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POLYNOMIAL MATRICES WITH HERMITIAN COEFFICIENTS AND

A GENERALIZATION OF THE ENESTRÖM–KAKEYA THEOREM

HARALD K. WIMMER

(communicated by L. Rodman)

Abstract. Polynomial matrices G(z) = Izm−∑
Cizi with hermitian coefficients Ci are studied.

The assumption
∑ |Ci| � I implies that the characteristic values of G(z) lie in the closed unit

disc. The characteristic values of modulus one are roots of unity. An extension of the Eneström–
Kakeya theorem is proved and a stability criterion for a system of difference equations is given.

1. Introduction

The starting point for this paper is the following theorem, which in part can be
traced back to Hurwitz [7]. It deals with a real polynomial and its roots in the unit disc
and on the unit circle.

THEOREM 1.1. Let

g(z) = zm − (cm−1z
m−1 + · · · + c1z + c0) (1.1)

be a real polynomial. Suppose c0 �= 0 and s =
∑m−1

i=0 |ci| � 1 . Then

ρ(g) = max{|λ |; g(λ ) = 0} � 1.

If λ is a root of g(z) with |λ | = 1 then λ is a simple root and λ d = ±1 for some d
with d |m. If ρ(g) = 1 then either g(1) = 1 and

g(z) = (zk − 1) f (zk) (1.2)

or g(1) �= 1 and

g(z) = (zk + 1) f (zk), (1.3)

and f (μ) �= 0 if |μ| = 1 .
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It is the aim of the paper to extend Theorem 1.1 to a complex n × n polynomial
matrix

G(z) = Izm − (Cm−1z
m−1 + · · · + C1z + C0) (1.4)

with hermitian coefficients. Two applicationswill be given. The first one is an extension
of the Eneström–Kakeya theorem and its sharpness to polynomialmatrices with positive
semidefinite coefficients. Recall that the following theorem is known as Eneström–
Kakeya theorem (see e.g. [10, p. 4], [3, p. 12], [11, p. 255]).

THEOREM 1.2. Let

h(z) = am−1z
m−1 + · · · + a1z + a0 (1.5)

be a real polynomial such that

am−1 � · · · � a1 � a0 � 0, am−1 > 0. (1.6)

(i) Then ρ(h) � 1 .
(ii) The zeros of h(z) lying on the unit circle are simple.

The second application is a stability criterion for the difference equation

x(t + m) = Cm−1x(t + m − 1) + · · · + C1x(t + 1) + C0x(t).

The following notation will be used. Let G(z) be the polynomial matrix in (1.4).
We define

σ(G) = {λ ∈ C; det G(λ ) = 0}
and ρ(G) = max{|λ |; λ ∈ σ(G)} . In particular, if f (z) ∈ C

n[z] then σ(f ) shall
denote the set of roots of f (z) . In accordance with [2, p. 341] the elements of σ(G)
will be called the characteristic values of G(z) . If v ∈ Cn satisfies G(λ )v = 0 ,
v �= 0 , then v is said to be an eigenvector corresponding to λ . An r -tuple of vectors
(v0, v1, . . . , vr−1) , vi ∈ Cn , v0 �= 0 , is called a Jordan chain (or Keldysh chain [2]) of
length r of G(z) if

G(λ )v0 = 0, G′(λ )v0 + G(λ )v1 = 0, · · · ,

1
(r − 1)!

G(r−1)(λ )v0 +
1

(r − 2)!
G(r−2)(λ )v1 + · · · + G(λ )vr−1 = 0.

The symbol D represents the open unit disc. Thus ∂D is the unit circle and D is
the closed unit disc. If Q, R ∈ Cn×n are hermitian then we write Q > 0 if Q is
positive definite, and R � 0 if R is positive semidefinite. The inequality Q � R
means Q − R � 0 . If Q � 0 then Q1/2 shall denote the positive semidefinite
square root of Q . The positive semidefinite part of a hermitian matrix A is given by
|A| = (AA∗)1/2 = (A2)1/2 . Let

Ek = {ζ ∈ C; ζ k = 1}
be the group of k -th roots of unity. If ζ ∈ Ek then ord ζ will denote the order of ζ ,
i.e. if ord ζ = s then s is the smallest positive divisor of k such that ζ s = 1 . In many
instances limits of summation will be omitted. Then

∑
shall mean

∑m−1
i=0 .
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2. Characteristic values in D

In this section we are mainly concerned with the location of the characteristic
values of G(z) . The following observations will be useful.

