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GENERATORS OF II1 FACTORS
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(communicated by D. Hadwin)

Abstract. In 2005, Junhao Shen introduced a new invariant, G (N) , of a diffuse von Neumann
algebra N with a fixed faithful trace, and he used this invariant to give a unified approach
to showing that large classes of II1 factors M are singly generated. This paper focuses on
properties of this invariant. We relate G (M) to the number of self-adjoint generators of a II1
factor M : if G (M) < n/2 , then M is generated by n + 1 self-adjoint operators, whereas if
M is generated by n + 1 self-adjoint operators, then G (M) � n/2 . The invariant G (·) is
well-behaved under amplification, satisfying G (Mt) = t−2G (M) for all t > 0 . In particular, if
G (L Fr) > 0 for any particular r > 1 , then the free group factors are pairwise non-isomorphic
and are not singly generated for sufficiently large values of r . Estimates are given for forming
free products and passing to finite index subfactors and the basic construction. We also examine a
version of the invariant Gsa(M) defined only using self-adjoint operators; this is proved to satisfy
Gsa(M) = 2G (M) . Finally we give inequalities relating a quantity involved in the calculation of
G (M) to the free-entropy dimension δ0 of a collection of generators for M .

1. Introduction

An old problem in von Neumann algebra theory is the question of whether each
separable von Neumann algebra N is singly generated. A single generator x leads
to two self-adjoint generators {x + x∗, i(x − x∗)} and any pair {h, k} of self-adjoint
generators yields a single generator h + ik . Thus the single generation problem has an
equivalent formulation as the existence of two self-adjoint generators. Earlier work in
this area solved all cases except for the finite von Neumann algebras, [1, 16, 22, 26].
Here there has been progress in special situations, [8, 9, 19], but a general solution is
still unavailable. Recently Junhao Shen, [19], introduced a numerical invariant G (N) ,
and was able to show that single generation for II1 factors was a consequence of
G (N) < 1/4 . He proved that G (N) = 0 for various classes of II1 factors, giving a
new approach to the single generation of II1 factors with Cartan masa, with property Γ
and those factorising as tensor products of II1 factors. His work settled some previously
unknown cases as well as giving a unified approach to various situations that had been
determined by diverse methods. It should be noted that 0 is the only value of Shen’s
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invariant that is currently known. If strictly positive values are possible, then Corollary
5.1 guarantees examples of separable II1 factors which are not singly generated.

In this paper, our purpose is to undertake a further investigation of this invariant,and
to relate it to a quantity G min(M) which counts the minimal number of generators for
M . A related quantity G min

sa (M) counts the minimal number of self-adjoint generators,
and there is a parallel invariant Gsa(M) to G (M) which has a similar definition (given
below) but which restricts attention to self-adjoint generating sets.

The contents of the paper are as follows. The second section gives the definitions
of G (N) and Gsa(N) in terms of generating sets and finite decompositions of 1 as sums
of orthogonal projections. This is a slightly different but equivalent formulation of the
original one in [19]. These are related by the inequalities G (N) � Gsa(N) � 4G (N) ,
although it is shown subsequently that G (M) = 2Gsa(M) for all II1 factors M . The
main result of the third section is that the relation G (M) < n/2 for II1 factors M
implies generation by n + 1 self-adjoint elements. The case n = 1 is of particular
interest since single generation is then a consequence of G (M) < 1/2 .

The fourth section relates the generator invariant of a II1 factor M to that of a
compression pMp . If τ(p) = t , then G (pMp) = t−2G (M) . Up to isomorphism, Mt

can be uniquely defined as pMp for any projection p ∈ M with τ(p) = t , 0 < t < 1 .
In a standard way, Mt can be defined for any t > 0 as p(Mn ⊗ M)p where n is any
integer greater than t , and p ∈ Mn ⊗ M is a projection of trace t/n < 1 . In this
more general situation, the scaling formula G (Mt) = t−2G (M) for t > 0 also holds.
The subsequent section contains some consequences of the scaling formula, and also
establishes it for the related invariant Gsa(M) . This requires a more indirect argument
since the method of passing between generating sets for M and for Mt does not preserve
self-adjointness and so cannot apply to Gsa(Mt) although it is suitable for G (Mt) . The
equality Gsa(M) = 2G (M) is also established in this section.

The sixth section is concerned with finite index inclusions N ⊆ M of II1 factors.
The main results are that G (〈M, eN〉 ) � G (M) and that G (N) = λ 2G (〈M, eN〉 ) ,
where 〈M, eN〉 is the basic construction and λ denotes the index [M : N] . A standard
result of subfactor theory is that M is the basic construction 〈N, eP〉 for an index λ
inclusion P ⊆ N , so two of these basic constructions scale G (·) by λ 2 . This suggests
the formula G (〈M, eN〉 ) = λG (M) , but this is still an open problem.

Section 7 concentrates on free group factors and their generalisations, the interpo-
lated free group factors. For r ∈ (0,∞] , the formula G (L F1+r) = rα is established,
where α is a fixed constant in the interval [0, 1/2] . This leads to two possibilities,
depending on the value of α . If α = 0 , then L (F1+r) is singly generated for all
r > 0 , while if α > 0 , then the free group factors are pairwise non-isomorphic, being
distinguished by the generator invariant. The paper concludes with a discussion of
Voiculescu’s modified free entropy dimension δ0(X) , where X is a finite generating
set for M . A quantity I (X) is introduced in the second section on the way to defining
G (M) . The main results of the last section are the inequalities δ0(X) � 1+2I (X) for
general finite generating sets, and the stronger form δ0(X) � 1 + I (X) for generating
sets of self-adjoint elements. These have the potential for providing lower bounds for
G (M) .

We thank the referee for bringing the following result to our attention, which
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works in a general unital C ∗ -algebra. We include a proof for completeness. The
scaling formula for the generator invariant in section 4 can be thought of as a continuous
version of this fact.

PROPOSITION 1.1. Let n, t ∈ N with t � 2 . Suppose that M is a unital C∗ -
algebra generated by (t − 1)n2 + 1 hermitian operators. Then M ⊗ Mn is generated
by t hermitian operators.

Proof. When t = 2 , consider n2 + 1 hermitian generators of M labeled as
x1, . . . , xn, y1, . . . , yn, z1, . . . , zn−1 and f j,k, gj,k for 1 � j � n − 1 and j + 1 < k � n .
By scaling and adding copies of the identity, we can assume that the spectrum of each
xj lies in [2j, 2j + 1] and that each zj is positive and invertible. Then the C ∗ -algebra
A generated by the hermitian operators⎛⎜⎜⎝

x1

x2
. . .

xn

⎞⎟⎟⎠
and ⎛⎜⎜⎜⎜⎝

y1 z1 f 1,3 + ig1,3 . . . f 1,n + ig1,n

z1 y2 z2 . . . f 2,n + ig2,n . . .
f 1,3 − ig1,3 z2 y3 . . . f 3,n + ig3,n

...
. . .

. . .
. . .

...
f 1,n − ig1,n . . . f n−2,n − ign−2,n zn−1 yn

⎞⎟⎟⎟⎟⎠
is all of Mn(M) . This will follow immediately once we have shown that all scalar
matrices lie in A . By applying the functional calculus to the first generator, we see that
scalar diagonal matrices lie in A . Regard Mn(M) as M ⊗ Mn , writing (ei,j) for the
canonical matrix units of Mn . Pre and post-multiplication by diagonal matrices shows
that z1 ⊗ e1,2 ∈ A . Then multiply this element by its adjoint to obtain z2

1 ⊗ e1,1 ∈ A
and apply the functional calculus to get z−1

1 ⊗ e1,1 ∈ A . Multiplying this by z1 ⊗ e1,2

shows that the matrix unit 1 ⊗ e1,2 lies in A . The same technique can be used to see
that ej,j+1 ∈ A for each j . Thus all scalar matrices lie in A , as claimed.

When t > 2 , suppose the additional (t − 2)n2 hermitians a(s)
1 , . . . , a(s)

n and

b(s)
j,k , c(s)

j,k for 1 � i < j � n and 1 � s � t − 2 are required to generate M . Adding the
generators ⎛⎜⎜⎜⎜⎝

a(s)
1 b(s)

1,2 + ic(s)
1,2 . . . b(s)

1,n + ic(s)
1,n

b(s)
1,2 − ic(s)

1,2 a(s)
2 . . . b(s)

2,n + ic(s)
2,n

...
. . .

