A NEW CHARACTERIZATION OF THE CLOSURE OF THE $(\mathscr{U} + \mathscr{K})$ -ORBIT OF CERTAIN ESSENTIALLY NORMAL OPERATORS

FAHUI ZHAI AND JUNJIE ZHAO

(communicated by R. Curto)

Abstract. The $(\mathscr{U} + \mathscr{K})$ -orbit of a Hilbert space operator T is defined as $(\mathscr{U} + \mathscr{K})(T) = \{R^{-1}TR : R \text{ invertible of the form unitary plus compact }\}$. In this paper, we show that certain essentially normal operator with the same spectral picture as an essentially normal injective unilateral weighted operator generates the same closure of $(\mathscr{U} + \mathscr{K})$ -orbit.

1. Introduction

Let *H* be a separable-dimensional Hilbert space over the complex field \mathbb{C} and $\mathscr{L}(H)$ (resp. $\mathscr{K}(H)$) denote the algebra of all bounded linear operators on *H* (resp. the algebra of all compact operators on *H*). $T \in \mathscr{L}(H)$ is said to be essentially normal if $T^*T - TT^* \in \mathscr{K}(H)$.

For $T \in \mathscr{L}(H)$, let $\sigma(T)$, $\sigma_p(T)$, $\sigma_e(T)$, $\sigma_0(T)$, $\sigma_W(T)$, $\rho_{sF}(T)$, $\rho_{rF}^r(T)$ and $\rho_F(T)$ denote the spectrum, the point spectrum, the essential spectrum, the normal eigenvalues, the Weyl spectrum, the semi-Fredholm domain, the regular points of semi-Fredholm domain and the Fredholm domain of T, respectively. Let $H(\lambda; T)$ denote the Riesz eigenspace corresponding $\lambda \in \sigma_0(T)$. Let nul $T = \dim \ker T$.

If $\lambda \in \rho_{E}(T)$, the index of $T - \lambda I$ is defined as

ind
$$(T - \lambda I) = \operatorname{nul} (T - \lambda I) - \operatorname{nul} (T - \lambda I)^*;$$

the minimum index of $T - \lambda I$ is

min ind
$$(T - \lambda I) = \min \{ \operatorname{nul} (T - \lambda I), \operatorname{nul} (T - \lambda I)^* \}$$
.

Readers can refer to [8] for more information on the behaviour of these.

There are many ways to describe the equivalence relations of operators on *H*. Here, we are mostly interested in the $(\mathscr{U} + \mathscr{K})$ – equivalence of operators first introduced by D. A. Herrero ([9]). Let $(\mathscr{U} + \mathscr{K})(H) = \{X \in \mathscr{L}(H) : X \text{ is invertible with the form unitary plus compact}\}.$

Keywords and phrases: $(\mathscr{U} + \mathscr{K})$ -orbit of operator; essentially normal operator; spectral picture; injective unilateral weighted operator.

Mathematics subject classification (2000): 47B37, 47B20.

The $(\mathscr{U} + \mathscr{K})$ -orbit of $T \in \mathscr{L}(H)$ is given by $(\mathscr{U} + \mathscr{K})(T) = \{XTX^{-1} : X \in (\mathscr{U} + \mathscr{K})(H)\}$. $\overline{(\mathscr{U} + \mathscr{K})(T)}$ denotes the norm closure of $(\mathscr{U} + \mathscr{K})(T)$. Let $A \in \mathscr{L}(H')$ for some Hilbert space H', We will write $A \cong_{\mathscr{U} + \mathscr{K}} T$ when $A \in (\mathscr{U} + \mathscr{K})(T)$ and $A \cong T$ if there is a unitary operator $U : H' \to H$ such that $A = U^*TU$.

The closures of $(\mathscr{U} + \mathscr{K})$ -orbits of essentially normal operators on a Hilbert space have been studied by many authors (see, for example [1], [4], [5], [6], [11], [12], [14], [15], and [16]). For a survey on $(\mathscr{U} + \mathscr{K})$ -orbit of operator, the reader is referred to [15]. In particular, L.W. Marcoux proved that an essentially normal operator T with the same spectral picture as unilateral shift operator S generates the same closure of $(\mathscr{U} + \mathscr{K})$ -orbit as S in [14], and gave a conjecture $\overline{(\mathscr{U} + \mathscr{K})(M)} = \overline{(\mathscr{U} + \mathscr{K})(N)}$ whenever N and M are essentially normal and have same spectral picture in [15, Question 2].

