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INVERSE PROBLEMS FOR STURM–LIOUVILLE

OPERATORS ON GRAPHS WITH A CYCLE

VJACHESLAV ANATOLJEVICH YURKO

(communicated by F. Gesztesy)

Abstract. An inverse spectral problem is studied for second-order differential operators on graphs
with a cycle and with standard matching conditions in the internal vertex. A uniqueness theorem
is proved, and a constructive procedure for the solution is provided.

1. Introduction

1.1. We study inverse spectral problems for Sturm-Liouville differential operators
on graphs with a cycle. Inverse spectral problems consist in recovering operators from
their spectral characteristics. The main results on inverse spectral problems on an
interval are presented in the monographs [1, 5, 7, 9, 10, 15, 17, 18]. Differential
operators on graphs (networks, trees) often appear in natural sciences and engineering
(see [13, 14] and the references therein). Most of the works in this direction are
devoted to the so-called direct problems of studying properties of the spectrum and
the root functions for operators on graphs. Inverse spectral problems, because of their
nonlinearity, are more difficult to investigate, and nowaday there are only a number of
papers in this area. In particular, inverse spectral problems of recovering coefficients
of differential operators on trees (i.e on graphs without cycles) were studied in [2, 4, 8,
19, 20] and other papers. However, there are no similar general results in the inverse
problem theory for graphs having cycles.

In this paper, we give a formulation and obtain the solution of the inverse spectral
problem for Sturm-Liouville operators on graphs with a cycle and with standard match-
ing conditions in the internal vertex. We prove the corresponding uniqueness theorem
and provide a constructive procedure for the solution of this class of inverse problems.

1.2. Consider a compact graph T in Rm with the set of vertices V = {v0, . . . , vr} ,
r � 1, and the set of edges E = {e0, . . . , er}, where v1, . . . , vr are the boundary

vertices, v0 is the internal vertex, ej = [vj, v0], j = 1, r,
r⋂

j=0

ej = {v0} , and e0 is a
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cycle. Thus, the graph T has one cycle e0 and one internal vertex v0 . Let Tj , j = 0, r,
be the length of the edge ej . Each edge ej ∈ E is parameterized by the parameter
xj ∈ [0, Tj]. It is convenient for us to choose the following orientation: for j = 1, r, the
vertex vj corresponds to xj = 0, and the vertex v0 corresponds to xj = Tj ; for j = 0,
both ends x0 = +0 and x0 = T0 − 0 corespond to v0 .

An integrable function Y on T may be represented as Y = {yj}j=0,r , where the
function yj(xj), xj ∈ [0, Tj], is defined on the edge ej . Let q = {qj}j=0,r be an
integrable real-valued function on T ; q is called the potential. Consider the following
differential equation on T :

−y′′j (xj) + qj(xj)yj(xj) = λyj(xj), j = 0, r, (1)

where λ is the spectral parameter, the functions yj, y′j, j = 0, r, are absolutely con-
tinuous on [0, Tj] and satisfy the following matching conditions in the internal vertex
v0 :

yj(Tj) = y0(0), j = 0, r (continuity condition),

r∑
j=0

y′j(Tj) = y′0(0) (Kirchhoff’s condition).

⎫⎪⎪⎬
⎪⎪⎭ (2)

Matching conditions (2) are called the standard conditions. In electrical circuits, (2)
expresses Kirchhoff’s law; in elastic string network, it expresses the balance of tension,
and so on.

Let us consider the boundary value problem B0(q) on T for equation (1) with
the matching conditions (2) and with the Dirichlet boundary conditions at the boundary
vertices v1, . . . , vr :

yj(0) = 0, j = 1, r.

Moreover, we also consider the boundary value problems Bk(q), k = 1, r, for equation
(1) with the matching conditions (2) and with the boundary conditions

y′k(0) = 0, yj(0) = 0, j = 1, r \ k.

We denote by Λk := {λkn}n�0 the eigenvalues (counting with multiplicities) of Bk(q) ,
k = 0, r.

In contrast to the case of trees (see [19]), here the specification of the spectra
Λk , k = 0, r does not uniquely determine the potential, and we need an additional
information. Let Sj(xj, λ ), Cj(xj, λ ), j = 0, r be the solutions of equation (1) on the
edge ej with the initial conditions

Sj(0, λ ) = C′
j(0, λ ) = 0, S′j(0, λ ) = Cj(0, λ ) = 1.

