POLYNOMIAL MATRICES WITH HERMITIAN COEFFICIENTS AND A GENERALIZATION OF THE ENESTRÖM-KAKEYA THEOREM

Harald K. Wimmer
(communicated by L. Rodman)

Abstract. Polynomial matrices $G(z)=I z^{m}-\sum C_{i} z^{i}$ with hermitian coefficients C_{i} are studied. The assumption $\sum\left|C_{i}\right| \leqslant I$ implies that the characteristic values of $G(z)$ lie in the closed unit disc. The characteristic values of modulus one are roots of unity. An extension of the EneströmKakeya theorem is proved and a stability criterion for a system of difference equations is given.

1. Introduction

The starting point for this paper is the following theorem, which in part can be traced back to Hurwitz [7]. It deals with a real polynomial and its roots in the unit disc and on the unit circle.

Theorem 1.1. Let

$$
\begin{equation*}
g(z)=z^{m}-\left(c_{m-1} z^{m-1}+\cdots+c_{1} z+c_{0}\right) \tag{1.1}
\end{equation*}
$$

be a real polynomial. Suppose $c_{0} \neq 0$ and $s=\sum_{i=0}^{m-1}\left|c_{i}\right| \leqslant 1$. Then

$$
\rho(g)=\max \{|\lambda| ; g(\lambda)=0\} \leqslant 1 .
$$

If λ is a root of $g(z)$ with $|\lambda|=1$ then λ is a simple root and $\lambda^{d}= \pm 1$ for some d with $d \mid m$. If $\rho(g)=1$ then either $g(1)=1$ and

$$
\begin{equation*}
g(z)=\left(z^{k}-1\right) f\left(z^{k}\right) \tag{1.2}
\end{equation*}
$$

or $g(1) \neq 1$ and

$$
\begin{equation*}
g(z)=\left(z^{k}+1\right) f\left(z^{k}\right) \tag{1.3}
\end{equation*}
$$

and $f(\mu) \neq 0$ if $|\mu|=1$.

Mathematics subject classification (2000): 15A33, 15A24, 15A57, 26C10, 30C15, 39A11.
Key words and phrases: Polynomial matrices, zeros of polynomials, root location, roots of unity, Eneström-Kakeya theorem, system of difference equations.

It is the aim of the paper to extend Theorem 1.1 to a complex $n \times n$ polynomial matrix

$$
\begin{equation*}
G(z)=I z^{m}-\left(C_{m-1} z^{m-1}+\cdots+C_{1} z+C_{0}\right) \tag{1.4}
\end{equation*}
$$

with hermitian coefficients. Two applications will be given. The first one is an extension of the Eneström-Kakeya theorem and its sharpness to polynomial matrices with positive semidefinite coefficients. Recall that the following theorem is known as EneströmKakeya theorem (see e.g. [10, p. 4], [3, p. 12], [11, p. 255]).

Theorem 1.2. Let

$$
\begin{equation*}
h(z)=a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0} \tag{1.5}
\end{equation*}
$$

be a real polynomial such that

$$
\begin{equation*}
a_{m-1} \geqslant \cdots \geqslant a_{1} \geqslant a_{0} \geqslant 0, \quad a_{m-1}>0 \tag{1.6}
\end{equation*}
$$

(i) Then $\rho(h) \leqslant 1$.
(ii) The zeros of $h(z)$ lying on the unit circle are simple.

The second application is a stability criterion for the difference equation

$$
x(t+m)=C_{m-1} x(t+m-1)+\cdots+C_{1} x(t+1)+C_{0} x(t)
$$

The following notation will be used. Let $G(z)$ be the polynomial matrix in (1.4). We define

$$
\sigma(G)=\{\lambda \in \mathbb{C} ; \operatorname{det} G(\lambda)=0\}
$$

and $\rho(G)=\max \{|\lambda| ; \lambda \in \sigma(G)\}$. In particular, if $f(z) \in \mathbb{C}^{n}[z]$ then $\sigma(f)$ shall denote the set of roots of $f(z)$. In accordance with [2, p. 341] the elements of $\sigma(G)$ will be called the characteristic values of $G(z)$. If $v \in \mathbb{C}^{n}$ satisfies $G(\lambda) v=0$, $v \neq 0$, then v is said to be an eigenvector corresponding to λ. An r-tuple of vectors $\left(v_{0}, v_{1}, \ldots, v_{r-1}\right), v_{i} \in \mathbb{C}^{n}, v_{0} \neq 0$, is called a Jordan chain (or Keldysh chain [2]) of length r of $G(z)$ if

$$
\begin{aligned}
G(\lambda) v_{0}=0 & G^{\prime}(\lambda) v_{0}+G(\lambda) v_{1}=0, \cdots \\
& \frac{1}{(r-1)!} G^{(r-1)}(\lambda) v_{0}+\frac{1}{(r-2)!} G^{(r-2)}(\lambda) v_{1}+\cdots+G(\lambda) v_{r-1}=0
\end{aligned}
$$

The symbol \mathbb{D} represents the open unit disc. Thus $\partial \mathbb{D}$ is the unit circle and $\overline{\mathbb{D}}$ is the closed unit disc. If $Q, R \in \mathbb{C}^{n \times n}$ are hermitian then we write $Q>0$ if Q is positive definite, and $R \geqslant 0$ if R is positive semidefinite. The inequality $Q \geqslant R$ means $Q-R \geqslant 0$. If $Q \geqslant 0$ then $Q^{1 / 2}$ shall denote the positive semidefinite square root of Q. The positive semidefinite part of a hermitian matrix A is given by $|A|=\left(A A^{*}\right)^{1 / 2}=\left(A^{2}\right)^{1 / 2}$. Let

$$
E_{k}=\left\{\zeta \in \mathbb{C} ; \zeta^{k}=1\right\}
$$

be the group of k-th roots of unity. If $\zeta \in E_{k}$ then ord ζ will denote the order of ζ, i.e. if ord $\zeta=s$ then s is the smallest positive divisor of k such that $\zeta^{s}=1$. In many instances limits of summation will be omitted. Then \sum shall mean $\sum_{i=0}^{m-1}$.