Note that the essentially normal operator T with the same spectral picture as the essentially normal injective unilateral weighted shift operator W is different from the structure and essential spectrum of operators or operator models whose closure of $(\mathcal{U} + \mathcal{K})$ -orbit were characterized in [1], [4], [5], [6], [11], [12], [14], [15], and [16], respectively. Thus, in this paper, we will consider Marcoux's conjecture for certain essentially normal operator T whose spectral picture is identical to that of an essentially normal injective unilateral weighted operator.

Throughout, for $T \in \mathscr{L}(H)$, let $H_r(T) = \overline{\text{span}} \{ \ker(T - \lambda I) : \lambda \in \rho_{sF}^r(T) \}$, $H_l(T) = \overline{\text{span}} \{ \ker(T - \lambda I)^* : \lambda \in \rho_{sF}^r(T) \}$, $H_0(T) = (H_r(T) \oplus H_l(T))^{\perp}$. $T_l = T|_{H_l(T)}$ and $T_0 = T|_{H_0(T)}$ denote the compression of T to $H_l(T)$ and $H_0(T)$, respectively. If $A, B \in \mathscr{L}(H), \tau_{AB}(X) = AX - XB$ for $X \in \mathscr{L}(H)$ denotes Rosenblum operator. Let $\operatorname{Rat}(\Omega)$ denote the set of rational functions of \mathbb{C} whose poles lie outside of $\Omega \subset \mathbb{C}$, and $C(\Omega)$ denote the set of continuous functions on $\Omega \subset \mathbb{C}$.

Let W, $\alpha > 0$ and β be same as in [6, Theorem 3.4], that is, W is an essentially normal injective unilateral weighted operator with weight sequence $\{w_n\}_{n=1}^{\infty}$ satisfying $0 < \liminf_n \{w_n\} = \alpha$ and $\beta = \limsup_n \{w_n\}$. Let $\mathscr{A} = \{T : T \in \mathscr{L}(H) \text{ satisfies}$ (i) T is essentially normal; (ii) $\sigma(T) = \{z \in \mathbb{C} : |z| \leq \beta\}$, $\sigma_e(T) = \{z \in \mathbb{C} : \alpha \leq |z| \leq \beta\}$; (iii) $\operatorname{ind}(T - \lambda) = -1$ for all $z \in \mathbb{C}, |z| < \alpha$; (iv) $\operatorname{nul}(T - z) = 0$ for all $z \in \mathbb{C}, |z| < \alpha$; (v) T_l is an essentially normal operator. $\}, \mathscr{B} = \{T : T \in \mathscr{L}(H)$ satisfies conditions (i), (ii), (iii) of $\mathscr{A}\}$.

We prove the following theorem.

THEOREM. If $T \in \mathscr{A}$, $C(\sigma(T|_{H_l(T)^{\perp}})) = \overline{\operatorname{Rat}(\sigma(T|_{H_l(T)^{\perp}}))}$. Then $\overline{(\mathscr{U} + \mathscr{K})(T)} = \mathscr{B}$.

By [6, Theorem 3.4], then $\overline{(\mathscr{U} + \mathscr{K})(W)} = \overline{(\mathscr{U} + \mathscr{K})(T)}$ if *T* satisfies the conditions of Theorem. In addition, by the following example, we know that there exists an essentially normal operator satisfying the conditions of Theorem.

EXAMPLE. Let $\Gamma_1 \subset \{z \in \mathbb{C} : |z| = \alpha\}$ and $\Gamma_2 \subset \{z \in \mathbb{C} : |z| = \beta\}$ be compact sets, respectively. Let D_{Γ_1} and D_{Γ_2} be the diagonal operators satisfying $\sigma(D_{\Gamma_1}) = \sigma_e(D_{\Gamma_1}) = \Gamma_1$, $\sigma(D_{\Gamma_2}) = \sigma_e(D_{\Gamma_2}) = \Gamma_2$, respectively. Let $D = D_{\Gamma_1} \oplus D_{\Gamma_2}$,

K be a compact operator, $H_l = \overline{\text{span}} \{ \ker (W - \lambda I)^* : \lambda \in \rho_{sF}(W) \}, H_0 = H_l^{\perp},$

$$T = \begin{bmatrix} D & K \\ 0 & W \end{bmatrix} \begin{array}{c} H_0 \\ H_l \end{array}.$$

Then $T \in \mathscr{A}$. Moreover, $\ker(T - \lambda)^* = 0 \oplus \ker(W - \lambda)^*$ for $|\lambda| < \alpha$, $H_l(T) = H_l$. Note that $T|H_l^{\perp} = D$, $\sigma(D)$ is a prefect set with planar Lebesgue measure 0, by [10], then $C(\sigma(T|H_l^{\perp})) = \operatorname{Rat}(\sigma(T|_{H_l(T)^{\perp}}))$.