For each fixed xj ∈ [0, Tj], the functions S(ν)
j (xj, λ ), C(ν)

j (xj, λ ), j = 0, r, ν = 0, 1,

are entire in λ of order 1/2 . Moreover,

〈Cj(xj, λ ), Sj(xj, λ )〉 ≡ 1,
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where 〈 y, z〉 := yz′ − y′z is the Wronskian of y and z. Denote h(λ ) := S0(T0, λ ),
H(λ ) := C0(T0, λ )−S′0(T0, λ ). Let {νn}n�1 be zeros of the entire function h(λ ), and
put ωn := signH(νn), Ω = {ωn}n�1 . The inverse problem is formulated as follows.

INVERSE PROBLEM 1. Given Λk, k = 0, r and Ω, construct the potential q on T.

Let us formulate the uniqueness theorem for the solution of Inverse Problem 1. For
this purpose together with q we consider a potential q̃. Everywhere below if a symbol
α denotes an object related to q, then α̃ will denote the analogous object related to q̃.
We recall that r � 1.

THEOREM 1. If Λk = Λ̃k, k = 0, r, and Ω = Ω̃, then q = q̃. Thus, the
specification of Λk, k = 0, r and Ω uniquely determines the potential q on T .

This theorem will be proved in section 3. Moreover, we give a constructive
procedure for the solution of Inverse Problem 1. In section 2 we introduce the main
notions and prove some auxiliary propositions.

2. Auxiliary propositions

2.1. In this subsection we introduce the Weyl functions and the characteristic
functions of the boundary value problems Bk(q).

Fix k = 1, r. Let Φk = {Φkj}j=0,r , be the solution of equation (1) satisfying (2)
and the boundary conditions

Φkj(0, λ ) = δjk, j = 1, r, (3)

where δjk is the Kronecker symbol. Denote Mk(λ ) := Φ′
kk(0, λ ), k = 1, r. The

function Mk(λ ) is called the Weyl function with respect to the boundary vertex vk .
Clearly,

Φkk(xk, λ ) = Ck(xk, λ ) + Mk(λ )Sk(xk, λ ), xk ∈ [0, Tk], k = 1, r, (4)

and consequently, 〈Φkk(xk, λ ), Sk(xk, λ )〉 ≡ 1. Denote M1
kj(λ ) := Φkj(0, λ ) , M0

kj(λ )
:= Φ′

kj(0, λ ) . Then

Φkj(xj, λ ) = M1
kj(λ )Cj(xj, λ ) + M0

kj(λ )Sj(xj, λ ), xj ∈ [0, Tj], j = 0, r, k = 1, r.
(5)

In particular, M1
kk(λ ) = 1 , M0

kk(λ ) = Mk(λ ). Substituting (5) into (2) and (3) we
obtain a linear algebraic system sk with respect to Mν

kj(λ ) , ν = 0, 1, j = 0, r. The
determinant Δ0(λ ) of sk does not depend on k and has the form

Δ0(λ ) = (d(λ ) − 2)
r∏

j=1

Sj(Tj, λ ) + D(λ )h(λ ), (6)

where
d(λ ) = C0(T0, λ ) + S′0(T0, λ ), (7)
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D(λ ) =
r∑

i=1

S′i(Ti, λ )
r∏

j=1, j�=i

Sj(Tj, λ ) =
r∏

j=1

Sj(Tj, λ )
r∑

i=1

S′i(Ti, λ )
Si(Ti, λ )

. (8)

The function Δ0(λ ) is entire in λ of order 1/2 , and its zeros coincide with the
eigenvalues of the boundary value problem B0(q). Solving the algebraic system sk

we get by Cramer’s rule: Ms
kj(λ ) = Δs

kj(λ )/Δ0(λ ) , s = 0, 1, j = 0, r, where the
determinant Δs

kj(λ ) is obtained from Δ0(λ ) by the replacement of the column which
corresponds to Ms

kj(λ ) with the column of free terms. In particular,

Mk(λ ) = −Δk(λ )
Δ0(λ )

, k = 1, r, (9)

where

Δk(λ ) = (d(λ ) − 2)Ck(Tk, λ )
r∏

j=1, j�=k

Sj(Tj, λ ) + Dk(λ )h(λ ), (10)

Dk(λ ) = C′
k(Tk, λ )

r∏
j=1, j�=k

Sj(Tj, λ )+Ck(Tk, λ )
r∑

i=1, i�=k

S′i(Ti, λ )
r∏

j=1, j�=i,k

Sj(Tj, λ ). (11)

Wenote that Δk(λ ) is obtained from Δ0(λ ) by the replacement of S(ν)
k (Tk, λ ), ν = 0, 1,

with C(ν)
k (Tk, λ ), ν = 0, 1. The function Δk(λ ) is entire in λ of order 1/2 , and its

zeros coincidewith the eigenvalues of the boundaryvalue problem Bk(q). The functions
Δk(λ ) , k = 0, r, are called the characteristic functions for the boundary value problems
Bk(q).

