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ASYMPTOTIC PSEUDOMODES OF TOEPLITZ MATRICES
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(communicated by L. Rodman)

Abstract. Questions in probability and statistical physics lead to the problem of finding the eigen-
vectors associated with the extreme eigenvalues of Toeplitz matrices generated by Fisher-Hartwig
symbols. We here simplify the problem and consider pseudomodes instead of eigenvectors. This
replacement allows us to treat fairly general symbols, which are far beyond Fisher-Hartwig sym-
bols. Our main result delivers a variety of concrete unit vectors xn such that if Tn(a) is the
n × n truncation of the infinite Toeplitz matrix generated by a function a ∈ L1 satisfying mild
additional conditions and λ is in the range of this function, then ‖Tn(a)xn − λxn‖ → 0 .

1. Introduction and main results

The n × n Toeplitz matrix Tn(a) generated by a complex-valued function a
belonging to L1 := L1(0, 2π) is the matrix (aj−k)n

j,k=1 constituted by the Fourier
coefficients

ak =
1
2π

∫ 2π

0
a(θ)e−ikθdθ (k ∈ Z)

of the function a . For a real number number α ∈ (0, 1
2 ) , put

ωα(θ) = |1 − eiθ |−2α = 2−2α
∣∣∣∣sin θ

2

∣∣∣∣
−2α

.

This function, which is a special so-called Fisher-Hartwig symbol, is in L1 and its
Fourier coefficients are

(ωα)k = Γ(1 − 2α)
sinπα

π(|k| + α)
Γ(|k| + 1 + α)
Γ(|k| + 1 − α)

∼ Γ(1 − 2α)
sin πα
π

1
|k|1−2α ,

where xk ∼ yk means that xk/yk → 1 . Clearly, ωα is real-valued, even (after extension
to a 2π -periodic function on R ), and minθ ωα(θ) = ωα(π) = 2−2α . The matrices
Tn(ωα) are symmetric and positive definite. Let

λ1(Tn(ωα)) � λ2(Tn(ωα)) � . . . � λn(Tn(ωα))
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be the eigenvalues of Tn(ωα) . It is well known that λk(Tn(ωα)) → ωα(π) as n → ∞
for each fixed k � 1 . Matlab shows that the normalized eigenvectors for λk(Tn(ωα))
are very close to √

2
n + 1

(
(−1)j+1 sin

jkπ
n + 1

)n

j=1

(1)

(see Figures 1 and 2).
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Figure 1. We see a normalized eigenvector for λ1(T39(ω1/4)) = 0.7074 (crosses)

and the values of
√

2
40 (−1)j+1 sin πj

40 for j = 1, . . . , 39 (circles).
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Figure 2. These are a normalized eigenvector for λ2(T39(ω1/4)) = 0.7082 (crosses)

and the values of
√

2
40 (−1)j+1 sin 2πj

40 for j = 1, . . . , 39 (circles).
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The matrices Tn(ωα) are of interest for probabilists and statistical physicists. Let
us first explain the connection with probability theory. Fractional Brownian motion
(FBM for short) with Hurst index H ∈ (0, 1) is by definition the centered Gaussian
process BH

t , t > 0 , with covariance function E[BH
s BH

t ] = 1
2 (s

2H + t2H − |t − s|2H) . It
has (H−ε) -Hölder continuous trajectories for any ε > 0 , so the process gets more and
more irregular as H → 0 . The case H = 1

2 corresponds to Brownian motion, which
is Markov. Leaving aside this case, one has a non-Markovian Gaussian process with
stationary increments, with very different properties depending on whether H > 1

2 or
H < 1

2 . A result known as the “invariance principle” (see the book by Samorodnitsky
and Taqqu [14, Theorem 7.2.11]) states that, if H > 1

2 , then

N−H
∑

1�j�[tN]

Yj → 1√
H|2H − 1|B

H
t (0 � t � 1) as N → ∞

(convergence of finite-dimensional distributions) if Yj , j ∈ Z , is any stationary se-
quence of centered Gaussian variables with a covariance function such that

E[YjYk] =: r(|j − k|) ∼ |k − j|2H−2 as |j − k| → ∞.

Hence one may choose in particular the stationary covariance function associated with
the above Toeplitz matrix Tn(ωα) for α = H − 1

2 , namely, E[YjYk] = (ωH− 1
2
)j−k.

The same is true for H < 1
2 provided that

∑
j∈Z

E[Y0Yj] =
∑

j∈Z
r(|j|) = 0 , which

is valid for Tn(ωα) (note that α ∈ (− 1
2 , 0) is negative in that case, which leads to a

bounded Toeplitz operator). Knowing a quasi-exact diagonalization of the covariance
matrix may help to compute the law of some functionals of FBM.

