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UNBOUNDED OPERATORS COMMUTING

WITH RESTRICTED BACKWARD SHIFTS
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(communicated by H. Berkovici)

Abstract. The closed densely defined operators on a proper invariant subspace of the backward
shift that commute with the restricted backward shift are shown to be coanalytic Toeplitz operators
induced by functions in the Nevanlinna class. The result can be interpreted as a kind of commutant
lifting theorem for unbounded operators. It extends, and in a certain sense completes, earlier
work of Daniel Suárez.

1. Introduction

The venue for the prototypal version of the commutant lifting theorem is the
classical Hardy space H2 of the unit disk D . In this setting the commutant lifting
theorem states that a bounded operator on a coinvariant subspace of H2 that commutes
with the restricted backward shift is the restriction of a coanalytic Toeplitz operator. Is
there a generalization to unbounded operators?

The question was prompted by the paper [7] of Daniel Suárez. Let u be an inner
funciton, but not a finite Blaschke product. (This notation will remain fixed.) The
subspace K2

u = H2 � uH2 is the general proper infinite-dimensional subspace of H2

that is invariant under S∗ , the backward shift operator, the adjoint of the unilateral shift
operator S . The compression of S to K2

u will be denoted by Su ; its adjoint S∗u is the
restriction of S∗ to K2

u .
In [7], Suárez characterized the closed densely defined operators on K2

u that com-
mute with S∗u , albeit rather indirectly. Among the operators in question are the restric-
tions to K2

u of the coanalytic Toeplitz operators with symbols in H2 . Suárez showed
that, at least for some u , the preceding operators do not exhaust the class.

Suárez in [7] does not contemplate Toeplitz operatorswhose symbols are not square
integrable, although such operators are implicit in his work (and have arisen elsewhere).
Specifically, each function in the Smirnov class induces an analytic and a coanalytic
Toeplitz operator, and the restriction to K2

u of the coanalytic one is closed, densely
defined, and commutes with S∗u . But, as will be seen below, even these do not exhaust
the class of closed densely defined operators that commute with S∗u .
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Nevertheless, the question raised at the beginning of this introduction does have a
positive answer, which is the main result in this paper. The answer involves an expansion
of the class of coanalytic Toeplitz operators to include those induced by functions in the
Nevanlinna class. These operators provide all of the closed densely defined operators
that commute with S∗u . Expressed in other terms, the main result says that a closed
densely defined operator that commutes with S∗u is a Nevanlinna function of S∗u .

It is natural (perhaps obligatory) to wonder whether the commutant lifting theorem
proven here for unbounded operators on the spaces K2

u is but a special case of a general
theorem in the theory of operator dilations.

Sections 2 and 3 review, respectively, the needed facts about the spaces K2
u and

about the Smirnov and Nevanlinna classes. Section 4 does the same for the analytic and
coanalytic Toeplitz operators induced by functions in the Smirnov class. In Section 5
the coanalytic Toeplitz operators induced by functions in the Nevanlinna class are
constructed and their basic properties derived.

Section 6 concerns the special case in which u is a Blaschke product with simple
zeros, a case which can be dealt with independently of Suárez’s analysis. The main
result will be proved for this case, and the necessity of using Nevanlinna functions (not
just Smirnov functions) as inducers of Toeplitz operators will be established. In fact, it
will be shown that it does not even suffice to use holomorphic Nevanlinna functions as
inducers.

In Section 7 Suárez’s basic results will be rederived, in the form needed for the
proof of the main result, which is accomplished in Section 8 through an extension of
Suárez’s analysis. In Section 9 the necessity of using Nevanlinna functions (not just
holomorphic Nevanlinna functions) as inducers is proved for general u .

Notations

• The normalized Lebesgue measure of a measurable subset E of ∂D will be
denoted by |E| .

• The Poisson integral of a finite Borel measure μ on ∂D will be denoted by
Pμ .

• K∞
u = K2

u ∩ H∞ .
• The domain and graph of an operator T will be denoted by D(T) and G (T) ,

respectively.
• H2 ⊕ H2 will be denoted by H2

2 , and interpreted as the space of 2 -by- 1
column vectors with entries in H2 .

2. The space K2
u

The spaces K2
u have a rich structure which has been under investigation for 40+

years; see for example the book [3] of N. K. Nikol’skiı̆. Only a few basic properties of
K2

u are needed here; these are discussed in greater detail in [4].
The space K2

u is a reproducing kernel Hilbert space. The kernel function ku
λ

for the evaluation functional on K2
u at the point λ of D is given by ku

λ (z) = (1 −
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u(λ )u(z))/(1 − λ z) .
The space K2

u carries a natural symmetry C , an antiunitary involution given by
(Cf )(z) = u(z)zf (z) (f ∈ K2

u , z ∈ ∂D) . When convenient, Cf will be denoted
alternatively by f̃ . In particular, (k̃u

λ )(z) = u(z)−u(λ )
z−λ .

For ψ in H∞ , the compression of the Toeplitz operator Tψ to K2
u will be denoted

by Aψ . Its adjoint A∗
ψ is the restriction of Tψ to K2

u , and is denoted by Aψ . The
operators Aψ and Aψ are not only adjoints of each other, they are C -transforms of
each other: Aψ = CAψC .

3. Nevanlinna and Smirnov Classes

The Nevanlinna class N (in D ) consists of all quotients ψ/χ where ψ and χ
are in H∞ and χ is not the zero function. The Smirnov class N+ consists of such
quotients in which χ is an outer function. The functions in N+ are holomorphic in D ;
those in N are meromorphic. The pole set of a function in N , if nonempty, constitutes
a Blaschke sequence.

It is noted in [5] (Proposition 3.1) that each nonzero function ϕ in N+ has what
is called there a canonical representation, a unique expression of the form ϕ = b/a ,
where a and b are in H∞ , a is an outer function, a(0) > 0 , and |a|2 + |b|2 = 1
almost everywhere on ∂D . The proof of this is simple. Roughly, if ϕ = ψ/χ with
ψ , χ as in the definition of N+ , one defines a to be the outer function that is positive
at the origin and whose modulus on ∂D equals√

|χ|2
|ψ |2 + |χ|2 ,

after checking that the last function is log-integrable. The rest follows automatically.
It is a well-known consequence of Beurling’s theorem that any family of inner

functions has a greatest common divisor, an inner function that divides every function in
the family and is divisible by every inner function with that property. For ϕ1 and ϕ2 in
N+ , we let g.c.i.d.(ϕ1,ϕ2) denote the normalized greatest common divisor of the inner
factors of ϕ1 and ϕ2 , the unique greatest common divisor whose first nonvanishing
Taylor coefficient at the origin is positive.