2. Characteristic values in $\overline{\mathbb{D}}$

In this section we are mainly concerned with the location of the characteristic values of $G(z)$. The following observations will be useful.

LEMMA 2.1. Let $A \in \mathbb{C}^{n \times n}$ be hermitian.
(i) If $\eta= \pm 1$ then

$$
\begin{equation*}
|A| \geqslant \eta A \tag{2.1}
\end{equation*}
$$

(ii) There exists a unitary matrix U such that

$$
\begin{equation*}
A=|A| U=U|A| \quad \text { and } \quad \sigma(U) \in\{1,-1\} \tag{2.2}
\end{equation*}
$$

Proof. Let V be unitary such that $A=V^{*} \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right) V$. Then

$$
|A|=V^{*} \operatorname{diag}\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{n}\right|\right) V
$$

Thus (2.1) is obvious. Set $\eta_{i}=1$ if $\alpha_{i} \geqslant 0$ and $\eta_{i}=-1$ if $\alpha_{i}<0$. Define $U=V^{*} \operatorname{diag}\left(\eta_{1}, \ldots, \eta_{n}\right) V$. Then (2.2) is satisfied.

THEOREM 2.2. Let $G(z)=I z^{m}-\sum C_{i} z^{i}$ be an $n \times n$ polynomial matrix with hermitian coefficients C_{i}. Set $S=\sum\left|C_{i}\right|$. Suppose $S \leqslant I$. Let $G(\lambda) v=0, v \neq 0$, and $|\lambda|=1$. Then the following holds. (i) $\rho(G) \leqslant 1$. (ii) $S v=v$. (iii) $v^{*} G(\lambda)=0$. (iv) The elementary divisors of $G(z)$ corresponding to λ are linear.

Proof. Let $G(\lambda) v=0$ and $v \neq 0$. We can assume $v^{*} v=1$. Suppose $\lambda \neq 0$. Then $\lambda^{m} v=\sum C_{i} \lambda^{i} v$ implies

$$
\begin{equation*}
1=\sum \frac{1}{\lambda^{m-i}} v^{*} C_{i} v \tag{2.3}
\end{equation*}
$$

Then (2.1) yields

$$
\begin{equation*}
1 \leqslant \sum \frac{1}{\left|\lambda^{m-i}\right|}\left|v^{*} C_{i} v\right| \leqslant \sum \frac{1}{\left|\lambda^{m-i}\right|} v^{*}\left|C_{i}\right| v \tag{2.4}
\end{equation*}
$$

(i) Set $\mu=\min \left\{|\lambda|, \ldots,|\lambda|^{m}\right\}$. Then (2.4) and $S \leqslant I$ imply $1 \leqslant 1 / \mu$, that is $|\lambda| \leqslant 1$.
(ii) If $|\lambda|=1$ then $S \leqslant I$ and (2.4) imply $1=v^{*} I v=v^{*} S v$. Hence $(S-I) v=0$. (iii) Set

$$
\begin{equation*}
\beta_{i}=\frac{1}{\lambda^{m-i}} v^{*} C_{i} v, i=0, \ldots, m-1 \tag{2.5}
\end{equation*}
$$

From (2.4) follows $1=\left|\sum \beta_{i}\right|=\sum\left|\beta_{i}\right|$. Hence $\beta_{i}=\omega \alpha_{i}, i=0, \ldots, m-1$, with $\alpha_{i} \in \mathbb{R}, \alpha_{i} \geqslant 0, \omega \in \mathbb{C},|\omega|=1$. From (2.3) we obtain $1=\omega \sum \alpha_{i}$. Therefore $\omega=1$, and $\beta_{i} \in \mathbb{R}, \beta_{i} \geqslant 0$. Define

$$
\begin{equation*}
I(v)=\left\{i ; 0 \leqslant i \leqslant m-1, v^{*} C_{i} v \neq 0\right\} \tag{2.6}
\end{equation*}
$$

Then (2.3) implies $I(v) \neq \emptyset$. Since C_{i} is hermitian we have $v^{*} C_{i} v \in \mathbb{R}$. Therefore, if $i \in I(v)$ then $\lambda^{m-i}= \pm 1$ in (2.5). Using (2.1) we obtain

$$
\begin{equation*}
1=\sum_{i \in I(v)} \frac{1}{\lambda^{m-i}} v^{*} C_{i} v \leqslant \sum_{i \in I(v)} v^{*}\left|C_{i}\right| v \leqslant \sum_{0 \leqslant i \leqslant m-1} v^{*}\left|C_{i}\right| v=1 \tag{2.7}
\end{equation*}
$$

Hence, if $i \notin I(v)$ then we have $v^{*}\left|C_{i}\right| v=0$, or equivalently $\left|C_{i}\right| v=C_{i} v=0$. Therefore

$$
\begin{equation*}
I(v)=\left\{i ; 0 \leqslant i \leqslant m-1, C_{i} v \neq 0\right\} \tag{2.8}
\end{equation*}
$$

From (2.7) follows

$$
\sum_{i \in I(v)} v^{*}\left(\left|C_{i}\right|-\frac{1}{\lambda^{m-i}} C_{i}\right) v=0
$$