As for physicists, they are interested in studying finite-size effects for Gauss-
ian lattice models with long-range interactions. Namely, consider real-valued spins
σ(i), i ∈ Λ on a d -dimensional lattice Λ ⊂ Z

d , and attach to each configuration
{σ} = (σ(i))i∈Λ ∈ R

Λ a Boltzmann weight proportional to exp−βQ({σ}) , where
β > 0 is the inverse of the temperature and Q is a quadratic form with a spectrumwhich
is bounded below. The lattice is here considered to be infinite in d − 1 dimensions,
and finite with n layers in the d th direction. Assuming d = 1 , this is equivalent to the
above discretization of FBM if one sets Qn = (Tn(ωα))−1 on Λ = {1, . . . , n} . The
matrix Qn is no longer a Toeplitz matrix, but (Qn)i,j ∼ C|i − j|−1−2α as n and |i − j|
go to infinity with i, j staying close to the middle, that is, with i/n, j/n → 1

2 ; this is a
consequence of an exact formula for Qn which known as the Duduchava-Roch theorem;
see [7, Prop. 2.2]. Alternatively, one may set Qn = Tn(ω−α) , which gives an interac-
tion depending only on the distance of the sites, but then of course the covariance matrix
is no more stationary. In any case, physicists have been considering a Gaussian variant
of this model (called “ferromagnetic spherical model” in the literature, see [3]) for
α ∈ (0, 1

2 ) , exhibiting a second-order phase transition at a positive critical temperature.
Fine computations of finite-size effects have been obtained (see the book by Brankov,
Danchev, and Tonchev [2]) for the partition function (free energy), the susceptibility
(related to the integrated correlation function), the shift of the critical temperature, etc.,
relying on the non too physical “periodic boundary condition”, which is more or less
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equivalent to replacing the Toeplitz matrix with its optimal circulant approximation. For
the simplest computations, only the spectrum of the Toeplitz matrix is needed, so their
results might be extended to the case of free boundary conditions (corresponding to
the usual Toeplitz matrix) by taking into account corrections to Szegö’s theorem on the
asymptotic spectrum. But for the most interesting results, one needs to diagonalize the
quadratic form Qn . Note that different (including free) boundary conditions have been
analyzed in the case of short-range interactions, where the Toeplitz matrix has only a
finite number of non-zero diagonals and can be easily diagonalized; see [1]. Even in that
simple case, finite-size effects depend strongly on the choice of boundary conditions.

This paper arose from the attempt to prove that (1) is indeed close to a k th
eigenvector of Tn(ωα) . We have not been able to achieve this goal, but in the course of
our efforts we gained some insights that might be of independent interest.

Let {An}∞n=1 be a sequence of d(n) × d(n) matrices. We think of An as a linear
operator on Cd(n) with the �2 norm. The operator norm (= spectral norm) of An is
denoted by ‖An‖ . Fix a point λ ∈ C . We call a sequence {xn}∞n=1 of nonzero vectors
xn ∈ Cd(n) an asymptotic eigenvector for λ if there exist two sequences {λn}∞n=1 and
{vn}∞n=1 such that

vn �= 0, Anvn = λnvn, λn → λ ,

∥∥∥∥ xn

‖xn‖ − vn

‖vn‖
∥∥∥∥→ 0,

and we refer to the sequence {xn}∞n=1 as an asymptotic pseudomode for λ if

‖Anxn − λxn‖
‖xn‖ → 0.

Frequently we simply say that xn itself is an asymptotic eigenvector or an asymptotic
pseudomode. Trefethen and Embree’s book [17] is the standard reference to this topic.

If ‖An‖ � M < ∞ for all n , then

‖Anxn − λxn‖
‖xn‖ � M

∥∥∥∥ xn

‖xn‖ − vn

‖vn‖
∥∥∥∥+ |λ |

∥∥∥∥ xn

‖xn‖ − vn

‖vn‖
∥∥∥∥

and hence asymptotic eigenvectors are automatically asymptotic pseudomodes. This
is no longer true if lim sup ‖An‖ = ∞ (see Proposition 2.1 below). Furthermore,
independently of whether ‖An‖ remains bounded or not, asymptotic pseudomodes
need not to be asymptotic eigenvectors (Theorems 1.1 and 1.2 provide us with plenty
of examples). Since ‖Tn(ωα)‖ ∼ Cαn2α with some constant Cα (see [8]), it follows
that for Tn(ωα) (0 < α < 1/2 ) the notions of asymptotic eigenvectors and asymptotic
pseudomodes are two completely different concepts: an asymptotic eigenvector is not
necessarily an asymptotic pseudomode and vice versa.

We denote by C1+γ [0, π] the set of all continuously differentiable functions on
[0, π] whose derivative satisfies a Hölder condition with the exponent γ and we let
R[0, π] stand for the set of all Riemann integrable functions on [0, π] .
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THEOREM 1.1. Let a ∈ L1 and suppose a is continuous in an open neighborhood
of π . If f ∈ C1+γ [0, π] for some γ > 0 , then(√

2
n + 1

(−1)j+1f

(
jπ

n + 1

))n

j=1

is an asymptotic pseudomode of Tn(a) for λ = a(π) .

This theorem implies that the vectors (1) are asymptotic pseudomodes of Tn(ωα)
for λ = ωα(π) . The following theorem shows that if we make stronger assumptions
on a , then we may relax the requirements for f .