2.2. In this subsection we study the asymptotic behavior of solutions of equation
(1). Let λ = ρ2, Im ρ � 0. Denote Λ := {ρ : Imρ � 0}, Λδ := {ρ : argρ ∈
[δ, π − δ ]} . It is known (see [12]) that for each fixed j = 0, r on the edge ej ,
there exists a fundamental system of solutions of equation (1) {ej1(xj, ρ), ej2(xj, ρ)},
xj ∈ [0, Tj], ρ ∈ Λ, |ρ| � ρ∗ with the properties:

1) the functions e(ν)
js (xj, ρ), ν = 0, 1, are continuous for xj ∈ [0, Tj], ρ ∈ Λ, |ρ| � ρ∗ ;

2) for each xj ∈ [0, Tj], the functions e(ν)
js (xj, ρ), ν = 0, 1, are analytic for Imρ >

0, |ρ| > ρ∗ ;
3) uniformly in xj ∈ [0, Tj], the following asymptotical formulae hold

e(ν)
j1 (xj, ρ) = (iρ)ν exp(iρxj)[1], e(ν)

j2 (xj, ρ) = (−iρ)ν exp(−iρxj)[1], ρ ∈ Λ, |ρ| → ∞,

(12)
where [1] = 1 + O(ρ−1).

Fix k = 1, r. One has

Φkj(xj, λ ) = A1
kj(ρ)ej1(xj, ρ) + A0

kj(ρ)ej2(xj, ρ), xj ∈ [0, Tj]. (13)

Substituting (13) into (2) and (3) we obtain a linear algebraic system s0
k with respect

to Aν
kj(λ ) , ν = 0, 1, j = 0, r. The determinant δ0(ρ) of s0

k does not depend on k and
has the form

δ0(ρ) = 2(−2iρ)rΔ0(λ ), ρ ∈ Λ.
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Moreover,

δ0(ρ) = (r + 2) exp
(
− iρ

r∑
j=0

Tj

)
[1], ρ ∈ Λδ , |ρ| ∈ ∞. (14)

Solving the algebraic system s0
k by Cramer’s rule and using (12) and (14), we get

A1
kk(ρ) = [1], A0

kk(ρ) = − r
r + 2

exp(2iρTk)[1], ρ ∈ Λδ , |ρ| ∈ ∞.

Together with (12) and (13) this yields for each fixed xk ∈ [0, Tk) :

Φ(ν)
kk (xk, λ ) = (iρ)ν exp(iρxk)[1], ρ ∈ Λδ , |ρ| ∈ ∞. (15)

In particular, Mk(λ ) = (iρ)[1], ρ ∈ Λδ , |ρ| ∈ ∞. Moreover, uniformly in xj ∈ [0, Tj],

S(ν)
j (xj, λ ) =

1
2iρ

(
(iρ)ν exp(iρxj)[1] − (−iρ)ν exp(−iρxj)[1]

)
, ρ ∈ Λ, |ρ| → ∞,

(16)

C(ν)
j (xj, λ ) =

1
2

(
(iρ)ν exp(iρxj)[1] + (−iρ)ν exp(−iρxj)[1]

)
, ρ ∈ Λ, |ρ| → ∞.

(17)
2.3. In this subsection we study properties of the spectra and the characteristic

functions of Bk(q). Let λ 0
kn = (ρ0

nk)
2, k = 0, r, be the eigenvalues of the boundary

value problems Bk(0) with the zero potential, and let Δ0
k(λ ) be the characteristic

functions of Bk(0). According to (6)-(8) and (10)-(11) we have

Δ0
0(λ ) = 2(cosρT0 − 1)

r∏
j=1

sin ρTj

ρ
+

sinρT0

ρ

r∑
i=1

cosρTi

r∏
j=1, j�=i

sin ρTj

ρ
, (18)

Δ0
k(λ ) = 2(cosρT0 − 1) cosρTk

r∏
j=1, j�=k

sin ρTj

ρ

+
sin ρT0

ρ

(
(−ρ sinρTk)

r∏
j=1, j�=k

sin ρTj

ρ
+ cos ρTk

r∑
i=1, i�=k

cos ρTi

r∏
j=1, j�=i,k

sinρTj

ρ

)
.

