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A NOTE ON ANISOTROPIC POTENTIALS ASSOCIATED
WITH THE LAPLACE-BESSEL DIFFERENTIAL OPERATOR

JAVANSHIR J. HASANOV

(communicated by L. Rodman)

Abstract. In this note the anisotropic maximal operator and anisotropic Riesz potentials gen-
erated by the generalized shift operator are investigated in the anisotropic B -Morrey space
Lyoy (R{ ). We prove that the anisotropic B-maximal operator My is bounded on the

anisotropic B -Morrey space Ly, 3 (R} ). Also the anisotropic B-Riesz potential R)‘;‘ is
bounded from the anisotropic B-Morrey spaces L, ; (RZ’ 0Ly (RZ’ ) if and only if
1/p—1/q=0o/(lal + (a,y) —A) and 1 < p < (|a| + (a,y) —A)/a, and its modified version
R)‘ﬁ‘ is bounded from the anisotropic B -Morrey space to the anisotropic B-BMO space. Further-
more, we obtain some imbedding relations between the space Lp’ Ay (RZ +) and the anisotropic
B -Stummel-Kato class Spﬂ,}'(RZ,Jr) .

Introduction

The classical maximal operator and Riesz potentials are important technical tools
in harmonic analysis, theory of functions and partial differential equations. The max-
imal operator, singular integrals, Riesz potential and related topics associated with the
Laplace-Bessel differential operator
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Morrey spaces play an important role in the theory of partial differential equations.
The classical Morrey space L, ; (R") was introduced by C. B. Morrey in [19] to study
the local behavior of solutions to second order elliptic partial differential equations. In
[6] F. Chiarenza and M. Frasca proved the boundedness of maximal operator M, and
n [1] D. R. Adams proved the boundedness of the Riesz potential /* on the classical
Morrey spaces. The Morrey space L, 4 (R} ) (B-Morrey space) associated with the
Laplace-Bessel differential operator was studied by V. S. Guliyev in [11]. In [13] V. S.
Guliyev and J. J. Hasanov proved the boundedness of the B-maximal operator M, and
B -Riesz potential I)‘," on the B-Morrey spaces L, ; ,(R’) in the isotropic case.

In this paper we deal with the anisotropic B -maximal operator M, and anisotropic
B-Riesz potentials R on the anisotropic B-Morrey spaces L y (R}j ) If we take
a; = 1, i = 1, n inthe results obtained here we get the same results for the isotropic case.
We prove that the anisotropic M, is bounded on the anisotropic L, 2 y(R} ), 1 <p <
oo. We obtain necessary and sufficient conditions for the operator Ry to be bounded
from anisotropic Ly 4(R} ) to Lya, (R}, ) and from anisotropic L; (R}, ) to
weak anisotropic B-Morrey space WL, ; 4 (R}; +). Also we prove that the opera-
tor ﬁ? is bounded in the anisotropic L, ,(R},) to anisotropic B-BMO spaces.
Furthermore, we establish some imbedding relations between the spaces anisotropic
Lyy(R} ) and the anisotropic B-Stummel-Kato class S, 0, (R} ). We prove that
Lysy(R} ) is contained in S,0,(R},) if |a[+(a,7) — 0 < A < |a| + (a,7),
while, in the case ¢(t) ~ % the belonging of f to Sp.oy(RY ) is equivalent to
[ € Lpjaiay)—o+5y(RE ).

1. Preliminaries

Let R} , = {x=(01,0xy) ER": x; >0,...,,>0, L <k<n},and y =
M%)y 10> 00 >0, a = (ar,.,a0) € (0,00)", o] = 300, @,
(a,y) = S5 ai. For x # 0, let |x|, be a positive solution to the equation

1

St Xl *§ — 1. Note that |x|, is equivalent to S gl e

j=
cilxla < Z 1% < ealxla

for certain positive ¢; and ¢, (see [4]).
For a measurable set E C R} | let E(x,r) = {y € R}, : |x —yl, < r},

E(0,r) = E,,and |E|, = [; (x "dx then |E,|, = o(n,k, y)r\u|+ a¥) where

co(n,k,y)_/El( X)dx =27 *g"s 11 (%) ﬁr(%;1>.

