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Abstract. The (U + K ) -orbit of a Hilbert space operator T is defined as (U + K )(T) =
{ R−1TR : R invertible of the form unitary plus compact } . In this paper, we show that certain
essentially normal operator with the same spectral picture as an essentially normal injective
unilateral weighted operator generates the same closure of (U + K ) -orbit.

1. Introduction

Let H be a separable-dimensional Hilbert space over the complex field C and
L (H) (resp. K (H) ) denote the algebra of all bounded linear operators on H (resp.
the algebra of all compact operators on H ). T ∈ L (H) is said to be essentially normal
if T∗T − TT∗ ∈ K (H) .

For T ∈ L (H) , let σ(T) , σp(T) , σe(T) , σ0(T) , σW(T) , ρsF (T) , ρr
sF

(T) and
ρF(T) denote the spectrum, the point spectrum, the essential spectrum, the normal
eigenvalues, the Weyl spectrum, the semi-Fredholm domain, the regular points of semi-
Fredholm domain and the Fredholm domain of T , respectively. Let H(λ ; T) denote
the Riesz eigenspace corresponding λ ∈ σ0(T) . Let nulT = dimkerT .

If λ ∈ ρF(T) , the index of T − λ I is defined as

ind (T − λ I) = nul (T − λ I) − nul (T − λ I)∗;

the minimum index of T − λ I is

min ind (T − λ I) = min {nul (T − λ I), nul (T − λ I)∗} .

Readers can refer to [8] for more information on the behaviour of these.
There are many ways to describe the equivalence relations of operators on H . Here,

we are mostly interested in the (U + K )− equivalence of operators first introduced by
D. A. Herrero ([9]). Let (U + K )(H) = {X ∈ L (H) : X is invertible with the form
unitary plus compact}.
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The (U + K ) -orbit of T ∈ L (H) is given by (U + K )(T) = {XTX−1 :
X ∈ (U + K )(H)} . (U + K )(T) denotes the norm closure of (U + K )(T) .
Let A ∈ L (H′) for some Hilbert space H′ , We will write A ∼=U +K T when
A ∈ (U + K )(T) and A ∼= T if there is a unitary operator U : H′ → H such that
A = U∗TU .

The closures of (U + K ) -orbits of essentially normal operators on a Hilbert
space have been studied by many authors (see, for example [1], [4], [5], [6], [11], [12],
[14], [15], and [16]). For a survey on (U + K ) -orbit of operator, the reader is referred
to [15]. In particular, L.W. Marcoux proved that an essentially normal operator T with
the same spectral picture as unilateral shift operator S generates the same closure of
(U + K ) -orbit as S in [14], and gave a conjecture (U + K )(M)= (U + K )(N)
whenever N and M are essentially normal and have same spectral picture in [15,
Question 2].

Note that the essentially normal operator T with the same spectral picture as
the essentially normal injective unilateral weighted shift operator W is different from
the structure and essential spectrum of operators or operator models whose closure
of (U + K ) -orbit were characterized in [1], [4], [5], [6], [11], [12], [14], [15], and
[16], respectively. Thus, in this paper, we will consider Marcoux’s conjecture for
certain essentially normal operator T whose spectral picture is identical to that of an
essentially normal injective unilateral weighted operator.

Throughout, for T ∈ L (H) , let Hr(T) = span {ker (T − λ I) : λ ∈ ρr
sF

(T)} ,
Hl(T) = span {ker (T−λ I)∗ : λ ∈ ρr

sF
(T)} , H0(T) = (Hr(T)⊕Hl(T))⊥ . Tl = T|Hl(T)

and T0 = T|H0(T) denote the compression of T to Hl(T) and H0(T) , respectively. If
A, B ∈ L (H) , τAB(X) = AX − XB for X ∈ L (H) denotes Rosenblum operator. Let
Rat(Ω ) denote the set of rational functions of C whose poles lie outside of Ω ⊂ C ,
and C(Ω) denote the set of continuous functions on Ω ⊂ C .