. . .
...

b(s)
1,n − ic(s)

1,n . . . b(s)
n−1,n − ic(s)

n−1,n a(s)
n

⎞⎟⎟⎟⎟⎠
to those listed above, gives a total of (t − 1)n2 + 1 hermitian operators which generate
Mn(M) . �
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Finally, a word on notation. For a subset X of a von Neumann algebra M , W∗(X)
will denote the von Neumann algebra generated by X . It is not assumed that W∗(X)
automatically contains the identity of M . For example, W∗(p) = Cp for a projection
p ∈ M .

2. The generator invariant

The main focus of the paper is on II1 factors. However we define the generator
invariant and establish basic results in the context of diffuse finite vonNeumann algebras
with a fixed faithful trace τ , which is normalised with τ(1) = 1 . Diffuse finite von
Neumann algebras will be denoted by N , while M is reserved for II1 factors.

DEFINITION 2.1. Let (N, τ) be a finite von Neumann algebra with fixed trace.
Let P (or P(N) when the underlying algebra is unclear) denote the collection of
all finite sets of mutually orthogonal projections in N which sum to 1 . An important
subclass of P is the collection Peq of those P which consist of projections of equal
trace. Note that in the context of a finite factor M , P = {p1, . . . , pk} ∈ Peq(M)
can be diagonalised in the sense that there exist matrix units (ei,j)k

i,j=1 in M satisfying
ei,i = pi for all i . In this factor context, the elements of Peq are referred to as the
diagonalisable elements of P .

DEFINITION 2.2. Consider P, Q ∈ P . Then Q refines P , written Q � P , when
every p ∈ P is a sum of elements of Q . The sets P and Q are equivalent, written
P ∼ Q , when there is a unitary u ∈ N with uPu∗ = Q . Note that in a II1 factor,
P ∼ Q if, and only if, the multiset of the traces of the elements of P is the same as the
multiset of the traces of the elements in Q .

The ordering Q � P defined above is chosen so that the map P 
→ I (X; P) below
is order preserving. This will be established in Lemma 2.5.

DEFINITION 2.3. Let N be a finite von Neumann algebra. Given x ∈ N and
P ∈ P , define

I (x; P) =
∑
p,q∈P
pxq �=0

τ(p)τ(q).

For a finite subset X ⊂ N and P ∈ P , define

I (X; P) =
∑
x∈X

I (x; P),

and
I (X) = inf

P∈P
I (X; P). (2.1)

On occasion, the notation IN(X; P) and IN(X) will emphasise the algebra N and
hence the choice of trace.

The definition of I given above is formally different from that of Shen [19,
Definition 2.1], in that Shen only considers families from Peq and performs the limiting
procedure in a slightly different order. Nevertheless, the resulting invariant G (N)
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defined in Definition 2.7 below agrees with [19, Definition 2.1] in the case of diffuse
vonNeumann algebras. Before proceeding, a few elementary observations are recorded.

REMARKS 2.4.
1. The inequality

0 � I (X) � I (X; P) � |X|
holds for all finite subsets X in N and all P ∈ P .

2. If X is a finite subset of N , then define X∗ = {x∗|x ∈ X} . The equality

I (X∗; P) = I (X; P)

holds for all P ∈ P .
3. Let P ∈ P be a set of k projections. The estimate

I (x; P) =
∑
p∈P
px�=0

τ(p)2 � k max{τ(p)2|p ∈ P}

is valid for each x ∈ N ∩ P′ . In particular, if P ∈ Peq , then

I (x; P) � k−1.

4. If X = {x1, . . . , xm} ⊂ N and P = {p1, . . . , pk} ∈ Peq then

I (X; P) = k−2 |{(i, j, l)|pixlpj �= 0}| .
Writing I (X; P) in this way is often useful in calculations, an example being
[19, Theorem 4.1].

5. For any z1, z2 ∈ N and P ∈ P ,

I (z1 + z2; P) � I (z1; P) + I (z2; P). (2.2)

6. If X is a finite generating set of N , then so also is

Y = {x + ix∗, i(x − ix∗)|x ∈ X}
and, furthermore,

I (X; P) � I (Y; P) � 4I (X; P).

This follows from the preceding remark. Take z1 = x + ix∗ and z2 = x− ix∗ for
each x ∈ X to obtain I (X; P) � I (Y; P) . Now let Y1 = {x + ix∗|x ∈ X} and
Y2 = {i(x − ix∗)|x ∈ X} so that (2.2) and item 2 above combine to give

I (Y1; P) � 2I (X; P) and I (Y2; P) � 2I (X; P). (2.3)

LEMMA 2.5. Let N be a finite von Neumann algebra. Consider a finite subset
X ⊂ N and P, Q ∈ P with Q � P . Then

I (X; Q) � I (X; P).
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Proof. Take x ∈ N and two pairs of orthogonal projections (e1, e2) and (f 1, f 2)
in N . If (e1 + e2)x(f 1 + f 2) �= 0 , then∑

i,j
eixf j �=0

τ(ei)τ(f j) � τ(e1 + e2)τ(f 1 + f 2).

The result now follows by induction. �
In many applications it will be useful to know that the infimum defining I (X) in

(2.1) can be taken through Peq . Recall that a separable diffuse abelian von Neumann
algebra A is isomorphic to L∞[0, 1] and, if A is equipped with a trace, then this
isomorphism can be chosen so that the trace is given by

∫ 1
0 · dt on L∞[0, 1] .

LEMMA 2.6. Let N be a diffuse von Neumann algebra and let X be a finite subset
of N . For each n ∈ N ,

I (X) = inf{I (X; P)|P ∈ Peq, |P| = nl some l ∈ N}
= lim

l→∞
(inf{I (X; P)|P ∈ Peq, |P| = nl}).

Proof. Fix ε > 0 and find Q = {q1, . . . , qk} ∈ P with

I (X; Q) � I (X) + ε. (2.4)

Let A be a diffuse abelian subalgebra of N with Q ⊂ A , and let

δ =
ε

2|X|k . (2.5)

By approximating the family τ(q1), . . . , τ(qk) by rational numbers with common de-
nominator nl , there exists l0 ∈ N such that if l � l0 , then there are r1, . . . , rk ∈ N

with
ri

nl
� τ(qi) � ri

nl
+ δ

for each i . Choose projections p1, . . . , pk in A with 0 � pi � qi and τ(pi) = ri/nl
for each i . Let pk+1 = 1−∑k

i=1 pi , so τ(pk+1) � kδ . Let P0 = {p1, . . . , pk+1} ∈ P .
Thus qixqj �= 0 whenever pixpj �= 0 . Hence

I (X; Q) =
∑
x∈X

∑
1�i,j�k
qixqj �=0

τ(qi)τ(qj) �
∑
x∈X

∑
1�i,j�k
pixpj �=0

τ(pi)τ(pj). (2.6)

Now

I (X; P0) �
∑
x∈X

∑
1�i,j�k
pixpj �=0

τ(pi)τ(pj)

+ |X|
⎛⎝ k∑

i=1

τ(pi)τ(pk+1) +
k∑

j=1

τ(pk+1)τ(pj) + τ(pk+1)2

⎞⎠
� I (X; Q) + 2|X|τ(pk+1)
� I (X; Q) + 2k|X|δ � I (X; Q) + ε,
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by inequality (2.6), the estimate τ(pk+1) � kδ and the choice of δ in (2.5). Finally,
refine P0 to find a family P � P0 in Peq with nl elements. Lemma 2.5 gives

I (X) � I (X; P) � I (X; P0) � I (X; Q) + ε < I (X) + 2ε,

by (2.4). Since this can be done for any l � l0 , and ε > 0 was arbitrary, the result
follows. �

These preliminaries allow the generator invariant of a diffuse finite von Neumann
algebra to be defined.

DEFINITION 2.7. If N is a finitely generated diffuse finite von Neumann algebra,
define the generator invariant G (N) by

G (N) = inf{I (X)|W∗(X) = N, X is a finite subset of N},
and the hermitian, (or self–adjoint), generator invariant, Gsa(N) by

Gsa(N) = inf{I (X)|W∗(X) = N, X is a finite subset of Nsa}.
If N is not finitely generated, then define G (N) = Gsa(N) = ∞ .

REMARK 2.8. By item 2.3 of Remarks 2.4, the inequalities

G (N) � Gsa(N) � 4G (N)

hold for any diffuse finite von Neumann algebra N . In Theorem 5.5 it will be shown
that G (M) = 2Gsa(M) for all II1 factors M .