LEMMA 2.1. Let A ∈ Cn×n be hermitian.
(i) If η = ±1 then

|A| � ηA. (2.1)

(ii) There exists a unitary matrix U such that

A = |A|U = U |A| and σ(U) ∈ {1,−1}. (2.2)

Proof. Let V be unitary such that A = V∗diag (α1, . . . ,αn)V . Then

|A| = V∗ diag (|α1|, . . . , |αn|) V.

Thus (2.1) is obvious. Set ηi = 1 if αi � 0 and ηi = −1 if αi < 0 . Define
U = V∗diag (η1, . . . ,ηn)V . Then (2.2) is satisfied. �

THEOREM 2.2. Let G(z) = Izm − ∑
Cizi be an n × n polynomial matrix with

hermitian coefficients Ci . Set S =
∑ |Ci| . Suppose S � I . Let G(λ )v = 0 , v �= 0 ,

and |λ | = 1 . Then the following holds. (i) ρ(G) � 1 . (ii) Sv = v . (iii) v∗G(λ ) = 0 .
(iv) The elementary divisors of G(z) corresponding to λ are linear.

Proof. Let G(λ )v = 0 and v �= 0 . We can assume v∗v = 1 . Suppose λ �= 0 .
Then λmv =

∑
Ciλ iv implies

1 =
∑ 1

λm−i
v∗Civ. (2.3)

Then (2.1) yields

1 �
∑ 1

|λm−i| |v
∗Civ| �

∑ 1
|λm−i|v

∗|Ci|v. (2.4)

(i) Set μ = min{|λ |, . . . , |λ |m} . Then (2.4) and S � I imply 1 � 1/μ , that is
|λ | � 1 .

(ii) If |λ | = 1 then S � I and (2.4) imply 1 = v∗Iv = v∗Sv . Hence (S−I)v = 0 .
(iii) Set

βi =
1

λm−i
v∗Civ, i = 0, . . . , m − 1. (2.5)

From (2.4) follows 1 =
∣∣∣ ∑

βi

∣∣∣ =
∑ |βi| . Hence βi = ωαi , i = 0, . . . , m − 1 , with

αi ∈ R , αi � 0 , ω ∈ C , |ω | = 1 . From (2.3) we obtain 1 = ω
∑

αi . Therefore
ω = 1 , and βi ∈ R , βi � 0 . Define

I(v) = {i; 0 � i � m − 1, v∗Civ �= 0}. (2.6)
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Then (2.3) implies I(v) �= ∅ . Since Ci is hermitian we have v∗Civ ∈ R . Therefore, if
i ∈ I(v) then λm−i = ±1 in (2.5). Using (2.1) we obtain

1 =
∑

i∈ I(v)

1
λm−i

v∗Civ �
∑

i∈ I(v)

v∗|Ci|v �
∑

0 � i�m−1

v∗|Ci|v = 1. (2.7)

Hence, if i /∈ I(v) then we have v∗|Ci|v = 0 , or equivalently |Ci|v = Civ = 0 .
Therefore

I(v) = {i; 0 � i � m − 1, Civ �= 0}. (2.8)

From (2.7) follows ∑
i∈I(v)

v∗
(
|Ci| − 1

λm−i
Ci

)
v = 0.

Hence |Ci|v = 1
λm−i Civ = λm−iCiv if i ∈ I(v) . Thus we have shown that

λm−iCiv = |Ci|v, i = 0, . . . , m − 1. (2.9)

From v =
∑ |Ci|v and (2.9) follows v =

∑
λm−iCiv . Because of λ̄ = λ−1 and

C∗
i = Ci this is equivalent to v∗λm = v∗

∑
λ iCi , i.e. to v∗G(λ ) = 0 .

(iv) According to [2, p. 342]) the degree of elementary divisors is related to the
length of Jordan chains. Hence we have to show that the eigenvector v can not be
extended to a Jordan chain of length greater than 1 . Suppose there exists a vector
w ∈ Cn such that G′(λ )v + G(λ )w = 0 . Then v∗G(λ ) = 0 implies

0 = v∗
[
G(λ )w + G′(λ )v

]
= v∗G′(λ )v = v∗

(
mλm−1 −

∑
iCiλ i−1

)
v.

