A NEW CHARACTERIZATION OF THE CLOSURE OF THE $(\mathscr{U}+\mathscr{K})$-ORBIT OF CERTAIN ESSENTIALLY NORMAL OPERATORS

Fahui Zhai and Junjie Zhao
(communicated by R. Curto)

Abstract

The $(\mathscr{U}+\mathscr{K})$-orbit of a Hilbert space operator T is defined as $(\mathscr{U}+\mathscr{K})(T)=$ $\left\{R^{-1} T R: R\right.$ invertible of the form unitary plus compact $\}$. In this paper, we show that certain essentially normal operator with the same spectral picture as an essentially normal injective unilateral weighted operator generates the same closure of $(\mathscr{U}+\mathscr{K})$-orbit.

1. Introduction

Let H be a separable-dimensional Hilbert space over the complex field \mathbb{C} and $\mathscr{L}(H)$ (resp. $\mathscr{K}(H))$ denote the algebra of all bounded linear operators on H (resp. the algebra of all compact operators on $H) . T \in \mathscr{L}(H)$ is said to be essentially normal if $T^{*} T-T T^{*} \in \mathscr{K}(H)$.

For $T \in \mathscr{L}(H)$, let $\sigma(T), \sigma_{p}(T), \sigma_{e}(T), \sigma_{0}(T), \sigma_{W}(T), \rho_{s F}(T), \rho_{s F}^{r}(T)$ and $\rho_{F}(T)$ denote the spectrum, the point spectrum, the essential spectrum, the normal eigenvalues, the Weyl spectrum, the semi-Fredholm domain, the regular points of semiFredholm domain and the Fredholm domain of T, respectively. Let $H(\lambda ; T)$ denote the Riesz eigenspace corresponding $\lambda \in \sigma_{0}(T)$. Let nul $T=\operatorname{dim} \operatorname{ker} T$.

If $\lambda \in \rho_{F}(T)$, the index of $T-\lambda I$ is defined as

$$
\operatorname{ind}(T-\lambda I)=\operatorname{nul}(T-\lambda I)-\operatorname{nul}(T-\lambda I)^{*}
$$

the minimum index of $T-\lambda I$ is

$$
\min \operatorname{ind}(T-\lambda I)=\min \left\{\operatorname{nul}(T-\lambda I), \operatorname{nul}(T-\lambda I)^{*}\right\}
$$

Readers can refer to [8] for more information on the behaviour of these.
There are many ways to describe the equivalence relations of operators on H. Here, we are mostly interested in the $(\mathscr{U}+\mathscr{K})$ - equivalence of operators first introduced by D. A. Herrero $([9])$. Let $(\mathscr{U}+\mathscr{K})(H)=\{X \in \mathscr{L}(H): X$ is invertible with the form unitary plus compact $\}$.

Mathematics subject classification (2000): 47B37, 47B20.
Keywords and phrases: $(\mathscr{U}+\mathscr{K})$-orbit of operator; essentially normal operator; spectral picture; injective unilateral weighted operator.

The $(\mathscr{U}+\mathscr{K})$-orbit of $T \in \mathscr{L}(H)$ is given by $(\mathscr{U}+\mathscr{K})(T)=\left\{X T X^{-1}\right.$: $X \in(\mathscr{U}+\mathscr{K})(H)\} . \overline{(\mathscr{U}+\mathscr{K})(T)}$ denotes the norm closure of $(\mathscr{U}+\mathscr{K})(T)$. Let $A \in \mathscr{L}\left(H^{\prime}\right)$ for some Hilbert space H^{\prime}, We will write $A \cong \mathscr{U + \mathscr { K }} T$ when $A \in(\mathscr{U}+\mathscr{K})(T)$ and $A \cong T$ if there is a unitary operator $U: H^{\prime} \rightarrow H$ such that $A=U^{*} T U$.

The closures of $(\mathscr{U}+\mathscr{K})$-orbits of essentially normal operators on a Hilbert space have been studied by many authors (see, for example [1], [4], [5], [6], [11], [12], $[14],[15]$, and $[16])$. For a survey on $(\mathscr{U}+\mathscr{K})$-orbit of operator, the reader is referred to [15]. In particular, L.W. Marcoux proved that an essentially normal operator T with the same spectral picture as unilateral shift operator S generates the same closure of $(\mathscr{U}+\mathscr{K})$-orbit as S in [14], and gave a conjecture $\overline{(\mathscr{U}+\mathscr{K})(M)}=\overline{(\mathscr{U}+\mathscr{K})(N)}$ whenever N and M are essentially normal and have same spectral picture in [15, Question 2].

Note that the essentially normal operator T with the same spectral picture as the essentially normal injective unilateral weighted shift operator W is different from the structure and essential spectrum of operators or operator models whose closure of $(\mathscr{U}+\mathscr{K})$-orbit were characterized in [1], [4], [5], [6], [11], [12], [14], [15], and [16], respectively. Thus, in this paper, we will consider Marcoux's conjecture for certain essentially normal operator T whose spectral picture is identical to that of an essentially normal injective unilateral weighted operator.