The generalized shift operator 7% is defined by (see, for example [15, 17])

T (x cyk/ /f ¥ g =) dv(B),
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k
where dv(B) = [[sin" !B dBi...dB, ¥ = (x1,....,m) € RY
i=1

-xH - (-xk+l7' .. 7xn) S Rnika (-xi7yi)B,’ = (xlz - ininOSﬁi + ylZ)% 5 1 < i < ka
' _e o (s
(x7y)ﬁ: ((xbyl)ﬁn"'7(xk7yk)ﬁk) and C%k:n 2 1:[1 W

Let L, (R}, ) be the space of measurable functions on R}, with finite norm

1/p
1y = W gy ) = ( I v<x>|"<x’>ydx> S l<p<oo
k,+

For p = oo the space Looy (R} ) is defined by

I llees = Ifllzee = esssup |f (x)].

Xede»

Let 1 <p < oo. By WL, (R} ) we denote the weak L, spaces defined as the
set of locally integrable functions f with the finite norms

1w, :sggr|{xe11ag+ Sl >y

Itis well known that 77 is closely related to the Laplace-Bessel differential operator

n 02
Ap =) 52
I J

k
+> Z—ja% . Furthermore, 7% generates the corresponding B -convolution
j=1 i=1"

feex=[ fO)Tex)0)dy

n
Rk,+

for which the Young inequality

1 1 1
Hf®g||r,y<‘V‘||p,y||g‘|q,y7 1<P7¢]>”<00> ;+5:;+1
holds.
LEMMA 1. Let 1 <p < oo. Thenforall y € R |
177 Oy, < IF 1y, -
Proof. Firstly, we prove the lemma in the case p = 0o :
T
ITf (x)| < Cy / P (x’ — ', \/X2 4+ y2 — 2x,y, cos a) sin’ ! ada

0
bt

< Hf”Loo(RZJ Cy/siny—l ado = “f”Loo (RZ+) .

0
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Then
Ty = Ty < n :
H f”Looy (Rr]z#) || fHLoo (R']Zﬁ) HfHLoo (Rk#)

Secondly,let p = 1. Then we have

1751, sy = [ PP@IEY s [P0 oas

R R

— avs —

— [ e @yra=1rl, -
Ry

Applying the Riesz-Thorin theorem, for all y € R} | we get
V(- < .
||Tf( )HLp‘,y(RZ#) ~ |V‘||LP17(RZA’+)

LEMMA 2. Forall x € R | the following equality is valid

/ g 0)dy = Cjy / g ( 245,12 +3%7Z”> du(z,7),
E(x,1) B((x,0),1)

where B((x,0),1) = {(z,7) € R"x(0,00)% : [(x1—+/2} + 71, ., x—\/ 23 + Z5, 2" —

2,7
Na < t}, du(z,7) = (@) 'ded? , d7 = dzy - -dzi, (7)) = @) (Z) %L

LEMMA 3. Forall x € R} | the following equality is valid

/ T'g(x)(y') dy = / g(\/z%+z%,...,\/z,z+zz,z~)d
E; E((x,0),1)

where E((x,0),t) = {(z,7) € R" x (0,00)* : |(x—z,z_’)|a < t}.
The proof of Lemmas 2, 3 is straightforward via the following substitutions

" =x",zi=xicosqy, Z=xisinoy, 0< o <m,i=1,...k,
xeRY,, 7 =@, %), (2,7) ER* x (0,00)%, 1 <k<n

LEMMA 4. Let 0 < a < l|a|+ (a,y). Then for 2|x|, < |y|a the following
inequality is valid

Ty|x|gfla\f(w> _ |y|gfla\f(aw’ < 2|a\+(a#)fa+1|y|gfla\f(aw71|x|a. (1)

