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A NEW CHARACTERIZATION OF THE CLOSURE OF THE
(% + #)-ORBIT OF CERTAIN ESSENTIALLY NORMAL OPERATORS

FAHUI ZHAI AND JUNIJIE ZHAO

(communicated by R. Curto)

Abstract. The (% + o) -orbit of a Hilbert space operator T is defined as (% + ¢ )(T) =

{ RTITR : R invertible of the form unitary plus compact } . In this paper, we show that certain
essentially normal operator with the same spectral picture as an essentially normal injective
unilateral weighted operator generates the same closure of (% + %) -orbit.

1. Introduction

Let H be a separable-dimensional Hilbert space over the complex field C and
Z(H) (resp. # (H)) denote the algebra of all bounded linear operators on H (resp.
the algebra of all compact operatorson H). T € £ (H) is said to be essentially normal
if T*T —TT* € #(H).

For T € Z(H), let o(T), 06,(T), 0.(T), oo(T), ow(T), p,(T), p,(T) and
p;(T) denote the spectrum, the point spectrum, the essential spectrum, the normal
eigenvalues, the Weyl spectrum, the semi-Fredholm domain, the regular points of semi-
Fredholm domain and the Fredholm domain of T, respectively. Let H(A;T) denote
the Riesz eigenspace corresponding A € 0p(7T). Let nul T = dimker T .

If A € p.(T), the index of T — AI is defined as

ind (T — AI) = nul (T — AI) —nul (T — AI)%;
the minimum index of T — A[ is
minind (7 — AI) = min {nul (7 — AI), nul (T — AI)"}.

Readers can refer to [8] for more information on the behaviour of these.

There are many ways to describe the equivalence relations of operators on H . Here,
we are mostly interested in the (% + #")— equivalence of operators first introduced by
D. A. Herrero ([9]). Let (Z + . %)(H) = {X € Z(H) : X is invertible with the form
unitary plus compact}.
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The (% + ') -orbit of T € £(H) is given by (% + #)(T) = {XTX ! :
X e (w+x%)H)}. (% +#)(T) denotes the norm closure of (% + ) (T).
Let A € Z(H') for some Hilbert space H', We will write A =4, » T when
A€ (% + x#)(T) and A = T if there is a unitary operator U : H' — H such that
A=U'TU.

The closures of (% + ¢ ) -orbits of essentially normal operators on a Hilbert
space have been studied by many authors (see, for example [1], [4], [3], [6], [11], [12],
[14], [15], and [16]). For a survey on (% + %) -orbit of operator, the reader is referred
to [15]. In particular, L.W. Marcoux proved that an essentially normal operator 7 with
the same spectral picture as unilateral shift operator S generates the same closure of
(% + ) -orbit as S in [14], and gave a conjecture (% + & )(M)=(% + #)(N)
whenever N and M are essentially normal and have same spectral picture in [15,
Question 2].

Note that the essentially normal operator 7 with the same spectral picture as
the essentially normal injective unilateral weighted shift operator W is different from
the structure and essential spectrum of operators or operator models whose closure
of (% + ) -orbit were characterized in [1], [4], [5], [6], [11], [12], [14], [15], and
[16], respectively. Thus, in this paper, we will consider Marcoux’s conjecture for
certain essentially normal operator 7 whose spectral picture is identical to that of an
essentially normal injective unilateral weighted operator.

Throughout, for 7 € Z(H), let H,(T) = span {ker (T — AI) : A € p/ (T)},
H)(T) = span {ker (T—AI)* : A € p’ (T}, Ho(T) = (H(T)®H,(T))* . T; = Tu,r)
and Ty = T|p,(r) denote the compression of T to H(T) and Hy(T), respectively. If
A, Be Z(H), t,,(X) =AX — XB for X € Z(H) denotes Rosenblum operator. Let
Rat( Q) denote the set of rational functions of C whose poles lie outside of Q C C,
and C(Q) denote the set of continuous functions on Q C C.