Hence $\left|C_{i}\right| v=\frac{1}{\lambda^{m-i}} C_{i} v=\lambda^{m-i} C_{i} v$ if $i \in I(v)$. Thus we have shown that

$$
\begin{equation*}
\lambda^{m-i} C_{i} v=\left|C_{i}\right| v, \quad i=0, \ldots, m-1 \tag{2.9}
\end{equation*}
$$

From $v=\sum\left|C_{i}\right| v$ and (2.9) follows $v=\sum \lambda^{m-i} C_{i} v$. Because of $\bar{\lambda}=\lambda^{-1}$ and $C_{i}^{*}=C_{i}$ this is equivalent to $v^{*} \lambda^{m}=v^{*} \sum \lambda^{i} C_{i}$, i.e. to $v^{*} G(\lambda)=0$.
(iv) According to [2, p. 342]) the degree of elementary divisors is related to the length of Jordan chains. Hence we have to show that the eigenvector v can not be extended to a Jordan chain of length greater than 1. Suppose there exists a vector $w \in \mathbb{C}^{n}$ such that $G^{\prime}(\lambda) v+G(\lambda) w=0$. Then $v^{*} G(\lambda)=0$ implies

$$
0=v^{*}\left[G(\lambda) w+G^{\prime}(\lambda) v\right]=v^{*} G^{\prime}(\lambda) v=v^{*}\left(m \lambda^{m-1}-\sum i C_{i} \lambda^{i-1}\right) v
$$

Thus we would obtain $m v^{*} v \leqslant \sum_{i=0}^{m-1} i v^{*}\left|C_{i}\right| v$, in contradiction to $v^{*} v=\sum v^{*}\left|C_{i}\right| v$.
Hermitian polynomial matrices $G(z)$ with positive semidefinite coefficients C_{i} have been studied in [13]. In the present paper we no longer assume $C_{i} \geqslant 0$. This will require a more elaborate approach.

3. Characteristic values on the unit circle

We continue to assume $S=\sum\left|C_{i}\right| \leqslant I$. In this section the focus is on characteristic values of $G(z)$ on the unit circle. To a vector $v \in \mathbb{C}^{n}, v \neq 0$, we associate the set

$$
M(v)=\{\lambda \in \mathbb{C} ;|\lambda|=1, G(\lambda) v=0\}
$$

If $M(v) \neq \emptyset$ then it follows from (2.6) and (2.8) that $v^{*} C_{i} v \neq 0$ if and only if $C_{i} v \neq 0$. We define $t=\min \{i ; i \in I(v)\}$ and $\epsilon=\operatorname{sign} v^{*} C_{t} v$. Then $C_{t} v \neq 0$, and $C_{i} v=0$ if $i<t$. It will be shown in Lemma 3.2 below that all elements of $M(v)$ are roots of unity. In Theorem 3.6 and Theorem 3.8 it will be proved that either $M(v)=E_{d}$ or $M(v)=\left\{\lambda ; \lambda^{d}=-1\right\}$ for some divisor d of $m-t$.

LEMMA 3.1. We have

$$
\begin{equation*}
G(\lambda) v=0, v \neq 0, \quad \text { and } \quad|\lambda|=1 \tag{3.1}
\end{equation*}
$$

if and only if

$$
\begin{gather*}
S v=v, v \neq 0, \quad \text { and } \tag{3.2a}\\
C_{i} \lambda^{m-i} v=\left|C_{i}\right| v, \quad i=0, \ldots, m-1 \tag{3.2b}
\end{gather*}
$$

Proof. In Theorem 2.2 and its proof we have seen that (3.1) implies (3.2). Conversely, let (3.2) be satisfied. Then (3.2b) yields

$$
\begin{equation*}
v^{*}\left|C_{i}\right| v=\left|\lambda^{m-i}\right|\left|v^{*} C_{i} v\right| \leqslant\left|\lambda^{m-i}\right| v^{*}\left|C_{i}\right| v \tag{3.2}
\end{equation*}
$$

Suppose $|\lambda|<1$. But then (3.2) would imply $v^{*}\left|C_{i}\right| v=0$, i.e. $\left|C_{i}\right| v=0, i=$ $0, \ldots, m-1$. We would obtain $S v=0$, which is incompatible with (3.2a). It follows that $|\lambda| \geqslant 1$. Hence $\rho(G) \leqslant 1$ implies $|\lambda|=1$. To prove $G(\lambda) v=0$ we recall Theorem 2.2(iii) and note that $G(\bar{\lambda}) v=0$ is equivalent to $G(\lambda) v=0$ if $|\lambda|=1$. Using $\bar{\lambda}=\lambda^{-1}$ and (3.2) we obtain

$$
\begin{aligned}
G(\bar{\lambda}) v & =\left[\bar{\lambda}^{m} I-\sum C_{i} \bar{\lambda}^{i}\right] v=\bar{\lambda}^{m}\left[I-\sum \lambda^{m-i} C_{i}\right] v \\
& =\bar{\lambda}^{m}\left[I-\sum\left|C_{i}\right|\right] v=\bar{\lambda}^{m}(I-S) v=0
\end{aligned}
$$

which completes the proof.
LEMMA 3.2. For all $\lambda \in M(v)$ we have $\lambda^{m-t}=\epsilon$ and $\lambda^{2(m-t)}=1$. If $1 \in M(v)$ then $\epsilon=1$ and $M(v) \subseteq E_{m-t}$.