Proof. We will show that

/A
<o
0

77| lal=(@p) _ ‘y‘g—w—(a,y)’

|(( 7y)B7x —y )|Of lal—(ayy) 1y ‘a |a|— ‘””dv B).
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First estimate
“((X’J’)ﬁ’)/’ —y) |t Iylﬁ‘*'”‘*(“’”‘ :
By the theorem about mean value we get
[ M
[ = T | et

where min { ’ ((x’,yl)mx” - yﬂ)
Note that

aa|y|a}'

(e} < & <max {[((+,y)p, 2" = y")

3
(0552 = 3], < Wla + Do < 5

1
_‘y‘a

|((x’,y’)ﬁ,x” —y”) |u = |x = yla = |yla — |xla = 2

and

Xla + [Yla = Yo < [¥]a
Ya = 1x = yla < |x[a-

(38 x" =), = Ila < |
e — [((,3)p, 5" = ¥")|, <
Hence

1 3
_|y|ll < |((xlayl)ﬁ7xu 7yl/)|a < §|y|a7
H 7)’ ﬁ7-x -y )’a_‘y‘a’<|x|u

Thus we obtain (1). O
We define the anisotropic B-maximal operator (see [10]) as

Mif (1) = sup / I ()] dy.

Ey

Consider anisotropic B -Riesz potential as

B ) = [ PR 00 0< o< o+ (a)
k+
and isotropic B-Riesz potential as
BF = [ PR 00, 0<a<ny]
Rk#
The modified anisotropic B-Riesz potential

B (o) = [ (Tlele ) = e 0)) £ )0

k+
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where Ef = R,H\El

Let Ag = Z %Z +> 80 Ty >0, .., k. The following theorems are
=173 =1

true.

THEOREM 1. [18] If a-is an even non-negative integer, f (x)-is a finite, even
by the variables xi, ..., x;. function having /2 continuous derivatives by the variables
Xkt1, ---, Xn and o are continuous derivatives by xi, ..., xi, then the potential I;}‘f (x) is
a solution of the equation

DGl ulx) = £ (x).

DEFINITION 1. [10] Let 1 < p < 00, 0 < A < |a| + (a,7). We denote by
Lyay (R} ) the anisotropic B-Morrey spaces as the set of locally integrable functions
f with finite norm

Il = o Q“lﬁvvaww@ym

z>0,xe]R’];+
Note that Loy (Ry ) = Ly (RE 1), Ly, IaH(aV (Ri,) = Loo (RY)-
DEFINITION 2. [13] Let 1 < p < 00,0 < A < |a| + (a,7). We denote by

WLp,l,y(RZ, ) the weak anisotropic B-Morrey spaces as the set of locally integrable
functions f with finite norm

1/p
Wl =supr swp (o7 oyay|
PAY >0 >0, xeR} {y€E: TV|f (x)|>r}

Note that
WL,, (RZ, )= WLy 0y (Rk +) Py (RZ,Jr) C WLy (RZ,Jr)

and

F e, ,, < WF D, -

DEFINITION 3. [10] We denote by BMOy (R} , ), the B-BMO space the set of
locally integrable functions f with finite norms

Flley = sup |EL" [ TF(x) = fe ()| (V) dy < oo,
r>0,x€R'];+ Er

where fg, (x) = |Er|y_l fE, Tf (x)(y')"dy.
Following [22] ([21]) we define the anisotropic B -Stummel-Kato class:

DEFINITION 4. Let 1 < 6 < |a|+ (a,7), 1 < p < oo, then the anisotropic
B-Stummel-Kato class S, 0, (R} ) is defined by

Spox (R ) = {F € Lig(RL) : limo() =0},

1

I 1)’ ’

where ¢(7) = S;p (fEt|y(||a|+7ay>)e(yl)ydy> .
veRy |
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Note that L® contains so called Stummel-Kato class S ¢.