Let W, a > 0 and 8 be same as in [6, Theorem 3.4], that is, W is an essentially
normal injective unilateral weighted operator with weight sequence {w, }5°, satisfying
0 < limninf{w,,} = o and B = limsup{w,}. Let &/ ={T : T € Z(H) satisfies

(i) T is essentially normal; (i) o(T) = {z € C: |z < B}, 0.(T) = {z € C:
o < |z < B} (ill) ind(T —A) = —1 forall z € C,|z] < a; (iv) nul (T —z) =
0 forall z € C,|z| < o; (v) T; is an essentially normal operator. }, B={T : T €
Z(H) satisfies conditions (i), (ii), (iii) of «7}.

We prove the following theorem.

THEOREM. If T € o, C(0(T|y,r)2)) = Rat(o(T |y, r 1)) Then (% + A')(T) =
B.

By [6, Theorem 3.4], then (% + & )(W) = (% + ¢ )(T) if T satisfies the
conditions of Theorem. In addition, by the following example, we know that there
exists an essentially normal operator satisfying the conditions of Theorem.

EXAMPLE. Let I' C {z € C: |zl = o} and I, C {z € C: |z = B} be
compact sets, respectively. Let Dr, and Dr, be the diagonal operators satisfying
G(Drl) = O}(Drl) =I, G(Drz) = O}(Drz) = I',, respectively. Let D = Dr,®Dr,,
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K be a compact operator, H; = span {ker (W — AI)* : A € p.(W)}, Hy = Hi*,

;_[D K] H
|0 W| H-
Then T € & . Moreover, ker(T — A)* =0® ker(W — A)* for |A| < o, H/(T) = H;.
Note that T|H;* = D, o(D) is a prefect set with planar Lebesgue measure 0, by [10],
then C(o(T|Hj")) = Rat(o(T|y,1)L))-

2. Preliminaries

In order to simplify the proof of Theorem, we need the following lemmas. For
convenience, we list [1, Theorem 4.15] ([14, P.1213]) and the claim in the proof of [11,
Theorem 1] as our Lemma 2.1 and Lemma 2.2, respectively.

LEMMA 2.1. ([1, Theorem 4.15]). Suppose T € £(H) is essentially normal
and that o(T)= 0,(T) U 0o(T). Assume, moreover, that C(o(T))= Rat(c(T)).
Then N € (% + % )(T), where N is a normal operator such that 6(N) = o(T),
0o(N) = 00(T), and nul(AI — N) = dimH(A; T) forall A € op(N).

LEMMA 2.2. (The claim in the proof of [11, Theorem 1]). If 0 € Q and T €
PB,(Q) is essentially normal, Ty = T|ycyerrto - Let A be an essentially operator
whose spectral picture is identical to that of T. Ao = Ay, (akoy IS @ kon X kon upper
triangular matrix with the diagonal entries are zeros, F is a finite rank operator. Then
for given € > 0, there exists a compact operator K with ||K|| < € such that

{AO F

0 Tl] + K2y, n T

where Q is a bounded connected open subset of C and n is a positive number.
By (Q) denotes the set of operators R € L (H) which satisfy (a) Q C o(R);
(b) ran(T —A) = H forall A € Q; (¢) V{ker(R—A) : A € Q} = H; (d)
nul(R—A) =n forall A € Q.

LEMMA 2.3. Let T € o/, N be a diagonal operator of uniform infinite mul-
tiplicity satisfying o(N) = 0,(N) = o(T). Then (i) Ty is an essentially nor-
mal operator and o(Tp ® N) = 0.,(To ® N) = o.(T); (ii) T, is a lower tri-
angular operator, o(Ty ® N) = o(T), 0.(T1® N) = o,(T), nul(T; — AI) = 0
and nul(T; — AD)* =1 for all A € o(T)) \ 0.(T1), and T} € %,(Q), where
Q={z€C:lz <a}; (i) (#w+X)T)C (%+X)T,®&N). Moreover,
if C(o(T|y,r)1)) = Rat(o(T |y, (1)L)), then (% + X )(T) = (% + )T &N).

Proof. Since T € &/ , by [8, Theorem 3.38], we know that T is of the form

=% 7w
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with respect to the decomposition H = Ho(T)@®H;(T), T; is lower triangular, 6(7,) C
0.(T), 0p(T7) = 0.

By the assumptions on 7 and 7;, one has T and 7; are essentially normal
operators, respectively; by simple computation, the BB* is a compact operator. Thus B
is acompact operator, T} is an essentially normal operator and o,(T) = o0.(T)Uo,.(T}) .