Throughout, for $T \in \mathscr{L}(H)$, let $H_{r}(T)=\overline{\operatorname{span}}\left\{\operatorname{ker}(T-\lambda I): \lambda \in \rho_{s F}^{r}(T)\right\}$, $H_{l}(T)=\overline{\operatorname{span}}\left\{\operatorname{ker}(T-\lambda I)^{*}: \lambda \in \rho_{s F}^{r}(T)\right\}, H_{0}(T)=\left(H_{r}(T) \oplus H_{l}(T)\right)^{\perp} . T_{l}=\left.T\right|_{H_{l}(T)}$ and $T_{0}=\left.T\right|_{H_{0}(T)}$ denote the compression of T to $H_{l}(T)$ and $H_{0}(T)$, respectively. If $A, B \in \mathscr{L}(H), \tau_{A B}(X)=A X-X B$ for $X \in \mathscr{L}(H)$ denotes Rosenblum operator. Let $\operatorname{Rat}(\Omega)$ denote the set of rational functions of \mathbb{C} whose poles lie outside of $\Omega \subset \mathbb{C}$, and $C(\Omega)$ denote the set of continuous functions on $\Omega \subset \mathbb{C}$.

Let $W, \alpha>0$ and β be same as in [6, Theorem 3.4], that is, W is an essentially normal injective unilateral weighted operator with weight sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$ satisfying $0<\liminf _{n}\left\{w_{n}\right\}=\alpha$ and $\beta=\lim \sup _{n}\left\{w_{n}\right\}$. Let $\mathscr{A}=\{T: T \in \mathscr{L}(H)$ satisfies (i) T is essentially normal; (ii) $\sigma(T)=\{z \in \mathbb{C}:|z| \leqslant \beta\}, \sigma_{e}(T)=\{z \in \mathbb{C}$: $\alpha \leqslant|z| \leqslant \beta\}$; (iii) $\operatorname{ind}(T-\lambda)=-1$ for all $z \in \mathbb{C},|z|<\alpha$; (iv) nul $(T-z)=$ 0 for all $z \in \mathbb{C},|z|<\alpha$; (v) T_{l} is an essentially normal operator. $\}, \mathscr{B}=\{T: T \in$ $\mathscr{L}(H)$ satisfies conditions (i), (ii), (iii) of $\mathscr{A}\}$.

We prove the following theorem.
THEOREM. If $T \in \mathscr{A}, C\left(\sigma\left(\left.T\right|_{H_{l}(T)^{\perp}}\right)\right)=\overline{\operatorname{Rat}\left(\sigma\left(\left.T\right|_{H_{l}(T) \perp}\right)\right)}$. Then $\overline{(\mathscr{U}+\mathscr{K})(T)}=$ \mathscr{B}.

By [6, Theorem 3.4], then $\overline{(\mathscr{U}+\mathscr{K})(W)}=\overline{(\mathscr{U}+\mathscr{K})(T)}$ if T satisfies the conditions of Theorem. In addition, by the following example, we know that there exists an essentially normal operator satisfying the conditions of Theorem.

EXAmple. Let $\Gamma_{1} \subset\{z \in \mathbb{C}:|z|=\alpha\}$ and $\Gamma_{2} \subset\{z \in \mathbb{C}:|z|=\beta\}$ be compact sets, respectively. Let $D_{\Gamma_{1}}$ and $D_{\Gamma_{2}}$ be the diagonal operators satisfying $\sigma\left(D_{\Gamma_{1}}\right)=\sigma_{e}\left(D_{\Gamma_{1}}\right)=\Gamma_{1}, \sigma\left(D_{\Gamma_{2}}\right)=\sigma_{e}\left(D_{\Gamma_{2}}\right)=\Gamma_{2}$, respectively. Let $D=D_{\Gamma_{1}} \oplus D_{\Gamma_{2}}$,
K be a compact operator, $H_{l}=\overline{\operatorname{span}}\left\{\operatorname{ker}(W-\lambda I)^{*}: \lambda \in \rho_{s F}(W)\right\}, H_{0}=H_{l}^{\perp}$,

$$
T=\left[\begin{array}{cc}
D & K \\
0 & W
\end{array}\right] \stackrel{H_{0}}{H_{l}} .
$$

Then $T \in \mathscr{A}$. Moreover, $\operatorname{ker}(T-\lambda)^{*}=0 \oplus \operatorname{ker}(W-\lambda)^{*}$ for $|\lambda|<\alpha, H_{l}(T)=H_{l}$. Note that $T \mid H_{l}^{\perp}=D, \sigma(D)$ is a prefect set with planar Lebesgue measure 0 , by [10], then $C\left(\sigma\left(T \mid H_{l}^{\perp}\right)\right)=\overline{\operatorname{Rat}\left(\sigma\left(\left.T\right|_{H_{l}(T)^{\perp}}\right)\right)}$.

2. Preliminaries

In order to simplify the proof of Theorem, we need the following lemmas. For convenience, we list [1, Theorem 4.15] ([14, P.1213]) and the claim in the proof of [11, Theorem 1] as our Lemma 2.1 and Lemma 2.2, respectively.

Lemma 2.1. ([1, Theorem 4.15]). Suppose $T \in \mathscr{L}(H)$ is essentially normal and that $\sigma(T)=\sigma_{e}(T) \cup \sigma_{0}(T)$. Assume, moreover, that $C(\sigma(T))=\overline{\operatorname{Rat}(\sigma(T))}$. Then $N \in \overline{(\mathscr{U}+\mathscr{K})(T)}$, where N is a normal operator such that $\sigma(N)=\sigma(T)$, $\sigma_{0}(N)=\sigma_{0}(T)$, and $\operatorname{nul}(\lambda I-N)=\operatorname{dim} H(\lambda ; T)$ for all $\lambda \in \sigma_{0}(N)$.