3. The generation theorem

Theorem 4.1 of [19] states that if a II1 factor M has G (M) < 1/4 , then it is
generated by a projection and a hermitian element. It is subsequently remarked that
the same proof shows that a II1 factor M with G (M) < 1/2 is singly generated. The
theorem below strengthens this result to consider II1 factors which may not be singly
generated, with Shen’s remark arising from the case n = 1 . The basic idea is the
same combinatorical counting argument of [19] which dates back through [8] and [9] to
work in the 1960’s by Douglas, Pearcy and Wogen, [1, 16, 26]. A good account of this
material can be found in the book by Topping, [22].

Recall that if (ei,j)k
i,j=1 are matrix units for the k × k matrices, Mk(C) , then the

self–adjoint elements
∑k−1

i=1 (ei,i+1 + ei+1,i) and ek,k generate Mk(C) .
THEOREM 3.1. (The generation theorem) Let M be a separable II1 factor and

n ∈ N . If G (M) < n/2 , then M is generated by n + 1 hermitian elements.

Proof. Suppose that G (M) < n/2 for some n ∈ N . There exists k0 ∈ N such
that

G (M) <
n
2
−
(

n + 2
2k

− 1
k2

)
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for all k � k0 . By Lemma 2.6, there is a finite set X = {x1, . . . , xm} of generators for
M , some k � k0 and a diagonalisable family P = {e1, . . . , ek} ∈ Peq such that

I (X; P) <
n
2
−
(

n + 2
2k

− 1
k2

)
. (3.1)

Choose a set of matrix units (ei,j)k
i,j=1 in M with ei,i = ei for each i . Define a set of

triples
T = {(i, j, l)|1 � i, j � k, 1 � l � m, eixlej �= 0} (3.2)

so the definition of I (X; P) gives

I (X; P) = k−2|T|. (3.3)

For each r = 1, . . . , n− 1 , let Sr be the set of triples (s, t, r) with 1 � s < t � k
and let Sn be the set of triples (s, t, n) with 1 � s < t � k − 1 . Then∣∣∣∣∣∣

n⋃
q=1

Sq

∣∣∣∣∣∣ =
(n − 1)k(k − 1)

2
+

(k − 1)(k − 2)
2

=
nk2

2
− (n + 2)k

2
+ 1.

By the choice of k � k0 ,

|T| <
nk2

2
− (n + 2)k

2
+ 1 =

∣∣∣∣∣
n⋃

r=1

Sr

∣∣∣∣∣ ,
from (3.1) and (3.3).

Decompose T into a partition
⋃n

r=1 Tr with each |Tr| � |Sr| and find, for each
r , injections Tr → Sr , written as (i, j, l) 
→ (s(i, j, l), t(i, j, l), r) . This really defines n
maps indexed by r , but as the domains Tr and ranges Sr are disjoint, these are regarded
as a single map from T =

⋃
Tr to

⋃
Sr . Define self–adjoint operators

yr =
∑

(i,j,l)∈Tr

(es(i,j,l),ixlej,t(i,j,l) + et(i,j,l),jx
∗
l ei,s(i,j,l))

for 1 � r � n .
If 1 � r � n and (i1, j1, l1) ∈ Tr ⊂ T , then (s(i1, j1, l1), t(i1, j1, l1)) appears

exactly once in the set
{(s, t), (t, s)|(s, t, r) ∈ Sr}

as Sr is disjoint from its transpose on the first two variables and the map Tr → Sr is an
injection. For such (i1, j1, l1) ∈ Tr ,

ei1,s(i1,j1,l1)yret(i1,j1,l1),j1 = ei1,s(i1,j1,l1)es(i1,j1,l1),i1xl1ej1,t(i1,j1,l1)et(i1,j1,l1),j1

= ei1xl1ej1 �= 0. (3.4)

As T =
⋃n

r=1 Tr , equation (3.4) and the definition of T in (3.2) imply that

xl =
∑

(i,j,l)∈T

ei,ixlej,j =
n∑

r=1

∑
(i,j,l)∈Tr

ei,s(i,j,l)yret(i,j,l),j),
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for each l = 1, . . . , m . Thus the set {y1, . . . , yn} ∪ {ei,j|1 � i, j � k} generates the
II1 factor M .

Finally note that ek,kyn = ynek,k = 0 so that yn, ek,k ∈ W∗({yn + λek,k}) for any
λ > ‖yn‖ by the spectral theorem. In this way M is generated by the n + 1 hermitian
elements

y1, . . . , yn−1, yn + λek,k, and
k−1∑
i=1

(ei,i+1 + ei+1,i),

as required. �

REMARK 3.2. In Corollary 5.7, it will be shown that if M is generated by n + 1
hermitian elements, then G (M) � n/2 , which almost gives a converse to this result.
The remaining gap is summarised in the following question.

QUESTION 3.3. Let M be a II1 factor. If G (M) = n/2 for some n ∈ N , is M
generated by n + 1 hermitians?

4. A scaling formula

This section examines the behaviour of G (M) under amplifications and compres-
sions. Theorem 4.5 establishes that

G (Mt) = t−2G (M) (4.1)

for all II1 factors M and t > 0 . Note that it is a consequence of equation (4.1) that M
is finitely generated if and only if Mt is finitely generated for all t > 0 . This result is
deduced in Lemma 4.4 from the lemmas that will be needed to prove equation (4.1).

LEMMA 4.1. Let M be a separable II1 factor and let n ∈ N . Then

G (Mn−1) � n2G (M).

Proof. Assume that G (M) < ∞ as otherwise the lemma is vacuous. Let ε >
0 . By Lemma 2.6, there is a finite generating set X for M , some k ∈ N and a
diagonalisable P = {e1, . . . , enk} ∈ Peq such that I (X; P) < G (M)+ε . Find matrix
units (ei,j)nk

i,j=1 in M with ei,i = ei . Define

f r,s =
k∑

i=1

e(r−1)k+i,(s−1)k+i

for r, s = 1, . . . , n . The family (f r,s)n
r,s=1 is a system of matrix units in M . Consider

f = f 1,1 , a projection of trace n−1 so f Mf is a representative of Mn−1 .
The von Neumann algebra f Mf is generated by

⋃n
r,s=1 f 1,rXf s,1 using induction

on the equation

f xyf =
n∑

r=1

f 1,1xf r,1f 1,ryf 1,1,
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see for example [25, Lemma 5.2.1]. Consider Q = {e1, . . . , ek} , a family of orthogonal
projections in f Mf with sum f , so Q is a diagonalisable element of Peq(f Mf ) . For
x ∈ X , i, j = 1, . . . , k and r, s = 1, . . . , n the relation eif 1,rxf s,1ej �= 0 is equivalent to
e(r−1)k+ixe(s−1)k+j �= 0 since

eif 1,rxf s,1ej = ei,(r−1)k+ixe(s−1)k+j,j.

Let C be the number of quintuples (i, j, r, s, x) with this property.
Since each projection in Q has trace k−1 in f Mf , it follows that

If Mf (
n⋃

r,s=1

f 1,rXf s,1; Q) = C
1
k2

,

whereas

IM(X; P) = C
1

n2k2
.

Therefore

G (Mn−1) = G (f Mf )

� If Mf

⎛⎝ n⋃
r,s=1

f 1,rXf s,1; Q

⎞⎠
= n2IM(X; P) � n2G (M) + n2ε,

from which the lemma follows. �

REMARK 4.2. It does not appear to be possible to obtain

Gsa(Mn−1) � n2Gsa(M) (4.2)

using the methods of Lemma 4.1, since a self–adjoint generating set X leads to a gen-
erating set

⋃n
r,s=1 f 1,rXf s,1 for f Mf which is not necessarily self–adjoint. Nevertheless

inequality (4.2) is true, as will be established in Corollary 5.6 from the scaling formula
of Theorem 4.5 and Theorem 5.5.

The next lemma provides one inequality in (4.1) and also the parallel inequality
for the hermitian–generator invariant.

LEMMA 4.3. Let M be a separable II1 factor and 0 < t < 1 . Then

G (M) � t2G (Mt) and Gsa(M) � t2Gsa(Mt).

Proof. Assume that Mt is finitely generated, otherwise there is nothing to prove.
Fix a projection p ∈ M of trace t so that pMp is a representative of Mt and let X be
an arbitrary finite set of generators for pMp .