THEOREM 1.2. Let a be in L∞ := L∞(0, 2π) and suppose a is continuous in
an open neighborhood of π . If f ∈ R[0, π] , then(√

2
n + 1

(−1)j+1f

(
jπ

n + 1

))n

j=1

is an asymptotic pseudomode of Tn(a) for λ = a(π) .

Theorems 1.1 and 1.2 concern individual pseudomodes. A result on the collective
behavior of asymptotic pseudomodes is in [19]. Let

Un =
1√
n

(
e2πijk/n

)n−1

j,k=0

be the Fourier matrix and denote by Unek the k th column of Un . Zamarashkin and
Tyrtyshnikov [19] observed that if a ∈ L2 := L2(0, 2π) , then

n−1∑
k=0

‖Tn(a)Unek − λn−k+1(Cn(a))Unek‖2 = o(n) (2)

where diag (λ0(Cn(a))), . . . , λn−1(Cn(a)) := UnCn(a)U∗
n and Cn(a) is the optimal

circulant matrix for Tn(a) , that is, the uniquely determined circulant matrix X for
which the Frobenius norm of Tn(a) − X is minimal. They also stated that (2) does not
necessarily hold for a ∈ L1 , but that if a ∈ L1 , then for each ε > 0 the number of
k ∈ {0, 1, . . . , n − 1} for which

min
λ

‖Tn(a)Unek − λUnek‖ � ε

is o(n) . We here prove the following.

THEOREM 1.3. Let a ∈ L1 and suppose the 2π -periodic extension of a is
continuous in an open neighborhood of θ0 = 2π(1 − β) ∈ [0, 2π] . Then

‖Tn(a)Unek − a(θ0)Unek‖ → 0

whenever n → ∞ and k = βn + O(1) . In other terms, Uneβn+O(1) is an asymptotic
pseudomode of Tn(a) for λ = a(2π(1 − β)) .
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While (2), after division by n , may be regarded as a result on convergence in the
mean, Theorem 1.3 may be viewed as a result on pointwise convergence.

2. Additional remarks

Here is the simple observation we mentioned in Section 1.

PROPOSITION 2.1. Let {An} be a sequence of matrices such that ‖An‖ → ∞ .
Suppose λ ∈ C is a limiting point of the spectra of An , that is, there exist λn and
vn such that ‖vn‖ = 1 , Anvn = λnvn , and λn → λ . Then the sequence {An} has
asymptotic eigenvectors for λ which are not asymptotic pseudomodes for λ .

Proof. There are yn such that ‖yn‖ = 1 and ‖Anyn‖ = ‖An‖ . Put εn = 1/
√‖An‖

and xn = vn + εnyn . Since ‖xn‖ → 1 and ‖xn − vn‖ = εn → 0 , the sequence {xn} is
an asymptotic eigenvector for λ . On the other hand,

Anxn − λxn = An(vn + εnyn) − λ (vn + εnyn) = εnAnyn − (λ − λn)vn − λεnyn,

whence ‖Anxn − λxn‖ � εn‖An‖ − |λ − λn| − |λ |εn → ∞ . �
The following is obvious.

PROPOSITION 2.2. Let {An} be a sequence of matrices and λ ∈ C . Suppose
An − λ I is invertible for all n . Then ‖(An − λ I)−1‖ � αn for all n if and only if there
exists a sequence {xn} such that ‖Anxn − λxn‖/‖xn‖ � 1/αn .

From the work of Kac, Murdock, Szegö [10], Widom [18], Parter [11], [12], and
Serra [15], [16] it is known that there exist constants c1, c2 ∈ (0,∞) such that

c1

n2
� λ1(Tn(ωα)) − ωα(π) � c2

n2

for all n . Since Tn(ωα) is selfadjoint, this implies that

n2

c2
� ‖(Tn(ωα) − ωα(π)I)−1‖ � n2

c1
.

Thus, Proposition 2.2 reveals that there exist asymptotic pseudomodes xn such that

‖Tn(ωα)xn − ωα(π)xn‖
‖xn‖ (3)

does not exceed c2/n2 , but that there is no asymptotic pseudomode xn for which (3) is
o(1/n2) .

For a vector x = (x0, . . . , xn−1) ∈ Cn , we define the trigonometric polynomial Fx
by

(Fx)(θ) =
n−1∑
�=0

x�e
i�θ (θ ∈ R). (4)
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Clearly, the j th component of Tn(a)x equals the j th Fourier coefficient of the product
of a and Fx ,

(Tn(a)x)j =
1
2π

∫ 2π

0
a(θ)(Fx)(θ)e−ijθdθ (j = 0, . . . , n − 1). (5)

The following proposition is a simple application of (5) and reveals that Tn(a)
has asymptotic pseudomodes that are completely different from those of Theorems 1.1
and 1.2.