Let W , α > 0 and β be same as in [6, Theorem 3.4], that is, W is an essentially
normal injective unilateral weighted operator with weight sequence {wn}∞n=1 satisfying
0 < lim inf

n
{wn} = α and β = lim sup

n
{wn} . Let A ={ T : T ∈ L (H) satisfies

(i) T is essentially normal; (ii) σ(T) = {z ∈ C : |z| � β} , σe(T) = {z ∈ C :
α � |z| � β} ; (iii) ind(T − λ ) = −1 for all z ∈ C, |z| < α; (iv) nul (T − z) =
0 for all z ∈ C, |z| < α; (v) Tl is an essentially normal operator.}, B ={T : T ∈
L (H) satisfies conditions (i), (ii), (iii) of A } .

We prove the following theorem.

THEOREM. If T ∈ A , C(σ(T|Hl(T)⊥)) = Rat(σ(T|Hl(T)⊥)). Then (U + K )(T) =
B .

By [6, Theorem 3.4], then (U + K )(W) = (U + K )(T) if T satisfies the
conditions of Theorem. In addition, by the following example, we know that there
exists an essentially normal operator satisfying the conditions of Theorem.

EXAMPLE. Let Γ1 ⊂ {z ∈ C : |z| = α} and Γ2 ⊂ {z ∈ C : |z| = β} be
compact sets, respectively. Let DΓ1 and DΓ2 be the diagonal operators satisfying
σ(DΓ1) = σe(DΓ1) = Γ1 , σ(DΓ2) = σe(DΓ2) = Γ2 , respectively. Let D = DΓ1 ⊕DΓ2 ,
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K be a compact operator, Hl = span {ker (W − λ I)∗ : λ ∈ ρsF(W)} , H0 = H⊥
l ,

T =
[

D K
0 W

]
H0

Hl
.

Then T ∈ A . Moreover, ker(T − λ )∗ =0⊕ ker(W − λ )∗ for |λ | < α , Hl(T) = Hl .
Note that T|H⊥

l = D , σ(D) is a prefect set with planar Lebesgue measure 0, by [10],
then C(σ(T|H⊥

l )) = Rat(σ(T|Hl(T)⊥)) .

2. Preliminaries

In order to simplify the proof of Theorem, we need the following lemmas. For
convenience, we list [1, Theorem 4.15] ([14, P.1213]) and the claim in the proof of [11,
Theorem 1] as our Lemma 2.1 and Lemma 2.2, respectively.

LEMMA 2.1. ([1, Theorem 4.15]). Suppose T ∈ L (H) is essentially normal
and that σ(T)= σe(T) ∪ σ0(T) . Assume, moreover, that C(σ(T))= Rat(σ(T)) .
Then N ∈ (U + K )(T) , where N is a normal operator such that σ(N) = σ(T) ,
σ0(N) = σ0(T) , and nul(λ I − N) = dimH(λ ; T) for all λ ∈ σ0(N) .

LEMMA 2.2. (The claim in the proof of [11, Theorem 1]). If 0 ∈ Ω and T ∈
Bn(Ω) is essentially normal, T1 = T|H�ker Tk0 . Let A be an essentially operator
whose spectral picture is identical to that of T . A0 = A|ker (Ak0 ) is a k0n × k0n upper
triangular matrix with the diagonal entries are zeros, F is a finite rank operator. Then
for given ε > 0 , there exists a compact operator K with ‖K‖ < ε such that

[
A0 F
0 T1

]
+ K ∼=U +K T.

where Ω is a bounded connected open subset of C and n is a positive number.
Bn(Ω) denotes the set of operators R ∈ L (H) which satisfy (a) Ω ⊂ σ(R) ;
(b) ran (T − λ ) = H for all λ ∈ Ω ; (c)

∨{ker (R − λ ) : λ ∈ Ω} = H ; (d)
nul(R − λ ) = n for all λ ∈ Ω .

LEMMA 2.3. Let T ∈ A , N be a diagonal operator of uniform infinite mul-
tiplicity satisfying σ(N) = σe(N) = σ(T) . Then (i) T0 is an essentially nor-
mal operator and σ(T0 ⊕ N) = σe(T0 ⊕ N) = σe(T) ; (ii) Tl is a lower tri-
angular operator, σ(Tl ⊕ N) = σ(T) , σe(Tl ⊕ N) = σe(T) , nul(Tl − λ I) = 0
and nul(Tl − λ I)∗ = 1 for all λ ∈ σ(Tl) \ σe(Tl) , and T∗

l ∈ B1(Ω) , where
Ω = {z ∈ C : |z| < α} ; (iii) (U + K )(T) ⊂ (U + K )(Tl ⊕ N) . Moreover,
if C(σ(T|Hl(T)⊥)) = Rat(σ(T|Hl(T)⊥)), then (U + K )(T) = (U + K )(Tl ⊕ N) .