With this said, the notion of canonical representation can be extended to the class
N : each function ϕ in N can be written uniquely as ϕ = b/va , where b/a is a
function in N+ , represented canonically, v is an inner function, and g.c.i.d.(v, b) = 1 .

4. Toeplitz Operators with Symbols in N+ and N+

The operators in question appear implicitly in the paper [7] of Suárez, mentioned
earlier, and explicitly in the papers [1] of Henry Helson and [6] of Steven Seubert.
Their basic properties were subsequently developed by the author in [5], and will be
summarized in this section.

Throughout the section, let ϕ be a nonzero function in N+ , with canonical
representation ϕ = b/a . The operator Tϕ , the Toeplitz operator with symbol ϕ , is
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by definition the operator of multiplication by ϕ on the domain D(Tϕ) = {f ∈ H2 :
ϕf ∈ H2} , which equals aH2 . The operator Tϕ is closed and densely defined, and so
has a closed and densely defined adjoint T∗

ϕ . The domain D(T∗
ϕ ) is the de Branges–

Rovnyak space H (b) , and the graph G (T∗
ϕ ) consists of all vectors f ⊕ g in H2

2
satisfying Tbf = Tag . The operator Tϕ , the Toeplitz operator with symbol ϕ , is
defined to be T∗

ϕ . (A rationale for the definition is presented in [5].)
The operator Tϕ induces an operator on K2

u , denoted by Aϕ , and defined by

Aϕ = Tϕ | D(Tϕ) ∩ K2
u .

The operator Aϕ is closed and densely defined,and its adjoint, denoted by Aϕ , coincides
with its transform under the conjugation C : Aϕ = CAϕC , with domain D(Aϕ) =
CD(Aϕ) . The definitions of Aϕ and Aϕ reduce to the usual ones in case ϕ is bounded:
if ϕ is bounded then Aϕ is the restriction Tϕ to K2

u , an Aϕ is the compression of Tϕ
to K2

u .
In the next section, the results summarized in the last paragraph will be extended

to more general symbols.

5. Local Smirnov Classes

Suppose the function ϕ is in N but not in N+ ; let ϕ = b/va be its canonical
representation. There is a natural way to define an associated analytic Toeplitz operator
Tϕ , namely, as the operator of multiplication by ϕ with domain D(Tϕ) = {f ∈ H2 :
ϕf ∈ H2} . The operator is closed but not densely defined; in fact D(Tϕ) = vaH2 ,
which is dense in vH2 but is not dense in H2 .

On the other hand, there seems to be no sensible way to define a corresponding
coanalytic Toeplitz operator Tϕ . But if g.c.i.d.(u, v) = 1 , such an operator can be
defined on K2

u , as will be shown in this section. These operators generalize the operators
Aϕ with ϕ in N+ , studied in [5], and the reasoning going into their construction is an
adaptation of that used in [5].

The function ϕ in N will be said to belong to N+
u if it is the zero function, or if

it has the form ϕ = ψ/χ where ψ and χ are in H∞ , χ �= 0 , and g.c.i.d.(u, χ) = 1 .
The space N+

u is closed under addition and multiplication. If ϕ �= 0 and ϕ = b/va in
canonical form, then ϕ is in N+

u if and only if g.c.i.d.(u, v) = 1 .
For the remainder of this section, we let ϕ = b/va be a canonically represented

nonzero function in N+
u . The associated operator Aϕ on K2

u alluded to in the preceding
paragraph will be constructed in stages.

LEMMA 5.1. Av aK2
u is dense in K2

u .

Proof. The adjoint of Av a is Ava . Because g.c.i.d.(u, va) = 1 , we have uH2 ∩
vaH2 = {0} , so the operator Ava has a trivial kernel. Therefore its adjoint Av a has a
dense range. �

We let A0
ϕ be the operator with domain Av aK2

u given by A0
ϕ(Av ah) = Abh (h ∈

K2
u) . We let A0

ϕ be the C -transform of A0
ϕ : A0

ϕ = CA0
ϕC with domain D(A0

ϕ) =
CD(A0

ϕ) .
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Define the operator W : K2
u ⊕ K2

u → K2
u ⊕ K2

u by W(f ⊕ g) = g ⊕−f . Thus, if
A is a densely defined operator on K2

u , then G (A∗) is the orthogonal complement of
WG (A) .

LEMMA 5.2. A0
ϕ ⊂ (A0

ϕ)∗ and A0
ϕ ⊂ (A0

ϕ)∗ .

Proof. The two inclusions are C -transforms of each other, so it will suffice to
prove the first one. This amounts to showing that G (A0

ϕ) and WG (A0
ϕ) are orthogonal.

For h1 and h2 in K2
u , the vector F1 = Av ah1 ⊕ Abh1 is a typical vector in G (A0

ϕ) , and

the vector F2 = CAv aCh2⊕CAbCh2 is a typical vector in G (A0
ϕ) . Since CAv aC = Ava

and CAbC = Ab , we have

〈F1, WF2〉 = 〈Av ah1, Abh2〉 − 〈Abh1, Avah2〉
= 〈AbAv ah1, h2〉 − 〈Av aAbh1, h2〉
= 〈Ab v ah1, h2〉 − 〈Av a bh1, h2〉 = 0,

the desired conclusion. �

LEMMA 5.3. (i) The graph G ((A0
ϕ)∗) consists of all vectors f ⊕ g in K2

u ⊕ K2
u

such that Abf = Av ag .
(ii) The graph G ((A0

ϕ)∗) consists of all vectors g ⊕ f in K2
u ⊕ K2

u such that
Abg = Avaf .

Proof. The two statements are C -transforms of each other, so it will suffice to
prove the first one. The typical vector in G (A0

ϕ) equals Avah ⊕ Abh with h in K2
u .

Hence, the vector f ⊕ g in K2
u ⊕ K2

u is in G ((A0
ϕ)∗) if and only if, for all h in K2

u ,

0 = 〈 f ⊕ g, W(Avah ⊕ Abh)〉
= 〈 f , Abh〉 − 〈 g, Avah〉
= 〈Abf − Av ag, h〉 ,

which happens if and only if Abf = Av ag . �
We now make the definitions Aϕ = (A0

ϕ)∗ , Aϕ = (A0
ϕ)∗ . The operators Aϕ and

Aϕ are C -transforms of each other.