Lemma 2.2. (The claim in the proof of [11, Theorem 1]). If $0 \in \Omega$ and $T \in$ $\mathscr{B}_{n}(\Omega)$ is essentially normal, $T_{1}=\left.T\right|_{H \ominus \operatorname{ker} T_{0}}$. Let A be an essentially operator whose spectral picture is identical to that of $T . A_{0}=\left.A\right|_{\operatorname{ker}\left(A^{k}\right)}$ is a $k_{0} n \times k_{0} n$ upper triangular matrix with the diagonal entries are zeros, F is a finite rank operator. Then for given $\varepsilon>0$, there exists a compact operator K with $\|K\|<\varepsilon$ such that

$$
\left[\begin{array}{cc}
A_{0} & F \\
0 & T_{1}
\end{array}\right]+K \cong \cong_{\mathscr{U}+\mathscr{K}} T
$$

where Ω is a bounded connected open subset of \mathbb{C} and n is a positive number. $\mathscr{B}_{n}(\Omega)$ denotes the set of operators $R \in \mathscr{L}(H)$ which satisfy (a) $\Omega \subset \sigma(R)$; (b) $\operatorname{ran}(T-\lambda)=H$ for all $\lambda \in \Omega$; (c) $\bigvee\{\operatorname{ker}(R-\lambda): \lambda \in \Omega\}=H$; (d) $\operatorname{nul}(R-\lambda)=n$ for all $\lambda \in \Omega$.

Lemma 2.3. Let $T \in \mathscr{A}, N$ be a diagonal operator of uniform infinite multiplicity satisfying $\sigma(N)=\sigma_{e}(N)=\sigma(T)$. Then (i) T_{0} is an essentially normal operator and $\sigma\left(T_{0} \oplus N\right)=\sigma_{e}\left(T_{0} \oplus N\right)=\sigma_{e}(T)$; (ii) T_{l} is a lower triangular operator, $\sigma\left(T_{l} \oplus N\right)=\sigma(T), \sigma_{e}\left(T_{l} \oplus N\right)=\sigma_{e}(T), \operatorname{nul}\left(T_{l}-\lambda I\right)=0$ and $\operatorname{nul}\left(T_{l}-\lambda I\right)^{*}=1$ for all $\lambda \in \sigma\left(T_{l}\right) \backslash \sigma_{e}\left(T_{l}\right)$, and $T_{l}^{*} \in \mathscr{B}_{1}(\Omega)$, where $\Omega=\{z \in \mathbb{C}:|z| \leq \alpha\} ;$ (iii) $\overline{(\mathscr{U}+\mathscr{K})(T)} \subset \overline{(\mathscr{U}+\mathscr{K})\left(T_{l} \oplus N\right)}$. Moreover, if $C\left(\sigma\left(\left.T\right|_{H_{l}(T) \perp}\right)\right)=\overline{\operatorname{Rat}\left(\sigma\left(\left.T\right|_{\left.H_{l}(T)^{\perp}\right)}\right)\right.}$, then $\overline{(\mathscr{U}+\mathscr{K})(T)}=\overline{(\mathscr{U}+\mathscr{K})\left(T_{l} \oplus N\right)}$.

Proof. Since $T \in \mathscr{A}$, by [8, Theorem 3.38], we know that T is of the form

$$
T=\left[\begin{array}{cc}
T_{0} & B \\
0 & T_{l}
\end{array}\right] \begin{gathered}
H_{0}(T) \\
H_{l}(T)
\end{gathered}
$$

with respect to the decomposition $H=H_{0}(T) \oplus H_{l}(T), T_{l}$ is lower triangular, $\sigma\left(T_{0}\right) \subset$ $\sigma_{e}(T), \sigma_{p}\left(T_{l}\right)=\emptyset$.

By the assumptions on T and T_{l}, one has T and T_{l} are essentially normal operators, respectively; by simple computation, the $B B^{*}$ is a compact operator. Thus B is a compact operator, T_{0} is an essentially normal operator and $\sigma_{e}(T)=\sigma_{e}\left(T_{0}\right) \cup \sigma_{e}\left(T_{l}\right)$.

Since B is a compact operator, we have $\sigma\left(T_{0} \oplus T_{l}\right) \subset \sigma(T) \cup \sigma_{p}\left(T_{0} \oplus T_{l}\right)=$ $\sigma(T) \cup \sigma_{p}\left(T_{0}\right) \cup \sigma_{p}\left(T_{l}\right)$, thus $\sigma\left(T_{0} \oplus T_{l}\right) \subset \sigma(T)$. By [7, Problem 56], then $\sigma(T)=$ $\sigma\left(T_{0}\right) \cup \sigma\left(T_{l}\right)$. Let $\Omega=\{z \in \mathbb{C}:|z|<\alpha\}$, then $\Omega \subset \sigma\left(T_{l}^{*}\right), \operatorname{ran}\left(T_{l}-\lambda I\right)^{*}=H_{l}(T)$ and $\operatorname{nul}\left(T_{l}-\lambda I\right)^{*}=1$ for all $\lambda \in \Omega$.