Proof. Since T ∈ A , by [8, Theorem 3.38], we know that T is of the form

T =
[

T0 B
0 Tl

]
H0(T)
Hl(T)
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with respect to the decomposition H = H0(T)⊕Hl(T) , Tl is lower triangular, σ(T0) ⊂
σe(T) , σp(Tl) = ∅ .

By the assumptions on T and Tl , one has T and Tl are essentially normal
operators, respectively; by simple computation, the BB∗ is a compact operator. Thus B
is a compact operator, T0 is an essentially normal operator and σe(T) = σe(T0)∪σe(Tl) .

Since B is a compact operator, we have σ(T0 ⊕ Tl) ⊂ σ(T) ∪ σp(T0 ⊕ Tl) =
σ(T) ∪ σp(T0) ∪ σp(Tl) , thus σ(T0 ⊕ Tl) ⊂ σ(T) . By [7, Problem 56], then σ(T) =
σ(T0)∪σ(Tl) . Let Ω = {z ∈ C : |z| < α} , then Ω ⊂ σ(T∗

l ) , ran (Tl −λ I)∗ = Hl(T)
and nul(Tl − λ I)∗ = 1 for all λ ∈ Ω .

By the above discussion, the proof of (i) and (ii) are completed.
Since Hl(T) = span {ker (Tl − λ I)∗ : λ ∈ Ω} , by [13, Proposition 1.41], then

span {ker [(Tl − λ0I)∗]n : n � 1} = Hl(T) for all λ0 ∈ Ω.

By [8, Theorem 3.38], σ(T0) ⊂ σe(T) , note that [13, Proposition 1.14], then
ker τ

T∗
0

T∗
l

= {0} , ker τTlT0
= {0} . Since B is compact, by [13, Lemma 1.10], there

exist compact operators Z and K′
1 , ‖K′

1‖ < ε/3 such that T0Z − ZTl = B + K′
1 . Let

X1 =
[

I Z
0 I

]
, K1 =

[
0 K′

1
0 0

]
,

then X1 ∈ (U + K )(H0(T) ⊕ Hl(T)) , K1 is a compact operator, ‖K1‖ < ε/3 ,

X1(T + K1))X1 = T0 ⊕ Tl.

By [2, Lemma 2.1], there exist a unitary operator U1 and a compact operator K2

with ‖K2‖ < ε/(3‖X1‖‖X−1
1 ‖) such that

U1(T0 ⊕ Tl + K2)U∗
1 = (N ⊕ T0) ⊕ Tl.

Let T ′
0 = N ⊕ T0 , then σ(T ′

0) = σe(T ′
0) = σe(T) . Note that σ0(T ′

0) = ∅ ,
σ(T ′

0) is prefect, by [8, Corollary 4.2], T ′
0 is of the form normal plus compact. By

the proof of [5, Theorem 2.3], then there exist a compact operator K′
3 with ‖K′

3‖ <

ε/(3‖X1‖‖X−1
1 ‖) and an invertible operator X′

2 with form unitary plus compact such
that X′

2(T
′
0 + K′

3)(X
′
2)

−1 = N , thus there exist a compact operator K3 with ‖K3‖ <

ε/(3‖X1‖‖X−1
1 ‖) and an invertible operator X2 with form unitary plus compact such

that X2(U1(T0 ⊕ Tl + K2)U∗
1 + K3))X−1

2 = N ⊕ Tl .

By the above proof, (U + K )(T) ⊂ (U + K )(Tl ⊕ N) .

If C(σ(T|Hl(T)⊥)) = Rat(σ(T|Hl(T)⊥)), let N0 be a diagonal operator of uniform
infinite multiplicity satisfying σ(N0) = σe(N0) = σ(T0) . Then N0 ⊕ T0 is essen-
tially normal, σ(N0⊕T0)=σe(N0⊕T0)=σ(T0) , C(σ(N0⊕T0))= Rat(σ(N0 ⊕ T0)) .
σ(N0) ⊂ σe(Tl) , apply Lemma 2.1 to N0 and N0 ⊕ T0 , note that [5, Proposition 2.7]
and B is compact, we can imply

(U + K )(N ⊕ Tl) ⊂ (U + K )(N0 ⊕ N ⊕ Tl) ⊂
(U + K )(N0 ⊕ T0 ⊕ N ⊕ Tl) ⊂ (U + K )(T0 ⊕ Tl) ⊂ (U + K )(T).