Thus we would obtain mv∗v �
∑m−1

i=0 iv∗|Ci|v , in contradiction to v∗v =
∑

v∗|Ci|v .
�

Hermitian polynomial matrices G(z) with positive semidefinite coefficients Ci

have been studied in [13]. In the present paper we no longer assume Ci � 0 . This will
require a more elaborate approach.

3. Characteristic values on the unit circle

We continue to assume S =
∑ |Ci| � I . In this section the focus is on character-

istic values of G(z) on the unit circle. To a vector v ∈ Cn , v �= 0 , we associate the
set

M(v) = {λ ∈ C; |λ | = 1, G(λ )v = 0}.
If M(v) �= ∅ then it follows from (2.6) and (2.8) that v∗Civ �= 0 if and only if Civ �= 0 .
We define t = min{i; i ∈ I(v)} and ε = signv∗Ctv . Then Ctv �= 0 , and Civ = 0
if i < t . It will be shown in Lemma 3.2 below that all elements of M(v) are roots of
unity. In Theorem 3.6 and Theorem 3.8 it will be proved that either M(v) = Ed or
M(v) = {λ ; λ d = −1} for some divisor d of m − t .

LEMMA 3.1. We have

G(λ )v = 0, v �= 0, and |λ | = 1 (3.1)
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if and only if
Sv = v, v �= 0, and (3.2a)

Ciλm−iv = |Ci| v, i = 0, . . . , m − 1. (3.2b)

Proof. In Theorem 2.2 and its proof we have seen that (3.1) implies (3.2). Con-
versely, let (3.2) be satisfied. Then (3.2b) yields

v∗|Ci|v = |λm−i||v∗Civ| � |λm−i|v∗|Ci|v. (3.2)

Suppose |λ | < 1 . But then (3.2) would imply v∗|Ci|v = 0 , i.e. |Ci|v = 0 , i =
0, . . . , m − 1 . We would obtain Sv = 0 , which is incompatible with (3.2a). It follows
that |λ | � 1 . Hence ρ(G) � 1 implies |λ | = 1 . To prove G(λ )v = 0 we recall
Theorem 2.2(iii) and note that G(λ̄ )v = 0 is equivalent to G(λ )v = 0 if |λ | = 1 .
Using λ̄ = λ−1 and (3.2) we obtain

G(λ̄ )v =
[
λ̄mI −

∑
Ciλ̄ i

]
v = λ̄m

[
I −

∑
λm−iCi

]
v

= λ̄m
[
I −

∑
|Ci|

]
v = λ̄m(I − S)v = 0,

which completes the proof. �

LEMMA 3.2. For all λ ∈ M(v) we have λm−t = ε and λ 2(m−t) = 1 . If 1 ∈ M(v)
then ε = 1 and M(v) ⊆ Em−t .

Proof. From (3.2b) and (2.2) we obtain

Ct λm−t v = Utλm−t |Ct| v = |Ct| v.
Hence (Utλm−t − I) |Ct| v = 0 . From Ctv �= 0 follows λ t−m ∈ σ(Ut) . Thus
λm−t ∈ {1,−1} . Then v∗Ctv λm−t = v∗|Ct|v > 0 yields λm−t = ε . �

LEMMA 3.3. Let λ be an element of M(v) of order k .
(i) If k is odd then

Ct+j v �= 0 only if j ∈ k Z. (3.3)

Moreover k | (m − t) and ε = 1 , and

Ct+νkv = |Ct+νk |v, ν = 0, 1, . . . , � − 1, � = m−t
k . (3.4)

(ii) If k is even, k = 2s , then

Ct+j v �= 0 only if j ∈ s Z. (3.5)

Moreover s | (m − t) and

Ct+νsv = ε(−1)ν|Ct+νs|v, ν = 0, . . . , (� − 1), � = m−t
s . (3.6)
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Proof. From Civ = |Ci|λ−(m−i)v , i = 0, . . . , m − 1 , and λm−t = ε we obtain

Ct+jv = |Ct+j|λ−(m−t)λ jv = ελ j|Ct+j| v, (3.7)

j = 0, . . . , m − 1 − t . Let j be such that Ct+jv �= 0 . Then v∗Ct+jv ∈ R \ {0} , and
therefore (3.7) yields λ j = ±1 .