PROPOSITION 2.3. Let a ∈ L1 and suppose |a(θ) − a(π)| = O(|θ − π|) as
θ → π . Then the vectors xn given by

(xn)j = (−1)j

(
n − 1

j

)
(j = 0, . . . , n − 1)

are an asymptotic pseudomode of Tn(a) for λ = a(π) .

Proof. We have

(Fxn)(θ) = (1 − eiθ)n−1 =
(
−2i sin

θ
2

)n−1

eiθ(n−1)/2.

This implies that

‖xn‖2 =
1
2π

∫ 2π

0

∣∣∣∣2 sin
θ
2

∣∣∣∣
2n−2

dθ =
22n−2

√
π

Γ(n − 1/2)
Γ(n)

∼ 22n−2

√
πn

,

which, incidentally, can also be obtained from

‖xn‖2 =
n−1∑
j=0

(
n − 1

j

)2

=
(

2n − 2
n − 1

)
∼ 22n−2

√
πn

.

Formula (5) yields

δj :=
(Tn(a)xn − a(π)xn)j

‖xn‖ =
1

2π‖xn‖
∫ 2π

0
[a(θ) − a(π)](Fxn)(θ)e−ijθdθ.

Thus,

|δj| � C1
n1/4

2n−1

∫ 2π

0
|a(θ) − a(π)|2n−1

∣∣∣∣sin θ
2

∣∣∣∣
n−1

dθ.

By assumption, there are a μ ∈ (0, π/2) and a finite constant K such that

|a(θ) − a(π)| � K|θ − π| � C2K

∣∣∣∣cos
θ
2

∣∣∣∣
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for θ ∈ (π − μ, π + μ) , whence

n1/4
∫
|θ−π|<μ

|a(θ) − a(π)|
∣∣∣∣sin θ

2

∣∣∣∣
n−1

dθ � n1/4
∫
|θ−π|<μ

∣∣∣∣cos
θ
2

∣∣∣∣
∣∣∣∣sin θ

2

∣∣∣∣
n−1

dθ

= n1/4
∫
|x|<μ

∣∣∣sin x
2

∣∣∣ ∣∣∣cos
x
2

∣∣∣n−1
dx � 2n1/4

∫ π/2

0
sin

x
2

(
cos

x
2

)n−1
dx

= −4n1/4 1
n

(
cos

x
2

)n∣∣∣π/2

0
<

4
n3/4

.

On the other hand,

n1/4
∫
|θ−π|>μ

|a(θ) − a(π)|
∣∣∣∣sin θ

2

∣∣∣∣
n−1

dθ

� n1/4
(
sin

μ
2

)n−1
∫
|θ−π|>μ

|a(θ) − a(π)|dθ = O

(
1

n3/4

)
.

Consequently,

‖δ‖2 =
n−1∑
j=0

|δj|2 = O

(
n

1
n6/4

)
= O

(
1

n1/2

)
= o(1).

�

REMARK 2.4. Let T(a) = (aj−k)∞j,k=1 be the infinite Toeplitz matrix generated
by a . This matrix induces a bounded operator on �2 := �2(N) if and only if a ∈
L∞ . Suppose, for simplicity, a is the restriction to [0, 2π] of a continuous and 2π -
periodic function on R . Then the range R(a) of a is a closed, continuous, and
naturally oriented curve in the plane. For λ ∈ C \ R(a) , denote by wind (a, λ ) the
winding number of R(a) about λ . If wind (a, λ ) = 0 , then {Tn(a)} does not have
asymptotic pseudomodes, because then, by a classical result of Gohberg and Feldman
[9], ‖(Tn(a) − λ I)−1‖ = O(1) . Let wind (a, λ ) = −m < 0 . We then can write
a(θ)− λ = b(θ)e−imθ and the operator T(b) can be shown to be invertible on �2 . Put

uj = T−1(b)ej (j = 1, . . . , m)

where ej ∈ �2 is the sequence whose j th term is 1 and the remaining terms of which
are zero. One can show that u1, . . . , um form a basis in the null space of T(a)−λ I . Let
finally Pn : �2 → Cn be projection onto the first n coordinates. In [6], it was proved
that a sequence {xn} of vectors xn ∈ Cn is an asymptotic pseudomode of {Tn(a)} for
λ if and only if there exist c(n)

1 , . . . , c(n)
m ∈ C and zn ∈ Cn such that

xn

‖xn‖ = c(n)
1 u1 + . . . + c(n)

m um + zn, sup
n�1,1�j�m

|c(n)
j | < ∞, lim

n→∞ ‖zn‖ = 0.

Paper [6] also contains a characterization of all asymptotic pseudomodes of {Tn(a)}
for points λ with wind (a, λ ) = m > 0 .

Reichel and Trefethen [13] were probably the first to observe that if a is a trigono-
metric polynomial, λ ∈ C \ R(a) , and wind (a, λ ) �= 0 , then ‖(Tn(a) − λ I)−1‖
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increases exponentially fast and hence, by Proposition 2.2, there exist asymptotic pseu-
domodes xn such that ‖Tn(a)xn − λxn‖/‖xn‖ decays exponentially fast. See also
Theorem 7.2 of [17]. Under the assumption that λ ∈ C \ R(a) and wind (a, λ ) �= 0 ,
the growth of the norms ‖(Tn(a) − λ I)−1‖ for piecewise continuous and general con-
tinuous functions a is studied in [4] and [5], respectively.