2. Preliminaries

In order to simplify the proof of Theorem, we need the following lemmas. For convenience, we list [1, Theorem 4.15] ([14, P.1213]) and the claim in the proof of [11, Theorem 1] as our Lemma 2.1 and Lemma 2.2, respectively.

LEMMA 2.1. ([1, Theorem 4.15]). Suppose $T \in \mathscr{L}(H)$ is essentially normal and that $\sigma(T) = \sigma_e(T) \cup \sigma_0(T)$. Assume, moreover, that $C(\sigma(T)) = \operatorname{Rat}(\sigma(T))$. Then $N \in (\mathscr{U} + \mathscr{K})(T)$, where N is a normal operator such that $\sigma(N) = \sigma(T)$, $\sigma_0(N) = \sigma_0(T)$, and $\operatorname{nul}(\lambda I - N) = \dim H(\lambda; T)$ for all $\lambda \in \sigma_0(N)$.

LEMMA 2.2. (The claim in the proof of [11, Theorem 1]). If $0 \in \Omega$ and $T \in \mathscr{B}_n(\Omega)$ is essentially normal, $T_1 = T|_{H \ominus \ker T^{k_0}}$. Let A be an essentially operator whose spectral picture is identical to that of T. $A_0 = A|_{\ker (A^{k_0})}$ is a $k_0n \times k_0n$ upper triangular matrix with the diagonal entries are zeros, F is a finite rank operator. Then for given $\varepsilon > 0$, there exists a compact operator K with $||K|| < \varepsilon$ such that

$$\begin{bmatrix} A_0 & F \\ 0 & T_1 \end{bmatrix} + K \cong_{\mathscr{U} + \mathscr{K}} T.$$

where Ω is a bounded connected open subset of \mathbb{C} and n is a positive number. $\mathscr{B}_n(\Omega)$ denotes the set of operators $R \in \mathscr{L}(H)$ which satisfy (a) $\Omega \subset \sigma(R)$; (b) $ran(T - \lambda) = H$ for all $\lambda \in \Omega$; (c) $\bigvee \{ \ker(R - \lambda) : \lambda \in \Omega \} = H$; (d) $\operatorname{nul}(R - \lambda) = n$ for all $\lambda \in \Omega$.

LEMMA 2.3. Let $T \in \mathscr{A}$, N be a diagonal operator of uniform infinite multiplicity satisfying $\sigma(N) = \sigma_e(N) = \sigma(T)$. Then (i) T_0 is an essentially normal operator and $\sigma(T_0 \oplus N) = \sigma_e(T_0 \oplus N) = \sigma_e(T)$; (ii) T_l is a lower triangular operator, $\sigma(T_l \oplus N) = \sigma(T)$, $\sigma_e(T_l \oplus N) = \sigma_e(T)$, $\operatorname{nul}(T_l - \lambda I) = 0$ and $\operatorname{nul}(T_l - \lambda I)^* = 1$ for all $\lambda \in \sigma(T_l) \setminus \sigma_e(T_l)$, and $T_l^* \in \mathscr{B}_1(\Omega)$, where $\Omega = \{z \in \mathbb{C} : |z| < \alpha\}$; (iii) $(\mathscr{U} + \mathscr{K})(T) \subset (\mathscr{U} + \mathscr{K})(T_l \oplus N)$. Moreover, if $C(\sigma(T|_{H_l(T)^{\perp}})) = \operatorname{Rat}(\sigma(T|_{H_l(T)^{\perp}}))$, then $(\mathscr{U} + \mathscr{K})(T) = (\mathscr{U} + \mathscr{K})(T_l \oplus N)$.

Proof. Since $T \in \mathcal{A}$, by [8, Theorem 3.38], we know that T is of the form

$$T = \begin{bmatrix} T_0 & B \\ 0 & T_l \end{bmatrix} \begin{array}{c} H_0(T) \\ H_l(T) \end{array}$$

with respect to the decomposition $H = H_0(T) \oplus H_l(T)$, T_l is lower triangular, $\sigma(T_0) \subset$ $\sigma_e(T), \ \sigma_p(T_l) = \emptyset.$

By the assumptions on T and T_l , one has T and T_l are essentially normal operators, respectively; by simple computation, the BB^* is a compact operator. Thus B is a compact operator, T_0 is an essentially normal operator and $\sigma_e(T) = \sigma_e(T_0) \cup \sigma_e(T_l)$.