(19)
Let τ := Imρ. It follows from (6)-(8), (10)-(11), (16) and (17) that for |ρ| → ∞,

Δ0(λ ) = Δ0
0(λ ) + O

(
ρ−r−1 exp

(
|τ|

r∑
j=0

Tj

))
,

Δk(λ ) = Δ0
k(λ ) + O

(
ρ−r exp

(
|τ|

r∑
j=0

Tj

))
, k = 1, r.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20)

Using (18)-(20), by the well-known method (see, for example, [3]), one can obtain the
following properties of the characteristic functions Δk(λ ) and the eigenvalues Λk of
the boundary value problems Bk(q), k = 0, r.
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1) For ρ ∈ Λ, |ρ| → ∞,

Δ0(λ ) = O
(
|ρ|−r exp

(
|τ|

r∑
j=0

Tj

))
,

Δk(λ ) = O
(
|ρ|1−r exp

(
|τ|

r∑
j=0

Tj

))
, k = 1, r.

2) There exist h > 0, Ch > 0 such that

|Δ0(λ )| � Ch|ρ|−r exp
(
|τ|

r∑
j=0

Tj

)
,

|Δk(λ )| � Ch|ρ|1−r exp
(
|τ|

r∑
j=0

Tj

)
, k = 1, r,

for |τ| � h. Hence, the eigenvalues λkn = ρ2
nk lie in the domain |Imρ| < h.

3) The number Nξk of zeros of Δk(λ ) in the rectangle Πξ = {ρ : |Imρ| �
h, Re ρ ∈ [ξ , ξ + 1]} is bounded with respect to ξ .

4) Denote Gδ = {ρ : |ρ − ρ0n| � δ ∀n � 0}, δ > 0. Then

|Δ0(λ )| � Cδ |ρ|−r exp
(
|τ|

r∑
j=0

Tj

)
, ρ ∈ Gδ .

5) There exist numbers rN → ∞ such that for sufficiently small δ > 0, the circles
|ρ| = rN lie in Gδ for all N.

6) For n → ∞,

ρnk = ρ0
nk + O

( 1
ρ0

nk

)
.

2.4. In this subsection the reconstruction of the characteristic functions from their
zeros is studied. Denote

λ 01
kn =

{
λ 0

kn if λ 0
kn 	= 0,

1 if λ 0
kn = 0.

(21)

By Hadamard’s factorization theorem [6, p.289],

Δ0
k(λ ) = A0

k

∞∏
n=0

λ 0
kn − λ
λ 01

kn

, (22)

where

A0
k =

(−1)sk

sk!

( ∂sk

∂λ sk
Δ0

k(λ )
)
|λ=0

, (23)

and sk � 0 is the multiplicity of the zero eigenvalue.
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Let us show that

Δk(λ ) = A0
k

∞∏
n=0

λkn − λ
λ 01

kn

. (24)

Indeed, by Hadamard’s factorization theorem,

Δk(λ ) = Ak

∞∏
n=0

λkn − λ
λ 1

kn

, (25)

where Ak 	= 0 is a constant, and

λ 1
kn =

{
λkn if λkn 	= 0,

1 if λkn = 0.

It follows from (22) and (25) that

Δk(λ )
Δ0

k(λ )
=

Ak

A0
k

∞∏
n=0

λ 01
kn

λ 1
kn

∞∏
n=0

(
1 +

λkn − λ 0
kn

λ 0
kn − λ

)
.

Using properties of the characteristic functions and the eigenvalues one gets for negative
λ :

lim
λ→−∞

Δk(λ )
Δ0

k(λ )
= 1, lim

λ→−∞

∞∏
n=0

(
1 +

λkn − λ 0
kn

λ 0
kn − λ

)
= 1,

and consequently,

Ak = A0
k

∞∏
n=0

λ 1
kn

λ 01
kn

.

Substituting this relation into (25) we arrive at (24).
Thus, the specification of the spectrum Λk = {λkn}n�0 uniquely determines the

characteristic function Δk(λ ) by (24) where A0
k and {λ 01

kn } are defined by (21), (23),
(18) and (19).

