally, uniformly
integrable. Thus,

pu′(ξn) +
∫ t
ξn

(q(s) − λ r(s)) u(s) ds√
r(t)

� n − C(x − ξn + 1). (2.43)

For n sufficiently large, (n > 2C) , the choice x = ξn + αn with 0 � α � 1/(2C)
guarantees that [ξn, x] ⊂ S+ . By taking 2Cα = 1 , we have demonstrated that

u(x) − u(ξn) �
(n

2
− C

) ∫ x

ξn

r(t)
p(t)

1√
r(t)

dt, (2.44)

and therefore the bound

√
r(x)u(x) �

(n
2
− C

)∫ x

ξn

r(t)
p(t)

dt, (2.45)

which contradicts the boundedness assumption on
√

ru . We have proven Proposi-
tion 2.10. �

Proof. (of Proposition 2.11) Let u be a solution of τu = λu for which (2.33)
holds, and fix some α satisfying

0 < α <
I−

I− +
√γ

� 1. (2.46)

We claim that for any interval [x − 1, x + 1] ⊂ (a, b) , there exists an x0 = x0(α) ∈
[x − 1, x + 1] for which √

r(x0) |u(x0)| � α C1. (2.47)

Suppose that this is not the case. Then, let [x− 1, x + 1] ⊂ (a, b) denote an interval for
which √

r(t)|u(t)| < αC1, (2.48)

for all t ∈ [x − 1, x + 1] . Inserting (2.48) into (2.33), we find that

|pu′(t)|√
r(t)

� C1 −
√

r(t) |u(t)| > (1 − α) C1 > 0, (2.49)
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i.e., the derivative is strictly signed. Clearly then,

αC1√
r(x + 1)

+
αC1√
r(x − 1)

> |u(x + 1) − u(x − 1)|

=

∣∣∣∣∣
∫ x+1

x−1

r(t)
p(t)

pu′(t)√
r(t)

1√
r(t)

dt

∣∣∣∣∣
=
∫ x+1

x−1

r(t)
p(t)

|pu′(t)|√
r(t)

1√
r(t)

dt

� C1 (1 − α)
1√

r+(x)

∫ x+1

x−1

r(t)
p(t)

dt. (2.50)

This bound implies that

2αC1√
r−(x)

> C1(1 − α)
1√

r+(x)
2I−, (2.51)

and a short calculation reveals that this contradicts the range of α assumed in (2.46).
We have proven (2.47).

Additionally, for any t ∈ [x − 1, x + 1] we may estimate,

|u(t) − u(x0)| =

∣∣∣∣∣
∫ t

x0

r(s)
p(s)

pu′(s)√
r(s)

1√
r(s)

ds

∣∣∣∣∣
� C2

1√
r−(x)

∫ max(x0,t)

min(x0,t)

r(s)
p(s)

ds, (2.52)

from which it is clear that

|
√

r(t)u(t) −
√

r(t)u(x0)| � C2

√
r+(x)
r−(x)

∫ max(x0,t)

min(x0,t)

r(s)
p(s)

ds. (2.53)

Thus, given any t ∈ [x − 1, x + 1] for which∫ max(x0,t)

min(x0,t)

r(s)
p(s)

ds � α
2

r−(x)
r+(x)

C1

C2
, (2.54)

it then follows that√
r(t)u(t) =

√
r(t)u(x0) +

√
r(t)u(t) −

√
r(t)u(x0)

�
√

r(t)
r(x0)

√
r(x0)u(x0) −

∣∣∣√r(t)u(t) −
√

r(t)u(x0)
∣∣∣

�
√

r−(x)
r+(x)

αC1 − C2

√
r+(x)
r−(x)

∫ max(x0,t)

min(x0,t)

r(s)
p(s)

ds

� α
2

C1. (2.55)

From this bound, the estimate (2.34) easily follows, and we have proven Proposi-
tion 2.11. �
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3. A Weidmann-type result for Sturm–Liouville operators