The proof of (iii) is completed. �
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LEMMA 2.4. Let T ∈ A , N ∈ L (H) be the same as in Lemma 2.3, and S be a
unilateral forward shift operator. Then for given ε > 0 , there exist a natural number
k and a compact operator K with ‖K‖ < ε such that

N + K ∼=U +K

[
βS∗ 0
B21 T ′

l

]
⊕ N ,

where T ′
l = Tl|Hl(T)�span {ker ((Tl−λ0I)∗)k} for λ0 ∈ {z ∈ C : |z| < α} , B21 is a finite

rank operator.

Proof. By BDF Theorem ([8, Theorem 4.1]), there exist a unitary operator U1 and
a compact operator K0 such that U1NU∗

1 = βS∗ ⊕ Tl ⊕ N ⊕ K0. By Lemma 2.3 (ii)
and [13, Proposition 1.41], then

Hl(T) = span {ker ((Tl − λ0I)∗)n : n � 1} for all λ0 ∈ {z ∈ C : |z| < α}.

Let {λn}∞n=1 be a countable dense subset of σe(T) such that σe(T) = σe(N) =
σ(N) = {λn}∞n=1 . Let {en}∞n=1 (resp. {f n}∞n=1 ) be orthonormal basis of H such that
Nen = λnee (resp. Sf n = f n+1 ), and all the eigenvalues of N have infinity multiplicity.
Let P2n be an orthogonal projection of Hl(T) onto span {(ker (Tl−λ0I)∗)n} , P1n (resp.
P3n ) be the orthogonal projections from H onto span ({f i}n

i=1) (resp. span ({ei}n
i=1) ),

Pn = P1n ⊕ P2n ⊕ P3n .
Note that K0 is a compact operator. Thus there exists a natural number k such

that ‖PkK0Pk − K0‖ < ε/2 . Let K1 = PnK0P0 − K0 , by the supper semicontinuity
of spectrum, σ(U1NU∗

1 + K1) ⊂ (σ(N))ε/2 . Since H ⊕ Hl(T) ⊕ H can be decom-
posed as span ({f i}l

i=1)⊕ (H
 span ({f i}l
i=1))⊕ (ker ((Tl −λ0I)∗)l)⊕ (H
 ker ((Tl −

λ0I)∗)l)⊕ span ({ei}l
i=1)⊕ (H 
 span ({ei}l

i=1)) , consider the matrix representation of
U1NU∗

1 +K1 with respect to this decomposition, and note that βS∗|H�span ({ei}l
i=1)

(resp.

N|H�span ({f i}l
i=1)

) is unitary equivalence to βS∗ (resp. N ), by simple computation, we
can imply that there exists a unitary operator U2 such that

U2(U1NU∗
1 + K1)U∗

2 =

⎡
⎢⎣

A11 A12 0 0
0 βS∗ 0 0

A31 0 T ′
l 0

0 0 0 N

⎤
⎥⎦ ,

where T ′
l = Tl|Hl(T)�span (ker ((Tl−λ0I)∗)k) , A11 , A12 and A31 are finite rank operators,

respectively.
Since σ(A11) ⊂ σ(U1NU∗

1 + K1) ∪ σ(βS) , and A11 acts on a finite dimensional
space, apply Schur lemma to A11 , again perturb, we can choose compact operator K′

2 ,
X′

1 such that ‖K′
2‖ < ε/2 and X′

1(A11 + K′
2)(X

′
1)

−1 = Fd is a diagonal matrix with
distinct diagonal entries,

σ(Fd) ⊂ σ(βS∗), σ(Fd) ∩ {z ∈ C : |z| = β} = ∅.
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By the above argument,apply functional calculus and [5, Corollary 4.5] to
[

Fd X′
1A12

0 βS∗

]

⊕ N, then there exist a compact operator K2 with ‖K2‖=‖K′
2‖ and an invertible op-

erator X1 with form unitary plus compact such that

X1(U2(U1NN∗ + K1)U∗
2 + K2)X−1

1 =
[
βS∗ 0
B21 T ′

l

]
⊕ N ,

where B21 is a finite rank operator. The proof is complete. �

LEMMA 2.5. Let R, T ∈ A . N ∈ L (H) is the same as in Lemma 2.3. Then for
given ε > 0 , there exists a compact K with ‖K‖ < ε such that

Rl ⊕ N + K ∼=u+k Tl ⊕ N .