By the above discussion, the proof of (i) and (ii) are completed.
Since $H_{l}(T)=\overline{\operatorname{span}}\left\{\operatorname{ker}\left(T_{l}-\lambda I\right)^{*}: \lambda \in \Omega\right\}$, by [13, Proposition 1.41], then

$$
\overline{\operatorname{span}}\left\{\operatorname{ker}\left[\left(T_{l}-\lambda_{0} I\right)^{*}\right]^{n}: n \geqslant 1\right\}=H_{l}(T) \text { for all } \lambda_{0} \in \Omega
$$

By [8, Theorem 3.38], $\sigma\left(T_{0}\right) \subset \sigma_{e}(T)$, note that [13, Proposition 1.14], then $\operatorname{ker} \tau_{T_{0}^{*} T_{l}^{*}}=\{0\}$, $\operatorname{ker} \tau_{T_{l} T_{0}}=\{0\}$. Since B is compact, by [13, Lemma 1.10], there exist compact operators Z and $K_{1}^{\prime},\left\|K_{1}^{\prime}\right\|<\varepsilon / 3$ such that $T_{0} Z-Z T_{l}=B+K_{1}^{\prime}$. Let

$$
X_{1}=\left[\begin{array}{cc}
I & Z \\
0 & I
\end{array}\right], \quad K_{1}=\left[\begin{array}{cc}
0 & K_{1}^{\prime} \\
0 & 0
\end{array}\right]
$$

then $X_{1} \in(\mathscr{U}+\mathscr{K})\left(H_{0}(T) \oplus H_{l}(T)\right), K_{1}$ is a compact operator, $\left\|K_{1}\right\|<\varepsilon / 3$,

$$
\left.X_{1}\left(T+K_{1}\right)\right) X_{1}=T_{0} \oplus T_{l}
$$

By [2, Lemma 2.1], there exist a unitary operator U_{1} and a compact operator K_{2} with $\left\|K_{2}\right\|<\varepsilon /\left(3\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\right)$ such that

$$
U_{1}\left(T_{0} \oplus T_{l}+K_{2}\right) U_{1}^{*}=\left(N \oplus T_{0}\right) \oplus T_{l}
$$

Let $T_{0}^{\prime}=N \oplus T_{0}$, then $\sigma\left(T_{0}^{\prime}\right)=\sigma_{e}\left(T_{0}^{\prime}\right)=\sigma_{e}(T)$. Note that $\sigma_{0}\left(T_{0}^{\prime}\right)=\emptyset$, $\sigma\left(T_{0}^{\prime}\right)$ is prefect, by [8, Corollary 4.2], T_{0}^{\prime} is of the form normal plus compact. By the proof of [5, Theorem 2.3], then there exist a compact operator K_{3}^{\prime} with $\left\|K_{3}^{\prime}\right\|<$ $\varepsilon /\left(3\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\right)$ and an invertible operator X_{2}^{\prime} with form unitary plus compact such that $X_{2}^{\prime}\left(T_{0}^{\prime}+K_{3}^{\prime}\right)\left(X_{2}^{\prime}\right)^{-1}=N$, thus there exist a compact operator K_{3} with $\left\|K_{3}\right\|<$ $\varepsilon /\left(3\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\right)$ and an invertible operator X_{2} with form unitary plus compact such that $\left.X_{2}\left(U_{1}\left(T_{0} \oplus T_{l}+K_{2}\right) U_{1}^{*}+K_{3}\right)\right) X_{2}^{-1}=N \oplus T_{l}$.

By the above proof, $\overline{(\mathscr{U}+\mathscr{K})(T)} \subset \overline{(\mathscr{U}+\mathscr{K})\left(T_{l} \oplus N\right)}$.
If $C\left(\sigma\left(\left.T\right|_{H_{l}(T) \perp}\right)\right)=\overline{\operatorname{Rat}\left(\sigma\left(\left.T\right|_{H_{l}(T)^{\perp}}\right)\right)}$, let N_{0} be a diagonal operator of uniform infinite multiplicity satisfying $\sigma\left(N_{0}\right)=\sigma_{e}\left(N_{0}\right)=\sigma\left(T_{0}\right)$. Then $N_{0} \oplus T_{0}$ is essentially normal, $\sigma\left(N_{0} \oplus T_{0}\right)=\sigma_{e}\left(N_{0} \oplus T_{0}\right)=\sigma\left(T_{0}\right), C\left(\sigma\left(N_{0} \oplus T_{0}\right)\right)=\overline{\operatorname{Rat}\left(\sigma\left(N_{0} \oplus T_{0}\right)\right)}$. $\sigma\left(N_{0}\right) \subset \sigma_{e}\left(T_{l}\right)$, apply Lemma 2.1 to N_{0} and $N_{0} \oplus T_{0}$, note that [5, Proposition 2.7] and B is compact, we can imply

$$
\begin{aligned}
\overline{(\mathscr{U}+\mathscr{K})\left(N \oplus T_{l}\right)} & \subset \overline{(\mathscr{U}+\mathscr{K})\left(N_{0} \oplus N \oplus T_{l}\right)} \subset \\
\overline{(\mathscr{U}+\mathscr{K})\left(N_{0} \oplus T_{0} \oplus N \oplus T_{l}\right)} & \subset \overline{(\mathscr{U}+\mathscr{K})\left(T_{0} \oplus T_{l}\right)} \subset \overline{(\mathscr{U}+\mathscr{K})(T)} .
\end{aligned}
$$

The proof of (iii) is completed.

Lemma 2.4. Let $T \in \mathscr{A}, N \in \mathscr{L}(H)$ be the same as in Lemma 2.3, and S be a unilateral forward shift operator. Then for given $\varepsilon>0$, there exist a natural number k and a compact operator K with $\|K\|<\varepsilon$ such that

$$
N+K \cong_{\mathscr{U}+\mathscr{K}}\left[\begin{array}{cc}
\beta S^{*} & 0 \\
B_{21} & T_{l}^{\prime}
\end{array}\right] \oplus N
$$

where $T_{l}^{\prime}=\left.T_{l}\right|_{H_{l}(T) \ominus \operatorname{span}\left\{\operatorname{ker}\left(\left(T_{l}-\lambda_{0} I\right)^{*}\right)^{k}\right\}}$ for $\lambda_{0} \in\{z \in \mathbb{C}:|z|<\alpha\}, B_{21}$ is a finite rank operator.