In connection with all these results, the contribution of this paper to the topic is
that we deliver concrete pseudomodes of {Tn(a)} for points λ ∈ R(a) .

3. Exponentials as pseudomodes

We now start with the proof of our main results. For a function f ∈ R[0, π] , we
denote by Vnf the vector in Cn given by

Vnf =

(√
2

n + 1
(−1)j+1f

(
jπ

n + 1

))n

j=1

.

Obviously,

lim
n→∞ ‖Vnf ‖2 =

2
π

∫ π

0
|f (x)|2dx. (6)

Throughout what follows, ek(x) := eikx . Recall that F is defined by (4).

LEMMA 3.1. We have

(FVnek)(θ) = −
√

2
n + 1

e−iθei n+1
2 (θ−θn) sin n

2 (θ − θn)
sin 1

2 (θ − θn)

with θn = π − kπ
n+1 .

Proof. This follows by straightforward computation:√
n + 1

2
eiθ(FVnek)(θ) =

√
n + 1

2

n∑
�=1

(Vnek)�e
i�θ =

n∑
�=1

(−1)�+1e
ik�π
n+1 ei�θ

= −
n∑

�=1

ei�(π+ kπ
n+1 +θ) = −

n∑
�=1

ei�(θ−π+ kπ
n+1 ) = −

n∑
�=1

ei�(θ−θn)

= −ei(θ−θn) 1 − ein(θ−θn)

1 − ei(θ−θn) = −ei(θ−θn)ei n
2 (θ−θn)e−i 1

2 (θ−θn) sin
n
2 (θ − θn)

sin 1
2 (θ − θn)

.

�
Our proof of Theorems 1.1 and 1.2 is based on the following theorem in the case

η = 0 . The case η �= 0 is needed in the proof of Theorem 1.3.

THEOREM 3.2. Let a ∈ L1 be continuous in an open neighborhood of π . For
a real number η , define aη by aη(θ) = a(θ − η) . Given any ε > 0 , there exist
η0 = η0(a, ε) , n0 = n0(a, ε) � 1 , and δ0 = δ0(a, ε) > 0 such that

‖Tn(aη)Vnek − aη(π)Vnek‖ < ε

whenever |η| � η0 , n � n0 , and |k|/n � δ0 .
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Proof. Suppose a is continuous on Id := (π − d, π + d) . Fix a number σ > 0 .
Then there exist functions b ∈ C[0, 2π] and c ∈ L1 depending only on a and σ such
that

a = b + c, b|Id = a|Id, ‖c‖1 < σ,

where ‖ · ‖1 is the L1 norm. With θn = π − kπ
n+1 ,

‖Tn(aη − aη(θn))Vnek‖2 � 2‖Tn(bη − aη(θn))Vnek‖2 + 2‖Tn(cη)Vnek‖2. (7)

For the first term on the right we have

‖Tn(bη − aη(θn))Vnek‖2 � 1
2π

∫ 2π

0
|bη(θ) − aη(θn)|2|(FVnek)(θ)|2dθ.

Now fix τ > 0 . Then there is a μ = μ(a, τ) > 0 such that μ < d and |aη(θ) −
aη(π)| < τ/2 for |η| < μ and θ ∈ Iμ := (π − μ, π + μ) . Assume

|η| < μ and
|k|π
n + 1

<
μ
2

. (8)

Let first |θ − π| � μ . From (8) we obtain that |θ − θn| > μ/2 , and by periodicity
we may assume that |θ − θn| < π . Thus, μ/4 < |θ − θn|/2 < π/2 and Lemma 3.1
therefore gives

|(FVnek)(θ)| =

√
2

n + 1

∣∣∣∣∣ sin
n
2 (θ − θn)

sin 1
2 (θ − θn)

∣∣∣∣∣ �
√

2
n

1
sin(μ/4)

. (9)

It follows that

1
2π

∫
|θ−π|�μ

|bη(θ)−aη(θn)|2|(FVnek)(θ)|2dθ � 4 ‖bη‖2
∞

2π
2
n

2π
sin2(μ/4)

=
8 ‖b‖2

∞
n sin2(μ/4)

,

where ‖ · ‖∞ is the norm in L∞ . Now let |θ − π| < μ . Then bη(θ) = aη(θ) .
Consider the intervals

Hj :=
(
θn +

2(j − 1)π
n

, θn +
2jπ
n

)
, j ∈ Z.

From (8) we infer that θn ∈ Iμ and hence

|bη(θ) − aη(θn)| � |aη(θ) − aη(π)| + |aη(π) − aη(θn)| <
τ
2

+
τ
2

= τ.

Consequently,

1
2π

∫
|θ−π|<μ

|bη(θ) − aη(θn)|2|(FVnek)(θ)|2dθ � τ2

2π
∑

Hj∩Iμ �=∅

∫
Hj

|(FVnek)(θ)|2dθ.