For ε > 0 , find orthogonal projections E = {e1, . . . , en} ∈ PpMp such that

IpMp(X; E) = t−2
∑
x∈X

∑
eixej �=0

τM(ei)τM(ej) < IpMp(X) + ε. (4.3)
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The factor t−2 arises in (4.3) as τMt (y) = t−1τM(y) for y ∈ Mt . Let m be the maximal
integer such that mt � 1 and find a family of orthogonal projections p1, . . . , pm+1 in
M such that:

i. p1 = p ;
ii. τ(pi) = τ(p) , for i = 2, . . . , m ;
iii.

∑m+1
i=1 pi = 1 . In this way 0 � τ(pm+1) < τ(p) with pm+1 possibly the zero

projection. Let v1 = p1 and find partial isometries v2, . . . , vm+1 ∈ M such that:
1. viv∗i = pi , for each i = 2, . . . , m + 1 ;
2. v∗i vi = p1 , for i = 2, . . . , m ;
3. v∗m+1vm+1 is a subprojection of p1 of the form

∑k−1
j=1 ej + ẽk+1 for some k ∈

{1, . . . , n} and some ẽk � ek .
It will now be shown that

Y = X ∪ {v2, . . . , vm+1} (4.4)

generates the II1 factor M . Since X generates pMp , it follows that pMp ⊂ W∗(Y) .
The relations

piMpj = viv
∗
i Mvjv

∗
j = vipv∗i Mvjpv∗j ,

for 1 � i, j � m + 1 , then imply that

piMpj ⊂ vipMpv∗j ⊂ viW
∗(Y)v∗j ⊂ W∗(Y),

and so Y generates M .
The final step is to estimate I (Y) . Let F be a set of mutually orthogonal

projections with sum p that refines {e1, . . . , ek−1, ẽk, ek − ẽk, ek+1, . . . , en} such that

max
f ∈F

τ(f ) <
ε
m

. (4.5)

Thus F ∈ PpMp and F � E . Extend F to a family

G = {vif v∗i |1 � i � m + 1, f ∈ F}
of projections. Then G ⊃ F and the sum of the orthogonal projections in G is 1 so
G ∈ PM . Fix i ∈ {2, . . . , m+1} and note that if vjf 1v∗j vivkf 2v∗k �= 0 for some j, k and
f 1, f 2 ∈ F , then j = i (as otherwise v∗j vi = 0 ) and k = 1 (as otherwise vivk = 0 );
when these conditions hold f 1 = f 2 (as f 1v∗j vivkf 2 = f 1p1f 2 = f 1f 2 ). Thus

IM(vi; G) �
∑
f ∈F

τ(f )2 � max
f ∈F

τ(f ) <
ε
m

, (4.6)

and Lemma 2.5 and (4.3) imply that

IM(X; G) = IM(X; F) � IM(X; E)

=
∑

e1 ,e2∈E,x∈X
e1xe2 �=0

τ(e1)τ(e2) < t2IpMp(X) + εt2. (4.7)
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Finally

G (M) � IM(Y; G) = IM(X; F) +
m+1∑
i=2

IM(vi; G)

� IM(X; E) + ε < t2IpMp(X) + εt2 + ε. (4.8)

The inequality G (M) � t2G (Mt) then follows, as ε > 0 was arbitrary and X was an
arbitrary finite generating set for pMp .

Only minor modifications are necessary for the hermitian case. Assume that each
element of X is self-adjoint, and replace the partial isometries vi in (4.4) by the
self-adjoint elements vi + v∗i and i(vi − v∗i ) . Then the same arguments lead to the
inequality

Gsa(M) < t2IpMp(X) + εt2 + 4ε,
for any finite generating set X consisting of self-adjoint elements. The factor of 4,
which was not present in the counterpart inequality (4.8), arises from the estimate

m+1∑
i=2

IM(vi + v∗i ; G) +
m+1∑
i=2

IM(i(vi − v∗i ); G) � 4
m+1∑
i=2

IM(vi; G) < 4ε.

This change reflects the replacement of vi by vi + v∗i and i(vi − v∗i ) in the generating
set Y of (4.4). �

LEMMA 4.4. Let M be a II1 factor and let t > 0 . Then Mt is finitely generated
if, and only if, M is finitely generated.

Proof. Without loss of generality, suppose that 0 < t < 1 , otherwise replace t
by t−1 . Lemma 4.3 shows that if Mt is finitely generated so too is M . Conversely, if
M is finitely generated, choose n ∈ N with n−1 < t . Lemma 4.1 shows that Mn−1 is
finitely generated. Let s = n−1t−1 . Since 0 < s < 1 and (Mt)s = Mn−1 is finitely
generated, another application of Lemma 4.3 shows that Mt is finitely generated. �

THEOREM 4.5. (The Scaling Formula) Let M be a separable II1 factor. For each
t > 0 ,

G (Mt) = t−2G (M). (4.9)

Proof. This formula will be established by considering successively the cases
t ∈ Q , t ∈ (0, 1) and t ∈ (1,∞) .

By Lemma 4.4, M is infinitely generated if, and only if, Mt is infinitely generated.
Assume then that both M and Mt are finitely generated. For n ∈ N and any separable
II1 factor M , the equation

G (Mn−1) = n2G (M) (4.10)

is a consequence of the inequalities of Lemma 4.1 and Lemma 4.3. Let t = p/q be a
rational and apply (4.10) twice. This gives

G (Mt−1) = G ((Mq)p−1) = p2G (Mq)
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and

G (M) = G ((Mq)q−1) = q2G (Mq) =
q2

p2
G (Mt−1).

This proves the theorem for rational t .
For arbitrary 0 < t < 1 , consider 0 < s < 1 such that st ∈ Q . Then

G (M) � t2G (Mt) � s2t2G (Mst) = G (M) (4.11)

by applying Lemma 4.3 twice and the rational case above. Hence G (M) = t2G (Mt) .
If t > 1 , then

G (M) = G ((Mt)t−1) = t2G ((Mt)t−1 t) = t2G (Mt).

This deals with all possible cases and so completes the proof. �

5. Consequences of scaling

This section contains an initial collection of deductions from the scaling formula.
Results regarding the free group factors and estimates involving free products are
reserved to Section 7. Note that there is currently no example for which the hypothesis
of the first corollary is known to hold.

COROLLARY 5.1. If there exists a separable II1 factor M such that G (M) > 0 ,
then there exist separable II1 factors which are not singly generated.

Proof. If the separable II1 factor M satisfies G (M) = ∞ , then this is already
an example with no finite set of generators. Thus the additional assumption that
0 < G (M) < ∞ can be made, in which case

lim
t→0+

G (Mt) = lim
t→0+

t−2G (M) = ∞,

by Theorem 4.5. It is immediate from the definition of G (·) that any singly generated
factor has G (·) � 1 , and so Mt is not singly generated for sufficiently small values of
t . �

COROLLARY 5.2. Any finitely generated II1 factor M with non–trivial funda-
mental group F (M) has G (M) = 0 and is singly generated.

Proof. If t ∈ F (M) \ {1} , then G (M) = G (Mt) = t−2G (M) by Theorem 4.5 as
M ∼= Mt . Since G (M) < ∞ , it follows that G (M) = 0 so M is singly generated by
Theorem 3.1 or [19]. �

The following lemma leads to the upper bound for G (M) in Remark 3.2, and
which will finally be established in Corollary 5.7. A simple modification yields the odd
integer case of Corollary 5.7 without the need for further work.

LEMMA 5.3. Let M be a II1 factor which is generated by n hermitian elements
for some n ∈ N . Then Gsa(M) � n − 1 .
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Proof. Let X = {x1, . . . , xn} be n hermitian elements generating N . Let ε > 0
and let A be a masa containing xn . Since A ∼= L∞[0, 1] , there exists some diagonalis-
able P ∈ Peq(A) with |P| > ε−1 . Then I (xn; P) � ε from item 3 of Remarks 2.4.
For each i ∈ {1, . . . , n − 1} , the estimate I (xi; P) � 1 gives

Gsa(M) � I (X; P) � n − 1 + ε

and the result follows. �
The next lemma is the easy direction of Theorem 5.5.

LEMMA 5.4. Let M be a II1 factor. Then

2G (M) � Gsa(M).