LEMMA 5.4. The operators Aϕ and Aϕ are adjoints of each other and are the
respective closures of A0

ϕ and A0
ϕ .

Proof. We have the orthogonal decompositions

K2
u ⊕ K2

u = G (A0
ϕ) ⊕ WG (Aϕ)

= G (Aϕ) ⊕ WG (A0
ϕ).

(5.1)

By Lemma 5.2 we also have the inclusions G (A0
ϕ) ⊂ G (Aϕ) , G (A0

ϕ) ⊂ G (Aϕ) . It is

asserted that G (A0
ϕ)⊕WG (A0

ϕ) is dense in K2
u ⊕K2

u . Once this has been established, it
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will follow immediately from (5.1) and the preceding inclusions that G (Aϕ) = G (A0
ϕ)

and G (Aϕ) = G (A0
ϕ) , and that K2

u ⊕ K2
u = G (Aϕ) ⊕ WG (Aϕ) , in other words, that

Aϕ = A∗
ϕ .

Let the vector f ⊕ g in K2
u ⊕ K2

u be orthogonal to G (A0
ϕ) ⊕ WG (A0

ϕ) . Then,
by (5.1) and the preceding inclusions, f ⊕ g is in WG (Aϕ) ∩ G (Aϕ) , implying by
Lemma 5.3 that Abf = Av ag and Abg = −Avaf . Applying the conjugation C to

the first of these equalities, we get Abf̃ = Avag̃ . Hence the functions vaf + bg and
vag̃ − bf̃ are in uH2 . The function

f̃ (vaf + bg) + g(vag̃ − bf̃ ) = va(f f̃ + gg̃)

is therefore in uH1 . Since g.c.i.d.(va, u) = 1 , the function f f̃ + gg̃ is then also in
uH1 . Almost everywhere on ∂D we have

f (z)f̃ (z) + g(z)g̃(z) = f (z)u(z)zf (z) + g(z)u(z)z g(z)

= zu(z)(|f (z)|2 + |g(z)|2).
The nonnegative function |f |2 + |g|2 on ∂D is thus the boundary function of a function
in H1

0 and so is the zero function. Hence f = g = 0 , which establishes the asserted
density of G (A0

ϕ) ⊕ WG (A0
ϕ) in K2

u ⊕ K2
u . �

LEMMA 5.5. Let ψ be in H∞

(i) AψAϕ f = AϕAψ f for f in D(Aϕ) .
(ii) AψAϕ f = Aψ ϕ f for f in D(Aϕ) .

Proof. (i) By Lemma 5.3, G (Aϕ) consists of all vectors f ⊕ g in K2
u ⊕ K2

u such
that Abf = Av ag . Since Aψ commutes with Ab and with Av a , the desired conclusion
is immediate.

(ii) We consider first the case where ψϕ is in H∞ . Let f be in D(Aϕ) . By
Lemma 5.4, Aϕ is the closure of A0

ϕ . Take a sequence (f n)∞1 in D(A0
ϕ) such that

f n → f and Aϕ f n → Aϕ f . Each f n has the form f n = Av ahn with hn in K2
u , and

Aϕ f n = Abhn . We have

Aψ ϕ f = lim
n→∞Aψ ϕ f n = lim

n→∞Aψ ϕAv ahn

= lim
n→∞Aψ ϕ v ahn = lim

n→∞AψAbhn

= lim
n→∞AψAϕ f n = AψAϕ f .

This establishes (ii) for the case where ψϕ is in H∞ .
To establish (ii) in general we note that since g.c.i.d.(va, u) = 1 , the operator Ava

has a trivial kernel, and hence so does its C -transform Av a . Therefore, it will suffice
to show that Av aAψ ϕ f = Av aAψAϕ f for f in D(Aϕ) . But by the special case already
established,

Av aAψ ϕ f = Av aψ ϕ f , Av aAψAϕ f = Av aψAϕ f = Av aψ ϕ f ,

which completes the proof. �
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COROLLARY. Aϕ f = A1/vAb/af for f in D(Aϕ) .

Proof. The condition g.c.i.d.(u, v) = 1 implies that the operator Av is injective
(as noted earlier). As Av is both the C -transform and the adjoint of Av , it is injective
and has a dense range. Therefore, A−1

v is a closed and densely defined operator. The

function 1/v has the canonical representation 1/v = 1/
√

2
v/
√

2
. Combining this with

Lemma 5.3, one easily checks that A1/v = A−1
v .

By Lemma 5.5 we have, for f in D(Aϕ) , AvAϕ f = Ab/af . Letting A1/v = A−1
v

act on both sides of the preceding equality, we obtain the desired conclusion. �

LEMMA 5.6. Suppose ϕ has the (perhaps noncanonical) representation ϕ =
ψ/χ , where ψ and χ are in H∞ and g.c.i.d.(u, χ) = 1 .

(i) AχK
2
u ⊂ D(Aϕ) , and AϕAχh = Aψh for h in K2

u .
(ii) Aϕ is the closure of Aϕ | AχK

2
u .

Proof. (i) Fix h in K2
u . By Lemma 5.3, it will be enough to check that AbAχh =

Av aAψh . Since bχ = vaψ , that equality is immediate.
(ii) Let A00

ϕ = Aϕ | AχK
2
u . By Lemma 5.4, the orthogonal complement of G (Aϕ)

is WG (Aϕ) . Hence it will suffice to show that any vector in K2
u ⊕K2

u that is orthogonal
to G (A00

ϕ ) belongs to WG (Aϕ) . Let f ⊕ g be such a vector. Then for all h in K2
u we

have
0 = 〈 f ⊕ g, Aχh ⊕ Aψh〉 = 〈 f , Aχh〉 + 〈 g, Aψh〉

= 〈Aχ f + Aψg, h〉 ,

implying that Aχ f +Aψg = 0 , which means χf +ψg is in uH2 . Because ψ = bχ/va ,

it follows that χ
(
f + bg

va

)
is in uH2 , and hence that χ(bg + vaf ) is in uH2 . Since

g.c.i.d.(u, χ) = 1 , this implies that bg + vaf is in uH2 , so that Abg = −Avaf . By
Lemma 5.3, this means that f ⊕ g is in WG (Aϕ) , the desired conclusion. �

COROLLARY. If χ is in H∞ and g.c.i.d.(u, χ) = 1 , then A1/χ = A−1
χ .