Proof. From (3.2b) and (2.2) we obtain

$$
C_{t} \lambda^{m-t} v=U_{t} \lambda^{m-t}\left|C_{t}\right| v=\left|C_{t}\right| v
$$

Hence $\left(U_{t} \lambda^{m-t}-I\right)\left|C_{t}\right| v=0$. From $C_{t} v \neq 0$ follows $\lambda^{t-m} \in \sigma\left(U_{t}\right)$. Thus $\lambda^{m-t} \in\{1,-1\}$. Then $v^{*} C_{t} v \lambda^{m-t}=v^{*}\left|C_{t}\right| v>0$ yields $\lambda^{m-t}=\epsilon$.

LEMMA 3.3. Let λ be an element of $M(v)$ of order k.
(i) If k is odd then

$$
\begin{equation*}
C_{t+j} v \neq 0 \quad \text { only if } \quad j \in k \mathbb{Z} . \tag{3.3}
\end{equation*}
$$

Moreover $k \mid(m-t)$ and $\epsilon=1$, and

$$
\begin{equation*}
C_{t+v k} v=\left|C_{t+v k}\right| v, \quad v=0,1, \ldots, \ell-1, \quad \ell=\frac{m-t}{k} \tag{3.4}
\end{equation*}
$$

(ii) If k is even, $k=2 s$, then

$$
\begin{equation*}
C_{t+j} v \neq 0 \quad \text { only if } \quad j \in s \mathbb{Z} \tag{3.5}
\end{equation*}
$$

Moreover $s \mid(m-t)$ and

$$
\begin{equation*}
C_{t+v s} v=\epsilon(-1)^{v}\left|C_{t+v s}\right| v, \quad v=0, \ldots,(\ell-1), \quad \ell=\frac{m-t}{s} . \tag{3.6}
\end{equation*}
$$

Proof. From $C_{i} v=\left|C_{i}\right| \lambda^{-(m-i)} v, i=0, \ldots, m-1$, and $\lambda^{m-t}=\epsilon$ we obtain

$$
\begin{equation*}
C_{t+j} \nu=\left|C_{t+j}\right| \lambda^{-(m-t)} \lambda^{j} v=\epsilon \lambda^{j}\left|C_{t+j}\right| v, \tag{3.7}
\end{equation*}
$$

$j=0, \ldots, m-1-t$. Let j be such that $C_{t+j} \nu \neq 0$. Then $v^{*} C_{t+j} v \in \mathbb{R} \backslash\{0\}$, and therefore (3.7) yields $\lambda^{j}= \pm 1$.
(i) If ord $\lambda=k$ is odd then $\lambda^{i} \neq-1$ for all i. Hence $\epsilon=\lambda^{m-t}=1$. Moreover, if $C_{t+j} \nu \neq 0$ then $\lambda^{j}=1$, that is $j \in k \mathbb{Z}$, which proves (3.3). By Lemma 3.2 we have $\lambda^{k}=1=\lambda^{2(m-t)}$. Hence $k \mid(m-t)$. We obtain (3.4) if we take $j=v k$ in (3.7).
(ii) If ord $\lambda=k=2 s$ then $\lambda^{s}=-1$. Therefore $\lambda^{j}= \pm 1$ is equivalent to $j \in s \mathbb{Z}$. Hence, if $C_{t+j} \nu \neq 0$ then $j \in s \mathbb{Z}$, and we have (3.5). From $\lambda^{k}=1=\lambda^{2(m-t)}$ and $k=2 s$ follows $s \mid(m-t)$. The assertion (3.6) is an immediate consequence of (3.7) with $j=v s$.

With (3.3) in mind we make the following definition. Let $D(v)$ be the set of positive integers such that $d \in D(v)$ if and only if $d \mid(m-t)$ and d is a common divisor of the numbers $\left\{j ; 0 \leqslant j<m-t\right.$, s.th. $\left.C_{t+j} \nu \neq 0\right\}$. Thus $d \in D(v)$ is equivalent to

$$
\begin{equation*}
d \mid(m-t) \quad \text { and } \quad C_{t+j} v=0 \text { if } j \notin d \mathbb{Z}, \tag{3.8}
\end{equation*}
$$

and also to

$$
\begin{equation*}
G(z) v=z^{t}\left\{I z^{d \ell}-\left[C_{d(t+\ell-1)} z^{d(\ell-1)}+\cdots+C_{t+d} z^{d}+C_{t}\right]\right\} v, \quad m-t=d \ell . \tag{3.9}
\end{equation*}
$$

If $\lambda \in M(v)$ then (3.9) implies $\left\{\mu ; \mu^{d}=\lambda^{d}\right\} \subseteq M(v)$.
The subsequent lemmas prepare the ground for the description of $M(v)$. It will make an essential difference whether $M(v)$ contains elements of odd order or not.

Lemma 3.4. Let $M(v) \neq \emptyset$. Then the following statements are equivalent.
(i) The set $M(v)$ contains an element λ of odd order.
(ii) We have

$$
\begin{equation*}
C_{i} v=\left|C_{i}\right| v, \quad i=0, \ldots, m-1 . \tag{3.10}
\end{equation*}
$$

(iii) $1 \in M(v)$.

Proof. (i) \Rightarrow (ii) If the order of $\lambda \in M(v)$ is odd then (3.3) and (3.4) imply (3.10). (ii) \Rightarrow (iii) Because of $M(v) \neq \emptyset$ we have (3.2) for some $\lambda \in \partial \mathbb{D}$. Then (3.10) implies that (3.2b) holds for $\lambda=1$. Hence Lemma 3.1 yields $G(1) v=0$. The implication (iii) $\Rightarrow(\mathrm{i})$ is obvious because of ord $1=1$.