Since B is a compact operator, we have $\sigma(T_0 \oplus T_l) \subset \sigma(T) \cup \sigma_p(T_0 \oplus T_l) =$ $\sigma(T) \cup \sigma_p(T_0) \cup \sigma_p(T_l)$, thus $\sigma(T_0 \oplus T_l) \subset \sigma(T)$. By [7, Problem 56], then $\sigma(T) = \sigma(T)$ $\sigma(T_0) \cup \sigma(T_l)$. Let $\Omega = \{z \in \mathbb{C} : |z| < \alpha\}$, then $\Omega \subset \sigma(T_l^*)$, ran $(T_l - \lambda I)^* = H_l(T)$ and $\operatorname{nul}(T_l - \lambda I)^* = 1$ for all $\lambda \in \Omega$.

By the above discussion, the proof of (i) and (ii) are completed.

Since $H_l(T) = \overline{\text{span}} \{ \ker (T_l - \lambda I)^* : \lambda \in \Omega \}$, by [13, Proposition 1.41], then

$$\overline{\operatorname{span}}\left\{\ker\left[(T_l-\lambda_0 I)^*\right]^n:n\geqslant 1\right\}=H_l(T) \text{ for all } \lambda_0\in\Omega.$$

By [8, Theorem 3.38], $\sigma(T_0) \subset \sigma_e(T)$, note that [13, Proposition 1.14], then ker $\tau_{T_0^*T_1^*} = \{0\}$, ker $\tau_{T_lT_0} = \{0\}$. Since *B* is compact, by [13, Lemma 1.10], there exist compact operators Z and K'_1 , $||K'_1|| < \varepsilon/3$ such that $T_0Z - ZT_l = B + K'_1$. Let

$$X_1 = \begin{bmatrix} I & Z \\ 0 & I \end{bmatrix}, \quad K_1 = \begin{bmatrix} 0 & K_1' \\ 0 & 0 \end{bmatrix},$$

then $X_1 \in (\mathscr{U} + \mathscr{K})(H_0(T) \oplus H_l(T))$, K_1 is a compact operator, $||K_1|| < \varepsilon/3$,

$$X_1(T+K_1))X_1=T_0\oplus T_l.$$

By [2, Lemma 2.1], there exist a unitary operator U_1 and a compact operator K_2 with $||K_2|| < \varepsilon/(3||X_1|| ||X_1^{-1}||)$ such that

$$U_1(T_0\oplus T_l+K_2)U_1^*=(N\oplus T_0)\oplus T_l$$

Let $T'_0 = N \oplus T_0$, then $\sigma(T'_0) = \sigma_e(T'_0) = \sigma_e(T)$. Note that $\sigma_0(T'_0) = \emptyset$, $\sigma(T'_0)$ is prefect, by [8, Corollary 4.2], T'_0 is of the form normal plus compact. By the proof of [5, Theorem 2.3], then there exist a compact operator K'_3 with $||K'_3|| < 1$ $\varepsilon/(3\|X_1\|\|X_1^{-1}\|)$ and an invertible operator X'_2 with form unitary plus compact such that $X'_2(T'_0 + K'_3)(X'_2)^{-1} = N$, thus there exist a compact operator K_3 with $||K_3|| < 1$ $\varepsilon/(3\|X_1\|\|X_1^{-1}\|)$ and an invertible operator X_2 with form unitary plus compact such that $X_2(U_1(T_0 \oplus T_l + K_2)U_1^* + K_3))X_2^{-1} = N \oplus T_l$. By the above proof, $(\mathcal{U} + \mathcal{K})(T) \subset (\mathcal{U} + \mathcal{K})(T_l \oplus N)$.

If $C(\sigma(T|_{H_{I}(T)^{\perp}})) = \overline{\operatorname{Rat}(\sigma(T|_{H_{I}(T)^{\perp}}))}$, let N_{0} be a diagonal operator of uniform infinite multiplicity satisfying $\sigma(N_0) = \sigma_e(N_0) = \sigma(T_0)$. Then $N_0 \oplus T_0$ is essentially normal, $\sigma(N_0 \oplus T_0) = \sigma_e(N_0 \oplus T_0) = \sigma(T_0)$, $C(\sigma(N_0 \oplus T_0)) = \overline{\operatorname{Rat}(\sigma(N_0 \oplus T_0))}$. $\sigma(N_0) \subset \sigma_e(T_l)$, apply Lemma 2.1 to N_0 and $N_0 \oplus T_0$, note that [5, Proposition 2.7] and B is compact, we can imply

$$\overline{(\mathscr{U}+\mathscr{K})(N\oplus T_l)}\subset\overline{(\mathscr{U}+\mathscr{K})(N_0\oplus N\oplus T_l)}\subset$$

$$\overline{(\mathscr{U} + \mathscr{K})(N_0 \oplus T_0 \oplus N \oplus T_l)} \subset \overline{(\mathscr{U} + \mathscr{K})(T_0 \oplus T_l)} \subset \overline{(\mathscr{U} + \mathscr{K})(T)}.$$

The proof of (iii) is completed.