Since B is a compact operator, we have o(Ty @ T;) C o(T) U 6,(To @ T;) =
o(T) U 0y(To) U 0,(T7), thus o(To & T;) C o(T). By [7, Problem 56|, then o(T) =
o(To)Uo(T;). Let Q= {ze€ C: |z < a},then Q C o(T}),ran(T; — AI)* = H/(T)
and nul(7; — AI)* =1 forall A € Q.

By the above discussion, the proof of (i) and (ii) are completed.

Since H)(T) = span {ker (T; — AI)* : A € Q}, by [13, Proposition 1.41], then

span {ker [(T; — AoD)*]" :n > 1} = H)(T) forall A € Q.

By [8, Theorem 3.38], o(Ty) C o.(T), note that [13, Proposition 1.14], then
ker TT(;“TI* = {0}, ker Trr, = {0}. Since B is compact, by [13, Lemma 1.10], there

exist compact operators Z and Kj, ||K{|| < €/3 such that ToZ — ZT; = B+ K] . Let

1 Z 0 K|
Xl_|:0 I:|a K1_|:0 01:|7

then X; € (% + ¢ )(Ho(T) @ H)(T)), K, is a compact operator, ||Ki|| < €/3,
XX(T+K)Xi=To® T

By [2, Lemma 2.1], there exist a unitary operator U; and a compact operator K,
with ||K2|| < /(31X ]|||X;"]]) such that

U(Toa T+ K)Uf = (N& To) & T).

Let T) = N & Ty, then o(T}) = o.(T}) = 0.(T). Note that oyp(Ty) = 0,
o(T}) is prefect, by [8, Corollary 4.2], T} is of the form normal plus compact. By
the proof of [5, Theorem 2.3], then there exist a compact operator K} with ||Kj| <
/(3|1 X1]||IX;"|]) and an invertible operator X} with form unitary plus compact such
that X5 (T} + K3)(X5)~! = N, thus there exist a compact operator K3 with ||K3|| <
/(3|1 X1||||X;"|]) and an invertible operator X, with form unitary plus compact such
that Xo(Ui(To © Ti + K2)Uy + K3)X, ' =NO T .

By the above proof, (% + & )(T) C (% + #)(Ti®N).

If C(o(T|p,(r)+)) = Rat(o(T|p,r)L)), let No be a diagonal operator of uniform
infinite multiplicity satisfying o(No) = 0.(No) = o(Ty). Then Ny ® Tp is essen-
tially normal, G(No Ty = O}(N() ©® To) = G(To) , C(o(No® To)) = Rat(G(No ®T)).
o(Ny) C 0.(Ty), apply Lemma 2.1 to Ny and Ny & T, note that [5, Proposition 2.7]
and B is compact, we can imply

(X +X)NeT) C (% +H)NodNST;) C

(% + ) No®ToE&N&T) C (% +X)ToeT) C (% + #)T).
The proof of (iii) is completed. O
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LEMMA 2.4. Let T € o/, N € £ (H) be the same as in Lemma 2.3, and S be a
unilateral forward shift operator. Then for given € > 0, there exist a natural number
k and a compact operator K with ||K|| < € such that

BS* 0

N+K =y x {321 T

|en

where T = Ti|y (ryaspan {ker (-2 )k} fOT A0 € {z € C 1 |z| < @}, By is a finite
rank operator.

Proof. By BDF Theorem ([8, Theorem 4.1]), there exist a unitary operator U; and
a compact operator Ky such that U NU} = BS* @& T; & N © K. By Lemma 2.3 (ii)
and [13, Proposition 1.41], then

H)(T) = span {ker (T — Aol)*)" : n > 1} forall Ao € {z€ C: |z| < a}.

Let {A4,}2°, be a countable dense subset of o,(T) such that 0.(T) = o,(N) =
o(N) = {A.}5°,. Let {e,}52, (resp. {fu}52,) be orthonormal basis of H such that
Ne, = Aye. (tesp. Sfu = fnt1), and all the eigenvalues of N have infinity multiplicity.
Let P;, be an orthogonal projection of H;(T) onto span { (ker (T;,—Aol)*)"}, Py, (resp.
P3,, ) be the orthogonal projections from H onto span ({f;}"_,) (resp. span ({e;}",)),
P, =Py, ® Py, ® P3,.