2. Statement of main results
The following theorem gives the anisotropic L, ; , -boundedness of the anisotropic
B -maximal operator.

THEOREM 2. 1) If f € Liay (Rp,), 0 < A < |a[+ (a,y), then Myf €
WLy (RZ&) and
||MYfHWL1,Ly < CHfHLMJn

where C is independent of f .
2)Iff € Lyay (RZ}Q, 1 <p<00,0 <A< |a+(ay), then Myf €
Lpyy (R ) and
IMif L,y < Coxllfllz, sy

where C,, dependsonlyon p,y and n.
COROLLARY 1. [9,11] 1) Iff € Liy (R, ), then Myf € WLy, (R} ) and

IMyf lwe,, < CUF ey

where C is independent of f .
2)Iff € Lpy(RE,), 1 <p < oo, then Myf € L,y (R} ,) and

HMYf”pr g CPvY”.fHLp.y’

where C,, depends only on p,y and n.

For the anisotropic B -Riesz potentials the following generalized Hardy-Littlewood
Sobolev theorem is valid.

THEOREM 3. Let 0 < o < |a| + (a,7), 0 < A < |a| + (a,7).

DIf1<p< W, then the condition [—17 - é = m is necessary
and sufficient for the boundedness of Ry from Ly, y(R} ) to Ly (R} ).

2)If p =1, then the condition 1 — é = m is necessary and sufficient for
the boundedness of Ry from Ly, (Rﬁﬁr) to WLy (R ).

COROLLARY 2. Let 0 < o < |a| + (a,y).

NIfl<p< W, then the condition [—17 — % = m is necessary and
sufficient for the boundedness of Ry from Ly, (R} ) to Lyy(R} ).
2)If p =1, then the condition 1 — é = m is necessary and sufficient for

the boundedness of Ry from Ly y(R] ,) to WLy, (R} ).

REMARK 1. Note that, the sufficiency part of Corollary 2 in the case n > 1, k =1
was proved in [9], (in the isotropic case or for a; = 1, i = 1,n the sufficiency part of
Theorem 3 was proved in [13], [14]) and in the case n =k > 1 in [11].
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THEOREM 4. Let 0 < a < |a|+ (a,y), 0< A <|a|+ (a,y)—cand 1 <p =
% then the operator RO‘ is bounded from Ly, 5 y(R} ) to BMOy (R} ).

Moreover, if for f € Ly, (R}, ), RYf exists almost everywhere, then Ry €
BMO, (R} , ) and the following inequality is valid

IRyS lsmo, < ClIf e, ;.

where C > 0 is independent of f .
In the following two theorems we give some imbedding relations between the space
Lyy (R} ) and the anisotropic B-Stummel-Kato class S, 0 (R} , ).

THEOREM 5. Letr 1 < 0 < |a|+ (a,7), 1 < p < o0, |a|+ (a,7) —0 < A <
la| + (a,y). If f € LP,A,Y(RZ,Q then f € Sp,e,y(RZ,Jr)-

THEOREM 6. Let 1 < 0 < |a[+(a,7), 1 < p < oc. Iff € Sp0y(R},),
@(1) ~ 10, then f € Ly a4 (ay)—o+5y (RLL)-

From theorem 1 and theorem 3 we have
0<A<n+ly|.

n n —A
DIff € Lyy(RE,), 1 <p< =2
estimation holds:

1 o]
g myxC

[—17 Then, the following

lull,, < Goa 18sul, -
where C, ; is independent of f .
2)Iff €eLiay(RE,), 1 - 5 = %. Then, the following estimation holds:
lulye, ,, < Ca I8l -

where Cj, is independent of f .