Proof. By the reasoning in the proof of the corollary to Lemma 5.5, the operator Aχ
is injective and has a dense range, so A−1

χ is closed and densely defined. By Lemma 5.6,
part (i) (the case ψ = 1 ), A1/χAχ is the identity operator. �

LEMMA 5.7. Let ϕ1 and ϕ2 be two nonzero functions in N+
u . Then Aϕ1

= Aϕ2
if

and only if u divides ϕ1 − ϕ2 .

Proof. Let ϕ1 and ϕ2 have the canonical representations ϕ1 = b1/v1a1 and
ϕ2 = b2/v2a2 . Let A00

ϕ1
= Aϕ1

| Av1a1v2a2K
2
u and A00

ϕ2
= Aϕ2

| Av1a1v2a2K
2
u . By

Lemma 5.6, Aϕ1
is the closure of A00

ϕ1
and Aϕ2

is the closure of A00
ϕ2

. Hence it will

suffice to show that A00
ϕ1

= A00
ϕ2

if and only if u divides ϕ1 − ϕ2 .
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Let h be in K2
u . By Lemma 5.6,

Aϕ1
Av1a1v2a2h = Ab1

Av2a2h, Aϕ2
Av1a1v2a2h = Ab2

Av1a1h.

The difference in the two images is

Ab1v2a2−b2v1a1
h,

which is 0 for all h in K2
u if and only if b1v2a2 − b2v1a1 is in uH∞ . This is the

desired conclusion, because

ϕ1 − ϕ2 =
b1v2a2 − b2v1a1

v1a1v2a2
,

and g.c.i.d.(u, v1a1v2a2) = 1 . �

Functional Calculus Interpretation of Aϕ

To close this section we note that Aϕ can, in a natural sense, be interpreted
as a function of S∗u . The H∞ functional calculus is applicable to S∗u , as to any
pure contraction. The operators Aψ with ψ in H∞ are just the H∞ functions
of S∗u . Namely, for ψ in H∞ , Aψ = ψ∗(S∗u ) , where ψ∗ is the H∞ function
whose coefficients at the origin are the complex conjugates of the coefficients of ψ
(equivalently, ψ∗(z) = ψ(z) ). In particular, Ab = b∗(S∗u ) and Av a = (va)∗(S∗u) . By
the corollary to Lemma 5.6, the operator Av a is injective, and (Av a)−1 = A1/v a . And
by Lemma 5.5, Aϕ f = A1/a vAbf for f in D(Aϕ) . Hence, for f in D(Aϕ) we can
write

Aϕ f = ((va)∗(S∗u ))
−1b∗(S∗u )f .

Accordingly, it is natural to interpret Aϕ as ϕ∗(S∗u) , where ϕ∗ = b∗/(av)∗ (ϕ∗(z) =
ϕ(z)) .

The unbounded functional calculus for S∗u obtained here is a special case of an
unbounded functional calculus for fairly general contractions due to B. Sz.-Nagy and
C. Foiaş; see Section 1 of Chapter IV in the book [8]. (I thank Hari Bercovici for alerting
me to this.)

6. Blaschke Product with Simple Zeros

We consider in this section the special case in which the inner function u is a
Blaschke product with simple zeros z1, z2, . . . . This case can be handled without
reliance on Suárez’s results.

For each n , the kernel function ku
zn for the evaluation functional at zn on K2

u is just
the kernel function kzn for the evaluation functional at zn on H2 : kzn(z) = 1/(1−znz) .
The conjugate function k̃zn in K2

u is given by k̃zn(z) = u(z)/(z − zn) . The functions
kzn span K2

u , as do the functions k̃zn . The sequences (kzn) and (k̃zn) are biorthogonal:

〈 k̃zn , kzn〉 = k̃zm(zn) =
{

0, m �= n

u′(zn), m = n.
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We note the equality ‖k̃zn‖∞ = ‖kzn‖∞ = 1/(1 − |zn|) .
The functions kzn are eigenvectors of S∗u : S∗u (kzn) = znkzn . More generally, if

ψ is in H∞ , then kzn is an eigenvector of Aψ (the general bounded operator on K2
u

commuting with S∗u ): Aψkzn = ψ(zn)kzn . This conclusion extends to closed densely
defined operators commuting with S∗u .

LEMMA 6.1. If A is a closed densely defined operator on K2
u that commutes with

S∗u , then each kzn is in D(A) and is an eigenvector of A .

Proof. The graph G (A) is an invariant subspace of S∗ ⊕ S∗ , hence is invariant
under the weakly closed operator algebra generated by S∗ ⊕ S∗ , which consists of the
operators Tψ ⊕ Tψ with ψ in H∞ . Thus, if f ⊕ Af is in G (A) and ψ is in H∞ ,
then Aψ f is in D(A) and AAψ f = AψAf .

Fix n , and choose a function f in D(A) such that f̃ (zn) �= 0 ; such an f exists
because D(A) is dense in K2

u . Let ψ = k̃zn , so that ψ(zm) = 0 for m �= n and
ψ(zn) = u′(zn) . We have

〈 k̃zm , Aψ f 〉 = 〈Aψ f̃ , kzm〉 = 〈 f̃ , Aψkzm〉

= ψ(zm)f̃ (zm) =
{

0, m �= n

u′(zn)f̃ (zn), m = n.

Thus Aψ f is a nonzero vector orthogonal to k̃zm for every m �= n , implying it is a
nonzero scalar multiple of kzn . Hence kzn is in D(A) .

Continuing to let ψ = k̃zn , we note that if we replace the f chosen above by
a general function in K2

u , the reasoning above tells us that the range of Aψ is the
one-dimensional subspace spanned by kzn . In particular, since AAψ f = AψAf , the
function Akzn is a scalar multiple of kzn . �

COROLLARY. If ϕ is in N+
u then, for each n , the kernel function kzn is an

eigenvector of Aϕ , with eigenvalue ϕ(zn) .

Proof. That kzn is in D(Aϕ) , and is an eigenvector of Aϕ , is given by Lemma 6.1.
Let ϕ = b/va be the canonical representation of ϕ . By Lemma 5.5,

v(zn) a(zn) Aϕkzn = AϕAv akzn = Aϕ v akzn

= Abkzn = b(zn)kzn ,

so that Aϕkzn = ϕ(zn)kzn , as desired. �
It will now be shown that a closed densely defined operator on K2

u that commutes
with S∗u is uniquely determined by its eigenvalues for the eigenvectors kzn , and that any
sequence of eigenvalues is possible.