Lemma 3.5. If $1 \in M(v)$ then the following statements are equivalent.
(i) $d \in D(v)$.
(ii) We have

$$
\begin{equation*}
G(z) v=z^{t}\left(z^{d}-1\right) f\left(z^{d}\right), \quad f(z) \in \mathbb{C}^{n}[z] . \tag{3.11}
\end{equation*}
$$

(iii) $E_{d} \subseteq M(v)$.
(iv) There exists an element $\lambda \in M(v)$ such that $\operatorname{ord} \lambda=d$.

Proof. If $G(1) v=0$ then (3.9) implies that $G(\mu) v=0$ for all $\mu \in E_{d}$. Hence $d \in D(v)$ is equivalent to (3.11) and also to $E_{d} \subseteq M(v)$. Suppose (iv) holds. If d is odd then (3.8) follows immediately from Lemma 3.3(i). If d is even, $d=2 s$, then $\epsilon=1=\lambda^{m-t}$ implies $d \mid(m-t)$. Moreover, (3.6) yields $C_{t+v s} v=0$ when v is odd. Hence (3.8) is valid also when d is even.

For the polynomial $g(z)$ in (1.1) the condition $1 \in M(v)$ amounts to $g(1)=1$. Thus the identity (3.14) below generalizes the factorization (1.2) of Theorem 1.1.

Theorem 3.6. Assume $S=\sum\left|C_{i}\right| \leqslant I$ and $1 \in M(v)$. Set

$$
\begin{equation*}
\hat{k}=\operatorname{gcd}\left\{\{m-t\} \cup\left\{j ; 0 \leqslant j<m-t, C_{t+j} v \neq 0\right\}\right\} . \tag{3.12}
\end{equation*}
$$

Then $M(v)=E_{\hat{k}}$. If $m-t=\hat{k} \ell$ then

$$
\begin{equation*}
G(z) v=z^{t}\left\{I z^{\hat{k} \ell}-\sum_{v=0}^{\ell-1} C_{t+\hat{k} v^{z^{\hat{k}} v}}\right\} v \tag{3.13}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
G(z) v=z^{t}\left(z^{\hat{k}}-1\right) f\left(z^{\hat{k}}\right) \tag{3.14}
\end{equation*}
$$

for some $f(z) \in \mathbb{C}^{n}[z]$ such that

$$
\begin{equation*}
\sigma(f) \cap \partial \mathbb{D}=\emptyset \tag{3.15}
\end{equation*}
$$

Proof. From Lemma 3.2 follows $M(v) \subseteq E_{m-t}$. Let λ_{1}, λ_{2} be elements of $M(v)$ such that $k_{i}=\operatorname{ord} \lambda_{i}, i=1,2$. By Lemma 3.5 we have $k_{1}, k_{2} \in D(v)$. Set $p=\operatorname{lcm}\left(k_{1}, k_{2}\right)$. Take $d=k_{1}$ and $d=k_{2}$ in (3.8). Then we have $C_{t+j} v \neq 0$ only if $j \in k_{1} \mathbb{Z} \cap k_{2} \mathbb{Z}=p \mathbb{Z}$. Hence $p \in D(v)$. Therefore $G(z) v=z^{t}\left(z^{p}-1\right) f\left(z^{p}\right)$, and from $\left(\lambda_{1} \lambda_{2}\right)^{p}=1$ follows $\lambda_{1} \lambda_{2} \in M(v)$. Hence $M(v)$ is a subgroup of E_{m-t}. Thus $M(v)=E_{\tilde{k}}$ and $\tilde{k}=\max \{$ ord $\lambda ; \lambda \in M(v)\}$. We have

$$
\tilde{k}=\max \{d ; d \in D(v)\}=\hat{k},
$$

which implies $M(v)=E_{\hat{k}}$. It remains to show that the polynomial vector $f\left(z^{\hat{k}}\right)$ satisfies (3.15). Suppose $f(\mu)=0$ for some $\mu \in \partial \mathbb{D}$. Then $\mu=\eta^{\hat{k}}$ with $\eta \in \partial \mathbb{D}$. Thus (3.14) implies $\eta \in M(v)$, and therefore $\eta \in E_{\hat{k}}$. Hence $G(z)$ would have an elementary divisor $(z-\eta)^{r}$ with $r \geqslant 2$, in contradiction to Theorem 2.2(iv).

Suppose all coefficients C_{i} are positive semidefinite. Then (3.10) is satisfied, and $1 \in M(v)$ if $M(v) \neq \emptyset$. Thus in the case of the polynomial $g(z)$ in (1.1) we have recovered a result which is due to of Ostrowski (see also [1] and [10, p. 3]).

COROLLARY 3.7. [9, p. 92] Let $g(z)=z^{m}-\sum_{i=0}^{m-1} c_{i} z^{i}$ be a real polynomial with nonnegative coefficients c_{i} such that $c_{0}>0$ and $\sum_{i=0}^{m-1} c_{i}=1$.
(i) Then $g(1)=0$, and the absolute values of the other roots of $g(z)$ do not exceed 1 .
(ii) Moreover, $\lambda=1$ is the only root of $g(z)$ on the unit circle if and only if the greatest common divisor of the indices i of all positive coefficients c_{i} is equal to 1 .

In the next theorem we assume $1 \notin M(v)$ and we obtain a counterpart to Theorem 3.6. The identity (3.18) below yields the factorization (1.3) in Theorem 1.1.