3. Proof of Theorems

Proof of Theorem 2. We need to introduce the maximal operator defined on a space
of homogeneous type (Y,d, v). By this we mean a topological space ¥ = R" x (0, oo )k
equipped with a continuous pseudometric d and a positive measure v satisfying

V(E((x,x7),2r)) < Cv(E((x, %), 7)) (2)
with a constant C; independent of (x ¥’) and r > 0. Here E((x7 x),r)={0,y) €
Y d(((x,X), (v,)) <rb.dv(y,y) = () dydy . () = ()"t )

d((x, ), (5,)) = (%) = (1, ¥)|a = (k= y2 + ¥ = ¥[2)?
Let (Y,d, v) be a space of homogeneous type. Define

M (6, 7) = sup V(E((x, ), )" / o L)

r>0 X

where £ (x, x’) (y/xl+x1,...7\/x,%+f,%,x”>.
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It is well known that the maximal operator M, is of weak type (1, 1) and is
bounded on L,(Y¥,dv) for 1 < p < co (see [5]). Here we concern with the maximal
operator defined by using the measure dv(y,y’) = (y')Y~'dy dy’. It is clear that this
measure satisfies the (2) doubling condition.

It can be proved that

M, f (x/z%+Z%,...,\/z%+z,%7z”> —va( 2+, z,%+z%,z”,0>7 (3)

and

Myf (x) = Myf (x,0). 4)
Indeed, by the Lemma 3 the equalities

/EVT—VP<\/Z%+Z%,.. A+ >‘ Y dy
- / 7.9 v, )
E((VATZ o /345.270) )

|E,|, = VE <(\/zf +7Z,.. 02 +z,§,z”,0) ,r)

imply (3). Furthermore, taking 7 = 0 in (3) we get (4).
Using Lemma 3 and equality (3) we obtain

and

| sy oy a
_/(x() <Myf<\/z1Tzl,.. \/szzk, )> dv(z,7')
- /E«X’O)J) <va <\/Z%TZ%, \/szzk,z” 0)> dv(z,7).

In [7] it was proved that the analogue of the Fefferman-Stein theorem for the
maximal operator defined on a space of homogeneous type is valid, if condition (2) is
satisfied. Therefore

/E o, (100 W)

<G / 100 T 5) dv(r ), (5)
E((xx

Then taking ¢(y,y’) = f (\/y1 S TRRRRYAY er,%,y”,O) and y(y,y) =1 we

obtain from inequality (5 ) and Lemma 3 that

/E (TMyf () () dy
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p
—/(( o ( of (\/y1+y17~--7\/yi+?i,y”70>) dv(y,y')
E((x,0),r

2 ! 7

/ }f <\/y1 +y1v"'a\/y%+ykay”a0> d\/(y,yl)
p
:CS/ }f < y%+y%aa y%+yl%ayl/)
E((x,0),r) \/ \/

=C3 /E (T If (0)])" (v')'dy < C3 r HfHZp,M' =

//\

dv(y,y’)

Proof of Theorem 3. 1) Sufficiency: Let f € Ly 5., (R}, ) , then we can write

REf(x) = ( L[ \E>T>f<x>y3‘-“'-<w><y'>my

Fl(x,t)+F2(x,t). (6)

Firstly, we estimate Fj(x,?):

Fi(en)| < [ Tl yle 4= @n () dy
E;

—1

<X @) [ Pl byay < cas ),

k=—o00 e \Exg,
We find the following inequality
16, 0)] < Cat™Myf (x). (7)

To estimate F(x,¢) we use Holder’s inequality and get the following inequality

1/p
P2l 0)] < ( I P @@y (y')Ydy>

(E+a—lal—(am)y v
8 / Vla* Ofdy | =Ji-Ja
RZ#\E,

Let A < B < |a| + (a,y) — ap. For J; we have

/zﬁlt\Eth
5% A5 o\ P i
251 HfHL (322 T e, ®)

j=0

@ )
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For J, we have

1
/

o (Bratad—@n) |
2= (/Sn IZ @&l (€ do(& )/ palan) =1+ (Freta—an)p dr)

k+  i=1
_ o laen
Then
_ la|+
[Fa(x, 1)] < Cot” HfHL ©)
From (7) and (9) we have
_ lal+@ y)
RSF ()] < Cut“Myf () + Cor™ "5

p/(lal+(ay)=2)
] we

Minimizing with respect to ¢, at ¢ = [(Myf (x)) 71l L,
obtain
(R ()] < G (Myf (0)" I 179