Proof. By BDF Theorem ($\left[8\right.$, Theorem 4.1]), there exist a unitary operator U_{1} and a compact operator K_{0} such that $U_{1} N U_{1}^{*}=\beta S^{*} \oplus T_{l} \oplus N \oplus K_{0}$. By Lemma 2.3 (ii) and [13, Proposition 1.41], then

$$
H_{l}(T)=\overline{\operatorname{span}}\left\{\operatorname{ker}\left(\left(T_{l}-\lambda_{0} I\right)^{*}\right)^{n}: n \geqslant 1\right\} \text { for all } \lambda_{0} \in\{z \in \mathbb{C}:|z|<\alpha\} .
$$

Let $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be a countable dense subset of $\sigma_{e}(T)$ such that $\sigma_{e}(T)=\sigma_{e}(N)=$ $\sigma(N)=\overline{\left\{\lambda_{n}\right\}_{n=1}^{\infty}}$. Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ (resp. $\left\{f_{n}\right\}_{n=1}^{\infty}$) be orthonormal basis of H such that $N e_{n}=\lambda_{n} e_{e}$ (resp. $S f_{n}=f_{n+1}$), and all the eigenvalues of N have infinity multiplicity. Let $P_{2 n}$ be an orthogonal projection of $H_{l}(T)$ onto span $\left\{\left(\operatorname{ker}\left(T_{l}-\lambda_{0} I\right)^{*}\right)^{n}\right\}, P_{1 n}$ (resp. $\left.P_{3 n}\right)$ be the orthogonal projections from H onto span $\left(\left\{f_{i}\right\}_{i=1}^{n}\right)$ (resp. span $\left.\left(\left\{e_{i}\right\}_{i=1}^{n}\right)\right)$, $P_{n}=P_{1 n} \oplus P_{2 n} \oplus P_{3 n}$.

Note that K_{0} is a compact operator. Thus there exists a natural number k such that $\left\|P_{k} K_{0} P_{k}-K_{0}\right\|<\varepsilon / 2$. Let $K_{1}=P_{n} K_{0} P_{0}-K_{0}$, by the supper semicontinuity of spectrum, $\sigma\left(U_{1} N U_{1}^{*}+K_{1}\right) \subset(\sigma(N))_{\varepsilon / 2}$. Since $H \oplus H_{l}(T) \oplus H$ can be decomposed as $\operatorname{span}\left(\left\{f_{i}\right\}_{i=1}^{l}\right) \oplus\left(H \ominus \operatorname{span}\left(\left\{f_{i}\right\}_{i=1}^{l}\right)\right) \oplus\left(\operatorname{ker}\left(\left(T_{l}-\lambda_{0} I\right)^{*}\right)^{l}\right) \oplus\left(H \ominus \operatorname{ker}\left(\left(T_{l}-\right.\right.\right.$ $\left.\left.\left.\lambda_{0} I\right)^{*}\right)^{l}\right) \oplus \operatorname{span}\left(\left\{e_{i}\right\}_{i=1}^{l}\right) \oplus\left(H \ominus \operatorname{span}\left(\left\{e_{i}\right\}_{i=1}^{l}\right)\right)$, consider the matrix representation of $U_{1} N U_{1}^{*}+K_{1}$ with respect to this decomposition, and note that $\left.\beta S^{*}\right|_{H \ominus \operatorname{span}\left(\left\{e_{i}\right\}_{i=1}^{l}\right)}$ (resp. $\left.\left.N\right|_{H \ominus \operatorname{span}\left(\left\{f_{i}\right\}_{i=1}^{l}\right)}\right)$ is unitary equivalence to βS^{*} (resp. N), by simple computation, we can imply that there exists a unitary operator U_{2} such that

$$
U_{2}\left(U_{1} N U_{1}^{*}+K_{1}\right) U_{2}^{*}=\left[\begin{array}{cccc}
A_{11} & A_{12} & 0 & 0 \\
0 & \beta S^{*} & 0 & 0 \\
A_{31} & 0 & T_{l}^{\prime} & 0 \\
0 & 0 & 0 & N
\end{array}\right],
$$

where $T_{l}^{\prime}=\left.T_{l}\right|_{H_{l}(T) \ominus \operatorname{span}\left(\operatorname{ker}\left(\left(T_{l}-\lambda_{0} I\right)^{*}\right)^{k}\right)}, A_{11}, A_{12}$ and A_{31} are finite rank operators, respectively.

Since $\sigma\left(A_{11}\right) \subset \sigma\left(U_{1} N U_{1}^{*}+K_{1}\right) \cup \sigma(\beta S)$, and A_{11} acts on a finite dimensional space, apply Schur lemma to A_{11}, again perturb, we can choose compact operator K_{2}^{\prime}, X_{1}^{\prime} such that $\left\|K_{2}^{\prime}\right\|<\varepsilon / 2$ and $X_{1}^{\prime}\left(A_{11}+K_{2}^{\prime}\right)\left(X_{1}^{\prime}\right)^{-1}=F_{d}$ is a diagonal matrix with distinct diagonal entries,

$$
\sigma\left(F_{d}\right) \subset \sigma\left(\beta S^{*}\right), \quad \sigma\left(F_{d}\right) \cap\{z \in \mathbb{C}:|z|=\beta\}=\emptyset
$$