PROPOSITION 6.1. Let (wn) be a sequence of complex numbers. Then there is a
unique closed densely defined operator A on K2

u that commutes with S∗u and satisfies
Akzn = wnkzn for all n .
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Proof. Existence. We let A0 be the operator whose domain is the linear span of
the kernel functions kn , with A0kn = wnkn for each n . It is clear that A0 commutes
with S∗u , in other words, that G (A0) is invariant under S∗u ⊕ S∗u . We let Ã0 be the
C -transform of A0 : the domain of Ã0 is the linear span of the functions k̃zn , and
Ã0k̃zn = wnk̃zn for each n .

We verify first that A0 ⊂ Ã∗
0 . The vector f ⊕g in K2

u⊕K2
u lies in G (Ã∗

0) if and only
if g⊕−f is orthogonal to G (Ã0) , which happens if and only if 〈 g, k̃zm〉 −〈 f , Ã0k̃zm〉 =
0 for all m . We have

〈 g, k̃zm〉 − 〈 f , Ã0k̃zm〉 = 〈 kzm , g̃〉 − 〈A0kzm , f̃ 〉
= g̃(zm) − wmf̃ (zm).

Hence, f ⊕ g is in G (Ã∗
0) if and only if g̃(zm) = wmf̃ (zm) for all m . For each n , the

condition is satisfied by kzn ⊕ A0kzn = kzn ⊕ wnkzn : wmk̃zn(zm) and (wnkzn))∼(zm) =
wnk̃zn(zm) are both 0 for m �= n and obviously coincide for m = n . This gives the
inclusion A0 ⊂ Ã∗

0 .
Since A0 has the closed extension Ã∗

0 , it is closable. We let A be the closure of
A0 . The operator A has the required properties: it is closed, densely defined, commutes
with S∗u (being the closure of an operator that does), and satisfies Akzn = wnkzn for all
n . (That A = Ã∗

0 follows from the uniqueness part of the lemma.)

Uniqueness. Let A be any operator with the required properties. It will be shown
that A is the closure of A0 . We can assume with no loss of generality that the Blaschke
product u is normalized, that is, that its first nonvanishing Taylor coefficient at the
origin is positive. For each n let un be the (normalized) Blaschke product one obtains
by deleting the first n Blaschke factors from the Blaschke product u ; the zeros of un

are zn+1, zn+2, . . . . We have un → 1 locally uniformly in D as n → ∞ .
Let f ⊕ g belong to G (A) . Since G (A) is invariant under S∗ ⊕ S∗ , it is invariant

under Tun ⊕Tun for each n . We have Tunkzm = un(zm)kzm , which is 0 for m > n and a
nonzero scalar times kzm for m � n . For each n , then, the operator Tun maps K2

u onto
the span of kz1 , . . . , kzn . The vectors Tunf ⊕ Tung thus lie in G (A0) . From the local
uniformconvergenceof the sequence (un) to 1 one easily checks that unh → h in norm
for any h in H2 , implying that Tunh → h weakly. Therefore Tun f ⊕ Tung → f ⊕ g
weakly, showing that f ⊕ g is in the closure of G (A0) . We can conclude that A is the
closure of A0 . �

The special case of the main result under the present assumption on u is now easy
to obtain.

PROPOSITION 6.2. The closed densely defined operators on K2
u that commute with

S∗u are the operators Aϕ with ϕ in N+
u .

The proposition follows immediately from Lemma 6.1 and its corolllary, Proposi-
tion 6.1, and the following lemma.

LEMMA 6.2. Given a sequence (wn) of complex numbers, there is a function ϕ in
N+

u such that ϕ(zn) = wn for each n .
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Proof. Take a sequence (ρn) of positive numbers such that Σ∞
1 ρn/(1− |zn|) < ∞

and Σ∞
1 ρn|wn|/(1 − |zn|) < ∞ . Because ‖k̃zn‖∞ = 1/(1 − |zn|) , the series Σ∞

1 ρnk̃zn

and Σ∞
1 ρnwnk̃zn converge uniformly in D to functions in K∞

u , say to the functions
χ and ψ , respectively. Because k̃zn(zm) equals 0 for m �= n and equals u′(zn) for
m = n , we have χ(zn) = ρnu′(zn) , ψ(zn) = ρnwnu′(zn) . In particular χ(zn) �= 0
for all n , so g.c.i.d.(u, χ) = 1 . The function ϕ = ψ/χ is thus in N+

u , and we have
ϕ(zn) = wn for all n , as desired. �

If the sequence (wn) in Lemma 6.2 grows too quickly, the interpolation in the
lemma cannot be performed by a holomorphic function in N+

u ; in particular, it cannot
be performed by a function in N+ . This is because holomorphic functions in N obey
a simple size restriction, as given by the following lemma.

LEMMA 6.3. If ϕ is a holomorphic function in N , then

|ϕ(z)| = exp

(
O

(
1

1 − |z|
))

.

Proof. It will suffice to consider the case where ϕ is nowhere zero. In that case
log |ϕ| is the Poisson integral of a finite real Borel measure on ∂D , so is bounded from
above by the Poisson integral of a finite positive Borel measure on ∂D , say the measure
μ . For z in D ,

(Pμ)(z) =
∫

∂D

1 − |z|2
|eiθ − z|2 dμ(eiθ).

The integrand in the integral above is bounded by 2/(1−|z|) , so the integral is bounded
by 2‖μ‖/(1− |z|) . �

7. Suárez’s Approach

In this section, Suárez’s basic results from [7], in slightly modified form, will be
rederived. Emphasis will be on those results from [7] needed to prove this paper’s main
result.

Throughout this section, A will denote a nonzero closed densely defined operator
on K2

u that commutes with S∗u . Suárez’s starting point is to consider the orthogonal
complement in H2

2 of the graph G (A) , which is an invariant subspace of S ⊕ S
containing uH2

2 . By the vector-valued generalization of Beurling’s theorem (see for
example [2]), H2

2 � G (A) = MH2
2 , where M is a two-by-two matrix inner function:

M =
(

m11 m12

m21 m22

)
,

where m11, m12, m21, m22 are in H∞ , and the boundary function of M is unitary at
almost every point of ∂D . The matrix M , in principle, contains complete information
about A . For example, identifying M with its induced multiplication operator on H2

2 ,
we have G (A) = kerM∗ , implying that a vector f ⊕ g in K2

u ⊕ K2
u belongs to G (A)

if and only if Tm11 f + Tm21g = 0 and Tm12 f + Tm22g = 0 .
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The matrix M will be called a Suárez matrix for A . One obtains the general Suárez
matrix for A by multiplying any particular one from the right by a constant two-by-two
unitary matrix.