Hence, by Theorem 2 we find

[ @ Rl oy < el / (M, () () dy
<GP L, < ORI,

Necessity: Let 1 < p < W and Ry be bounded from L,; (R} ,) to
Ly y (RZ,+) :
Define f;(x) =: f (¢x). Then

_ lal+@y _a y oy Up
Wi, =7 s ([ @yl oy
tr

n
r>0, XERk,+

_ laj+@n =2 H(a V)=

= Iz, .

and
Ryfi(x) = " “Ryf (1x),
1/q
sl = s ([0 R @) 0

r>0’X€RZ.+
- laxen 2 V| pa q oy Va
=1 7 sup r (T ‘Ry (x)‘) )" dy
r>0, XGRZ,+ Err

lal+@y) =2 H(a V)~

= R,
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By the boundedness Ry from L, ; (R} ,) to Ly (R} ,)

la|+@y)=A _ la]+(@y)=4

HRafH Cpan, YIOH @ |VHL,,.M7
where C, q;”, depends only onp,q,A,y.k and n.
If 1 < ¢+ sy thenforall f € Ly, (RY ), we obtain [|Rf ||, =0

as t — 0
If 1 > 2 + aTaq—x then forall f € L,; (R} ) we obtain HR?fHLq,M =0

as t — o0.
1 _ 1 a
Therefore we get » =g T av@n=x
2) Sufficiency: Let f € Ly 5 4(R] | ), then we have
{y€E : T"|R}f ()] > 2[3}\ {y € E : T|Fi(x0)| > B},
+H{y €& T|Fax,0)] > B}, -

Taking into account inequality (7) and Theorem 2, we have

{y CE : T (Myf(x) > Cioz}

|{y € Et : Ty|F1()C,l‘)‘ > B}|y <

Y

|a|+
Thus if we choose Cet™ = [, then |F2(x,7)| < B and consequently

we get |{y € E, : T”|F(x, t)\ > B} |y = 0
Finally, we obtain

H{yeE : T |R§‘f(x | > 2B}|

I £ 1l rep %+ I | q
< Clota+lﬂ — C“t}L & _ C“tl Lijy
B B B

Necessity: Let Ry be bounded from Lj , (R} |
have

) to WLy, (RY,). Then we

1/q
—A
IR, = sopr s (= e
q.2.7 >0 T>O"’C€RZ,+ {y€Er : ﬂ’\R?f,(x)br}
1/q
=t"%sup r1* sup T / ()" dy
>0 T>0’X€RZ+ {y€Ezr : TW\R?f(tx)brto‘}

1/q
lal+(a.y)
=1 %77 supr® sup t)‘(t’L')fl/ (') dy
r>0 >0, x€RY | {YEETY|RYS (x)[>rt*}

_ ., lal+@n—2
=1 o q HR’l;(fHWLqA’y .
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From the boundedness of Ry from Lz, (R}, ) to WL 2, (R}, ) we obtain

lal+@n = _
IR Ny, < Crgagt™ 0 — ~0HE g,

where C; 1, dependsonlyon g,A,y,k and n.
1 n : —
If1< + W, then forall f € L1 2 4(R} ,) we obtain ||R$‘f||WLq.M =0

ast— 0.
Similarly, if 1 > + m, then for all f € Lz, (Ry,) we obtain

H Yf”WL Oastﬂoo.

