
Operators
and

Matrices
Volume 2, Number 4 (2008), 507–515

ESTIMATES OF INVERSES OF MULTIVARIABLE TOEPLITZ MATRICES
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(communicated by L. Rodman)

Abstract. The Gohberg-Semencul formula provides a formula for the inverse of a Toeplitz matrix
based on the entries in the first and last columns of the inverse, under certain nonsingularity
conditions. In this paper we study similar formulas for multivariable Toeplitz matrices, and we
show that in the positive definite case these expressions provide upper bounds for the inverse
in the Loewner order. Some numerical experiments regarding the proximity of the estimate are
included.

In this paper we prove the following multivariable generalization of the classical
Gohberg-Semencul formula (see [6]; see also [5] for matrix valued generalizations). We
first need some notation. As usual we let N0, Z, C, T, D denote the sets of nonnegative
integers, integers, complex numbers, complex numbers of modulus one, and complex
numbers of modulus less than one, respectively. In addition, we denote D = D∪T . Let
d � 1 . For z = (z1, . . . , zd) ∈ Cd and k = (k1, . . . , kd) ∈ Zd , we let zk = zk1

1 · · · zkd
d ,

where for negative ki we have zi �= 0 . When n = (n1, . . . , nd) ∈ Nd
0 we let n denote

the set n = n1 × · · · × nd , where p = {0, . . . , p} . When P(z) =
∑

k∈n Pkzk , we
say that P is a polynomial of degree at most n . We say that P is stable when P(z)
is invertible for z ∈ D

d
. With P we associate its adjoint P∗ , which is given by

P∗(z) =
∑

k∈n P∗
k z

−k .

THEOREM 0.1. Let n ∈ Nd
0 and P(z) =

∑
k∈n Pkzk and R(z) =

∑
k∈n Rkzk be

operator valued stable polynomials of degree at most n so that

P(z)P(z)∗ = R(z)∗R(z), z ∈ T
d.

Put
F(z) = P(z)∗−1P(z)−1 = R(z)−1R(z)∗−1, (0.1)

and let F(z) =
∑

j∈Zd Fjzj , z ∈ Td , be its Fourier expansion. Put Λ = n \ {n} . Then

0 < [(Fk−l)k,l∈Λ]−1 � AA∗ − B∗B, (0.2)

where
A = (Pk−l)k,l∈Λ, B = (Rk−l) k∈n+Λ

l∈Λ
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and Pk = Rk = 0 whenever k �∈ n . When d = 1 the second inequality in (0.2) is an
equality.

In Section 1 we will prove Theorem 0.1. In Section 2 we will perform some
numerical experiments.

1. Proof of the main result

Let us start by illustrating Theorem 0.1 by specifying it in a low dimensional case.

EXAMPLE 1.1. Let d = 2 and n1 = n2 = 2 . Thus Λ = ({0, 1, 2} × {0, 1, 2}) \
{(2, 2)} , which we will order lexicographically, giving

Λ = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)}.

Then

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00

P01 P00

P02 P01 P00

P10 P00

P11 P10 P01 P00

P12 P11 P10 P02 P01 P00

P20 P10 P00

P21 P20 P11 P10 P01 P00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R22 R21 R20 R12 R11 R10 R02 R01

R22 R21 R12 R11 R02

R22 R12

R22 R21 R20 R12 R11

R22 R21 R12

R22

R22 R21

R22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If we let

(Fk−l)k,l∈Λ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1532 0.0186 0.0005 0.0084 0.0155 0.0231 0.0118 −0.0079
0.0186 0.1532 0.0186 0.0005 0.0084 0.0155 0.0017 0.0118
0.0005 0.0186 0.1532 0.0016 0.0005 0.0084 0.0002 0.0017
0.0084 0.0005 0.0016 0.1532 0.0186 0.0005 0.0084 0.0155
0.0155 0.0084 0.0005 0.0186 0.1532 0.0186 0.0005 0.0084
0.0231 0.0155 0.0084 0.0005 0.0186 0.1532 0.0016 0.0005
0.0118 0.0017 0.0002 0.0084 0.0005 0.0016 0.1532 0.0186
−0.0079 0.0118 0.0017 0.0155 0.0084 0.0005 0.0186 0.1532