(i) If ord λ = k is odd then λ i �= −1 for all i . Hence ε = λm−t = 1 . Moreover,
if Ct+jv �= 0 then λ j = 1 , that is j ∈ kZ , which proves (3.3). By Lemma 3.2 we have
λ k = 1 = λ 2(m−t) . Hence k | (m − t) . We obtain (3.4) if we take j = νk in (3.7).

(ii) If ordλ = k = 2s then λ s = −1 . Therefore λ j = ±1 is equivalent to
j ∈ sZ . Hence, if Ct+jv �= 0 then j ∈ sZ , and we have (3.5). From λ k = 1 = λ 2(m−t)

and k = 2s follows s|(m − t) . The assertion (3.6) is an immediate consequence of
(3.7) with j = νs . �

With (3.3) in mind we make the following definition. Let D(v) be the set of
positive integers such that d ∈ D(v) if and only if d | (m − t) and d is a common
divisor of the numbers {j; 0 � j < m − t, s. th. Ct+jv �= 0} . Thus d ∈ D(v) is
equivalent to

d|(m − t) and Ct+jv = 0 if j /∈ dZ, (3.8)

and also to

G(z)v = zt
{

Izd�−
[
Cd(t+�−1)z

d(�−1)+ · · ·+Ct+dz
d+Ct

]}
v, m−t = d�. (3.9)

If λ ∈ M(v) then (3.9) implies {μ; μd = λ d} ⊆ M(v) .

The subsequent lemmas prepare the ground for the description of M(v) . It will
make an essential difference whether M(v) contains elements of odd order or not.

LEMMA 3.4. Let M(v) �= ∅ . Then the following statements are equivalent.
(i) The set M(v) contains an element λ of odd order.
(ii) We have

Civ = |Ci|v, i = 0, . . . , m − 1. (3.10)

(iii) 1 ∈ M(v) .

Proof. (i) ⇒ (ii) If the order of λ ∈ M(v) is odd then (3.3) and (3.4) imply
(3.10). (ii) ⇒ (iii) Because of M(v) �= ∅ we have (3.2) for some λ ∈ ∂D . Then
(3.10) implies that (3.2b) holds for λ = 1 . Hence Lemma 3.1 yields G(1)v = 0 . The
implication (iii) ⇒ (i) is obvious because of ord 1 = 1 . �

LEMMA 3.5. If 1 ∈ M(v) then the following statements are equivalent.
(i) d ∈ D(v) .
(ii) We have

G(z)v = zt(zd − 1) f (zd), f (z) ∈ C
n[z]. (3.11)

(iii) Ed ⊆ M(v) .
(iv) There exists an element λ ∈ M(v) such that ordλ = d .
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Proof. If G(1)v = 0 then (3.9) implies that G(μ)v = 0 for all μ ∈ Ed . Hence
d ∈ D(v) is equivalent to (3.11) and also to Ed ⊆ M(v) . Suppose (iv) holds. If d is
odd then (3.8) follows immediately from Lemma 3.3(i). If d is even, d = 2s , then
ε = 1 = λm−t implies d|(m − t) . Moreover, (3.6) yields Ct+νsv = 0 when ν is odd.
Hence (3.8) is valid also when d is even. �

For the polynomial g(z) in (1.1) the condition 1 ∈ M(v) amounts to g(1) = 1 .
Thus the identity (3.14) below generalizes the factorization (1.2) of Theorem 1.1.

THEOREM 3.6. Assume S =
∑ |Ci| � I and 1 ∈ M(v) . Set

k̂ = gcd
{{m − t} ∪ {j; 0 � j < m − t, Ct+jv �= 0}}. (3.12)

Then M(v) = Ek̂ . If m − t = k̂� then

G(z)v = zt

{
Izk̂� −

∑�−1

ν=0
Ct+k̂νz

k̂ν
}

v, (3.13)

or equivalently

G(z)v = zt(zk̂ − 1) f (zk̂) (3.14)

for some f (z) ∈ Cn[z] such that

σ(f ) ∩ ∂D = ∅. (3.15)