Note that Ky is a compact operator. Thus there exists a natural number k such
that |PrKoPr — Kol| < €/2. Let K = P,KoPy — Ky, by the supper semicontinuity
of spectrum, o(UNU} + K;) C (6(N))¢». Since H @ H)(T) © H can be decom-
posed as span ({fi}._,) & (H &span ({f;}'_,)) & (ker ((T; — AoD)*)") & (H & ker ((T; —
AoD)*)) @ span ({e;}._,) @ (H © span ({e;}\_,)), consider the matrix representation of
U\NU; +K; with respect to this decomposition, and note that S5*| Hospan ({ei}L) (resp.
N6 span W) ) is unitary equivalence to $S* (resp. N ), by simple computation, we
can imply that there exists a unitary operator U, such that

Ay Ap 0 O

" . 0 S*¥ 0 0
U2(U1NU1 +K1)U2 = Asy BO TZ/ E

0 0 0 N

where T} = Tl r)ospan (ker (T—201)* k) » A115 A1z and Ajs; are finite rank operators,
respectively.

Since o(A11) C o(UINUT + K1) U o(BS), and Aj; acts on a finite dimensional
space, apply Schur lemma to A;;, again perturb, we can choose compact operator K},
X| such that |K5|| < €/2 and X|(A11 + K5)(X])~! = F, is a diagonal matrix with
distinct diagonal entries,

o(Fq) C o(BS*), o(Fs)N{ze C: |zl =B} =0.
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By the above argument, apply functional calculus and [5, Corollary 4.5] to 0 Bs*

@ N, then there exist a compact operator K, with ||K»||=||K%|| and an invertible op-
erator X;| with form unitary plus compact such that

F, X;Alz}

BS* 0

X1 (Uy(UINN* + K1) U; + Ko)X; ' = [Bm 7
l

Jov

where B, is a finite rank operator. The proof is complete. ]

LEMMA 2.5. Let R, T € o/ . N € Z(H) is the same as in Lemma 2.3. Then for
given € > 0, there exists a compact K with |K|| < & such that

RROEN+K=, TI&N.

Proof. Let R =R, &N, T'=T,®N, Ny = N. Apply [2, Lemma 2.1] to R/,
there exist a unitary operator and a compact operator K| with |K]|| < €/25 such that
U(R' + K,)U* =N & R, & Ny . Note that the matrix representation of R; with respect
to Hy(T) = ker (R})" @ (ker (R})")*, and apply Lemma 2.4 to Ny . Then there exist a
natural number k, a compact operator K; with ||K;|| < €/5 and an invertible operator
X, with form unitary plus compact such that

Ry 0} ker (R} )* [ﬁS* 0} ker (77)*
Rp R)| (ker(RY)X)Y ™ | By T)| (ker(T;)%)

where R] = Ry (ker RH)L - T = T,\(ker T3k L - Rp, and By are finite rank operators,

Xi (R + Ki)X{ N@{ L BN,

respectively.

Since 0(R|®&BS*®N) = o(T), 0.(R/BPS*®N) = 0.(T), 0o(R/BPS*BN) =0
and ind (Rj ® BS* @ N — AI) =0 for A € o(T) \ 0.(T). By [5, Theorem 2.3] and
its proof, there exist a compact operator K} with [|K5| < &/(5||X:]|||X;"||) and an
invertible operator X} with form unitary plus compact such that

X,(R @ BS* &N+ K5) (X)) ™' =N.

Thus there exist a compact operator K, with ||K}|| = ||K2|| and an invertible operator
X, with form unitary plus compact such that

Ri 0 0
XXi(RI+K)X{ '+ K)X; ' =E= Ay N 0| &N,
0 A32 TZI

where A and Az, are finite rank operators, respectively.

Simultaneously apply [3, Corollary 4.5, P.42] to Ay and Az, , there exista compact
operator K3 with ||Ks|| < &/(5|X1|||X; ||| X2]||X; ") and a natural number n such
that

Rh 0 0 O
BIZI N O O
E+Ks=10" o N ol|®N

0 By O T



A NEW CHARACTERIZATION OF THE CLOSURE OF THE (% + %) -ORBIT - - - 461

where Bj, and By, are finite rank operators, respectively. N =N, &N', N = N, N,
acts on a Hilbert space whose dimension is 7.