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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then AA∗ − B∗B − [(Fk−l)k,l∈Λ]−1 equals the positive semidefinite matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0.1193 0.0566 0 −0.0166 0.0954 0 0
0 0.0566 0.2564 0 0.0003 0.0339 0 0
0 0 0 0.0813 −0.0441 0 −0.0249 −0.0309
0 −0.0166 0.0003 −0.0441 0.0494 −0.0129 0.0528 0.0262
0 0.0954 0.0339 0 −0.0129 0.0795 0 0
0 0 0 −0.0249 0.0528 0 0.1575 −0.0183
0 0 0 −0.0309 0.0262 0 −0.0183 0.0622

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The zeros in the matrix are no coincidence. Some zeros are easily explained using the
main result in [2]. We will explain this further when we provide a new proof for one of
the directions of that result (see Corollary 1.6).

We now need a few lemmas.

LEMMA 1.2. Assume that the operator matrix (Aij)2
i,j=1 : H1 ⊕ H2 → H1 ⊕ H2

and the operator A22 are invertible. Then S = A11 − A12A
−1
22 A21 is invertible and

(
A11 A12

A21 A22

)−1

=
(

S−1 ∗
∗ ∗

)
. (1.3)

Proof. Follows directly from the factorization
(

A11 − A12A
−1
22 A21 0

0 A22

)
=

(
I −A12A

−1
22

0 I

) (
A11 A12

A21 A22

) (
I 0

−A−1
22 A21 I

)
.

(1.4)
�

We will be interested in looking at equation (1.3) in the following way: suppose
that we have identified the inverse of a block matrix, and we are interested in the inverse
of the (1,1) block. Then taking a Schur complement in the inverse of the complete
block matrix gives us a formula for the inverse of this (1,1) block. Below is one way
one can use this observation.

LEMMA 1.3. Let lower/upper and upper/lower factorizations of the inverse of a
block matrix be given, as follows:

(
B11 B12

B21 B22

)−1

=
(

P11 0
P21 P22

) (
Q11 Q12

0 Q22

)
(1.5)

=
(

R11 R12

0 R22

) (
T11 0
T21 T22

)
, (1.6)

and suppose that R22 and T22 are invertible. Then

B11 = P11Q11 − R12T21. (1.7)
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Proof. Apply Lemma 1.2 to the equality

(
B11 B12

B21 B22

)−1

=
(

P11Q11 R12T22

R22T21 R22T22

)
.

�

COROLLARY 1.4. Consider a positive definite operator matrix (Bij)3
i,j=1 of which

the lower/upper and upper/lower block Cholesky factorizations of its inverse are given,
as follows:

[(Bij)3
i,j=1]

−1 =

⎛
⎝P11 0 0

P21 P22 0
P31 P32 P33

⎞
⎠

⎛
⎝P∗

11 P∗
21 P∗

31
0 P∗

22 P∗
32

0 0 P∗
33

⎞
⎠ (1.8)

=

⎛
⎝R∗

11 R∗
21 R∗

31
0 R∗

22 R∗
32

0 0 R∗
33

⎞
⎠

⎛
⎝R11 0 0

R21 R22 0
R31 R32 R33

⎞
⎠ , (1.9)

with R22 and R33 invertible. Then

B−1
11 = P11P

∗
11 − R∗

21R21 − R∗
31R31 � P11P

∗
11 − R∗

31R31. (1.10)

Proof. By Lemma 1.3 we have that

B−1
11 = P11P

∗
11 − ( R∗

21 R∗
31 )

(
R21

R31

)

= P11P
∗
11 − R∗

21R21 − R∗
31R31 � P11P

∗
11 − R∗

31R31. (1.11)

�
Before we prove the main result, we need to introduce some notation. Let H be

a Hilbert space and let B(H ) denote the Banach space of bounded linear operators
on H . We let L∞ = L∞(Td; B(H )) denote the Lebesgue space of essentially
bounded B(H ) -valued measurable functions on Td , and we let L2 = L2(Td ; H )
and H2 = H2(Td ; H ) denote the Lebesgue and Hardy space of square integrable H -
valued functions on Td , respectively. As usual we view H2 as a subspace of L2 . For
L(z) =

∑
i∈Zd Lizi ∈ L∞ we will consider its multiplication operator ML : L2 → L2

given by

(ML(f ))(z) = L(z)f (z).