Proof. Let R′ = Rl ⊕ N , T ′ = Tl ⊕ N , N0 = N . Apply [2, Lemma 2.1] to R′ ,
there exist a unitary operator and a compact operator K′

1 with ‖K′
1‖ < ε/25 such that

U(R′ + K1)U∗ = N ⊕ Rl ⊕ N0 . Note that the matrix representation of Rl with respect
to Hl(T) = ker (R∗

l )
n ⊕ (ker (R∗

l )
n)⊥ , and apply Lemma 2.4 to N0 . Then there exist a

natural number k , a compact operator K1 with ‖K1‖ < ε/5 and an invertible operator
X1 with form unitary plus compact such that

X1(R′ + K1)X−1
1 = N ⊕

[
Rl1 0
Rl2 R′

l

]
ker (R∗

l )
k

(ker (R∗
l )

k)⊥ ⊕
[
βS∗ 0
B21 T ′

l

]
ker (T∗

l )k

(ker (T∗
l )k)⊥ ⊕ N,

where R′
l = Rl|(ker R∗k

l )⊥ , T ′
l = Tl|(ker T∗k

l )⊥ . Rl2 and B21 are finite rank operators,

respectively.
Since σ(R′

l⊕βS∗⊕N) = σ(T) , σe(R′
l⊕βS∗⊕N) = σe(T) , σ0(R′

l⊕βS∗⊕N) = ∅
and ind (R′

l ⊕ βS∗ ⊕ N − λ I) = 0 for λ ∈ σ(T) \ σe(T) . By [5, Theorem 2.3] and
its proof, there exist a compact operator K′

2 with ‖K′
2‖ < ε/(5‖X1‖‖X−1

1 ‖) and an
invertible operator X′

2 with form unitary plus compact such that

X′
2(R

′
l ⊕ βS∗ ⊕ N + K′

2)(X
′
2)

−1 = N.

Thus there exist a compact operator K2 with ‖K′
2‖ = ‖K2‖ and an invertible operator

X2 with form unitary plus compact such that

X2(X1(R′
1 + K1)X−1

1 + K2)X−1
2 = E =

⎡
⎣ Rl1 0 0

A21 N 0
0 A32 T ′

l

⎤
⎦ ⊕ N ,

where A21 and A32 are finite rank operators, respectively.
Simultaneously apply [3, Corollary 4.5, P. 42] to A21 and A32 , there exist a compact

operator K3 with ‖K3‖ < ε/(5‖X1‖‖X−1
1 ‖‖X2‖‖X−1

2 ) and a natural number n such
that

E + K3 =

⎡
⎢⎣

Rl1 0 0 0
B′

21 N1 0 0
0 0 N′ 0
0 B42 0 T ′

l

⎤
⎥⎦ ⊕ N ,
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where B′
21 and B42 are finite rank operators, respectively. N = N1 ⊕N′ , N′ ∼= N , N1

acts on a Hilbert space whose dimension is n .

Claim. There exists a finite rank operator Z such that

N∗
1 Z∗ − Z∗(T ′

l )
∗ = B∗

42 .

Note that [11, Lemma 3.1] and [13, Lemma 3.10], we can assume that (T ′
l )

∗ is of
upper triangular matrix representation

(T ′
l )

∗ =

⎡
⎣

0 a12 · · · · · ·
0 a23 · · ·

. . .
. . .

⎤
⎦

where aii+1 �= 0 for i = 1, 2, · · · .
Let N∗ = diag{λi}n

i=1 , Z∗ = (zij)n×∞ be n ×∞ matrix whose elements are zij ,
i = 1, 2 · · · , n ; j = 1, 2 · · · . Since B∗

42 is known, λi �= 0 for i = 1, 2, · · · , n .
aii+1 �= 0 for i = 1, 2, · · · , by solving equation N∗

1 Z∗ − Z∗(T ′
l )

∗ = B∗
42 , we can get

zij step and step. Thus such Z∗ exists, by [3, Proposition 3.4, P.70], Z is bounded. The
proof of the Claim is completed.