Claim. There exists a finite rank operator Z such that
NiZ' 2" (1)) = Biy.

Note that [11, Lemma 3.1] and [13, Lemma 3.10], we can assume that (7})* is of
upper triangular matrix representation

0 ap
(T)* = 0 as

where a;;11 #0 fori=1,2,---.

Let N* = diag{A;} |, Z* = (zj)ax be n x oo matrix whose elements are z;,
i=1,2---,n;j=1,2---. Since B}, is known, A; # 0 for i = 1,2,--- ,n.
a1 # 0 for i = 1,2,---, by solving equation NfZ* — Z*(T])* = Bj, , we can get
z;; step and step. Thus such Z* exists, by [3, Proposition 3.4, P.70], Z is bounded. The
proof of the Claim is completed.

1000
0100
Let X5 = 00 1 0 , then
0z 01
A B T
X(E+ KXy = | 01 N oo |®N=|By N O|@N,
By, 0 T

where BY| and B}, are finite rank operators, respectively.

Let & = [1Xu|[ X215 1211165 111X5 ™[I apply [2, Lemma 2.1] to N & 77,
then there exist a compact operator K4 with ||K4|| < €/(58) and a unitary operator U,
such that

G Tz/] ON.

Ur(X5(E + K3)X; ' + Ky)U; = F = [
where G is a finite rank operator.
Ry 0

G T
€/(58) and an invertible operator X, with the form unitary plus compact such that

Apply Lemma 2.2 to { ] , then there exist a compact Ks with ||Ks|| <

Xs(F+Ks)(Xs) "' =T, @ N.

By the above proof, the conclusion follows. |



462 F. ZHAI AND J. ZHAO

LEMMA 2.6. Let K € £ (H) be a compact operator and R = W + K € £(H)
satisfy the conditions (i), (i), (iii), (iv) in </ . Then Ry and R; are essentially normal
operators, respectively.

Proof. By [8, Theorem 3.38], R with respect to the decomposition H = Hy(R) &
H;(R) is of the form

0 R| H(R)
and o(Ry) C 0,(R). Let m denote the canonical map from ¥ (H) to .Z(H)/¢ (H),
we imply that 7(R*R) = n(W*W),

n(R;Ry) — 7(D1) n(R;B) ] _ {0 0]
n(B*Ry) n(B*B+ R/R;) — (D) 0o 0}’

R— {Ro B] Hy(R)

where D; and D, are diagonal operators, respectively.

Note that m(B*Rg) = 0, 6(Ry) C 0.(R), Ry is an invertible operator. Thus B*
is compact, so is B. Since R is an essentially normal operator, by simple computation,
we can imply that Ry and R; are essentially normal operators, respectively. |

3. The Proof of Theorem and Remark

The Proof of Theorem. Let N be the same as in Lemma 2.3, R € %. Note that
0o(R) = 0, apply [8, Theorem 3.48] to R, we can imply that there exists a compact
operator K; with ||K;|| < €/2 suchthat 6(R+K;) = ow(R) and minind(R+K,—A) =
0 for A € pr(R). Thus R + K satisfies the conditions (i), (ii), (iii), (iv) in <.

Apply BDF theorem ([8, Theorem 4.1]) to R + K; and W, then there exist a
unitary operator U and a compact operator C such that U(R+ K;)U* = W + C. By
Lemma 2.6, U(R + K;)U* € o/ . By Lemma 2.5 and the proof of Lemma 2.3, there
exist a compact operator K, with ||Kz|| < €/2 and an invertible operator X with form
unitary plus compact such that X(U(R + K;)U* + K2)X~! = T; & N. Note the the
assumptions of Theorem, by Lemma 2.3 (iii), R € (% + #)(T).

Conversely, by [8, Theorem 1.2] and [4, Proposition 0.6], the proof of Theorem is
completed. |

REMARK. Note that the proof of Theorem is independent of [6, Theorem 3.4]. In
fact, by [6, Theorem 3.4], we can also give a short proof about that R € % implies
Re (% + ) (T). Since, by [6, Theorem 3.4], = (% + 2 )(W), in order to prove
that R € (% + %)(T) when R € £, itis sufficient to show that W € (% + ¢ )(T).
Note that W € &7, by Lemma 2.5 and Lemma 2.3, then W € (% + ¢ )(T).
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