Two properties of M are not specific to the corresponding operator A . First,
because M is unitary at almost every point of ∂D , we have |m11| = |m22| , |m12| =
|m21| , and |m11|2 + |m12|2 = 1 almost everywhere on ∂D . Second, because det M is
a function in H∞ with unimodular boundary values almost everywhere, it is an inner
function.

Crucial for present purposes are various divisibility relations satisfied by the entries
of M . These are worked out in the lemmas that follow.

LEMMA 7.1. g.c.i.d.(m11, m12) divides u .

Proof. As noted above, the subspace MH2
2 contains uH2

2 . In particular, then,

uH2 ⊂ {m11h1 + m12h2 : h1, h2 ∈ H2}.
The closure of the vector subspace on the right side of the preceding inclusion is the
S -invariant subspace generated m11 and m12 , whose corresponding inner function is
g.c.i.d.(m11, m12) . The divisibility of g.c.i.d.(m11, m12) into u follows. �

LEMMA 7.2. The inner function detM is divisible by u .

Proof. Let f be a function in D(A) . Then f ⊕ Af is orthogonal to MH2 .
Therefore, for all h1 and h2 in H2 we have

〈 f , m11h1 + m12h2〉 + 〈Af , m21h1 + m22h2〉 = 0.

Let h be in H2 , and set h1 = m22h , h2 = −m21h in the preceding equality to get

〈 f , (m11m22 − m12m21)h〉 = 0.

As D(A) is dense in K2
u , we can conclude that (m11m22 − m12m21)H2 ⊂ uH2 , which

implies that u divides det M . �

LEMMA 7.3. g.c.i.d.(m21, m22) = 1 .

Proof. Let u2 = g.c.i.d.(m21, m22) . Since G (A) is a graph, it contains no vector
of the form 0⊕ g other than 0⊕ 0 . For g in H2 , the condition that 0⊕ g be in G (A) ,
in other words, that 0⊕ g be orthogonal to MH2

2 , is the condition that g be orthogonal
to m21h1 + m22h2 for all h1 and h2 in H2 . The closure of {m21h1 + m22h2 : h1, h2 in
H2} is u2H2 , so we must have u2H2 = H2 , and u2 = 1 . �

LEMMA 7.4. ker A = K2
u1

, where u1 = g.c.i.d.(m11, m12) .

Proof. The function f in K2
u belongs to kerA if and only if f ⊕ 0 is orthogonal

to MH2
2 , in other words, if and only if f is orthogonal to m11h1 +m12h2 for all h1 and

h2 in H2 . The last condition just means that f is orthogonal to u1H2 , in other words,
that f is in K2

u1
. �
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LEMMA 7.5. g.c.i.d.
(
g.c.i.d.(m11, m21), g.c.i.d.(m12, m22)

)
= 1 .

Proof. We have

g.c.i.d.
(
g.c.i.d.(m11, m21), g.c.i.d.(m12, m22)

)
= g.c.i.d.(m11, m21, m12, m22)

= g.c.i.d.
(
g.c.i.d.(m11, m12), g.c.i.d.(m21, m22)

)
= 1,

because g.c.i.d.(m21, m22) = 1 by Lemma 7.2. �

LEMMA 7.6. u and detM are codivisible.

Proof. Let u0 = detM . On ∂D , 1/u0 = u0 (a.e.), which together with the
standard formula for the inverse of an invertible two-by-two matrix gives, on ∂D ,

M−1 = u0

(
m22 −m12

−m21 m11

)
.

Since MH2
2 ⊃ uH2

2 , we have uM−1H2
2 ⊂ H2

2 . So, for any functions h1 and h2 in H2 ,
the vector

u0u
(
(m22h1 − m12h2) ⊕ (−m21h1 + m11h2)

)
is in H2

2 . We thus have the inclusions

u0u(m22H
2 + m12H

2) ⊂ H2, u0u(m21H
2 + m11H

2) ⊂ H2.

By Lemma 7.3, g.c.i.d.(m11, m12, m21, m22) = 1 , implying that m22H2 + m12H2 and
m21H2 + m11H2 together span H2 . We can conclude that u0uH2 ⊂ H2 , i.e., uH2 ⊂
u0H2 . Hence u0 divides u . By Lemma 7.2 u divides u0 . Thus u and u0 are
codivisible. �

LEMMA 7.7. The inner functions g.c.i.d.(m11, m21) and g.c.i.d.(m12, m22) divide
u .

Proof. The inner functions in question obviously divide detM , so they divide u
by Lemma 7.6. �

LEMMA 7.8. On ∂D , m12 = −um21 , m22 = um11 .

Proof. By Lemma 7.6, on ∂D we have the equality

M−1 = u

(
m22 −m12

−m21 m11

)
.

Because M is unitary valued on ∂D , we also have there the equality

M−1 =
(

m11 m21

m12 m22

)
.

Equating the two different expressions for M−1 gives one the desired equalities. �
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According to Lemma 7.8, the functions m11 and m22 are conjugates of each other
in the space K2

Su , as are the functions m12 and −m21 . In particular, the entries of M
belong to K2

Su .

8. Main Result

THEOREM 8.1. The closed densely defined operators on K2
u that commute with S∗u

are the operators Aϕ with ϕ in N+
u .

Some preliminarieswill precede the proof. Throughout the section we let A denote
a nonzero, closed, densely defined operator on K2

u that commutes with S∗u . To prove
the theorem we need only show that A has the desired form (since we already know
that operators of the desired form do commute with S∗u ).

Recall that if M and M′ are two Suárez matrices for A , then M′ is the product
of M and a constant two-by-two unitary matrix, in that order. We shall say M and M′

are disconnected if the unitary matrix in question has neither the form

( ∗ 0
0 ∗

)
nor

the form

(
0 ∗
∗ 0

)
. In that case, each column of M′ is a linear combination of the

columns of M , but not a scalar multiple of either of the columns of M .
Consider a Suárez matrix M for A :

M =
(

m11 m12

m21 m22

)
.