_ 1 a
Therefore we get 1 = i T @ =% - 0

Proof of Theorem 4. f € L, ;. 4 (RZ’&) ,1<p= W For any t > 0 we
denote

f1@) =f @xe,(2),  f2(2) =f(2) = f1(2), (10)
where X, is the characteristic function of the set E,,. Then we have
RYf (2) = Rf1(2) + R%f2(2) = Fi(2) + Fa(2),
where

Fi(z) =/(T’IZ\°‘ = \y\“““"(”’”xE;f(y))f(y)(y’)ydy,

Eoy

Fy(z) = / (TyIZ\“ Jal~(a.¥) Iyl"‘"“"‘“’”x:s;(y))f(y)(y')ydy

7 e
Note that the function f; has compact (bounded) support and therefore

a = - / el =N f () )y

EZI\Emin{L,zr}

is finite.
Note also that

Fi() —ar = / P [£]@ ol =@0f (3) () dly

Eyt

- / ly|@la=@OF () (y) dy + / y[¢ =@ f () () dy
Ex\Epyin {101} Ex\Epin{1,01}

= [ PR = R )

R}‘l

k+
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Therefore

G —al< [ bl e PAE] o)

n
Rk,+

= [ e 6.
{y€R2’1+:T"|z\a<2t}

Further, for z € E,, T°|z|, < 2t we have
Ve < |2la + 12 = yla < |2l + T)2a < 3t

Consequently

Fi(z) —ar] < [ DIET0Tf ()] )y, (11)

E3

if z € E;.
By the Theorem 1 and the inequality (11), for ap = |a| + (a,y) — A we obtain

£ / TF\(2) — ] ()72

Et

<l [ { ey @yyay | @
3t

E;

1/p
lal+(ay)—aza

< Dol e /(TxMy(f(Z)))P(Z/)de

Et
< Culfle,,,- (12)
Denote
a= [ bl
Emax{l,Zt}\EZf

We estimate |F; (z) — ap| for z € E; .

@ -al< [ FO[PEE e - e oryay
Ry \E



|F2(z) — aa| < Cualzlat®” -
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Applying Lemma 4 and Hoélder’s inequality we have

Fale) = aaf < 2eenetpg, [ )yl t-en -1y
Ry \E

< 2\a|+(a,y)fa+l‘z|u /
R* \E

k+

(b+a—lal—(@n)-1)p' '
([ bl ') dy
R! \E:

— 2‘”|+(“’7>_°‘+1\z|a11 b

1/p
PO (y’)ydy>

t

Let A < B < |a|+ (a,y) — ap + p. For I; the inequality (8) is valid.
For I, we obtain

1

lal+(ar)—1+ (B +a—fa|~(ap)-1)p’ 7
L= </S" lzalg de )/ r (1’ ) dr)

k+ =1
B lal+@y) 1
+o— —=F
= Cp3t” L

Then for any z € E,

HfllL,,M < Cualelat™MIf e, 5, < Cuallflle, ;-
Thus for ap = |a| + (a,7) — A andforall x € R} ., z € E, we obtain
|T*F2(2) — az| < T" |F2(2) — az| < Cusllf Iz, ;.- (13)

Denote

G = ai+a = / |l () V.

Emax{lll}

Finally, from (12) and (13) we have

sup|E,\;1/ T"RO‘ —le‘ )z < (Cro+ Cu)llf e, -
Xt A
Thus
~ _1 g
‘R? ‘MO < 2sup |Ef, /TZR;}( —af‘ "VWdz < C15Hf||L O
V4 Xt

E;
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Proof of Theorem 5. Let f € L, ;. (R}, ) . Then we have

(T &))" )\)p S
/ |‘u|+ 0 Z /2k+1,\E2k, b"laH e(y ya

ly

< 3 e [ @rwyera

k=—o00 Eyer \Ey,

~1
—la|—(a,y)+A
HfHPle Z (2kt)9 la]—(a,y)+

k=—o00

< Cypt? 1@t 117 Ay
p

Thus the proof of the theorem is completed. [

Proof of Theorem 6. Let f € Sp oy (R{, ). Then we have

y a a - Tv i
/E, (T If (4)])Y (') dy < del+en) 9/ (ymf( BTl o yay
< MIHaN=0 (1) < flalHan) =0+,

This completes the proof. [
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