LEMMA 2.4. Let $T \in \mathcal{A}$, $N \in \mathcal{L}(H)$ be the same as in Lemma 2.3, and S be a unilateral forward shift operator. Then for given $\varepsilon > 0$, there exist a natural number k and a compact operator K with $||K|| < \varepsilon$ such that

$$N+K\cong_{\mathscr{U}+\mathscr{K}}\begin{bmatrix}eta S^* & 0\\ B_{21} & T_l'\end{bmatrix}\oplus N\,,$$

where $T'_l = T_l|_{H_l(T) \ominus \text{span} \{ \ker ((T_l - \lambda_0 I)^*)^k \}}$ for $\lambda_0 \in \{ z \in \mathbb{C} : |z| < \alpha \}$, B_{21} is a finite rank operator.

Proof. By BDF Theorem ([8, Theorem 4.1]), there exist a unitary operator U_1 and a compact operator K_0 such that $U_1NU_1^* = \beta S^* \oplus T_l \oplus N \oplus K_0$. By Lemma 2.3 (ii) and [13, Proposition 1.41], then

$$H_l(T) = \overline{\operatorname{span}} \left\{ \ker \left((T_l - \lambda_0 I)^* \right)^n : n \ge 1 \right\} \text{ for all } \lambda_0 \in \{ z \in \mathbb{C} : |z| < \alpha \}.$$

Let $\{\lambda_n\}_{n=1}^{\infty}$ be a countable dense subset of $\sigma_e(T)$ such that $\sigma_e(T) = \sigma_e(N) = \sigma(N) = \{\lambda_n\}_{n=1}^{\infty}$. Let $\{e_n\}_{n=1}^{\infty}$ (resp. $\{f_n\}_{n=1}^{\infty}$) be orthonormal basis of H such that $Ne_n = \lambda_n e_e$ (resp. $Sf_n = f_{n+1}$), and all the eigenvalues of N have infinity multiplicity. Let P_{2n} be an orthogonal projection of $H_l(T)$ onto span $\{(\ker(T_l - \lambda_0 I)^*)^n\}$, P_{1n} (resp. P_{3n}) be the orthogonal projections from H onto span $(\{f_i\}_{i=1}^n)$ (resp. span $(\{e_i\}_{i=1}^n)$), $P_n = P_{1n} \oplus P_{2n} \oplus P_{3n}$.

Note that K_0 is a compact operator. Thus there exists a natural number k such that $||P_kK_0P_k - K_0|| < \varepsilon/2$. Let $K_1 = P_nK_0P_0 - K_0$, by the supper semicontinuity of spectrum, $\sigma(U_1NU_1^* + K_1) \subset (\sigma(N))_{\varepsilon/2}$. Since $H \oplus H_l(T) \oplus H$ can be decomposed as span $(\{f_i\}_{i=1}^l) \oplus (H \ominus \text{span}(\{f_i\}_{i=1}^l)) \oplus (\ker((T_l - \lambda_0 I)^*)^l) \oplus (H \ominus \ker((T_l - \lambda_0 I)^*)^l) \oplus (H \oplus \operatorname{H}((T_l - \lambda_$

$$U_2(U_1NU_1^*+K_1)U_2^* = \begin{bmatrix} A_{11} & A_{12} & 0 & 0\\ 0 & \beta S^* & 0 & 0\\ A_{31} & 0 & T_l' & 0\\ 0 & 0 & 0 & N \end{bmatrix}$$

where $T'_l = T_l|_{H_l(T) \ominus \text{span}(\ker((T_l - \lambda_0 I)^*)^k)}$, A_{11} , A_{12} and A_{31} are finite rank operators, respectively.

Since $\sigma(A_{11}) \subset \sigma(U_1NU_1^* + K_1) \cup \sigma(\beta S)$, and A_{11} acts on a finite dimensional space, apply Schur lemma to A_{11} , again perturb, we can choose compact operator K'_2 , X'_1 such that $||K'_2|| < \varepsilon/2$ and $X'_1(A_{11} + K'_2)(X'_1)^{-1} = F_d$ is a diagonal matrix with distinct diagonal entries,

$$\sigma(F_d) \subset \sigma(\beta S^*), \ \sigma(F_d) \cap \{z \in \mathbb{C} : |z| = \beta\} = \emptyset.$$

By the above argument, apply functional calculus and [5, Corollary 4.5] to $\begin{bmatrix} F_d & X'_1A_{12} \\ 0 & \beta S^* \end{bmatrix}$ $\oplus N$, then there exist a compact operator K_2 with $||K_2|| = ||K'_2||$ and an invertible operator X_1 with form unitary plus compact such that

$$X_1(U_2(U_1NN^*+K_1)U_2^*+K_2)X_1^{-1} = \begin{bmatrix} eta S^* & 0 \ B_{21} & T_l' \end{bmatrix} \oplus N \,,$$

where B_{21} is a finite rank operator. The proof is complete.