Proof. From Lemma 3.2 follows M(v) ⊆ Em−t . Let λ1, λ2 be elements of
M(v) such that ki = ordλi , i = 1, 2 . By Lemma 3.5 we have k1, k2 ∈ D(v) . Set
p = lcm (k1, k2) . Take d = k1 and d = k2 in (3.8). Then we have Ct+jv �= 0 only
if j ∈ k1Z ∩ k2Z = pZ . Hence p ∈ D(v) . Therefore G(z)v = zt(zp − 1) f (zp) , and
from (λ1λ2)p = 1 follows λ1λ2 ∈ M(v) . Hence M(v) is a subgroup of Em−t . Thus
M(v) = Ek̃ and k̃ = max{ord λ ; λ ∈ M(v)} . We have

k̃ = max{d; d ∈ D(v)} = k̂,

which implies M(v) = Ek̂ . It remains to show that the polynomial vector f (zk̂)
satisfies (3.15). Suppose f (μ) = 0 for some μ ∈ ∂D . Then μ = ηk̂ with η ∈ ∂D .
Thus (3.14) implies η ∈ M(v) , and therefore η ∈ Ek̂ . Hence G(z) would have an
elementary divisor (z − η)r with r � 2 , in contradiction to Theorem 2.2(iv). �

Suppose all coefficients Ci are positive semidefinite. Then (3.10) is satisfied, and
1 ∈ M(v) if M(v) �= ∅ . Thus in the case of the polynomial g(z) in (1.1) we have
recovered a result which is due to of Ostrowski (see also [1] and [10, p. 3]).

COROLLARY 3.7. [9, p. 92] Let g(z) = zm−∑m−1
i=0 cizi be a real polynomial with

nonnegative coefficients ci such that c0 > 0 and
∑m−1

i=0 ci = 1 .
(i) Then g(1) = 0 , and the absolute values of the other roots of g(z) do not

exceed 1 .
(ii) Moreover, λ = 1 is the only root of g(z) on the unit circle if and only if the

greatest common divisor of the indices i of all positive coefficients ci is equal to 1 .
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In the next theorem we assume 1 /∈ M(v) and we obtain a counterpart to Theo-
rem 3.6. The identity (3.18) below yields the factorization (1.3) in Theorem 1.1.

THEOREM 3.8. Suppose M(v) �= ∅ and 1 /∈ M(v) . Then all elements of M(v)
have even order. Set

k̂ = lcm { 1
2 ord λ ; λ ∈ M(v)}. (3.16)

Then k̂ |(m − t) and

M(v) = {λ ∈ C; λ k̂ + 1 = 0}. (3.17)

If m − t = k̂� then
G(z)v = zt(zk̂ + 1) f (zk̂) (3.18)

for some f (z) ∈ Cn[z] with σ(f ) ∩ ∂D = ∅ .

Proof. It follows from Lemma 3.4 that the order of all elements of M(v) is even.
Suppose M(v) = {λ1, . . . , λr} and ordλi = ki = 2si , i = 1, . . . , r . Then si | (m− t) .
Set k̂ = lcm (s1, . . . , sr) and � = (m − t)/k̂ . Then (3.5) implies that Ct+jv �= 0 only
if j ∈ k̂Z . Hence

G(z)v = zt
[
Iz�k̂ −

�−1∑
ν=0

Ct+νk̂z
νk̂

]
v. (3.19)

It is impossible that μ k̂ = 1 for some μ ∈ M(v) . Otherwise (3.19) would imply
G(μ)v = G(1)v = 0 and we would have 1 ∈ M(v) . Thus λ k̂

i = −1 , i = 1, . . . , r .
Hence M(v) ⊆ {λ ; λ k̂ + 1 = 0} . On the other hand (3.19) and G(λ1)v = 0 yield
G(λ )v = 0 if λ k̂ = λ k̂

1 . Therefore λ k̂
1 = −1 implies {λ ; λ k̂ + 1 = 0} ⊆ M(v) , and

we have established (3.17). The factorization (3.18) follows from (3.19) and (3.17).
We can use Theorem 2.2(iv) again to show that f (μ) �= 0 if |μ| = 1 . �

If 1 /∈ M(v) and k̂ is given by (3.16) then we conclude from (3.17) that there
exists a λ ∈ M(v) with ordλ = 2k̂ . Thus (3.6) and (3.19) imply

G(z)v = zt
[
Iz�k̂ −

�−1∑
ν=0

ε(−1)ν|Ct+νk̂|zνk̂
]
v.

On the other hand, if 1 ∈ M(v) and k̂ is given by (3.12), such that k̂ = lcm {ordλ ; λ ∈
M(v)} , then (3.13) can be written as

G(z)v = zt
[
Iz�k̂ −

�−1∑
ν=0

|Ct+νk̂|zνk̂
]
v.