Proof. Suppose that M is finitely generated, as otherwise the inequality is vacuous.
Let ε > 0 . Use Lemma 2.6 to find a self–adjoint set of generators X = {x1, . . . , xn}
for M and a diagonalisable set of projections P ∈ Peq with I (X; P) � Gsa(M) + ε .
Take k = |P|m > n/ε for some m ∈ N and choose a diagonalisable refinement
Q = {e1, . . . , ek} ∈ Peq of P . For l ∈ {1, . . . , n} let

yl =
∑

1�i<j�k

eixlej, and zl =
k∑

i=1

eixlei.

Then let Y = {y1, . . . , yn} and Z = {z1, . . . , zn} .
Since xl = zl + yl + y∗l for each l , the finite set Y ∪ Z generates M . Moreover,

2I (Y; Q) + I (Z; Q) = I (Y; Q) + I (Y∗; Q) + I (Z; Q) = I (X; Q)

since the regions in {1, . . . , k} × {1, . . . , k} depending on Y , Y∗ and Z are disjoint.
This gives the estimate

I (Y; Q) � I (Y; Q) +
1
2
I (Z; Q) � 1

2
I (X; Q).

As zl ∈ Q′ for all l , item 3 of Remarks 2.4 gives I (Z; Q) � n/k < ε . Hence

G (M) � I (Y; Q) + I (Z; Q) � 1
2
I (X; Q) + ε � 1

2
Gsa(M) +

3
2
ε

as Q � P . The lemma follows. �
The generator invariant can now be related to the hermtian generator invariant.

THEOREM 5.5. Let M be a II1 factor. Then

G (M) =
1
2
Gsa(M).
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Proof. By Lemma 5.4, it suffices to prove that Gsa(M) � 2G (M) for a finitely
generated II1 factor M . Let ε > 0 and choose k, n ∈ N with k > 1 such that

G (M) <
n

2k2
� G (M) + ε.

Write t = 1/k so that 0 < t < 1 . The scaling formula (Theorem 4.5) gives

G (Mt) = t−2G (M) <
n
2
.

By the generation theorem (Theorem 3.1), Mt is generated by n+1 hermitian elements
so that Gsa(M) � n by Lemma 5.3. Lemma 4.3 on scaling by small t implies that

Gsa(M) � t2Gsa(Mt) � t2n =
n
k2

< 2G (M) + 2ε.

This proves the theorem. �
The scaling for the generator invariant can now be extended to the hermitian case,

as stated in Remark 4.2.

COROLLARY 5.6. If M is a separable II1 factor and t > 0 , then

Gsa(Mt) = t−2Gsa(M).

Proof. This follows directly from Theorems 4.5 and 5.5. �
The next corollary gives the partial converse to the generation theorem which was

indicated in Remark 3.2.

COROLLARY 5.7. If n is the minimal number of hermitian generators of a finitely
generated II1 factor M , then

n − 1 � 2G (M) + 1 � n.

Proof. Lemma 5.3 and Theorem 5.5 give G (M) � (n − 1)/2 which yields the
second inequality. If 2G (M) + 1 < n − 1 , then G (M) < n−2

2 so that the generation
theorem (Theorem 3.1) gives n − 1 hermitian generators for M , contradicting the
minimality of n . This gives the first inequality. �

COROLLARY 5.8. If G is a countable discrete I.C.C. group generated by n
elements, then G (L G) � (n − 1)/2 .

Proof. If G is generated by g1, . . . , gn , then there are hermitian elements hi in
the II1 factor L G with W∗(hi) = W∗(gi) for all i by the spectral theorem, since each
gi is normal. The previous corollary completes the proof. �

Corollary 5.10 gives a formula describing the generator invariant in terms of the
minimal number of generators required to generate compressions of the von Neumann
algebra, based on the following:

DEFINITION 5.9. Let M be a II1 factor. Write G min(M) for the minimal number
of generators of M if M is finitely generated and let G min(M) = ∞ if M is not finitely
generated. The quantity G min

sa (M) has a similar definition in terms of the number of
self-adjoint generators.
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The following simple estimates will be used below.
1. G (M) � G min(M) and Gsa(M) � G min

sa (M) .
2. G min

sa (M) � 2G min(M) � G min
sa (M) + 1 .

COROLLARY 5.10. Let M be a separable II1 factor. Then

G (M) = lim
k→∞

G min(M1/k)
k2

(5.1)

and

Gsa(M) = lim
k→∞

G min
sa (M1/k)

k2
. (5.2)

Proof. By Lemma 4.4, assume that M is finitely generated. The first step is to
establish (5.1). The scaling formula (Theorem 4.5) and the estimate 1 above give

G (M) =
G (M1/k)

k2
�

G min(M1/k)
k2

for all k . For ε > 0 find k0 ∈ N with k2
0 > ε−1 . For k � k0 , find n ∈ N with

2k2G (M) < n � 2k2G (M) + 1.

The scaling formula gives

G (M1/k) = k2G (M) < n/2

so the generation theorem (Theorem 3.1) ensures that M1/k is generated by n + 1
hermitians. Estimate 2 preceding the corollary gives

G min(M1/k) � 1
2

(
G min

sa (M1/k) + 1
)

� n
2

+ 1

so that
G min(M1/k)

k2
� n

2k2
+

1
k2

� G (M) +
2
k2

� G (M) + 2ε.

This gives equation (5.1). For (5.2), note that the estimate 2 above gives

lim
k→∞

G min
sa (M1/k)

k2
= 2 lim

k→∞
G min(M1/k)

k2
.

The result follows from (5.1) and Theorem 5.5. �
The last result of this section records that the previous corollary is part of a general

phenomenon regarding invariants of II1 factors which scale and are bounded by the
numbers of generators involved. The proof is omitted.

COROLLARY 5.11. Suppose that H is an invariant of a II1 factor which satisfies
H (M) = t2H (Mt) for all t > 0 . If there exist constants a, b � 0 and α, β ∈ R with

aG min(M) + α � H (M) � bG min(M) + β

for all separable II1 factors M , then

aG (M) � H (M) � bG (M).



GENERATORS OF II1 FACTORS 571

6. Finite index subfactors

This brief section examines the generator invariant for finite index inclusions of
II1 factors. Recall from [11] that if N ⊂ M is a unital inclusion of II1 factors and
eN is the orthogonal projection from L2(M) onto L2(N) , then the basic construction
〈M, eN〉 is the von Neumann subalgebra of B(L2(M)) generated by M and eN and
〈M, eN〉 = JN′J , where J is the usual modular conjugation operator on L2(M) given
by extending themap x 
→ x∗ . This last equation holds for any vonNeumann subalgebra
of a II1 factor M , and implies that 〈M, eN〉 is a factor precisely when the same is
true for N . Recall also that {eN}′ ∩ 〈M, eN〉 = N . In this situation, N is said to
be a finite index subfactor if 〈M, eN〉 is a type II1 factor, and one formulation of the
index [M : N] is given by [M : N] = Tr(1) , where Tr is the unique trace on 〈M, eN〉
normalised with Tr(eN) = 1 .

LEMMA 6.1. Suppose that N ⊂ M is a unital inclusion of II1 factors with
[M : N] < ∞ . Then

G (〈M, eN〉 ) � G (M).

Note that in this lemma, G (〈M, eN〉 ) is computedwith respect to the trace λ−1Tr ,
where λ = [M : N] , since this is the trace on the basic construction algebra 〈M, eN〉 ,
normalised to take the value 1 at the identity.

Proof. Take ε > 0 , a finite generating set X for M and (by Lemma 2.6) a
collection of projections P ∈ Peq(M) with I (X; P) < G (M) + ε . Since N is also
a factor, there exists a unitary u ∈ U (N) such that uPu∗ = Q0 ∈ P(N) . Choose a
refinement Q of Q0 in Peq(N) with |Q| = k for some k > ε−1 . The inequality

I (eN ; Q) � k−1 < ε

is implied by item 3 of Remarks 2.4. Since uXu∗ also generates M , it follows that

G (〈M, eN〉 ) � I (uXu∗ ∪ {eN}; Q) � I (X; P) + ε < G (M) + 2ε,

proving the result. �

LEMMA 6.2. Let N ⊂ M be a finite index unital inclusion of II1 factors. Then

G (N) � G (M).

Proof. Recall from [11, Lemma 3.1.8], that given a finite index inclusion N ⊂ M ,
there exists a subfactor P ⊂ N with [N : P] = [M : N] and 〈N, eP〉 ∼= M . The result
follows immediately from the previous lemma. �

Note that if there is a II1 factor M with G (M) > 0 , then the previous lemma
does not hold for infinite index subfactors as there is always a copy of the hyperfinite
II1 factor R inside any II1 factor.