(10)
If Hj ∩ Iμ �= ∅ , then necessarily

π − μ < θn +
2jπ
n

and θn +
2(j − 1)π

n
< π + μ,
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which, by (8), means that

−3μ
4π

n < j <
3μ
4π

n + 1.

Obviously, we may a priori assume that 3μ/(4π) < 1/4 and n > 2 , so that in (10)
we have only to deal with terms for which |j| < n/2 . Since | sin(nx)/ sin x| � n for
|x| � π/2 , we see from Lemma 3.1 that

|(FVnek)(θ)| �
√

2
n + 1

n <
√

2n for θ ∈ H−1 ∪ H0.

If j > 1 and θ ∈ Hj , then

0 <
(j − 1)π

n
<

θ − θn

2
<

jπ
n

<
π
2

,

and using that sin x > (2/π)x for 0 < x < π/2 we get from Lemma 3.1 that

|(FVnek)(θ)| �
√

2
n + 1

1
sin(θ − θn)/2

<

√
2

n + 1
π
2

n
(j − 1)π

<
1

j − 1

√
n
2
.

Analogously we obtain that

|(FVnek)(θ)| <
1
|j|
√

n
2

for θ ∈ Hj and j < 0 . Thus, the right-hand side of (10) is at most

τ2

2π

⎛
⎝2n · 2π

n
+ 2n · 2π

n
+

⎛
⎝∑

j>1

n
2

1
(j − 1)2

⎞
⎠ 2π

n
+

⎛
⎝∑

j<0

n
2

1
|j|2

⎞
⎠ 2π

n

⎞
⎠

which is (4 + π2/6)τ2 < 6τ2 .
We now turn to the second term on the right of (7). By (5),

|(Tn(cη)Vnek)j| � 1
2π

∫
|θ−π|>d

|cη(θ)| |(FVnek)(θ)|dθ.

But if |θ − π| > d then, by (8), |θ − θn| > d − μ/2 > d/2 and in the same way we
proved estimate (9) we now get

|(Tn(cη)Vnek)j| �
√

2
n

1
sin(d/4)

‖cη‖1

2π
<

√
2
n

1
sin(d/4)

σ
2π

,

where we used that ‖cη‖1 = ‖c‖1 . This gives

‖Tn(cη)Vnek‖2 = 2π
n∑

j=1

|(Tn(cη)Vnek)j|2 <
1
π

σ2

sin2(d/4)
.

In summary, under assumption (8) the right-hand side of (7) does not exceed

16‖b‖2
∞

n sin2(μ/4)
+ 12τ2 +

2σ2

π sin2(d/4)
. (11)
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Now choose σ > 0 so that the third term in (11) is smaller than ε2/12 . Put τ = ε/12
and η0 = μ . Then the second term in (11) is ε2/12 . Clearly, there are n0 and δ0

such that if n � n0 and |k|/n � δ0 , then the second assumption in (8) is satisfied and
the first term in (11) is less than ε2/12 . Thus, for |η| < η0 , n � n0 , and |k|/n � δ0

we have ‖Tn(aη)Vn − aη(θn)Vnek‖ < ε/2 . It follows that

‖Tn(aη)Vn − aη(π)Vnek‖ <
ε
2

+ |aη(θn) − aη(π)| ‖Vnek‖, (12)

and since |aη(θn) − aη(π)| < τ/2 = ε/24 and ‖Vnek‖ =
√

(2n)/(n + 1) < 2 , we
arrive at the conclusion that (12) is smaller than ε . �

The following corollary is weaker than Theorem 1.1 but is actually all we need to
conclude that (1) is an asymptotic pseudomode of Tn(ωα) for λ = ωα(π) or, more
generally, of Tn(a) for λ = a(π) if a ∈ L1 is continuous in an open neighborhood of
π .

COROLLARY 3.3. If a ∈ L1 is continuous in an open neighborhood of π and
f is an arbitrary trigonometric polynomial, then Vnf is an asymptotic pseudomode of
Tn(a) for λ = a(π) .

Proof. Let f =
∑m

k=−m ckek be a trigonometric polynomial. From Theorem 3.2
we infer that

‖Tn(a)Vnf − a(π)Vnf ‖ �
m∑

k=−m

|ck| ‖Tn(a)Vnek − a(π)Vnek‖ = o(1)

as n → ∞ , which together with (6) implies the assertion. �

Proof of Theorem 1.2. We denote by ‖ · ‖2 the norm in L2(0, π) . Given ε > 0 ,
there exists a trigonometric polynomial p =

∑m
k=−m ckek such that

2 ‖a‖∞‖f − p‖2 <
ε
2
. (13)

Clearly, ‖Tn(a)Vnf − a(π)Vnf ‖ does not exceed

‖Tn(a)Vnp − a(π)Vnp‖ + (‖Tn(a)‖ + |a(π)|)‖Vn(f − p)‖. (14)