LEMMA 2.5. Let $R, T \in \mathcal{A}$. $N \in \mathcal{L}(H)$ is the same as in Lemma 2.3. Then for given $\varepsilon > 0$, there exists a compact K with $||K|| < \varepsilon$ such that

$$R_l \oplus N + K \cong_{u+k} T_l \oplus N$$

Proof. Let $R' = R_l \oplus N$, $T' = T_l \oplus N$, $N_0 = N$. Apply [2, Lemma 2.1] to R', there exist a unitary operator and a compact operator K'_1 with $||K'_1|| < \varepsilon/25$ such that $U(R' + K_1)U^* = N \oplus R_l \oplus N_0$. Note that the matrix representation of R_l with respect to $H_l(T) = \ker (R_l^*)^n \oplus (\ker (R_l^*)^n)^{\perp}$, and apply Lemma 2.4 to N_0 . Then there exist a natural number k, a compact operator K_1 with $||K_1|| < \varepsilon/5$ and an invertible operator X_1 with form unitary plus compact such that

$$X_1(R'+K_1)X_1^{-1} = N \oplus \begin{bmatrix} R_{l1} & 0\\ R_{l2} & R'_l \end{bmatrix} \begin{array}{c} \ker(R_l^*)^k \\ (\ker(R_l^*)^k)^\perp \oplus \begin{bmatrix} \beta S^* & 0\\ B_{21} & T'_l \end{bmatrix} \begin{array}{c} \ker(T_l^*)^k \\ (\ker(T_l^*)^k)^\perp \oplus N, \end{array}$$

where $R'_l = R_l|_{(\ker R_l^{*k})^{\perp}}$, $T'_l = T_l|_{(\ker T_l^{*k})^{\perp}}$. R_{l2} and B_{21} are finite rank operators, respectively.

Since $\sigma(R'_l \oplus \beta S^* \oplus N) = \sigma(T)$, $\sigma_e(R'_l \oplus \beta S^* \oplus N) = \sigma_e(T)$, $\sigma_0(R'_l \oplus \beta S^* \oplus N) = \emptyset$ and ind $(R'_l \oplus \beta S^* \oplus N - \lambda I) = 0$ for $\lambda \in \sigma(T) \setminus \sigma_e(T)$. By [5, Theorem 2.3] and its proof, there exist a compact operator K'_2 with $||K'_2|| < \varepsilon/(5||X_1|| ||X_1^{-1}||)$ and an invertible operator X'_2 with form unitary plus compact such that

$$X'_{2}(R'_{l} \oplus \beta S^{*} \oplus N + K'_{2})(X'_{2})^{-1} = N.$$

Thus there exist a compact operator K_2 with $||K'_2|| = ||K_2||$ and an invertible operator X_2 with form unitary plus compact such that

$$X_2(X_1(R_1'+K_1)X_1^{-1}+K_2)X_2^{-1}=E=\begin{bmatrix}R_{l1}&0&0\\A_{21}&N&0\\0&A_{32}&T_l'\end{bmatrix}\oplus N$$

where A_{21} and A_{32} are finite rank operators, respectively.

Simultaneously apply [3, Corollary 4.5, P. 42] to A_{21} and A_{32} , there exist a compact operator K_3 with $||K_3|| < \varepsilon/(5||X_1|| ||X_1^{-1}|| ||X_2|| ||X_2^{-1})$ and a natural number n such that

$$E+K_3=\begin{bmatrix} R_{l1} & 0 & 0 & 0\\ B'_{21} & N_1 & 0 & 0\\ 0 & 0 & N' & 0\\ 0 & B_{42} & 0 & T'_l \end{bmatrix}\oplus N\,,$$

 \Box

where B'_{21} and B_{42} are finite rank operators, respectively. $N = N_1 \oplus N'$, $N' \cong N$, N_1 acts on a Hilbert space whose dimension is n.

Claim. There exists a finite rank operator Z such that

$$N_1^*Z^* - Z^*(T_l')^* = B_{42}^*$$

Note that [11, Lemma 3.1] and [13, Lemma 3.10], we can assume that $(T'_l)^*$ is of upper triangular matrix representation

$$(T'_l)^* = \begin{bmatrix} 0 & a_{12} & \cdots & \cdots \\ & 0 & a_{23} & \cdots \\ & & \ddots & \ddots \end{bmatrix}$$

where $a_{ii+1} \neq 0$ for $i = 1, 2, \cdots$.