THEOREM 6.3. Let N ⊂ M be a finite index unital inclusion of II1 factors. Then
G (M) = 0 if, and only if, G (N) = 0 .
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Proof. Suppose that G (M) = 0 . By Lemma 6.1, it follows that G (〈M, eN〉 ) = 0 .
Now N ∼= eN 〈M, eN〉 eN , so N ∼= 〈M, eN〉 λ−1 , where λ = [M : N] . The scaling
formula (Theorem 4.5) immediately gives G (N) = 0 . The reverse direction is Lemma
6.2 above. �

More generally, suppose that N ⊂ M is a finite index unital inclusion of II1 factors
and write λ = [M : N] . The isomorphism N ∼= eN 〈M, eN〉 eN and the scaling formula
lead to the equality

G (N) = λ 2G (〈M, eN〉 ).

Furthermore, Lemmas 6.1 and 6.2 give

G (N) � G (M) � G (〈M, eN〉 ) = λ−2G (N).

It is then natural to pose the following question.

QUESTION 6.4. Suppose that N ⊂ M is a finite index unital inclusion of II1 factors
and write λ = [M : N] . Is it the case that

G (N) = λG (M)?

7. Free group factors and free products

The main result in this section is Theorem 7.1 below, which is obtained by using
the quadratic scaling of the generator invariant and a similar property of the interpolated
free group factors L Fs of the first author and Rădulescu [4, 18]. For r > 1 and λ > 0 ,
the quadratic scaling formula for the interpolated free group factors states that

(L Fr)λ = L F1+ r−1

λ2
, (7.1)

from [4, Theorem 2.4].

THEOREM 7.1. There exists a constant 0 � α � 1/2 such that

G (L F1+r) = rα. (7.2)

for all r ∈ (0,∞] .

Proof. For r ∈ (0,∞) write β(r) = G (L Fr+1) . Equation (7.1) above and
Theorem 4.5 combine to give

β
(

r − 1
λ 2

)
= G ((L Fr)λ ) = λ−2G (L Fr) = λ−2β(r − 1). (7.3)

Take r − 1 = t and λ−2 = s in (7.3) to obtain

β(st) = sβ(t)

for all s, t ∈ (0,∞) . Hence, there is a constant α = β(1) � 0 with β(t) = αt .
The estimate α � 1

2 follows from Corollary 5.8 as α = G (L F2) and F2 is certainly
generated by two elements.
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It remains to extend (7.2) to the r = ∞ case. Since the fundamental group of
L F∞ is R+ , [17], or more easily since N ⊂ F (L F∞) , [25, Corollary 5.2.3], it
follows that G (L F∞) is either 0 or ∞ , by Corollary 5.2. Suppose that α = 0 so
that G (L Fk) = 0 for each k � 2 . Consideration of the chain

L F2 ⊂ L F3 ⊂ L F4 ⊂ · · · ⊂ L F∞

gives G (L F∞) = 0 by Shen’s main technical theorem, [19, Theorem5.1]. Conversely,
if G (L F∞) = 0 , then the relation α = G (L F2) = 0 follows from the isomorphism

F2
∼= F∞ � Z.

This is essentially in [19] and a proof can also be found in [20, Chapter 15]. Hence
G (L F∞) = 0 if and only if α = 0 and the result follows. �

As an immediate consequence, there is a direct link between the free group iso-
morphism problem and the generator invariant.

COROLLARY 7.2. If G (L F2) > 0 , then all the interpolated free group factors
L Ft are pairwise non-isomorphic for t > 1 .

REMARK 7.3. Since L F1
∼= L∞[0, 1] has generator invariant 0 , the previous

theorem extends to include the case r = 0 .

The next results give some estimates regarding the generator invariant and free
products. Reverse inequalities to either Theorem7.5 or Theorem7.6 would immediately
combine with Corollary 7.2 to show the non–isomorphism of the free group factors.
Lemma 7.4 originates in a conjugacy idea used repeatedly by Shen to obtain [19,
Theorem 5.1].

LEMMA 7.4. Let M and N be II1 factors containing a common diffuse von
Neumann subalgebra B . Then

G (M ∗B N) � G (M) + G (N).

Proof. Given ε > 0 , choose finite subsets X ⊂ M and Y ⊂ N and families
P ∈ P(M) and Q ∈ P(N) with W∗(X) = M , W∗(Y) = N and

I (X; P) < G (M) +
ε
2
, I (Y; Q) < G (N) +

ε
2
. (7.4)

By refining if necessary, it may be assumed that P and Q are equivalent since Proposi-
tion 2.5 ensures that the estimate (7.4) is unaffected by refinement. Since B is diffuse,
choose E ∈ PB equivalent to P and Q and unitaries u ∈ M and v ∈ N with
uPu∗ = E and vQv∗ = E . Then uXu∗∪ vYv∗ is a finite generating set for M ∗B N and

I (uXu∗ ∪ vYv∗; E) = I (X; P) + I (Y; Q) < G (M) + G (N) + ε,

from which the result follows. �
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THEOREM 7.5. Let M and N be II1 factors. Then

G (M ∗ N) � G (M) + G (N) +
1
2
.

Proof. Choose masas A ⊂ M and B ⊂ N . Then M ∼= M ∗A A and N ∼= N ∗B B ,
and so

M ∗ N ∼= (M ∗A A) ∗ (B ∗B N) ∼= (M ∗A L F2) ∗B N,

where L F2 = A ∗ B . Now use Lemma 7.4 twice to obtain

G (M ∗ N) � G (M ∗A L F2) + G (N) � G (M) + G (N) + G (L F2).

The result follows as Theorem 7.1 gives G (L F2) � 1/2 . �
The remainder of this section examines free products with finite hyperfinite von

Neumann algebras. In [13], Jung proves that for a fixed hyperfinite von Neumann
algebra Q with a fixed faithful normal tracial state φ , Voiculescu’s modified free
entropy dimension δ0(X) is the same for all finite sets X that generate Q . Write δ0(Q)
for this quantity. The definition of the modified free entropy dimension will be given
in the next section, which discusses free entropy dimension in conjunction with the
generator invariant. Here only the value of δ0(Q) is needed. Following [13], given
(Q, φ) , decompose Q over its centre to obtain

Q ∼= Q0 ⊕
(

s⊕
i=1

Mki(C)

)
,

where Q0 is diffuse or {0} , the sum on the right is either empty, finite or countably
infinite and each ki ∈ N . The trace φ is given by

φ = α0φ0 ⊕
(

s⊕
i=1

αitrki

)
,

where
• α0 > 0 and φ0 is a faithful normal trace on Q0 , if Q0 �= {0} ;
• α0 = 0 and φ0 = 0 if Q0 = {0} ;
• trki is the tracial state on the ki × ki matrices Mki(C) and each αi > 0 .

Then, from [13],

δ0(Q) = 1 −
s∑

i=1

α2
i

k2
i
. (7.5)

Furthermore, as also noted in [13], this quantity agrees with the ‘free dimension number’
for Q defined in earlier work of the first author [3]. In this work it was shown
(Theorem 4.6 of [3]) that if A = L∞[0, 1] is equipped with the usual trace

∫ 1
0 · dt , then

A ∗ Q ∼= L Fr , where r = δ0(Q) + 1 .
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THEOREM 7.6. Let M be a II1 factor and Q a hyperfinite von Neumann algebra
with a fixed faithful normalised trace φ . Then

G (M ∗ Q) � G (M) +
1
2
δ0(Q).

Proof. Choose a masa A ⊂ M so that A is isomorphic to L∞[0, 1] with the trace
on A (coming from τM ) being given by

∫ 1
0 · dt . The discussion preceding the theorem

gives
M ∗ Q ∼= M ∗A ∗(A ∗ Q) ∼= M ∗A L Fr

where r = 1 + δ0(Q) and A is a masa in L Fr . By Proposition 7.4 and Theorem 7.1,

G (M ∗ Q) � G (M) + G (L Fr) � G (M) +
r − 1

2
= G (M) +

1
2
δ0(Q),

exactly as required. �
The next two corollaries are obtained by taking Q to be successively the n × n

matrices with the usual normalised trace and to be L Zn , with the group trace. The
results follow from calculating δ0(Mn(C)) = 1 − 1

n2 and δ0(L Zn) = 1 − 1
n from

Jung’s formula (7.5).