Let X3 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 Z 0 1

⎤
⎥⎦ , then

X3(E + K3)X−1
3 =

⎡
⎢⎣

Rl1 0 0 0
B′

21 N1 0 0
0 0 N′ 0

ZB′
21 0 0 T ′

l

⎤
⎥⎦ ⊕ N =

⎡
⎣ Rl1 0 0

B′′
21 N 0

B′
31 0 T ′

l

⎤
⎦ ⊕ N ,

where B′′
21 and B′

31 are finite rank operators, respectively.
Let δ = ‖X1‖‖X2‖‖X3‖‖X−1

1 ‖‖X−1
2 ‖‖X−1

3 ‖ , apply [2, Lemma 2.1] to N ⊕ T ′
l ,

then there exist a compact operator K4 with ‖K4‖ < ε/(5δ) and a unitary operator U2

such that

U2(X3(E + K3)X−1
3 + K4)U∗

2 = F =
[

Rl1 0
G T ′

l

]
⊕ N .

where G is a finite rank operator.

Apply Lemma 2.2 to

[
Rl1 0
G T ′

l

]
, then there exist a compact K5 with ‖K5‖ <

ε/(5δ) and an invertible operator X4 with the form unitary plus compact such that

X4(F + K5)(X4)−1 = Tl ⊕ N.

By the above proof, the conclusion follows. �
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LEMMA 2.6. Let K ∈ L (H) be a compact operator and R = W + K ∈ L (H)
satisfy the conditions (i), (ii), (iii), (iv) in A . Then R0 and Rl are essentially normal
operators, respectively.

Proof. By [8, Theorem 3.38], R with respect to the decomposition H = H0(R) ⊕
Hl(R) is of the form

R =
[

R0 B
0 Rl

]
H0(R)
Hl(R) ,

and σ(R0) ⊂ σe(R) . Let π denote the canonical map from L (H) to L (H)/K (H) ,
we imply that π(R∗R) = π(W∗W) ,

[
π(R∗

0R0) − π(D1) π(R∗
0B)

π(B∗R0) π(B∗B + R∗
l Rl) − π(D2)

]
=

[
0 0
0 0

]
,

where D1 and D2 are diagonal operators, respectively.
Note that π(B∗R0) = 0 , σ(R0) ⊂ σe(R) , R0 is an invertible operator. Thus B∗

is compact, so is B . Since R is an essentially normal operator, by simple computation,
we can imply that R0 and Rl are essentially normal operators, respectively. �

3. The Proof of Theorem and Remark

The Proof of Theorem. Let N be the same as in Lemma 2.3, R ∈ B . Note that
σ0(R) = ∅ , apply [8, Theorem 3.48] to R , we can imply that there exists a compact
operator K1 with ‖K1‖ < ε/2 such that σ(R+K1) = σW(R) and minind(R+K1−λ ) =
0 for λ ∈ ρF(R) . Thus R + K1 satisfies the conditions (i), (ii), (iii), (iv) in A .

Apply BDF theorem ([8, Theorem 4.1]) to R + K1 and W , then there exist a
unitary operator U and a compact operator C such that U(R + K1)U∗ = W + C . By
Lemma 2.6, U(R + K1)U∗ ∈ A . By Lemma 2.5 and the proof of Lemma 2.3, there
exist a compact operator K2 with ‖K2‖ < ε/2 and an invertible operator X with form
unitary plus compact such that X(U(R + K1)U∗ + K2)X−1 = Tl ⊕ N . Note the the
assumptions of Theorem, by Lemma 2.3 (iii), R ∈ (U + K )(T) .

Conversely, by [8, Theorem 1.2] and [4, Proposition 0.6], the proof of Theorem is
completed. �

REMARK. Note that the proof of Theorem is independent of [6, Theorem 3.4]. In
fact, by [6, Theorem 3.4], we can also give a short proof about that R ∈ B implies
R ∈ (U + K )(T) . Since, by [6, Theorem 3.4], B = (U + K )(W) , in order to prove
that R ∈ (U + K )(T) when R ∈ B , it is sufficient to show that W ∈ (U + K )(T) .
Note that W ∈ A , by Lemma 2.5 and Lemma 2.3, then W ∈ (U + K )(T) .
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