Let $N^* = \text{diag}\{\lambda_i\}_{i=1}^n$, $Z^* = (z_{ij})_{n \times \infty}$ be $n \times \infty$ matrix whose elements are z_{ij} , $i = 1, 2, \dots, n$; $j = 1, 2, \dots$. Since B_{42}^* is known, $\lambda_i \neq 0$ for $i = 1, 2, \dots, n$. $a_{ii+1} \neq 0$ for $i = 1, 2, \dots$, by solving equation $N_1^*Z^* - Z^*(T_i')^* = B_{42}^*$, we can get z_{ij} step and step. Thus such Z^* exists, by [3, Proposition 3.4, P.70], Z is bounded. The proof of the Claim is completed.

Let
$$X_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & Z & 0 & 1 \end{bmatrix}$$
, then

$$X_{3}(E+K_{3})X_{3}^{-1} = \begin{bmatrix} R_{l1} & 0 & 0 & 0 \\ B'_{21} & N_{1} & 0 & 0 \\ 0 & 0 & N' & 0 \\ ZB'_{21} & 0 & 0 & T'_{l} \end{bmatrix} \oplus N = \begin{bmatrix} R_{l1} & 0 & 0 \\ B''_{21} & N & 0 \\ B'_{31} & 0 & T'_{l} \end{bmatrix} \oplus N,$$

where $B_{21}^{\prime\prime}$ and B_{31}^{\prime} are finite rank operators, respectively.

Let $\delta = ||X_1|| ||X_2|| ||X_3|| ||X_1^{-1}|| ||X_2^{-1}|| ||X_3^{-1}||$, apply [2, Lemma 2.1] to $N \oplus T'_l$, then there exist a compact operator K_4 with $||K_4|| < \varepsilon/(5\delta)$ and a unitary operator U_2 such that

$$U_2(X_3(E+K_3)X_3^{-1}+K_4)U_2^*=F=\begin{bmatrix} R_{l1} & 0\\ G & T_l' \end{bmatrix} \oplus N$$

where G is a finite rank operator.

Apply Lemma 2.2 to $\begin{bmatrix} R_{l1} & 0 \\ G & T'_l \end{bmatrix}$, then there exist a compact K_5 with $||K_5|| < \varepsilon/(5\delta)$ and an invertible operator X_4 with the form unitary plus compact such that

$$X_4(F+K_5)(X_4)^{-1}=T_l\oplus N.$$

By the above proof, the conclusion follows.

461

LEMMA 2.6. Let $K \in \mathscr{L}(H)$ be a compact operator and $R = W + K \in \mathscr{L}(H)$ satisfy the conditions (i), (ii), (iii), (iv) in \mathscr{A} . Then R_0 and R_l are essentially normal operators, respectively.

Proof. By [8, Theorem 3.38], R with respect to the decomposition $H = H_0(R) \oplus H_l(R)$ is of the form

$$R = \begin{bmatrix} R_0 & B \\ 0 & R_l \end{bmatrix} \frac{H_0(R)}{H_l(R)}$$

and $\sigma(R_0) \subset \sigma_e(R)$. Let π denote the canonical map from $\mathscr{L}(H)$ to $\mathscr{L}(H)/\mathscr{K}(H)$, we imply that $\pi(R^*R) = \pi(W^*W)$,

$$\begin{bmatrix} \pi(R_0^*R_0) - \pi(D_1) & \pi(R_0^*B) \\ \pi(B^*R_0) & \pi(B^*B + R_l^*R_l) - \pi(D_2) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

where D_1 and D_2 are diagonal operators, respectively.

Note that $\pi(B^*R_0) = 0$, $\sigma(R_0) \subset \sigma_e(R)$, R_0 is an invertible operator. Thus B^* is compact, so is B. Since R is an essentially normal operator, by simple computation, we can imply that R_0 and R_l are essentially normal operators, respectively.

3. The Proof of Theorem and Remark

The Proof of Theorem. Let N be the same as in Lemma 2.3, $R \in \mathscr{B}$. Note that $\sigma_0(R) = \emptyset$, apply [8, Theorem 3.48] to R, we can imply that there exists a compact operator K_1 with $||K_1|| < \varepsilon/2$ such that $\sigma(R+K_1) = \sigma_W(R)$ and minind $(R+K_1-\lambda) = 0$ for $\lambda \in \rho_F(R)$. Thus $R + K_1$ satisfies the conditions (i), (ii), (iii), (iv) in \mathscr{A} .