COROLLARY 7.7. Let M be a II1 factor and n � 2 . Then

G (M ∗ Mn(C)) � G (M) +
1
2
− 1

2n2
.

COROLLARY 7.8. Let M be a II1 factor and n � 2 . Then

G (M ∗ L Zn) � G (M) +
1
2
− 1

2n
.

8. Free entropy dimension

The objective in this section is to relate the generator invariant to Voiculescu’s
modified free entropy dimension by proving the inequalities

δ0(X) � 1 + 2I (X), (8.1)

when X is a finite generating set in a finite von Neumann algebra M and, under the
extra assumption that X consists of self–adjoint elements,

δ0(X) � 1 + I (X). (8.2)

For certain sets X of operators, these inequalities give lower bounds on I (X) . These
seem to be the only such lower bounds that are currently known. Consider the case
of a DT -operator Z , introduced by the first author and Haagerup in [5]. By [2] each
such Z , including the quasi–nilpotent DT–operator T , generates L F2 . The operator
Z is constructed by realising L F2 as generated by a semicircular element S together
with a free copy of L∞[0, 1] , using projections from L∞[0, 1] to cut out an “upper
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triangular” part of S , which is the quasi–nilpotent DT–operator T , and then adding an
operator from L∞[0, 1] to get Z . Using projections from L∞[0, 1] , one easily sees that
I (Z) � 1/2 . On the other hand, since, by [6], δ0(Z) = 2 , (8.1) gives

I (Z) = 1/2.

Similarly, free semi–circular elements h1, h2 generating L F2 satisfy δ0(h1, h2) = 2
from [23, 24], so that (8.2) gives I (h1, h2) � 1 . The reverse inequality follows by
taking a sufficiently fine family of projections in either W∗(h1) or W∗(h2) — see the
proof of Lemma 5.3 — so that

I (h1, h2) = 1.

The central question in the theory of microstates free entropy dimension is that
of invariance: if one has two finite generating sets X1 and X2 for the same II1 factor
must δ0(X1) = δ0(X2) ? Certain conditions on the factor, such as having a Cartan masa
([24]) and non-primeness ([7]), imply that all finite generating sets have free-entropy
at most one. Independently Jung [14] and Hadwin and Shen [10] have shown that the
existance of a finite generating set X for a II1 factor with δ0(X) = 1 and certain
additional technical conditions, which are subtly different in each approach, imply that
all finite generating sets Y for M have δ0(Y) � 1 . Before discussing these conditions
further and establishing inequalities (8.1) and (8.2), the prevailing notation in this area
is outlined. The definition of the modified free-entropy dimension given below is Jung’s
covering–number reformulation from [12, 15].

Let M be a II1 factor and continue to write τ for the faithful normal trace on M
normalised by τ(1) = 1 . For k ∈ N write Mk(C) for the k×k matrices, equippedwith
the trace trk normalised with trk(1) = 1 . For a finite subset X = {x1, . . . , xn} ⊂ M ,
γ > 0 , k, m ∈ N and R > 0 define the microstate space ΓR(X; m, k, γ ) to be the set of
all n -tuples (a1, . . . , an) of k × k -matrices whose ∗ -moments approximate those of
(x1, . . . , xn) up to order m within a tolerance of γ and whose norms are bounded by
R . This means that ‖ai‖ � R for all i and∣∣∣τ(xj1

i1 . . . x
jp
ip) − trk(aj1

i1 . . . a
jp
ip)
∣∣∣ < γ ,

for all p � m , i1, . . . , ip ∈ {1, . . . , n} and j1, . . . , jm ∈ {1, ∗} . When all the xj ’s are
self–adjoint, it makes no difference to the definition of δ0(X) whether all the ai ’s are
required to be self–adjoint — see for example the beginning of Section 3 of [6].

Given ε > 0 , the covering number Kε (Y) of a metric space Y is the minimal
cardinality of an ε -net for Y . One easy estimate, used in the sequel, is

Kε (Y) � Pε/2 (Y) , (8.3)

where Pε/2 (Y) is the maximal number of disjoint open ε/2 -balls which can be found
in Y . In [12], Jung defines, for m ∈ N , γ , ε > 0 and R > 0 ,

Kε,R(X; m, γ ) = lim sup
k→∞

k−2 logKε (ΓR(X; m, k, γ )) . (8.4)
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where the metric on ΓR(X; m, k, γ ) is that obtained from the Euclidian norm on
(Mk(C))n given by

‖(a1, . . . , an)‖2
2 =

(
n∑

l=1

trk(a∗l al)

)1/2

. (8.5)

Then define
Kε,R(X) = inf

m∈N,γ>0
Kε,R(X; m, γ ). (8.6)

and
Kε(X) = sup

R>0
Kε,R(X).

Jung shows in Corollary 24 of [12], that the modified free entropy dimension δ0(X) is
given by

δ0(X) = lim sup
ε→0

Kε(X)
| log ε| . (8.7)

In [14], Jung made a detailed analysis of the rate of convergence in the limit-
superior in (8.7). For α > 0 , say that the generating set X of M to be α -bounded if,
for some R � maxx∈X ‖x‖ , there exists some constant K and ε0 > 0 such that

Kε,R(X) � α| log ε| + K,

for all 0 < ε < ε0 . Corollary 1.4 of [14] demonstrates that this is equivalent to
the original definition of α -boundedness in [14] and that if X is α -bounded, then
δ0(X) � α . Furthermore, M is said to be strongly– 1 –bounded if it has a generating
set X that is 1 -bounded and if there exists a self-adjoint element x belonging to the
∗ -algebra generated by X that has finite free entropy. Theorem 3.2 of [14] shows that
if M is strongly– 1 –bounded, then every finite set of generators for M is 1 –bounded.

The alternative approach of Hadwin and Shen in [10] is to examine coverings by
unitary orbits of balls. For m, k, γ , R as above and ε > 0 , define

νε(ΓR(x1, . . . , xn; m, k, γ ))

to be the minimum cardinality of a set Λ ⊂ ΓR(x1, . . . , xn; m, k, γ ) such that for every
a = (a1, . . . , an) ∈ ΓR(x1, . . . , xn; m, k, γ ) there is some unitary u ∈ Mk(C) and
b ∈ Λ with ‖uau∗ − b‖2 � ε , i.e. the microstate space ΓR(x1, . . . , xn; m, k, γ ) is
covered by νε(ΓR(x1, . . . , xn; m, k, γ )) orbit ε -balls. Here uau∗ is defined to be the
n -tuple (ua1u∗, . . . , uanu∗) . Then define

K (x1, . . . , xn; R, ε) = inf
m∈N,γ>0

lim sup
k→∞

log(νε(ΓR(x1, . . . , xn; m, k, γ )))
−k2 log ε

and the upper free-orbit dimension K2(x1, . . . , xn) by

K2(x1, . . . , xn) = sup
0<ε<1

sup
R>0

K (x1, . . . , xn; R, ε).

The main theorem of [10] (Section 3, Theorem 1) is that if X is a finite set of generators
for a II1 factor with K2(X) = 0 , then every finite set of generators Y for this factor
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also has K2(Y) = 0 . Therefore, it makes sense to say a II1 factor has zero upper free
orbit-dimension when it has a finite generating set X with K2(X) = 0 .

The connection between the upper free orbit-dimension and Voiculescu’s modified
free entropy dimension is immediate from results of Szarek [21] which show that there
is an absolute constant C > 0 such that the groups Uk of unitary matrices in Mk(C)
equipped with the metric induced from the operator norm satisfy

Kε(U (K)) �
(

C
ε

)k2

.

Given a finite generating set X = (x1, . . . , xn) for a II1 factor M , take
S = 2(

∑n
i=1 ‖xi‖2

2)
1/2 . Provided m � 2 and γ is sufficiently small, the estimate

Kε(ΓR(X; m, k, γ )) � νε/2(ΓR(X; m, k, γ )) · Kε/8S(Uk)

�
(

8CS
ε

)k2

νε/2(ΓR(X; m, k, γ )),

follows. Therefore

Kε,R(X; m, γ ) � log(8CS/ε) + lim sup
k→∞

log νε/2(ΓR(X; m, k, γ ))

and

Kε,R(X) � log(8CS/ε) + K (X; R, ε/2)| log(ε/2)|
� (1 + K (X; R, ε/2)) | log ε| + K (X; R, ε/2) log(2) + log(8CS) .(8.8)

The free orbit-dimension K1(X) of [10] is defined by

K1(X) = lim sup
ε→0

sup
R>0

K (X; R, ε).