The Toeplitz operator TL : H2 → H2 is defined as the compression of ML to H2 .
For Λ ⊂ Z

d we let SΛ denote the subspace {F ∈ L2 : F(z) =
∑

k∈Λ Fkzk} of L2

consisting of those functions with Fourier support in Λ . In addition, we let PΛ denote
the orthogonal projection onto SΛ . So, for instance, P

N
d
0

is the orthogonal projection
onto H2 and TL = P

N
d
0
MLP∗

N
d
0

.
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Proof of Theorem 0.1. Clearly we have that MF−1 = MPMP∗ = MR∗MR . With
respect to the decomposition L2 = H⊥

2 ⊕ H2 we get that

MF =
( ∗ ∗
∗ TF

)
, MP =

( ∗ 0
∗ TP

)
, MP−1 =

( ∗ 0
∗ TP−1

)
, (1.12)

MR =
( ∗ 0
∗ TR

)
, MR−1 =

( ∗ 0
∗ TR−1

)
, (1.13)

where we used that MP±1 [H2] ⊂ H2 and MR±1 [H2] ⊂ H2 which follows as P±1 and
R±1 are analytic in Dd . It now follows that TF = (TP)∗−1(TP)−1 and thus

(TF)−1 = TP(TP)∗. (1.14)

Next, decompose H2 = SΛ⊕ SΘ⊕ Sn+N
d
0
, where Λ = n \ {n} and Θ = N

d
0 \ (Λ∪ (n+

Nd
0)) , and write TP and TR with respect to this decomposition:

TP =

⎛
⎝ P11

P21 P22

P31 P32 P33

⎞
⎠ , TR =

⎛
⎝ R11

R21 R22

R31 R32 R33

⎞
⎠ . (1.15)

As the Fourier support of P and R lies in n , and as P(z)P(z)∗ = R(z)∗R(z) on Td , it
is not hard to show that

TPT∗
PP∗

n+N
d
0

= T∗
RTRP∗

n+N
d
0
, (1.16)

which yields that

P31P
∗
31 + P32P

∗
32 + P33P

∗
33 = R∗

33R33, P21P
∗
31 + P22P

∗
32 = R∗

32R33, P11P
∗
31 = R∗

31R11.

Thus we can factor TPT∗
P as

TPT∗
P =

⎛
⎝ R̃∗

11 R̃∗
21 R∗

31
R̃∗

22 R∗
32

R∗
33

⎞
⎠

⎛
⎝ R̃11

R̃21 R̃22

R31 R32 R33

⎞
⎠ , (1.17)

for some R̃11, R̃21 and R̃22 . Combining now (1.14) with the two factorizations of TPT∗
P

given via (1.17), we get by Corollary 1.4 that

[(Fk−l)k,l∈Λ]−1 � P11P
∗
11 − R31R

∗
31.

This proves the claim. �
A more detailed analysis of where TPT∗

P and T∗
RTR coincide, other than indicated

in (1.16), gives an alternative way to prove one direction of Theorem2.4.1 (the direction
(i) → (iii)) in [2] (see also [3] for the operator valued case). As we will see in the
proof, the argument works only in the case of two variables (d = 2 ).

THEOREM 1.5. [2] Let d = 2 and let n, P, R, F and Λ be as in Theorem 0.1.
Then

[(Fk−l)k,l∈Λ]−1

has zeroes in location (k, l) = ((k1, k2), (l1, l2)) where (k1, l2) = (n1, n2) or where
(k2, l1) = (n2, n1) .
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Proof. Let us decompose H2 as

H2 = Sn1−1×n2−1⊕Sn1−1×{n2}⊕S{n1}×n2−1⊕Sn1+N×n2−1⊕Sn1−1×n2+N⊕Sn+N2
0
. (1.18)

Writing TPT∗
P − T∗

RTR with respect to this decomposition we get that this operator is of
the form

TPT∗
P − T∗

RTR =

⎛
⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗ 0
∗ 0 ∗ ∗ 0 0
∗ 0 ∗ ∗ 0 0
∗ ∗ 0 0 ∗ 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

For instance, to explain the zeroes in the (2, 3) and (2, 4) positions, note that

Pn1−1×{n2}TPT∗
PP∗

(n1+N0)×n2−1 = Pn1−1×{n2}T
∗
RTRP∗

(n1+N0)×n2−1.