THEOREM 3.8. Suppose $M(v) \neq \emptyset$ and $1 \notin M(v)$. Then all elements of $M(v)$ have even order. Set

$$
\begin{equation*}
\hat{k}=\operatorname{lcm}\left\{\frac{1}{2} \text { ord } \lambda ; \lambda \in M(v)\right\} \tag{3.16}
\end{equation*}
$$

Then $\hat{k} \mid(m-t)$ and

$$
\begin{equation*}
M(v)=\left\{\lambda \in \mathbb{C} ; \lambda^{\hat{k}}+1=0\right\} \tag{3.17}
\end{equation*}
$$

If $m-t=\hat{k} \ell$ then

$$
\begin{equation*}
G(z) v=z^{t}\left(z^{\hat{k}}+1\right) f\left(z^{\hat{k}}\right) \tag{3.18}
\end{equation*}
$$

for some $f(z) \in \mathbb{C}^{n}[z]$ with $\sigma(f) \cap \partial \mathbb{D}=\emptyset$.
Proof. It follows from Lemma 3.4 that the order of all elements of $M(v)$ is even. Suppose $M(v)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ and ord $\lambda_{i}=k_{i}=2 s_{i}, i=1, \ldots, r$. Then $s_{i} \mid(m-t)$. Set $\hat{k}=\operatorname{lcm}\left(s_{1}, \ldots, s_{r}\right)$ and $\ell=(m-t) / \hat{k}$. Then (3.5) implies that $C_{t+j} v \neq 0$ only if $j \in \hat{k} \mathbb{Z}$. Hence

$$
\begin{equation*}
G(z) v=z^{t}\left[I z^{\ell \hat{k}}-\sum_{v=0}^{\ell-1} C_{t+v \hat{k}} z^{\hat{k}}\right] v \tag{3.19}
\end{equation*}
$$

It is impossible that $\mu^{\hat{k}}=1$ for some $\mu \in M(v)$. Otherwise (3.19) would imply $G(\mu) v=G(1) v=0$ and we would have $1 \in M(v)$. Thus $\lambda_{i}^{\hat{k}}=-1, i=1, \ldots, r$. Hence $M(v) \subseteq\left\{\lambda ; \lambda^{\hat{k}}+1=0\right\}$. On the other hand (3.19) and $G\left(\lambda_{1}\right) v=0$ yield $G(\lambda) v=0$ if $\lambda^{\hat{k}}=\lambda_{1}^{\hat{k}}$. Therefore $\lambda_{1}^{\hat{k}}=-1$ implies $\left\{\lambda ; \lambda^{\hat{k}}+1=0\right\} \subseteq M(v)$, and we have established (3.17). The factorization (3.18) follows from (3.19) and (3.17). We can use Theorem 2.2(iv) again to show that $f(\mu) \neq 0$ if $|\mu|=1$.

If $1 \notin M(v)$ and \hat{k} is given by (3.16) then we conclude from (3.17) that there exists a $\lambda \in M(v)$ with ord $\lambda=2 \hat{k}$. Thus (3.6) and (3.19) imply

$$
G(z) v=z^{t}\left[I z^{\ell \hat{k}}-\sum_{v=0}^{\ell-1} \epsilon(-1)^{v}\left|C_{t+v \hat{k}}\right| z^{v \hat{k}}\right] v
$$

On the other hand, if $1 \in M(v)$ and \hat{k} is given by (3.12), such that $\hat{k}=\operatorname{lcm}\{\operatorname{ord} \lambda ; \lambda \in$ $M(v)\}$, then (3.13) can be written as

$$
G(z) v=z^{t}\left[I z^{\ell \hat{k}}-\sum_{v=0}^{\ell-1}\left|C_{t+v \hat{k}}\right| z^{v \hat{k}}\right] v .
$$

With these observations we can make Theorem 1.1 more precise.
THEOREM 3.9. Let $g(z)=z^{m}-\sum_{i=0}^{m-1} c_{i} z^{i}$ be a complex polynomial. Set $s=\sum_{i=0}^{m-1}\left|c_{i}\right|$. Suppose $c_{0} \neq 0$ and $s \leqslant 1$. Then $g(z)$ has a root on the unit circle if only if $s=1$, and either $c_{i} \geqslant 0$ for all i and

$$
g(z)=z^{k \ell}-\left(\left|c_{0}\right|+\left|c_{k}\right| z^{k}+\cdots+\left|c_{k(\ell-1)}\right| z^{(\ell-1) k}\right), \quad m=k \ell
$$

or otherwise $c_{j}<0$ for some j and

$$
g(z)=z^{k \ell}-\epsilon\left(\left|c_{0}\right|-\left|c_{k}\right| z^{k}+\left|c_{2 k}\right| z^{2 k} \mp \cdots+(-1)^{\ell-1}\left|c_{(\ell-1) k}\right| z^{(\ell-1) k}\right)
$$

with $\epsilon=\operatorname{sign} c_{0}=(-1)^{\ell}$.
According to H . Schneider [12] there is a striking similarity between properties of eigenvalues of p-norm contractive maps (see [8]) and of characteristic values of hermitian polynomial matrices $G(z)$ satisfying the condition $S \leqslant I$. For $1 \leqslant p<\infty$ the p-norm on \mathbb{R}^{n} is defined by

$$
|x|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}, \quad x=\left(x_{1}, \ldots, x_{n}\right)^{T}
$$

and the ∞-norm is given by $|x|_{\infty}=\max \left\{|x|_{j} ; j=1, \ldots, n\right\}$. For a matrix $A \in$ $\mathbb{R}^{n \times n}$ let $\|A\|_{p}$ denote the corresponding operator norm, and let A be called p-norm contractive if $\|A\|_{p} \leqslant 1$. We refer to Lemmens and Van Gaans [8] for the following result.