3. Solution of Inverse Problem 1

In this section we provide a constructive procedure for the solution of Inverse
Problem 1 and prove its uniqueness. First we consider auxiliary inverse problems.

3.1. Fix k = 1, r, and consider the following auxiliary inverse problem on the
edge ek , which is called IP(k).

IP(k). Given Mk(λ ), construct qk(xk), xk ∈ [0, Tk].

In IP(k) we construct the potential only on the edge ek , but the Weyl function
Mk(λ ) brings a global information from the whole graph. In other words, IP(k) is not
a local inverse problem related to the edge ek . Let us prove the uniqueness theorem for
the solution of IP(k).
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THEOREM 2. If Mk(λ ) = M̃k(λ ), then qk(xk) = q̃k(xk) a.e. on [0, Tk]. Thus, the
specification of the Weyl function Mk uniquely determines the potential qk on the edge
ek .

Proof. Let us define the matrix Pk(xk, λ ) = [Pk
js(xk, λ )]j,s=1,2 by the formula

Pk(xk, λ )
[
Φ̃kk(xk, λ ) S̃k(xk, λ )
Φ̃′

kk(xk, λ ) S̃′k(xk, λ )

]
=

[
Φkk(xk, λ ) Sk(xk, λ )
Φ′

kk(xk, λ ) S′k(xk, λ )

]
. (26)

Then (26) yields

Φkk(xk, λ ) = Pk
11(xk, λ )Φ̃kk(xk, λ ) + Pk

12(xk, λ )Φ̃′
kk(xk, λ ),

Sk(xk, λ ) = Pk
11(xk, λ )S̃k(xk, λ ) + Pk

12(xk, λ )S̃′k(xk, λ ).

}
(27)

Since 〈Φkk(xk, λ ), Sk(xk, λ )〉 ≡ 1, one has

Pk
1s(xk, λ ) = (−1)s

(
Φkk(xk, λ )S̃(2−s)

k (xk, λ ) − Φ̃(2−s)
kk (xk, λ )Sk(xk, λ )

)
. (28)

It follows from (15), (16) and (28) that

Pk
1s(xk, λ ) = δ1s + O(ρ−1), ρ ∈ Λδ , |ρ| → ∞, xk ∈ (0, Tk]. (29)

According to (4) and (28),

Pk
1s(xk, λ ) = (−1)s

((
Ck(xk, λ )S̃(2−s)

k (xk, λ ) − C̃(2−s)
k (xk, λ )Sk(xk, λ )

)

+(Mk(λ ) − M̃k(λ ))Sk(xk, λ )S̃(2−s)
k (xk, λ )

)
.

Since Mk(λ ) = M̃k(λ ), it follows that for each fixed xk , the functions Pk
1s(xk, λ ) are

entire in λ of order 1/2. Togetherwith (29) this yields Pk
11(xk, λ ) ≡ 1 , Pk

12(xk, λ ) ≡ 0.

Substituting these relations into (27) we get Φkk(xk, λ ) ≡ Φ̃kk(xk, λ ) and Sk(xk, λ ) ≡
S̃k(xk, λ ) for all xk and λ , and consequently, qk(xk) = q̃k(xk) a.e. on [0, Tk]. �

Using the method of spectral mappings [17] for the Sturm-Liouville operator on
the edge ek one can get a constructive procedure for the solution of the inverse problem
IP(k). Here we only explain ideas briefly; for details and proofs see [17]. Take q̃ = 0.

Then S̃k(xk, λ ) = sin ρxk
ρ . Fix k = 1, r. Denote λ ′ = min

l�0
(λ0l, λ̃0l) and take a fixed

δ > 0. In the λ - plane we consider the contour γ (with counterclockwise circuit)
of the form γ = γ+ ∪ γ− ∪ γ ′ , where γ± = {λ : ±Imλ = δ ; Re λ � λ ′} ,
γ ′ = {λ : λ − λ ′ = δ exp(iα), α ∈ (π/2, 3π/2)}. For each fixed xk ∈ [0, Tk], the
function Sk(xk, λ ) is the unique solution of the following linear integral equation

Sk(xk, λ ) = S̃k(xk, λ ) +
1

2πi

∫
γ
D̃k(xk, λ ,μ)Sk(xk,μ) dμ, (30)
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where D̃k(x, λ ,μ) =
∫ x

0
S̃k(t, λ )S̃k(t,μ)M̂k(μ) dt , M̂k(μ) := Mk(μ) − M̃k(μ). The

potential qk on the edge ek can be constructed from the solution of the integral equation
(30) via the formula

qk(xk) =
1

2πi

∫
γ
(Sk(xk, λ )S̃k(xk, λ ))′M̂k(λ ) dλ

or by the formula qk(xk) = λ + S′′k (xk, λ )/Sk(xk, λ ). It is also possible to construct the
potential from the discrete spectral data. For this purpose one can calculate the contour
integral in (30) by the residue theorem and transform the integral equation (30) to the
equation in a space of sequences; for details see [17].