The relationships between the approaches of [14] and [10] follow from the definition of
K1 and (8.8).

PROPOSITION 8.1. Let X be a finite set of generators for a II1 factor M . Then
δ0(X) � 1 + K1(X) and X is α -bounded, for all α > 1 + K1(X) .

PROPOSITION 8.2. A II1 factor whose upper free orbit dimension is zero, i.e. has
a finite generating set X with K2(X) = 0 , is strongly 1 -bounded.

Proof. By hypothesis there is a set of self-adjoint generators X for the II1 factor
with K2(X) = 0 . If there is no element of finite entropy in the ∗ -algebra generated by
X , adjoin one. This new set of generators Y also has zero upper free orbit-dimension
by [10, Section 3, Theorem 1]. The definition of K2 ensures that

Kε,R(Y) � | log ε| + log(8CS),

from equation (8.8). That is Y is 1 -bounded, and so M is strongly 1 -bounded. �
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In this section the upper free-orbit dimension is used as it enables us to show, in
Corollary 8.7, that no set of generators X for an interpolated free group factor can have
I (X) = 0 . The strongly- 1 -boundedapproach to this would only rule out the existance
of such generators X which also have an element of finite entopy in the ∗ -algebra they
generate. Before proceeding to the main result of this section, recall the following
lemma, due to Voiculescu. Formally, a proof can be constructed by copying the ideas
of the proof of Proposition 1.6 of [24].

LEMMA 8.3. Suppose that X = {x1, . . . , xn} is a finite subset of M with W∗(X) =
M . Fix p ∈ N and pairwise orthogonal projections e1, e2, . . . , ep in M with sum 1
and τ(ei) = p−1 for each i . Given γ > 0 and m ∈ N , there exists γ ′ > 0 , m′, k′ ∈ N

such that if
(a1, . . . , an) ∈ Γ(X; m′, k, γ ′),

for some k � k′ with p|k , then there exist pairwise orthogonal projections (f 1, . . . , f p)
in Mk(C) each with trk(f i) = p−1 (so that

∑n
i=1 f i = 1 ) satisfying

(a1, . . . , an, f 1, . . . , f p) ∈ Γ(x1, . . . , xn, e1, . . . , ep; m, k, γ ).

Now the main result of this section relating I (X) to K1(X) and K2(X) .

PROPOSITION 8.4. Let M be a finite von Neumann algebra and X ⊂ M a finite
generating set for M . In general, K1(X) � 2I (X) and in the case that each x ∈ X
is self-adjoint, K1(X) � I (X) . Furthermore, if I (X) = 0 , then K2(X) = 0 .

Proof. Let X = (x1, . . . , xn) be an n -tuple which generates M . Fix ε > 0 and
suppose that c > I (X) . Use Lemma 2.6 to find E = {e1, . . . , ep} ∈ Peq(M) with
I (X; E) < c and each τ(ei) = p−1 . Let R > 0 and write S = (

∑n
i=1 ‖xi‖2

2)
1/2 . Take

γ > 0 and m ∈ N with m � 6 . Let k′, m′ and γ ′ be the constants obtained by applying
Lemma 8.3 to X and (e1, . . . , ep) . Let k � k′ be divisible by p and fix a family of
pairwise orthogonal projections (q1, . . . , qp) in Mk(C) with each τk(qi) = p−1 .

For each l = 1, . . . , n write Tl for the set of pairs (i, j) with eixlej �= 0 . As
I (I; E) < c , it follows that

n∑
l=1

|Tl| < cp2. (8.9)

Following the approach of [7], define the projection Q from (Mk(C))n into (Mk(C))n

by

Q(a1, . . . , an) =

⎛⎝ ∑
(i,j)∈Tl

qialqj

⎞⎠n

l=1

.

When each xl = x∗l , the sets Tl are invariant under the adjoint operation so in this
case Q restricts to give a projection from (Msa

k (C))n into (Msa
k (C))n . The range

Q((Mk(C))n) is a 2
∑n

l=1 |Tl|(k/p)2 –dimensional subspace of (Mk(C))n ∼= R2nk2
.

Under the additional assumption that xl = x∗l for each l , the range Q((Msa
k (C))n) is a∑n

l=1 |Tl|(k/p)2 –dimensional subspace of (Msa
k (C))n ∼= Rnk2

.
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Let Y be the subset (Q(Mk(C)n))2S consisting of all elements (b1, . . . , bn) ∈
Q(Mk(C)n) with ‖(b1, . . . , bn)‖2 � 2S if X does not consist of self-adjoint elements,
and let Y = (Q((Msa

k (C))n))2S when each xl = x∗l . Volume considerations give

Pε/2 (Y) �
(

2S
ε/2

)2
∑n

l=1
|Tl|(k/p)2

,

in the first case and

Pε/2 (Y) �
(

2S
ε/2

)∑n
l=1

|Tl|(k/p)2

,

in the second. The simple estimate (8.3) combines with (8.9) to give

Kε (Y) �

⎧⎨⎩
(

4S
ε
)ck2

, xl = x∗l for all l(
4S
ε
)2ck2

, otherwise.

Given any point a = (a1, . . . , an) ∈ ΓR(X; m′, k, γ ) , let (f 1, . . . , f p) be the or-
thogonal projections in Mk(C) with each τk(f i) = p−1 from Lemma 8.3. Now each
xl can be written xl =

∑
(i,j)∈Tl

eixlej . Since

(a1, . . . , an, f 1, . . . , f p) ∈ ΓR(x1, . . . , xn, e1, . . . , ep; m, k, γ ),

it follows that ∥∥∥∥∥∥al −
∑

(i,j)∈Tl

f ialf j

∥∥∥∥∥∥
2

2

< γ ,

from the standing assumption that m � 6 . Take a unitary u ∈ Mk(C) such that
uf iu∗ = qi for each i = 1, . . . , p . Then u∗Q(uau∗)u is the n -tuple with

∑
(i,j)∈Tl

f ialf j

in the l -entry. Thus
‖a − u∗Q(uau∗)u‖2

2 � nγ .

Provided γ is taken small enough, ‖a‖2 � 2S , so that Q(uau∗) lies in the ball Y . If
in addition, (nγ )1/2 � ε/2 , it follows at most Kε/2(Y) orbit ε -balls are required to
cover ΓR(x1, . . . , xn; m, k, γ ) . That is

νε(ΓR(x1, . . . , xn; m, k, γ ) �

⎧⎨⎩
(

8S
ε
)ck2

, xl = x∗l for all l;(
8S
ε
)2ck2

, otherwise,

for R > 0 , m � 6 , γ sufficiently small and k � k′ which is divisible by p . Thus

K (x1, . . . , xn; R, ε) = inf
m∈N,γ>0

lim sup
k→∞

log νε(ΓR(x1, . . . , xn; m, k, γ ))
−k2 log ε

�

⎧⎨⎩ c
(
1 + log(8S)

| log ε|
)

, xl = x∗l , for all l,

2c
(
1 + log(8S)

| log ε|
)

, otherwise.
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This holds for each c > I (X) and so we can replace c by I (X) in the inequality
above to obtain

K1(x1, . . . , xn) = lim sup
ε→0

sup
R>0

K (x1, . . . , xn; R, ε)

�
{

I (X), xl = x∗l , for all l,

2I (X), otherwse.

in general, and if I (X) = 0 , then K2(X) = 0 . �
The first two corollaries below follow immediately.

COROLLARY 8.5. Let X be a finite set of generators for the II1 factor (M, τ) .
Then

δ0(X) � 1 + 2I (X).

COROLLARY 8.6. Let X be a finite set of self-adjoint generators for the II1 factor
(M, τ) . Then

δ0(X) � 1 + I (X).

The next corollary follows from Proposition 8.4 and [10, Section 3, Theorem 1]. It
shows in particular that I (X) > 0 for every generating set X of an interpolated free
group factor by [23, 24].

COROLLARY 8.7. Let M be any II1 factor having a finite generating set Y with
δ0(Y) > 1 . If X is any finite generating set for M , then I (X) > 0 .
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[17] F. RĂDULESCU, The fundamental group of the von Neumann algebra of a free group with infinitely many

generators is R+ , J. Amer. Math. Soc., 5(3):517–532, 1992.
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