THEOREM 3.10. Let $1 \leqslant p \leqslant \infty$ and $p \neq 2$. If $A \in \mathbb{R}^{n \times n}$ is p-norm contractive then there exists a $q \in \mathbb{N}$ such that

$$
q \mid 2(n!) \quad \text { and } \quad \lambda^{q}=1 \quad \text { for all } \quad \lambda \in \sigma(A) \cap \partial \mathbb{D}
$$

The sequence $\left(A^{q j}\right)_{j \in \mathbb{N}}$ is convergent.
The corresponding result for $G(z)$ is the following.
TheOrem 3.11. Assume $S \leqslant I$. Then there exists a $q \in \mathbb{N}$ such that

$$
\begin{equation*}
q \mid 2(m!) \quad \text { and } \quad \lambda^{q}=1 \quad \text { for all } \quad \lambda \in \sigma(G) \cap \partial \mathbb{D} . \tag{3.20}
\end{equation*}
$$

Proof. If $\lambda \in \sigma(G) \cap \partial \mathbb{D}$ then Lemma 3.3 implies that the order of λ is equal to r or to $2 r$ for some $r \in\{1, \ldots, m\}$. Hence

$$
\begin{equation*}
q=\operatorname{lcm}\{\operatorname{ord} \lambda \in \sigma(G) \cap \partial \mathbb{D}\} \tag{3.21}
\end{equation*}
$$

satisfies (3.20).

4. Applications

4.1. The Eneström-Kakeya theorem

According to Anderson, Saff and Varga [1] it is of interest to know when the inequality $\rho(h) \leqslant 1$ in Theorem 1.2 is sharp. We write $h \in \pi_{m-1}^{+}$if the polynomial $h(z)$ in (1.5) satisfies (1.6).

THEOREM 4.1. ([7], [1]) Let $h(z)=\sum_{i=0}^{m-1} a_{i} z^{i}$ be a real polynomial and suppose the coefficients a_{i} satisfy

$$
\begin{align*}
0<a_{0}=a_{1}=\cdots & =a_{r_{1}-1} \\
& <a_{r_{1}}=a_{r_{1}+1}= \\
& \cdots=a_{r_{2}-1}<\cdots \tag{4.1}\\
& <a_{r_{s}}=a_{r_{s}+1}=\cdots=a_{m-1}
\end{align*}
$$

Set $k=\operatorname{gcd}\left(m, r_{1}, \ldots, r_{s}\right)$. Then $\rho(h)=1$ if and only if $k>1$. In that case

$$
0<a_{0}=\cdots=a_{k-1} \leqslant a_{k}=\cdots=a_{2 k} \leqslant \cdots \leqslant a_{m-k}=\cdots=a_{m-1}
$$

and

$$
h(z)=\left(1+z+\cdots+z^{k-1}\right) p\left(z^{k}\right), \quad p \in \pi_{\ell-1}^{+}, \quad \sigma(p) \cap \partial \mathbb{D}=\emptyset
$$

with $\ell=m / k$. We have $\sigma(h) \cap \partial \mathbb{D}=E_{k} \backslash\{1\}$.
The Eneström-Kakeya theorem and its refinement in Theorem 4.1 can be extended to polynomial matrices. Note that Furuta and Nakamura [5] generalized Theorem 1.2 (i) to polynomials $H(z)=\sum A_{i} z^{i}$ with positive definite operator coefficients A_{i}. The approach of [5] relies on a power inequality for the numerical radius of a linear operator acting on a Hilbert space. For the subsequent theorem we refer to [4]. In the present paper a different proof is given, which should be more straightforward.

THEOREM 4.2. Let $H(z)=A_{m-1} z^{m-1}+\cdots+A_{1} z+A_{0}$ be a polynomial matrix with hermitian coefficients A_{i} such that

$$
A_{m-1}>0, \quad A_{m-1} \geqslant A_{m-2} \geqslant \cdots \geqslant A_{0} \geqslant 0
$$

(i) Then $\rho(H) \leqslant 1$ and $1 \notin \sigma(H)$.
(ii) If $\lambda \in \sigma(H)$ and $|\lambda|=1$ then the corresponding elementary divisors of $H(z)$ are linear. Moreover, $\lambda^{k}=1$ for some $k, 0<k \leqslant m$. If $A_{0}>0$ then $\lambda^{m}=1$.

Proof. From $A_{m-1}>0$ follows $\sum A_{i}=H(1)>0$. Therefore $1 \notin \sigma(H)$. Set $\tilde{A_{i}}=A_{m-1}^{-1 / 2} A_{i} A_{m-1}^{-1 / 2}$. Then

$$
A_{m-1}^{-1 / 2} H(z) A_{m-1}^{-1 / 2}=I z^{m-1}+\sum_{i=0}^{m-2} \tilde{A}_{i} z^{i}
$$

Thus we can assume $A_{m-1}=I$. Put $A_{-1}=0$. Using the multiplier $(z-1)$ we define $G(z)=(z-1) H(z)$. Then $G(z)=I z^{m}-\sum_{i=0}^{m} C_{i} z^{i}$ and

$$
C_{i}=A_{i}-A_{i-1} \geqslant 0, \quad i=0, \ldots, m-1
$$

and $\sum C_{i}=I$. Moreover, $\sigma(H)=\sigma(G) \backslash\{1\}$. To complete the proof we apply Theorem 2.2 and Lemma 3.2.