3.2. Consider the following auxiliary inverse problem on the edge e0 , which is
called IP(0).

IP(0). Given d(λ ), h(λ ),Ω, construct q0(x0), x0 ∈ [0, T0].

This inverse problem were studied in [11, 16] and other papers. For convenience
of the readers we describe here the solution of IP(0). We remind that

d(λ ) = C0(T0, λ ) + S′0(T0, λ ), H(λ ) = C0(T0, λ ) − S′0(T0, λ ), ωn = signH(νn),

where {νn}n�1 are zeros of h(λ ). Clearly,

S′0(T0, νn) = (d(νn) − H(νn))/2. (31)

Since 〈C0(T0, λ ), S0(T0, λ )〉 ≡ 1, it follows that

H2(λ ) − d2(λ ) = −4(1 + C′
0(T0, λ )h(λ )),

and consequently,
H(νn) = ωn

√
d2(νn) − 4. (32)

Denote αn :=
∫ T0

0
S2

0(t, νn) dt. Then (see [9, 10])

αn = ḣ(νn)S′0(T0, νn), ḣ(λ ) :=
dh(λ )
dλ

. (33)

The data {νn,αn}n�1 are called the spectral data for the potential q0 . It is known (see
[7, 9, 10, 15]) that the function q0 can be uniquely constructed from the given spectral
data {νn,αn}n�1 . Thus, IP(0) has been solved, and the following theorem is valid.

THEOREM 3. The specification of d(λ ), h(λ ),Ω uniquely determines the potential
q0(x0) on [0, T0]. The function q0 can be constructed by the following algorithm.

ALGORITHM 1. Given d(λ ), h(λ ),Ω.
1) Find {νn}n�1 as the zeros of h(λ ).
2) Calculate H(νn) by (32).
3) Find S′0(T0, νn) by (31).
4) Calculate {αn}n�1 using (33).
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5) Construct q0 from the given spectral data {νn,αn}n�1 by solving the classical
inverse Sturm-Liouville problem.

3.3. Let us go on to the solution of Inverse Problem 1. First we give the proof
of Theorem 1. Assume that Λk = Λ̃k, k = 0, r, and Ω = Ω̃. Then, according to the
results of subsection 2.4, one has

Δk(λ ) ≡ Δ̃k(λ ), k = 0, r.

By virtue of (9) this yields

Mk(λ ) ≡ M̃k(λ ), k = 1, r.

Applying Theorem 2 for each fixed k = 1, r, we obtain

qk(xk) = q̃k(xk) a.e. on [0, Tk], k = 1, r,

and consequently,

Ck(xk, λ ) ≡ C̃k(xk, λ ), Sk(xk, λ ) ≡ S̃k(xk, λ ), k = 1, r, xk ∈ [0, Tk].

Taking (6) and (10) into account we deduce

d(λ ) = d̃(λ ), h(λ ) = h̃(λ ).

Since Ω = Ω̃, it follows from Theorem 3 that

q0(x0) = q̃0(x0) a.e. on [0, T0],

and Theorem 1 is proved.

The solution of Inverse Problem 1 can be constructed by the following algorithm.

ALGORITHM 2. Given Λk, k = 0, r and Ω.
1) Construct Δk(λ ), k = 0, r by (24) where A0

k and {λ 01
kn } are defined by (21), (23),

(18) and (19).
2) Find Mk(λ ), k = 1, r via (9).
3) For each fixed k = 1, r, solve the inverse problem IP(k) and find qk(xk), xk ∈ [0, Tk]
on the edge ek .
4) For each fixed k = 1, r, construct Ck(xk, λ ), Sk(xk, λ ), xk ∈ [0, Tk].
5) Calculate d(λ ) and h(λ ) using (6) and (10).
6) Construct q0(x0), x0 ∈ [0, T0] from d(λ ), h(λ ),Ω using Algorithm 1.
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