With these observations we can make Theorem 1.1 more precise.

THEOREM 3.9. Let g(z) = zm − ∑m−1
i=0 cizi be a complex polynomial. Set

s =
∑m−1

i=0 |ci| . Suppose c0 �= 0 and s � 1 . Then g(z) has a root on the unit circle if
only if s = 1 , and either ci � 0 for all i and

g(z) = zk� − (|c0| + |ck|zk + · · · + |ck(�−1)|z(�−1)k), m = k�,
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or otherwise cj < 0 for some j and

g(z) = zk� − ε
(|c0| − |ck|zk + |c2k|z2k ∓ · · · + (−1)�−1|c(�−1)k|z(�−1)k)

with ε = sign c0 = (−1)� .

According to H. Schneider [12] there is a striking similarity between properties
of eigenvalues of p -norm contractive maps (see [8]) and of characteristic values of
hermitian polynomial matrices G(z) satisfying the condition S � I . For 1 � p < ∞
the p -norm on R

n is defined by

|x|p =
(∑n

j=1
|xj|p

)1/p
, x = (x1, . . . , xn)T ,

and the ∞ -norm is given by |x|∞ = max{|x|j; j = 1, . . . , n} . For a matrix A ∈
Rn×n let ‖A‖p denote the corresponding operator norm, and let A be called p -norm
contractive if ‖A‖p � 1 . We refer to Lemmens and Van Gaans [8] for the following
result.

THEOREM 3.10. Let 1 � p � ∞ and p �= 2 . If A ∈ Rn×n is p -norm contractive
then there exists a q ∈ N such that

q | 2(n!) and λ q = 1 for all λ ∈ σ(A) ∩ ∂D.

The sequence (Aqj)j∈N is convergent.

The corresponding result for G(z) is the following.

THEOREM 3.11. Assume S � I . Then there exists a q ∈ N such that

q | 2(m!) and λ q = 1 for all λ ∈ σ(G) ∩ ∂D. (3.20)

Proof. If λ ∈ σ(G) ∩ ∂D then Lemma 3.3 implies that the order of λ is equal to
r or to 2r for some r ∈ {1, . . . , m} . Hence

q = lcm {ord λ ∈ σ(G) ∩ ∂D} (3.21)

satisfies (3.20). �

4. Applications

4.1. The Eneström–Kakeya theorem

According to Anderson, Saff and Varga [1] it is of interest to know when the
inequality ρ(h) � 1 in Theorem 1.2 is sharp. We write h ∈ π+

m−1 if the polynomial
h(z) in (1.5) satisfies (1.6).

THEOREM 4.1. ([7], [1]) Let h(z) =
∑m−1

i=0 aizi be a real polynomial and suppose
the coefficients ai satisfy

0 < a0 = a1 = · · · = ar1−1

< ar1 = ar1+1 = · · · = ar2−1 < · · ·
< ars = ars+1 = · · · = am−1. (4.1)
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Set k = gcd(m, r1, . . . , rs) . Then ρ(h) = 1 if and only if k > 1 . In that case

0 < a0 = · · · = ak−1 � ak = · · · = a2k � · · · � am−k = · · · = am−1,

and
h(z) = (1 + z + · · · + zk−1)p(zk), p ∈ π+

�−1, σ(p) ∩ ∂D = ∅,
with � = m/k . We have σ(h) ∩ ∂D = Ek\{1} .

The Eneström–Kakeya theorem and its refinement in Theorem 4.1 can be extended
to polynomialmatrices. Note that Furuta and Nakamura [5] generalized Theorem1.2 (i)
to polynomials H(z) =

∑
Aizi with positive definite operator coefficients Ai . The

approach of [5] relies on a power inequality for the numerical radius of a linear operator
acting on a Hilbert space. For the subsequent theorem we refer to [4]. In the present
paper a different proof is given, which should be more straightforward.

THEOREM 4.2. Let H(z) = Am−1zm−1 + · · · + A1z + A0 be a polynomial matrix
with hermitian coefficients Ai such that

Am−1 > 0, Am−1 � Am−2 � · · · � A0 � 0.