Weknow fromLemma7.7 that the inner functions g.c.i.d.(m11, m21) and g.c.i.d.(m12, m22)
divide u , and from Lemma 7.5 that they are relatively prime as inner functions. From
Lemma 7.3 we know that g.c.i.d.(m21, m22) = 1 . Let w1 = g.c.i.d.(m11, m21) ,
w2 = g.c.i.d.(m12, m22) . We can then write M as

M =
(

w1p w2q
w1r w2s

)
, (8.1)

where p, q, r, s are in H∞ , and the following properties hold:
(i) g.c.i.d.(p, r) = g.c.i.d.(q, s) = g.c.i.d.(w1r, w2s) = 1 ;
(ii) almost everywhere on ∂D , |p| = |s| , |q| = |r| , and |p|2+|r|2 = |q|2+|s|2 =

1 .
We call (8.1) the reduced form of M . The key step in the proof of the theorem

will be to show that M can be so chosen that w1 = w2 = 1 .
We shall say that two inner functions v1 and v2 are relatively prime modulo u if

g.c.i.d.(u, v1, v2) = 1 .

LEMMA 8.1. Let M and M# be two disconnected Suárez matrices for A , with
reduced forms

M =
(

w1p w2q
w1r w2s

)
, M# =

(
w#

1p
# w#

2q
#

w#
1r

# w#
2s

#

)
.
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Then the inner functions w1, w2, w#
1, w

#
2 are pairwise relatively prime modulo u .

Proof. We already know that g.c.i.d.(w1, w2) = g.c.i.d.(w#
1, w

#
2) = 1 . Consider

the pair w1 and w#
1 . Since M and M# are disconnected, each column of M# is a linear

combination of the columns of M , with both coefficients in the linear combination
being nonzero. In particular, w#

1r
# is such a linear combination of w1r and w2s . So,

if w1 and w#
1 shared with u a nonconstant inner divisor, that divisor would also divide

w2s , which is impossible because g.c.i.d.(w1r, w2s) = 1 . The same reasoning handles
the other cases. �

LEMMA 8.2. A family of nonconstant, pairwise relatively prime, inner divisors of
u is at most countable.

Proof. Suppose u is a Blaschke product. A nonconstant inner divisor of u
determines a nonempty subset of u−1(0) , and two such divisors are relatively prime if
and only if their corresponding subsets of u−1(0) are disjoint. Since a disjoint family
of nonempty subsets of the countable set u−1(0) is at most countable, this settles the
case where u is a Blaschke product.

Suppose u is a singular inner function, with corresponding singular measure σ . A
nonconstant inner divisor of u then corresponds to a nonzero function in L∞(σ) . Two
such inner divisors are relatively prime if and only if the product of their corresponding
functions is the zero function in L∞(σ) , in which case the functions are orthogonal in
L2(σ) . Since L2(σ) is separable, any orthogonal family of nonzero functions in it is at
most countable, which settles the case where u is a singular function.

The general case follows from the Blaschke and singular cases. �

Proof of Theorem 8.1. Let M0 be a Suárez matrix for A , with reduced form

M0 =
(

w0
1p

0 w0
2q

0

w0
1r

0 w0
2s

0

)
.

For θ in [−π, π] , let

Mθ = M0

(
cos θ − sin θ
sin θ cosθ

)
,

with reduced form

Mθ =
(

wθ
1pθ wθ

2qθ

wθ
1 rθ wθ

2 sθ

)
.

By Lemma 8.1, if θ ′ is not equal to θ or −θ , the inner functions wθ
1 , wθ

2 , w
θ′
1 , wθ′

2 are
pairwise relatively prime modulo u . By Lemma 8.2, there are at most countably many
values of θ in the interval [0, π) such that g.c.i.d.(u, wθ

1 ) �= 1 , and at most countably
many values such that g.c.i.d.(u, wθ

2 ) �= 1 . Since all the inner functions wθ
1 and wθ

2
divide u , we have wθ

1 = wθ
2 = 1 except for at most countably many values of θ .

It has been shown, therefore, that A has a Suárez matrix M of the form

M =
(

p q
r s

)
,
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where g.c.i.d.(p, r) = g.c.i.d.(q, s) = g.c.i.d.(r, s) = 1 , and, almost everywhere on
∂D , |p| = |s| , |q| = |r| , and |p|2 + |r|2 = |q|2 + |s|2 = 1 . It is asserted that also
g.c.i.d.(u, r) = 1 . In fact, since u = detM = ps − qr , any nonconstant inner divisor
shared by u and r would force either p and r or s and r to share a nonconstant
inner divisor, contrary to the relations g.c.i.d.(p, r) = g.c.i.d.(r, s) = 1 . By the same
reasoning, g.c.i.d.(u, s) = 1 .

The function f ⊕ g belongs to G (A) if and only if it lies in the kernel of M∗ .
Since

M∗ =
(

Tp Tr

Tq Ts

)
,

the condition for f ⊕ g to be in G (A) is that Apf + Arg = 0 and Aqf + Asg = 0 . It
is asserted that these two conditions imply each other. In fact, suppose the first equality
holds. Because ps − qr = u , we have Ap s = Aq r . Therefore

ArAsg = −As pf = −ArAqf .

Because g.c.i.d.(u, r) = 1 , the operator Ar has a trivial kernel, and we obtain Aqf +
Asg = 0 , which is the second equality. The same reasoning gives the implication in the
other direction.

The graph G (A) thus consists of all vectors f ⊕ g in K2
u ⊕ K2

u such that Apf =
−Arg . The function ϕ = −p/r is in N+

u , and because |p|2 + |r|2 = 1 almost
everywhere on ∂D , the numerator and denominator in the canonical representation of
ϕ are −p and r , respectively, to within a common unimodular scalar multiple. By
Lemma 5.3, A = Aϕ . �

The discussion at the end of Section 5 enables us to give a functional calculus
restatement of Theorem 8.1: The closed densely defined operators commuting with S∗u
are the operators ϕ∗(S∗u ) with ϕ in N+

u .

9. Inadequacy of Coanalytic Symbols

THEOREM 9.1. There is a closed densely defined operator on K2
u that commutes

with S∗u but is not of the form Aϕ with ϕ a holomorphic function in N+
u .

The case where u is a Blaschke product is handled, essentially, in Section 6.
Suppose u is a Blaschke product, and let u0 be the Blaschke product with simple zeros
such that u−1

0 (0) = u−1(0) . Note that N+
u = N+

u0
. Thus, each function ϕ in N+

u0

determines, as in Section 5, both an operator on K2
u0

and an operator on K2
u , which

we denote by Aϕ,0 and Aϕ , respectively. The operator Aϕ,0 is the restriction of Aϕ to
K2

u0
. It was observed in Section 6 that ϕ can be so chosen that there is no holomorphic

function ϕ1 and N+
u0

such that Aϕ,0 = Aϕ1,0
. For such a ϕ , a fortiori, there is no

holomorphic function ϕ1 in N+
u such that Aϕ = Aϕ1

.
It thus only remains to prove Theorem 9.1 for the case where u has a nonconstant

singular factor. Some preliminaries will precede the proof. The following known result
will be used.
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LEMMA 9.1. Let ρ be a finite positive Borel measure on ∂D and τ a finite Borel
measure absolutely continuous with respect to ρ . Let Pρ and Pτ be the Poisson
integrals of ρ and τ . Then the ratio Pτ/Pρ has nontangential limit dτ

dρ almost
everywhere with respect to ρ .