As a first application we show how to obtain a generalization of a well-known
result from Weidmann [18] to the case of Sturm–Liouville operators. In fact, this is a
simple generalization, to the context of Sturm–Liouville equations, of [16, Theorem 6].
For this theorem, we assume that the coefficients of τ are asymptotically Schrödinger
like. Specifically, we take (a, b) = (0,∞) and, in addition to the general assumptions
provided in (1.2), we assume that there exists a constant c > 0 for which

1 − 1
p
∈ L1((c,∞)) and 1 − r ∈ L1((c,∞)). (3.1)

Moreover, we assume that the potential q = q1 + q2 with

q1 ∈ L1((c,∞))

q2 is AC, q′2 ∈ L1((c,∞)), and q2(t) → 0 as t → ∞. (3.2)

In this case, the following result holds.

LEMMA 3.1. Let the coefficients of τ satisfy the general assumptions (1.2) and
also both (3.1) and (3.2). Then, for any solutions of τu = λu , with λ > 0 , both u and
pu′ are bounded on (c,∞) .

Proof. It is sufficient to prove this result for real solutions u �= 0 . For any such
solution, consider the function

h(t) := (λ − q2(t)) u(t)2 + pu′(t)2. (3.3)

Given 0 < ε < λ , there exists t0 ∈ (c,∞) for which λ − ε � λ − q2(t) � λ + ε for
all t ∈ [t0,∞) . A short calculation shows that

h′(t) = −q′2(t)u(t)2 +
[
q1(t) + (q2(t) − λ )

(
1 − 1

p(t)

)
+ λ (1 − r(t))

]
2u(t)pu′(t),

(3.4)
and therefore

|h′| �
[ |q′2|
λ − ε

+
|q1|√
λ − ε

+
1√
λ − ε

(
(λ + ε)

∣∣∣∣1 − 1
p

∣∣∣∣ + λ |1 − r|
)]

h, (3.5)

for all t ∈ [t0,∞) . Thus the derivative of ln(h) is in L1((t0,∞)) , and hence, ln(h)
has a finite limit at ∞ . The same is then true for h , and thus, any such u is bounded.

�
As a consequence

THEOREM 3.2. Let the coefficients of τ satisfy the general assumptions of (1.2).
Moreover, suppose that each of (2.30), (2.31), and (2.32) hold.

Then any self-adjoint extension H of τ satisfies

σess(H) = σac(H) = [0,∞), σsc(H) = ∅, σpp(H) ⊂ (−∞, 0] (3.6)
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Proof. The claim about the essential spectrum follows from [19, Thm. 15.2]. By
the previous lemma the spectrum is purely absolutely continuous on (0,∞) and hence
the result follows. The condition that r is non-decreasing is not needed since the
conclusion of Proposition 2.10 is already part of the previous lemma. �

4. Radially symmetric quantum trees

Let Γ be a rooted metric tree associated with the branching numbers bn at the
n ’th level and distances tn of the vertices at the n ’th level. We refer to [14] for further
details. We will set t0 = 0 and assume, without loss of generality, that Γ is regular in
the sense of [14], that is, b0 = 1 and bk � 2 for k � 1 . Furthermore, we will assume
that the height

hΓ = lim
n→∞ tn = ∞ (4.1)

since otherwise the spectrum of the Laplacian is purely discrete by [14, Thm 4.1]. The
branching function, gΓ(t) is defined by

gΓ(t) =
∏

n:tn<t

bn. (4.2)

Associated with Γ is the Laplacian −Δ with a Dirichlet boundary condition at the root
and Kirchhoff boundary conditions at the vertices. We will consider −Δ + V , where
V is a radially symmetric potential depending only on the distance from the root.

Then it is shown in [4, 14] that the study of −Δ + V can be reduced to the
Sturm–Liouville operators

A = A0 + V, A0 =
1
gΓ

(
− d

dx
gΓ

d
dx

)
, x ∈ (0,∞), (4.3)

with a Dirichlet boundary condition at x = 0 . Here we think of A0 as the Friedrich’s
extension when restricted to functions with compact support and V as some relatively
form bounded potential such that the operator sum is declared as a form sum.