The fact that the last column is zero (and by symmetry, the last row) comes from
observation (1.16). As a general observation, notice that if operator matrices G and
H coincide on certain locations, then so will the Schur complement expressions G −
KL−1K∗ and H − KL−1K∗ . Therefore, taking the Schur complement in TPT∗

P and
T∗

RTR with respect to the last row and column (which is where they completely coincide),
we see that the resulting operators ΣP and ΣR , respectively, satisfy

ΣP − ΣR =

⎛
⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗
∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0
∗ ∗ 0 0 ∗

⎞
⎟⎟⎟⎠ . (1.19)

The matrix [(Fk−l)k,l∈Λ]−1 is the Schur complement of TPT∗
P supported in Λ , which is

the same as the Schur complement in ΣP supported in the first three rows and columns
(as Λ = (n1 − 1 × n2 − 1) ∪ (n1 − 1 × {n2}) ∪ ({n1} × n2 − 1) ). Using Lemma 2.1
in [1] one gets that ΣR = G∗G where

G = (Rk−l)k,l∈N2
0\n+N2

0
.

With respect to the decomposition (1.18) we have that ΣR is of the form

ΣR =

⎛
⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗
∗ 0 ∗ ∗ 0
∗ 0 ∗ ∗ 0
∗ ∗ 0 0 ∗

⎞
⎟⎟⎟⎠ .

By (1.19) it follows that ΣP must have the same form. But now, if we take the Schur
complement in ΣP supported in the first three rows and columns, we get that

[(Fk−l)k,l∈Λ]−1 =

⎛
⎝ ∗ ∗ ∗

∗ ∗ 0
∗ 0 ∗

⎞
⎠−

⎛
⎝ ∗ ∗

0 ∗
∗ 0

⎞
⎠ ( ∗ 0

0 ∗
)−1 ( ∗ 0 ∗

∗ ∗ 0

)
=

⎛
⎝ ∗ ∗ ∗

∗ ∗ 0
∗ 0 ∗

⎞
⎠ .
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This proves the result. �

COROLLARY 1.6. Let d = 2 and let A, B and F be as in Theorem 0.1. Then

AA∗ − B∗B − [(Fk−l)k,l∈Λ]−1

has zeros in the locations (k, l) = ((k1, k2), (l1, l2)) where k = 0 or l = 0 or
(k1, l2) = (n1, n2) or (k2, l1) = (n2, n1) .

Proof. As AA∗ , B∗B and [(Fk−l)k,l∈Λ]−1 all have zeros in positions (k, l) =
((k1, k2), (l1, l2)) where (k1, l2) = (n1, n2) or (k2, l1) = (n2, n1) , then so does AA∗ −
B∗B − [(Fk−l)k,l∈Λ]−1 . It therefore remains to show that AA∗ − B∗B − [(Fk−l)k,l∈Λ]−1

has zeros in locations (k, l) where k or l is zero. We focus on the case when l = 0 .
We will show this by showing that [(Fk−l)k,l∈Λ]−1 and AA∗ −B∗B coincide in the first
column ( l = 0 ). It follows from the equality (0.1). Indeed, as F(z)P(z) = P(z)∗−1

and P(z) is stable, we have that
∑
l∈n

F−lPl = P∗−1
0 ,

∑
l∈n

Fk−lPl = 0, k ∈ n \ {0}. (1.20)

In addition, since F(z)R(z)∗ = R(z)−1 , we also have that
∑
l∈n

FlR
∗
l = R−1

0 ,
∑
l∈n

Fl−kR
∗
l = 0, k ∈ −n \ {0}. (1.21)