Apply BDF theorem ([8, Theorem 4.1]) to $R + K_1$ and W, then there exist a unitary operator U and a compact operator C such that $U(R + K_1)U^* = W + C$. By Lemma 2.6, $U(R + K_1)U^* \in \mathscr{A}$. By Lemma 2.5 and the proof of Lemma 2.3, there exist a compact operator K_2 with $||K_2|| < \varepsilon/2$ and an invertible operator X with form unitary plus compact such that $X(U(R + K_1)U^* + K_2)X^{-1} = T_l \oplus N$. Note the the assumptions of Theorem, by Lemma 2.3 (iii), $R \in (\mathscr{U} + \mathscr{K})(T)$.

Conversely, by [8, Theorem 1.2] and [4, Proposition 0.6], the proof of Theorem is completed. $\hfill \Box$

REMARK. Note that the proof of Theorem is independent of [6, Theorem 3.4]. In fact, by [6, Theorem 3.4], we can also give a short proof about that $R \in \mathcal{B}$ implies $R \in (\mathcal{U} + \mathcal{K})(T)$. Since, by [6, Theorem 3.4], $\mathcal{B} = (\mathcal{U} + \mathcal{K})(W)$, in order to prove that $R \in (\mathcal{U} + \mathcal{K})(T)$ when $R \in \mathcal{B}$, it is sufficient to show that $W \in (\mathcal{U} + \mathcal{K})(T)$. Note that $W \in \mathcal{A}$, by Lemma 2.5 and Lemma 2.3, then $W \in (\mathcal{U} + \mathcal{K})(T)$.

Acknowledgement. The authors thank the referee for his (or her) providing beneficial suggestions.

REFERENCES

- F. A. AL-MUSALLAM, An upper estimate for the distance to essentially G₁ operators, Ph. D. thesis., Arizona state University (1989).
- [2] I. D. BERG AND K. R. DAVIDSON, Almost Community Matrices and a quantitative of the Brown-Dong las-Fillmore theorem, Acta Math., 166 (1991), 121–161.
- [3] J. B. COMWAY, A course in functional analysis, 2nd ed., Springer-Verlag, 1990.
- [4] M. DOSTÁL, Closures of $(\mathcal{U} + \mathcal{K})$ -orbits of essentially normal models, PHD. thesis, University of Alberta in Canada, 1999.
- [5] P. S. GUINAND AND L. W. MARCOUX, Between the unitary and similarity orbits of normal operators, Pacific J. Math. 159(2) (1993), 299–334.
- [6] P. S. GUINAND AND L. W. MARCOUX, On the $(\mathcal{U} + \mathcal{K})$ -orbits of certain weighted shifts, Integral Equations and Operator Theory, **17** (1993), 516–543.
- [7] P. R. HALMOS, A Hilbert Space Problem Book, Van Nostrand-Reinhold, New York, (1967).
- D. A. HERRERO, Approximation of Hilbert Space Operators., Vol. I, (Research Notes in Math 224), London-Boston-Melbourne: Pitman Books Ltd., (1982).
- [9] D. A. HERRERO, A trace obstruction to approximation by block diagonal nilpotent, American Journal of mathematics, 108 (1986), 516–543.
- [10] H. HARTOGS AND A. ROSENTHAL, über fdgen analystischer funktionen, Math, Ann., Vol. 104, (1931), 215–223.
- [11] Y. JI AND J. LI, The quasiapproximate (u + k)-invariant of essentially normal operators, Integral equations and operator theory, 50, (2004), 255–278.
- [12] Y. Q. JI, C. L. JIANG AND Z. Y. WANG, The $(\mathcal{U} + \mathcal{K})$ -orbit of essentially normals and compact perturbation of strongly irreducible operators, Functional analysis in China volume 356 of Mathematics and its applications. Dordrecht; Boston; Kluwer Academic Publishers, 1996.
- [13] C. JIANG AND Z. WANG, Strongly Irreducible Operators on Hilbert Spaces, Pitman Research Notes in Mathematics Series 389, Addison-Wesley-Longman Company, 1998.
- [14] L. W. MARCOUX, The closure of the (U + K) -orbit of shift-like operators, Indiana Univ. Math. J., 41 (1992), 1211–1223.
- [15] L. W. MARCOUX, A survey of (𝔄 +𝒮)-orbits, Operator theory and Banach algebra, Proceeding of International Conference in Analysis, Rabat, Moroco, April 12–14, (1999), 91–115.
- [16] F. H. ZHAI, The closures of $(\mathcal{U} + \mathcal{K})$ -orbits of class essentially normal operators, Houston. J. Math. **30** (2004), 1177–1194.

(Received May 22, 2007)

Fahui Zhai Department of Mathematics Qingdao University of Science and Technology Qingdao 266061 P. R. China e-mail: fahuiz@163.com

Junjie Zhao Department of Mathematics Qingdao University of Science and Technology Qingdao 266061 P. R. China