By Corollary 3.3, the first term in (14) is smaller than ε/2 if n is large enough. Since
‖Tn(a)‖ � ‖a‖∞ and |a(π)| � ‖a‖∞ and since, by (6),

‖Vn(f − p)‖ →
√

2
π
‖f − p‖2 < ‖f − p‖2,

we obtain from (13) that the second term in (14) does not exceed ε/2 for all sufficiently
large n . Thus, ‖Tn(a)Vnf − a(π)Vnf ‖ → 0 . As, again by (6), ‖Vnf ‖ →√

2/π ‖f ‖2 ,
it follows that Vnf is an asymptotic pseudomode for λ = a(π) . �
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REMARK 3.4. Working with intervals like the Hj in the proof of Theorem 3.2 and
taking into account that

[n/2]∑
j=1

(
cos

jπ
n + 1

)2n

= O(
√

n ),

one can modify the proof of Proposition 2.3 to show that Proposition 2.3 is also true
under the hypothesis that a ∈ L1 and that a is continuous in an open neighborhood of
π .

4. Unbounded symbols

In this section we prove Theorem 1.1. The following observation is very simple
but we find worth it to be stated as a separate proposition.

PROPOSITION 4.1. If a ∈ L1 then ‖Tn(a)‖ = o(n) as n → ∞ .

Proof. The norm of a Toeplitz matrix one diagonal of which consists of ones and
the remaining diagonals of which are zero is 1 . Consequently,

‖Tn(a)‖
n

� 1
n

n−1∑
j=−(n−1)

|aj|. (15)

Since |aj| → 0 as |j| → ∞ by the Riemann-Lebesgue theorem, the successive arith-
metic means of these numbers and thus also (15) go to zero as well. �

Proof of Theorem 1.1. Continue the function f from [0, π] to a 2π -periodic
function g in C1+γ on all of R . Clearly, Vnf = Vng . For each m � 1 there exists a
trigonometric polynomial

pm(θ) =
m∑

k=−m

p(m)
k eikθ

such that ‖g − pm‖∞ � D/m1+γ , where D is a finite constant depending only on f
and ‖ · ‖∞ is the L∞ norm on [0, 2π] (see, e.g., Theorem 13.6 or Theorem 13.14 of
Chapter III of [20]). The Fourier coefficients of g admit the estimate

|gj| =

∣∣∣∣∣
∫ 2π

0
(g(θ) − p|j|−1(θ))e−ijθdθ

∣∣∣∣∣ �
∫ 2π

0
|g(θ) − p|j|−1(θ)|dθ

� 2πD
(|j| − 1)1+γ � C

|j|1+γ (|j| � 2). (16)

Let σμ be the μ th Fejér-Cèsaro mean of the Fourier series of g ,

σμ(θ) =
∑
|k|�μ

(
1 − |k|

μ + 1

)
gke

ikθ . (17)
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Theorem 13.5 of Chapter III of [20] tells us that if we let

τm = 2σ2m−1 − σm−1, (18)

then

‖g − τm‖∞ � 4D
m1+γ . (19)

We can write
τm(θ) =

∑
|j|�2m−1

τ(m)
j eijθ ,

and from (16) to (18) we obtain that∑
|j|�2m−1

|τ(m)
j |

=
∑

|j|�m−1

∣∣∣∣2
(

1 − |j|
2m

)
−
(

1 − |j|
m

)∣∣∣∣ |gj| +
∑

m�|j|�2m−1

∣∣∣∣2
(

1 − |j|
2m

)∣∣∣∣ |gj|

< 2
∞∑

j=−∞
|gj| =: E.

Fix ε > 0 . The number ‖Tn(a)Vnf − a(π)Vnf ‖ is at most

‖Tn(a)Vnτm − a(π)Vnτm‖ + (‖Tn(a)‖ + |a(π)|) ‖Vn(f − τm)‖. (20)

The first term in (20) has the upper bound∑
|j|�2m−1

|τ(m)
j | ‖Tn(a)Vnej − a(π)Vnej‖. (21)

Now put m = [n1/(1+γ )] . Since (2m− 1)/n → 0 as n → ∞ , Theorem 3.2 implies that
there is an n1 such that

‖Tn(a)Vnej − a(π)Vnej‖ <
ε
2E

whenever n � n1 and |j| � 2m − 1 . Thus, if n � n1 then (21) does not exceed

ε
2E

∑
|j|�2m−1

|τ(m)
j | <

ε
2
.

By virtue of (19),

|(Vn(f − τm))j| =

√
2

n + 1

∣∣∣∣f
(

jπ
n + 1

)
− τm

(
jπ

n + 1

)∣∣∣∣
=

√
2

n + 1

∣∣∣∣g
(

jπ
n + 1

)
− τm

(
jπ

n + 1

)∣∣∣∣ �
√

2
n + 1

4D
m1+γ .