Replacing l by n − l , and k by n − k in (1.21) we obtain
∑
l∈n

Fn−lR
∗
n−l = R−1

0 ,
∑
l∈n

Fk−lR
∗
n−l = 0, k ∈ Λ. (1.22)

Now (1.20) implies that
∑

l∈Λ F−lPl = P∗−1
0 − F−nPn , and thus

∑
l∈Λ

F−lPlP
∗
0 = I − F−nPnP

∗
0 . (1.23)

Equation (1.22) with k = 0 and multiplied on the right with Rn implies that
∑
l∈Λ

F−lR
∗
n−lRn = −F−nR

∗
0Rn. (1.24)

Using that P(z)P(z)∗ = R(z)∗R(z) , and thus PnP∗
0 = R∗

0Rn , we get by combining
(1.23) and (1.24) that

∑
l∈Λ

F−lPlP
∗
0 −

∑
l∈Λ

F−lR
∗
n−lRn = I. (1.25)

Next, combining (1.20) and (1.22), we get that
∑
l∈Λ

Fk−lPlP
∗
0 −

∑
l∈Λ

Fk−lR
∗
n−lRn = Fn−lPnP

∗
0 − Fn−lR

∗
0Rn = 0, k ∈ Λ \ {0}. (1.26)
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Combining (1.25) and (1.26) yields that

[(Fk−l)k,l∈Λ](AA∗ − B∗B)

has a first column equal to ( I 0 · · · 0 )T , and thus the first columnsof [(Fk−l)k,l∈Λ]−1

and AA∗ − B∗B coincide. This proves the claim. �

2. Numerical results

The result in Theorem 0.1 may lead to effective algorithms for dealing with multi-
level positive definite matrices. We have performed some numerical experiments where
the off-diagonal entries of the symmetric multilevel Toeplitz matrix were chosen to be
random numbers in the interval [−1, 1] , and the main diagonal entry was chosen so that
1 is the smallest eigenvalue of the matrix. Below the results are shown.

size(T) λmax(T−1 − AA∗ + B∗B)/λmax(T−1) cond(T) cond((AA∗ − B∗B)T)

24 0.1563 4.5806 1.4535
24 0.1415 4.3732 1.3832
24 0.1644 4.2670 1.5566
99 0.2507 8.0674 2.9742
99 0.2347 9.1402 2.6518
99 0.2284 5.8057 2.1937
399 0.3223 21.8879 8.3612
399 0.2403 6.8317 2.5388
399 0.1469 3.6809 1.5269
1599 0.2881 37.2075 11.1203
1599 0.1968 6.7081 2.1329
1599 0.2055 6.6974 2.0156

One sees that the maximal eigenvalue of T−1 − (AA∗ −B∗B) ranges between 0.14 and
0.33 times the maximial eigenvalue of T−1 , and the condition number of (AA∗−B∗B)T
is in all cases less than half the condition number of T . In the three variable case we
get similar results:

size(T) λmax(T−1 − AA∗ + B∗B)/λmax(T) cond(T) cond((AA∗ − B∗B)T)

26 0.1151 3.8545 1.3411
26 0.1662 3.8994 1.5386
26 0.2367 12.2489 2.8928
124 0.2208 4.2367 2.0020
124 0.1755 3.3766 1.6656
124 0.2222 4.1797 1.8494

It seems that these are encouraging signs that the Gohberg-Semencul expression can
be used in finding a fast algorithm for linear systems involving multivariable Toeplitz
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matrices. We plan to pursue this in a future publication. Let us mention that in [9]
an approximation algorithm using matrices of so-called low tensor rank is proposed
for this multivariable setting, and they state initial "encouraging" results. Other papers
have indicated negative results, such as [10] where it was shown that any circulant-like
preconditioner for multivariable Toeplitz matrices is not superlinear (this result was
later generalized for other classes of preconditioners; see [11]). One of the main reasons
for the lack of fast algorithms for the multivariable Toeplitz setting has been that the
highly useful Gohberg-Semencul and related formulas (see [6], [7], [8], [12], [4]) for the
inverse matrices have only been established in the one-variable case.
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