One can derive the lemma starting from the Besicovich covering lemma. Here
is a rough sketch. Given ρ and τ as above, one considers the relative maximal
function Mρ,τ , whose value at a point eiθ of ∂D is the supremum of |τ|(I)/ρ(I)
taken over all subarcs I of ∂D centered at eiθ . Besicovich’s lemma enables one to
prove that Mρ,τ is of weak-type (1, 1) relative to L1(ρ) . Details can be found in the
book of R. L. Wheeden and A. Zygmund [9]. Next one considers the corresponding
relative radial maximal function Rρ,τ and relative nontangential maximal functions
Nα,ρ,τ

(
0 < α < π

2

)
. The value of Rρ,τ at a point eiθ of ∂D is the supremum of

P|τ|(reiθ )/Pρ(reiθ) for 0 � r < 1 . The value of Nα,ρ,τ at eiθ is the supremum
of P|τ|(z)/Pρ(z) as z ranges over the nontangential approach region Γα(eiθ) , the
interior of the convex hull of eiθ and the disk |z| � sinα . The distribution function
of the maximal function Rρ,τ , it turns out, is dominated by the distribution function of
Mρ,τ , so it also is of weak-type (1, 1) relative to L1(ρ) . A geometric argument shows
that Nα,ρ,τ is bounded by a constant times Rρ,τ , so Nα,ρ,τ is also of weak-type (1, 1)
relative to L1(ρ) . Once that is established, a standard argument produces the result
about nontangential limits.

Lemma 9.1 will be used in conjunction with the following result.

LEMMA 9.2. Let E be a closed Lebesgue-null subset of ∂D . Then there is a
Blaschke sequence having E as its boundary cluster set, and that clusters nontangen-
tially at each point of E .

Proof. Take a decreasing sequence (εn) of numbers in
(
0, 1

2

)
such that Σ∞

1 εn <
∞ . For each n , find a relatively open subset Gn of ∂D such that E ⊂ Gn and
|Gn| < εn . The component arcs of Gn cover E , so E is covered by finitely many of
those arcs, say by the arcs In,1, . . . , In,mn .

For each arc In,j , let zn,j be that point in D such that zn,j/|zn,j| is the center of In,j

and 1 − |zn,j| = |In,j| . We have

∞∑
n=1

mn∑
j=1

(1 − |zn,j|) =
∞∑
n=1

mn∑
j=1

|In,j| �
∞∑

n=1

|Un|

<

∞∑
n=1

εn < ∞.

Hence β = {zn,j : j = 1, . . . , mn, n = 1, 2, . . . } is a Blaschke sequence.
Fix a point ζ in E , and fix n . Then ζ lies in one of the intervals In,1, . . . , In,mn ,

say in the interval In,j . We have

|ζ − zn,j| �
∣∣∣∣ζ − zn,j

|zn,j|
∣∣∣∣ + 1 − |zn,j|

< π|In,j| + 1 − |zn,j| = (π + 1)(1 − |zn,j|),
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giving |ζ − zn,j|/(1 − |zn,j|) < π + 1 . It follows that zn,j lies in the Stoltz angle with
vertex at ζ and opening 2 sec−1(π + 1) . We can conclude that ζ is the nontangential
limit of a subsequence of the Blaschke sequence β . Hence β clusters nontangentially
at each point of E .

On the other hand, each arc In,j contains a point of E , so each point zn,j is
contained in such a Stoltz angle, implying that

lim
n→∞max{dist(zn,j, E) : j = 1, . . . , mn} = 0.

Hence β clusters only at points of E . �

Proof of Theorem 9.1. As noted, we need only consider the case where u has
a nonconstant singular factor. Let σ be the singular measure corresponding to that
singular factor, and let E be a closed Lebesgue-null subset of ∂D such that σ(E) > 0 .
We use Lemma 9.2 to find a Blaschke sequence (zn) , without repetitions, whose
boundary cluster set is E and that clusters nontangentially at each point of E . The
conditions on the Blaschke sequence are preserved under suitably small perturbations,
so we can assume no zn is a zero of u . Let w be the Blaschke product with zero
sequence (zn) . Then 1/w is in N+

u . We shall assume that A1/w can be written as Aϕ
with ϕ a holomorphic function in N+

u , and obtain a contradiction.
We can write ϕ as ϕ = ψ/χ , where ψ and χ are in H∞ , and χ has no zeros,

and g.c.i.d.(u, χ) = 1 . We can assume without loss of generality that ‖χ‖∞ = 1 . By
Lemma 5.7, u divides 1

w − ψ
χ and hence divides χ − wψ , say χ − wψ = uω , where

ω is in H∞ .
For each zn we have χ(zn) = u(zn)ω(zn) , so

|χ(zn)|
|u(zn)| � ‖ω‖∞ (n = 1, 2, . . . ). (9.1)

On the other hand, the absolute value of the reciprocal of the singular factor of u equals
exp(Pσ) , so 1

|u| � exp(Pσ) . And since g.c.i.d.(u, χ) = 1 , and χ has no zeros, and

‖χ‖∞ = 1 , we have 1
|χ| = exp(Pτ) , where τ is a positive measure singular with

respect to σ . Thus
|χ|
|u| � exp(Pσ − Pτ).

By Lemma 9.1, with σ + τ playing the role of ρ , the ratio Pτ/Pσ has the
nontangential limit 0 almost everywhere with respect to σ . It is well known (and also
follows from Lemma 9.1, with ρ = σ+ Lebesgue measure) that Pσ has nontangential
limit ∞ almost everywhere with respect to σ . Hence, there is a subsequence (znj) of
(zn) such that (Pσ)(znj) → ∞ and (Pτ)(znj )/(Pσ)(znj) → 0 . We have

|χ(znj)|
|u(znj)|

� exp((Pσ)(znj) − (Pτ)(znj )),

and the right side tends to ∞ as j → ∞ , in contradiction to (9.1). �
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