By the above argument, apply functional calculus and [5, Corollary 4.5] to $\left[\begin{array}{cc}F_{d} & X_{1}^{\prime} A_{12} \\ 0 & \beta S^{*}\end{array}\right]$ $\oplus N$, then there exist a compact operator K_{2} with $\left\|K_{2}\right\|=\left\|K_{2}^{\prime}\right\|$ and an invertible operator X_{1} with form unitary plus compact such that

$$
X_{1}\left(U_{2}\left(U_{1} N N^{*}+K_{1}\right) U_{2}^{*}+K_{2}\right) X_{1}^{-1}=\left[\begin{array}{cc}
\beta S^{*} & 0 \\
B_{21} & T_{l}^{\prime}
\end{array}\right] \oplus N
$$

where B_{21} is a finite rank operator. The proof is complete.
Lemma 2.5. Let $R, T \in \mathscr{A} . N \in \mathscr{L}(H)$ is the same as in Lemma 2.3. Then for given $\varepsilon>0$, there exists a compact K with $\|K\|<\varepsilon$ such that

$$
R_{l} \oplus N+K \cong_{u+k} T_{l} \oplus N
$$

Proof. Let $R^{\prime}=R_{l} \oplus N, T^{\prime}=T_{l} \oplus N, N_{0}=N$. Apply [2, Lemma 2.1] to R^{\prime}, there exist a unitary operator and a compact operator K_{1}^{\prime} with $\left\|K_{1}^{\prime}\right\|<\varepsilon / 25$ such that $U\left(R^{\prime}+K_{1}\right) U^{*}=N \oplus R_{l} \oplus N_{0}$. Note that the matrix representation of R_{l} with respect to $H_{l}(T)=\operatorname{ker}\left(R_{l}^{*}\right)^{n} \oplus\left(\operatorname{ker}\left(R_{l}^{*}\right)^{n}\right)^{\perp}$, and apply Lemma 2.4 to N_{0}. Then there exist a natural number k, a compact operator K_{1} with $\left\|K_{1}\right\|<\varepsilon / 5$ and an invertible operator X_{1} with form unitary plus compact such that

$$
X_{1}\left(R^{\prime}+K_{1}\right) X_{1}^{-1}=N \oplus\left[\begin{array}{cc}
R_{l 1} & 0 \\
R_{l 2} & R_{l}^{\prime}
\end{array}\right] \underset{\left(\operatorname{ker}\left(R_{l}^{*}\right)^{k}\right)^{\perp}}{\operatorname{ker}\left(R^{*}\right)^{k}} \oplus\left[\begin{array}{cc}
\beta S^{*} & 0 \\
B_{21} & T_{l}^{\prime}
\end{array}\right] \underset{\left(\operatorname{ker}\left(T_{l}^{*}\right)^{k}\right)^{\perp}}{\operatorname{ker}\left(T^{*}\right)^{k}} \oplus N
$$

where $R_{l}^{\prime}=\left.R_{l}\right|_{\left(\operatorname{ker} R_{l}^{* k}\right)^{\perp}}, T_{l}^{\prime}=\left.T_{l}\right|_{\left(\operatorname{ker} T_{l}^{* k}\right)^{\perp}} . R_{l 2}$ and B_{21} are finite rank operators, respectively.

Since $\sigma\left(R_{l}^{\prime} \oplus \beta S^{*} \oplus N\right)=\sigma(T), \sigma_{e}\left(R_{l}^{\prime} \oplus \beta S^{*} \oplus N\right)=\sigma_{e}(T), \sigma_{0}\left(R_{l}^{\prime} \oplus \beta S^{*} \oplus N\right)=\emptyset$ and ind $\left(R_{l}^{\prime} \oplus \beta S^{*} \oplus N-\lambda I\right)=0$ for $\lambda \in \sigma(T) \backslash \sigma_{e}(T)$. By [5, Theorem 2.3] and its proof, there exist a compact operator K_{2}^{\prime} with $\left\|K_{2}^{\prime}\right\|<\varepsilon /\left(5\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\right)$ and an invertible operator X_{2}^{\prime} with form unitary plus compact such that

$$
X_{2}^{\prime}\left(R_{l}^{\prime} \oplus \beta S^{*} \oplus N+K_{2}^{\prime}\right)\left(X_{2}^{\prime}\right)^{-1}=N
$$

Thus there exist a compact operator K_{2} with $\left\|K_{2}^{\prime}\right\|=\left\|K_{2}\right\|$ and an invertible operator X_{2} with form unitary plus compact such that

$$
X_{2}\left(X_{1}\left(R_{1}^{\prime}+K_{1}\right) X_{1}^{-1}+K_{2}\right) X_{2}^{-1}=E=\left[\begin{array}{ccc}
R_{l 1} & 0 & 0 \\
A_{21} & N & 0 \\
0 & A_{32} & T_{l}^{\prime}
\end{array}\right] \oplus N
$$

where A_{21} and A_{32} are finite rank operators, respectively.
Simultaneously apply [3, Corollary 4.5, P. 42] to A_{21} and A_{32}, there exist a compact operator K_{3} with $\left\|K_{3}\right\|<\varepsilon /\left(5\left\|X_{1}\right\|\left\|X_{1}^{-1}\right\|\left\|X_{2}\right\| \| X_{2}^{-1}\right)$ and a natural number n such that

$$
E+K_{3}=\left[\begin{array}{cccc}
R_{l 1} & 0 & 0 & 0 \\
B_{21}^{\prime} & N_{1} & 0 & 0 \\
0 & 0 & N^{\prime} & 0 \\
0 & B_{42} & 0 & T_{l}^{\prime}
\end{array}\right] \oplus N
$$

where B_{21}^{\prime} and B_{42} are finite rank operators, respectively. $N=N_{1} \oplus N^{\prime}, N^{\prime} \cong N, N_{1}$ acts on a Hilbert space whose dimension is n.