(i) Then ρ(H) � 1 and 1 /∈ σ(H) .
(ii) If λ ∈ σ(H) and |λ | = 1 then the corresponding elementary divisors of H(z)

are linear. Moreover, λ k = 1 for some k , 0 < k � m. If A0 > 0 then λm = 1 .

Proof. From Am−1 > 0 follows
∑

Ai = H(1) > 0 . Therefore 1 /∈ σ(H) . Set
Ãi = A−1/2

m−1 AiA
−1/2
m−1 . Then

A−1/2
m−1 H(z)A−1/2

m−1 = Izm−1 +
∑m−2

i=0
Ãi z

i,

Thus we can assume Am−1 = I . Put A−1 = 0 . Using the multiplier (z− 1) we define
G(z) = (z − 1) H(z) . Then G(z) = Izm − ∑m

i=0 Cizi and

Ci = Ai − Ai−1 � 0, i = 0, . . . , m − 1,

and
∑

Ci = I . Moreover, σ(H) = σ(G)\{1} . To complete the proof we apply
Theorem 2.2 and Lemma 3.2. �

The following generalization of Theorem 4.1 deals with an eigenvector v of H(z)
and the corresponding characteristic values on the unit circle. With regard to (4.1) we
make the assumptions A0 > 0 and

A0v = · · · = Ar1−1v, Ar1−1v �= Ar1v,

Ar1v = · · · = Ar2−1v, Ar2−1v �= Ar2v, · · · ,

Ars−1v �= Arsv, Arsv = · · · = Am−1v. (4.2)

THEOREM 4.3. Suppose H(λ )v = 0 , v �= 0 , and |λ | = 1 . Let r1, . . . , rs , be
given by (4.2). Define k̂ = gcd{m, r1, . . . , rs} . Then λ k̂ = 1 , and

H(z)v = zt(1 + z + · · · + zk̂−1) f (zk̂) (4.3)

where f (z) ∈ Cn[z] and σ(f ) ∩ ∂D = ∅ .
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Proof. Again, it is no loss of generality to assume Am−1 = I . Because of
Ci = Ai − Ai−1 the condition (4.2) means that Cjv �= 0 only if j ∈ {m, r1, . . . , rs} .
Then (3.14) in Theorem 3.6 yields

G(z)v = (z − 1)H(z)v = zt(zk̂ − 1) f (zk̂),

which implies (4.3). �

4.2. A difference equation

We consider the linear time-invariant equation

x(t + m) = Cm−1x(t + m − 1) + · · · + C1x(t + 1) + C0x(t), (4.4a)

x(0) = x0, . . . , x(m − 1) = xm−1. (4.4b)

THEOREM 4.4. Let Ci ∈ Cn×n , i = 0, . . . , m − 1 , be hermitian matrices and
suppose S =

∑ |Ci| � I .
(i) Then all solutions

(
x(t)

)
of (4.4) are bounded for t → ∞ .

(ii) There exists a positive integer q such that q | 2(m!) and the sequence
(
x(qj)

)
is convergent.

Proof. (i) It is well known (see e.g. [6]) that the solutions of (4.4) are bounded if
and only if all characteristic values of G(z) = Izm − ∑

Cizi are in the closed unit disc
and if those on the unit circle have linear elementary divisors. Hence stability of (4.4)
follows immediately from Theorem 2.2.

(ii) Let q be given as in (3.21) such that (3.20) holds. If

C =

⎛
⎜⎜⎜⎜⎜⎝

Cm−1 . . . C2 C1 C0

I . . . 0 0 0
. . . . . . .
. . . . . . .
. . . . I 0 0
0 . . . 0 I 0

⎞
⎟⎟⎟⎟⎟⎠

is the block companion matrix associated with G(z) then σ(C) = σ(G) , and C and
G(z) have the same elementary divisors. Set

y(t) =
(
x(t + m − 1)T , . . . , x(t + 1)T , x(t)T

)T

and define y0 conforming to (4.4b). Then (4.4) is equivalent to y(t + 1) = Cy(t) ,
y(0) = y0 . The corresponding equation for

(
w(j)

)
=

(
x(jq)

)
is w(j + 1) = Cq w(j) .

We have ρ(C) � 1 and λ q = 1 for all λ ∈ σ(C)∩∂D . Therefore σ(Cq) ⊆ {1}∪D .
The matrix Cq is similar to diag (I, Ĉ) with σ(Ĉ) ⊆ D . Hence

(
w(j)

)
is convergent.

�
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