The following generalization of Theorem 4.1 deals with an eigenvector v of $H(z)$ and the corresponding characteristic values on the unit circle. With regard to (4.1) we make the assumptions $A_{0}>0$ and

$$
\begin{align*}
A_{0} v=\cdots=A_{r_{1}-1} v, & A_{r_{1}-1} v \neq A_{r_{1}} v, \\
A_{r_{1}} v=\cdots= & A_{r_{2}-1} v, \quad A_{r_{2}-1} v \neq A_{r_{2}} v, \cdots \\
& A_{r_{s}-1} v \neq A_{r_{s}} v, \quad A_{r_{s}} v=\cdots=A_{m-1} v . \tag{4.2}
\end{align*}
$$

THEOREM 4.3. Suppose $H(\lambda) v=0, v \neq 0$, and $|\lambda|=1$. Let r_{1}, \ldots, r_{s}, be given by (4.2). Define $\hat{k}=\operatorname{gcd}\left\{m, r_{1}, \ldots, r_{s}\right\}$. Then $\lambda^{\hat{k}}=1$, and

$$
\begin{equation*}
H(z) v=z^{t}\left(1+z+\cdots+z^{\hat{k}-1}\right) f\left(z^{\hat{k}}\right) \tag{4.3}
\end{equation*}
$$

where $f(z) \in \mathbb{C}^{n}[z]$ and $\sigma(f) \cap \partial \mathbb{D}=\emptyset$.

Proof. Again, it is no loss of generality to assume $A_{m-1}=I$. Because of $C_{i}=A_{i}-A_{i-1}$ the condition (4.2) means that $C_{j} v \neq 0$ only if $j \in\left\{m, r_{1}, \ldots, r_{s}\right\}$. Then (3.14) in Theorem 3.6 yields

$$
G(z) v=(z-1) H(z) v=z^{t}\left(z^{\hat{k}}-1\right) f\left(z^{\hat{k}}\right)
$$

which implies (4.3).

4.2. A difference equation

We consider the linear time-invariant equation

$$
\begin{gather*}
x(t+m)=C_{m-1} x(t+m-1)+\cdots+C_{1} x(t+1)+C_{0} x(t) \tag{4.4a}\\
x(0)=x_{0}, \ldots, x(m-1)=x_{m-1} \tag{4.4b}
\end{gather*}
$$

THEOREM 4.4. Let $C_{i} \in \mathbb{C}^{n \times n}, i=0, \ldots, m-1$, be hermitian matrices and suppose $S=\sum\left|C_{i}\right| \leqslant I$.
(i) Then all solutions $(x(t))$ of (4.4) are bounded for $t \rightarrow \infty$.
(ii) There exists a positive integer q such that $q \mid 2(m!)$ and the sequence $(x(q j))$ is convergent.

Proof. (i) It is well known (see e.g. [6]) that the solutions of (4.4) are bounded if and only if all characteristic values of $G(z)=I z^{m}-\sum C_{i} z^{i}$ are in the closed unit disc and if those on the unit circle have linear elementary divisors. Hence stability of (4.4) follows immediately from Theorem 2.2.
(ii) Let q be given as in (3.21) such that (3.20) holds. If

$$
C=\left(\begin{array}{ccccc}
C_{m-1} & \ldots & C_{2} & C_{1} & C_{0} \\
I & \ldots & 0 & 0 & 0 \\
. & \ldots & . & . & . \\
. & \ldots & . & . & . \\
. & \ldots & I & 0 & 0 \\
0 & \ldots & 0 & I & 0
\end{array}\right)
$$

is the block companion matrix associated with $G(z)$ then $\sigma(C)=\sigma(G)$, and C and $G(z)$ have the same elementary divisors. Set

$$
y(t)=\left(x(t+m-1)^{T}, \ldots, x(t+1)^{T}, x(t)^{T}\right)^{T}
$$

and define y_{0} conforming to (4.4b). Then (4.4) is equivalent to $y(t+1)=C y(t)$, $y(0)=y_{0}$. The corresponding equation for $(w(j))=(x(j q))$ is $w(j+1)=C^{q} w(j)$. We have $\rho(C) \leqslant 1$ and $\lambda^{q}=1$ for all $\lambda \in \sigma(C) \cap \partial \mathbb{D}$. Therefore $\sigma\left(C^{q}\right) \subseteq\{1\} \cup \mathbb{D}$. The matrix C^{q} is similar to $\operatorname{diag}(I, \hat{C})$ with $\sigma(\hat{C}) \subseteq \mathbb{D}$. Hence $(w(j))$ is convergent.

REFERENCES

[1] N. Anderson, E. B. Saff, and R. S. Varga, On the Eneström-Kakeya theorem and its sharpness, Linear Algebra Appl. 28, 5-16 (1979).
[2] H. Baumgärtel, Analytic Perturbation Theory for Matrices and Operators, Operator Theory, Advances and Applications, Vol. 15, Birkhäuser, Basel, 1985.
[3] P. Borwein and T. Erdèlyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.
[4] G. DIRR AND H. K. WIMMER, An Eneström-Kakeya theorem for hermitian polynomial matrices, IEEE Trans. Automat. Control 52, 2151-2153 (2007).
[5] T. Furuta and M. Nakamura, An operator version of the Eneström-Kakeya theorem, Mathem. Jap. 37, 459-497 (1992).
[6] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
[7] A. Hurwitz, Über einen Satz des Herrn Kakeya, Tôhoku Math. J. 4, 89-93 (1913); in: Mathematische Werke von A. Hurwitz, 2. Band, 627-631, Birkhäuser, Basel, 1933.
[8] B. LEMMENS AND O. VAN GAANS, Iteration of linear p-norm nonexpansive maps, Linear Algebra Appl. 371, 265-276 (2003).
[9] A. M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces, Academic Press, New York, 1973.
[10] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, Vol. 11, Springer, New York, 2004.
[11] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, Oxford, 2002.
[12] H. SChneider, A remark on a paper of Lemmens and Van Gaans, private communication, Moscow, 2006.
[13] H. K. Wimmer, Discrete-time stability of a class of hermitian polynomial matrices with positive semidefinite coefficients, to appear in Matrix Methods: Theory and Algorithms, V. Olshevsky and E. Tyrtyshnikov, Editors, to be published by World Scientific.