Claim. There exists a finite rank operator Z such that

$$
N_{1}^{*} Z^{*}-Z^{*}\left(T_{l}^{\prime}\right)^{*}=B_{42}^{*}
$$

Note that [11, Lemma 3.1] and [13, Lemma 3.10], we can assume that $\left(T_{l}^{\prime}\right)^{*}$ is of upper triangular matrix representation

$$
\left(T_{l}^{\prime}\right)^{*}=\left[\begin{array}{cccc}
0 & a_{12} & \cdots & \cdots \\
& 0 & a_{23} & \cdots \\
& & \ddots & \ddots
\end{array}\right]
$$

where $a_{i i+1} \neq 0$ for $i=1,2, \cdots$.
Let $N^{*}=\operatorname{diag}\left\{\lambda_{i}\right\}_{i=1}^{n}, Z^{*}=\left(z_{i j}\right)_{n \times \infty}$ be $n \times \infty$ matrix whose elements are $z_{i j}$, $i=1,2 \cdots, n ; j=1,2 \cdots$. Since B_{42}^{*} is known, $\lambda_{i} \neq 0$ for $i=1,2, \cdots, n$. $a_{i i+1} \neq 0$ for $i=1,2, \cdots$, by solving equation $N_{1}^{*} Z^{*}-Z^{*}\left(T_{l}^{\prime}\right)^{*}=B_{42}^{*}$, we can get $z_{i j}$ step and step. Thus such Z^{*} exists, by [3, Proposition 3.4, P.70], Z is bounded. The proof of the Claim is completed.

Let $X_{3}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & Z & 0 & 1\end{array}\right]$, then

$$
X_{3}\left(E+K_{3}\right) X_{3}^{-1}=\left[\begin{array}{cccc}
R_{11} & 0 & 0 & 0 \\
B_{21}^{\prime} & N_{1} & 0 & 0 \\
0 & 0 & N^{\prime} & 0 \\
Z B_{21}^{\prime} & 0 & 0 & T_{l}^{\prime}
\end{array}\right] \oplus N=\left[\begin{array}{ccc}
R_{l 1} & 0 & 0 \\
B_{21}^{\prime \prime} & N & 0 \\
B_{31}^{\prime} & 0 & T_{l}^{\prime}
\end{array}\right] \oplus N
$$

where $B_{21}^{\prime \prime}$ and B_{31}^{\prime} are finite rank operators, respectively.
Let $\delta=\left\|X_{1}\right\|\left\|X_{2}\right\|\left\|X_{3}\right\|\left\|X_{1}^{-1}\right\|\left\|X_{2}^{-1}\right\|\left\|X_{3}^{-1}\right\|$, apply [2, Lemma 2.1] to $N \oplus T_{l}^{\prime}$, then there exist a compact operator K_{4} with $\left\|K_{4}\right\|<\varepsilon /(5 \delta)$ and a unitary operator U_{2} such that

$$
U_{2}\left(X_{3}\left(E+K_{3}\right) X_{3}^{-1}+K_{4}\right) U_{2}^{*}=F=\left[\begin{array}{cc}
R_{l 1} & 0 \\
G & T_{l}^{\prime}
\end{array}\right] \oplus N
$$

where G is a finite rank operator.
Apply Lemma 2.2 to $\left[\begin{array}{cc}R_{l 1} & 0 \\ G & T_{l}^{\prime}\end{array}\right]$, then there exist a compact K_{5} with $\left\|K_{5}\right\|<$ $\varepsilon /(5 \delta)$ and an invertible operator X_{4} with the form unitary plus compact such that

$$
X_{4}\left(F+K_{5}\right)\left(X_{4}\right)^{-1}=T_{l} \oplus N
$$

By the above proof, the conclusion follows.

LEMMA 2.6. Let $K \in \mathscr{L}(H)$ be a compact operator and $R=W+K \in \mathscr{L}(H)$ satisfy the conditions $(i),(i i),(i i i),(i v)$ in \mathscr{A}. Then R_{0} and R_{l} are essentially normal operators, respectively.

Proof. By [8, Theorem 3.38], R with respect to the decomposition $H=H_{0}(R) \oplus$ $H_{l}(R)$ is of the form

$$
R=\left[\begin{array}{cc}
R_{0} & B \\
0 & R_{l}
\end{array}\right] \begin{gathered}
H_{0}(R) \\
H_{l}(R)
\end{gathered}
$$

and $\sigma\left(R_{0}\right) \subset \sigma_{e}(R)$. Let π denote the canonical map from $\mathscr{L}(H)$ to $\mathscr{L}(H) / \mathscr{K}(H)$, we imply that $\pi\left(R^{*} R\right)=\pi\left(W^{*} W\right)$,

$$
\left[\begin{array}{cc}
\pi\left(R_{0}^{*} R_{0}\right)-\pi\left(D_{1}\right) & \pi\left(R_{0}^{*} B\right) \\
\pi\left(B^{*} R_{0}\right) & \pi\left(B^{*} B+R_{l}^{*} R_{l}\right)-\pi\left(D_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

where D_{1} and D_{2} are diagonal operators, respectively.
Note that $\pi\left(B^{*} R_{0}\right)=0, \sigma\left(R_{0}\right) \subset \sigma_{e}(R), R_{0}$ is an invertible operator. Thus B^{*} is compact, so is B. Since R is an essentially normal operator, by simple computation, we can imply that R_{0} and R_{l} are essentially normal operators, respectively.