THEOREM 4.1. ([14]) Let Γ be a metric tree generated by the sequences {tn} and
{bn} , then

− Δ + V ∼ A ⊕
∞⊕
k=1

(A|(tk ,∞))[b0···bk−1·(bk−1)]. (4.4)

Here A|(tk ,∞) denotes the restriction of A to the interval (tk,∞) with a Dirichlet
boundary condition at x = tk and A[r] denotes the orthogonal sum of r copies of the
self-adjoint operator A and ∼ denotes unitary equivalence.

Since we have σess(A|(tk ,∞)) = σess(A) and σac(A|(tk ,∞)) = σac(A) we can restrict
our attention to A . As a second application of our results we note

THEOREM 4.2. Let Γ be a metric tree and −Δ+V as before. Suppose infn(tn+1−
tn) > 0 and supn bn < ∞ . Then

σac(A) = {λ ∈ R|√gΓu is bounded for all solutions of Au = λu}ess
(4.5)
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Next we want to consider the homogenous tree Γ0 , given by the following se-
quences:

tn = c n and bn = b. (4.6)

In this case
gΓ0(t) = b�t/c	 (4.7)

and all A0|(tk ,∞) are unitarily equivalent to A0 .
LEMMA 4.3. ([3]) For Γ0 the spectrum of A0 is given by

σac(A0) =
⋃
l∈N

[(
π(l − 1) + θ

c

)2

,

(
πl − θ

c

)2
]

,

σsc(A0) = ∅, (4.8)

σpp(A0) = {
(πl

c

)2
|l ∈ N}.

where

θ = arc cos

(
2

b1/2 + b−1/2

)
.

Proof. For the sake of completeness and to introduce some items to be used later
we provide the elementary proof. We assume c = 1 for notational simplicity.

The solutions of the differential equation A0u = z satisfy −u′′(x) = zu(x) for
x �∈ N and at x = n ∈ N we have the matching conditions

u(n−) = u(n+) and u′(n−) = bu′(n+), n ∈ N.

Thus the transfer matrix of A0u = z is given by

T0(z, x, 0) =
(

cos(
√

zy) −√
z sin(

√
zy)

1√
z sin(

√
zy) cos(

√
zy)

)
M(z)n, n = �x�, y = x − n,

M(z) =

(
1
b cos(

√
z) −

√
z

b sin(
√

z)
1√
z sin(

√
z) cos(

√
z)

)
.

In particular there are two solutions

u0,±(z, x) = ũ0,±(z, x)
e±α(z)x√
gΓ0(x)

, (4.9)

where ũ±(z, x) is bounded and

α(z) = log

(
1 + b

2
√

b
cos(

√
z) +

√
(1 + b)2

4b
cos2(

√
z) − 1

)

with branch of the root chosen such that Re(α) � 0 . Hence the absolutely continuous

spectrum is given by σac = {λ ∈ R|Re(α(λ )) = 0} = {λ ∈ R| (1+b)2

4b cos2(
√
λ ) � 1} .

�
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Note that the unitary operator U : L2((0,∞), gΓ0dx) → L2(0,∞) given by u(x) =√
gΓ0(x)u(x) maps A0 to a Schrödinger operator with a periodic δ ′ interaction. Hence

the appearance of the band structure and the similarity to periodic operators is no
coincidence.

COROLLARY 4.4. Suppose

V ∈ L1(0,∞), (4.10)

then the essential spectrum of A = A0 + V is given by

σac(A) = σac(A0) (4.11)

and the essential spectrum is purely absolutely continuous in the interior. In particular
σsc(A) = ∅ .

Proof. Using V ∈ L1(0,∞) one can use standard techniques (derive an integral
equation using variation of constants and solve it using the contraction principle) to
show that the equation Au = z for z ∈ C away from the band edges has solutions
which asymptotically look like the solutions u0,±(z, x) of A0u = z given in (4.9).
Hence the result follows from Theorem 4.2. �

Note that the results from [10] apply in this situation to determine when a pertur-
bation introduces a finite, respectively, infinite number of eigenvalues into the spectral
gaps.

Acknowledgments. We are indebted to the referee for constructive remarks.
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