This gives

‖Vn(f − τm)‖2 � n
2

n + 1
16 D2

m2(1+γ ) = O

(
1
n2

)
.
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Combining the last estimate with Proposition 4.1 we see that the second term in (20) is

(o(n) + |a(π)|) O

(
1
n

)
= o(1)

and thus smaller than ε/2 for n � n2 . Consequently, if n � max(n1, n2) , then (20) is
less than ε . In summary, we proved that (20) goes to zero as n → ∞ , which together
with (6) yields the assertion. �

Using translation invariance, we can now easily construct asymptotic pseudomodes
at all “regular” values of the generating function of a Toeplitz matrix.

THEOREM 4.2. Let a ∈ L1 and suppose the 2π -periodic extension of a is
continuous in an open neighborhood neighborhood of θ0 ∈ R . Assume also that at
least one of the following holds: (a) a ∈ L∞ and f ∈ R[0, π] , (b) f ∈ C1+γ [0, π] for
some γ > 0 . Then the sequence {Vn,θ0 f } given by

Vn,θ0 f =

(√
2

n + 1
e−i(j+1)θ0 f

(
jπ

n + 1

))n

j=1

is an asymptotic pseudomode of {Tn(a)} for λ = a(θ0) .

Proof. We have Vn,θ0 f = Dθ0Vnf where Dθ0 is the unitary diagonal matrix

Dθ0 = diag
(
ei(j+1)(π−θ0)

)n

j=1
.

Consequently,

‖Tn(a)Vn,θ0 f − a(θ0)Vn,θ0 f ‖ = ‖Tn(a)Dθ0Vnf − a(θ0)Dθ0Vnf ‖
= ‖D−1

θ0
Tn(a)Dθ0Vnf − a(θ0)Vnf ‖. (22)

It can be readily verified that D−1
θ0

Tn(a)Dθ0 = Tn(aπ−θ0) where aπ−θ0(θ) = a(θ+θ0−
π) . Since aπ−θ0(π) = a(θ0) , we see that (22) is ‖Tn(aπ−θ0)Vnf − aπ−θ0(π)Vnf ‖ .
Theorems 1.1 and 1.2 therefore imply that Vn,θ0 f is an asymptotic pseudomode for
a(θ0) . �

5. Pseudomodes from inside the Fourier basis

In this section we prove Theorem 1.3.
Recall that θ0 = 2π(1 − β) . A sequence of integers of the form βn + O(1) can

be written as βn + kn + rn where kn are integers satisfying |kn| � M and rn ∈ [0, 1) .
We have to prove that

‖Tn(a)Uneβn+kn+rn − a(θ0)Uneβn+kn+rn‖ → 0.

For j = 0, . . . , n − 1 ,

(Uneβn+kn+rn)j =
1√
n

e
2πi
n (βn+kn+rn)j =

1√
n

e
2πi
n

(
n− nθ0

2π +kn+rn
)

j =
1√
n

e−ijηne
2πi
n knj

with ηn = θ0 − 2πrn
n . Define aπ−ηn by aπ−ηn(θ) = a(θ +ηn − π) as in Theorem 3.2
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and in the proof of Theorem 4.2. From Theorem 3.2 we deduce that

‖Tn(aπ−ηn)Vne2kn − aπ−ηn(π)Vne2kn‖ → 0,

which, with Dηn as in the proof of Theorem 4.2, gives

‖Tn(a)DηnVne2kn − a(ηn)DηnVne2kn‖ → 0.

Since ‖DηnVne2kn‖ → √
2 and a is continuous at θ0 , it follows that

‖Tn(a)DηnVne2kn − a(θ0)DηnVne2kn‖ → 0. (23)

We have

DηnVne2kn =

(√
2

n + 1
e−i(j+2)ηne

2πi(j+1)kn
n+1

)n−1

j=0

.

Hence DηnVne2kn =
√

2n/(n + 1) e−2iηnxn with

xn :=
(

1√
n

e−ijηne
2πi(j+1)kn

n+1

)n−1

j=0

.

From (23) we obtain that ‖Tn(a)xn − a(θ0)xn‖ → 0 . As∣∣∣ ‖Tn(a)Uneβn+kn+rn − a(θ0)Uneβn+kn+rn‖ − ‖Tn(a)xn − a(θ0)xn‖
∣∣∣

� ‖Tn(a) − a(θ0)I‖ ‖Uneβn+kn+rn − xn‖, (24)

it suffices to show that the right-hand side of (24) goes to zero. The estimation

‖Uneβn+kn+rn − xn‖2 =
1
n

n−1∑
j=1

∣∣∣e 2πijkn
n − e

2πi(j+1)kn
n+1

∣∣∣2

=
4
n

n−1∑
j=0

sin2

(
πkn

(
j
n
− j + 1

n + 1

))

=
4
n

n−1∑
j=0

sin2 πkn(n − j)
n(n + 1)

� 4
n

n sin2 πkn

n + 1
� 4π2k2

n

(n + 1)2

shows that ‖Uneβn+kn+rn − xn‖ = O(1/n) . By Proposition 4.1, ‖Tn(a) − a(θ0)I‖ =
o(n) . As the product of these two is o(1) we arrive at the conclusion that the right-hand
side of (24) goes to zero. �
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