3. The Proof of Theorem and Remark

The Proof of Theorem. Let N be the same as in Lemma 2.3, $R \in \mathscr{B}$. Note that $\sigma_{0}(R)=\emptyset$, apply [8, Theorem 3.48] to R, we can imply that there exists a compact operator K_{1} with $\left\|K_{1}\right\|<\varepsilon / 2$ such that $\sigma\left(R+K_{1}\right)=\sigma_{W}(R)$ and minind $\left(R+K_{1}-\lambda\right)=$ 0 for $\lambda \in \rho_{F}(R)$. Thus $R+K_{1}$ satisfies the conditions (i), (ii), (iii), (iv) in \mathscr{A}.

Apply BDF theorem $\left(\left[8\right.\right.$, Theorem 4.1]) to $R+K_{1}$ and W, then there exist a unitary operator U and a compact operator C such that $U\left(R+K_{1}\right) U^{*}=W+C$. By Lemma 2.6, $U\left(R+K_{1}\right) U^{*} \in \mathscr{A}$. By Lemma 2.5 and the proof of Lemma 2.3, there exist a compact operator K_{2} with $\left\|K_{2}\right\|<\varepsilon / 2$ and an invertible operator X with form unitary plus compact such that $X\left(U\left(R+K_{1}\right) U^{*}+K_{2}\right) X^{-1}=T_{l} \oplus N$. Note the the assumptions of Theorem, by Lemma 2.3 (iii), $R \in \overline{(\mathscr{U}+\mathscr{K})(T)}$.

Conversely, by [8, Theorem 1.2] and [4, Proposition 0.6], the proof of Theorem is completed.

REmARK. Note that the proof of Theorem is independent of [6, Theorem 3.4]. In fact, by [6, Theorem 3.4], we can also give a short proof about that $R \in \mathscr{B}$ implies $R \in \overline{(\mathscr{U}+\mathscr{K})(T)}$. Since, by [6, Theorem 3.4], $\mathscr{B}=\overline{(\mathscr{U}+\mathscr{K})(W)}$, in order to prove that $R \in \overline{(\mathscr{U}+\mathscr{K})(T)}$ when $R \in \mathscr{B}$, it is sufficient to show that $W \in \overline{(\mathscr{U}+\mathscr{K})(T)}$. Note that $W \in \mathscr{A}$, by Lemma 2.5 and Lemma 2.3, then $W \in \overline{(\mathscr{U}+\mathscr{K})(T)}$.

Acknowledgement. The authors thank the referee for his (or her) providing beneficial suggestions.

REFERENCES

[1] F. A. AL-Musallam, An upper estimate for the distance to essentially G_{1} operators, Ph . D. thesis., Arizona state University (1989).
[2] I. D. BERG and K. R. Davidson, Almost Community Matrices and a quantitative of the Brown-Dong las-Fillmore theorem, Acta Math., 166 (1991), 121-161.
[3] J. B. Comway, A course in functional analysis, 2nd ed., Springer-Verlag, 1990.
[4] M. DostáL, Closures of $(\mathscr{U}+\mathscr{K})$-orbits of essentially normal models, PHD. thesis, University of Alberta in Canada, 1999.
[5] P. S. GUINAND AND L. W. Marcoux, Between the unitary and similarity orbits of normal operators, Pacific J. Math. 159(2) (1993), 299-334.
[6] P. S. Guinand and L. W. Marcoux, On the $(\mathscr{U}+\mathscr{K})$-orbits of certain weighted shifts, Integral Equations and Operator Theory, 17 (1993), 516-543.
[7] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand-Reinhold, New York, (1967).
[8] D. A. Herrero, Approximation of Hilbert Space Operators., Vol. I,. (Research Notes in Math 224), London-Boston-Melbourne: Pitman Books Ltd., (1982).
[9] D. A. Herrero, A trace obstruction to approximation by block diagonal nilpotent, American Journal of mathematics, 108 (1986), 516-543.
[10] H. Hartogs and A. Rosenthal, über fdgen analystischer funktionen, Math, Ann., Vol. 104, (1931), 215-223.
[11] Y. JI AND J. LI, The quasiapproximate $(u+k)$-invariant of essentially normal operators, Integral equations and operator theory, 50, (2004), 255-278.
[12] Y. Q. Ji, C. L. Jiang and Z. Y. WANG, The $(\mathscr{U}+\mathscr{K})$-orbit of essentially normals and compact perturbation of strongly irreducible operators, Functional analysis in China volume 356 of Mathematics and its applications. Dordrecht; Boston; Kluwer Academic Publishers, 1996.
[13] C. Jiang and Z. Wang, Strongly Irreducible Operators on Hilbert Spaces, Pitman Research Notes in Mathematics Series 389, Addison-Wesley-Longman Company, 1998.
[14] L. W. Marcoux, The closure of the $(U+K)$-orbit of shift-like operators, Indiana Univ. Math. J., 41 (1992), 1211-1223.
[15] L. W. Marcoux, A survey of $(\mathscr{U}+\mathscr{K})$-orbits, Operator theory and Banach algebra, Proceeding of International Conference in Analysis, Rabat, Moroco, April 12-14, (1999), 91-115.
[16] F. H. Zhai, The closures of $(\mathscr{U}+\mathscr{K})$-orbits of class essentially normal operators, Houston. J. Math. 30 (2004), 1177-1194.

Fahui Zhai
Department of Mathematics
Qingdao University of Science and Technology
Qingdao 266061
P. R. China
e-mail: fahuiz@163.com
Junjie Zhao
Department of Mathematics
Qingdao University of Science and Technology
Qingdao 266061
P. R. China

