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ON A REDUCTION PROCEDURE FOR HORN

INEQUALITIES IN FINITE VON NEUMANN ALGEBRAS

BENOÎT COLLINS† AND KEN DYKEMA ∗

(communicated by C.-K. Li)

Abstract. We consider the analogues of the Horn inequalities in finite von Neumann algebras,
which concern the possible spectral distributions of sums a+ b of self–adjoint elements a and
b in a finite von Neumann algebra. It is an open question whether all of these Horn inequalities
must hold in all finite von Neumann algebras, and this is related to Connes’ embedding problem.
For each choice of integers 1 � r � n , there is a set Tn

r of Horn triples (I,J,K) of r –tuples of
integers, and the Horn inequalities are in one–to–one correspondence with ∪1�r�nTn

r .
We consider a property P n , analogous to one introduced by Therianos and Thompson in

the case of matrices, amounting to the existence of projections having certain properties relative
to arbitrary flags, which guarantees that a given Horn inequality holds in all finite von Neumann
algebras. It is an open question whether all Horn triples in Tn

r have property P n . Certain triples
in Tn

r can be reduced to triples in Tn−1
r by an operation we call TT–reduction. We show that

property P n holds for the original triple if property P n−1 holds for the reduced one.
A major part of this paper is devoted to showing that this operation of reduction preserves

the value of the corresponding Littlewood–Richardson coefficients. We then characterize the
TT–irreducible Horn triples in Tn

3 , for arbitrary n , and for those LR–minimal ones (namely,
those having Littlewood–Richardson coefficient equal to 1), we perform a construction of pro-
jections with respect to flags in arbitrary von Neumann algebras in order to prove property P n

for them. This shows that all LR–minimal triples in ∪n�3Tn
3 have property P n , and so that the

corresponding Horn inequalities hold in all finite von Neumann algebras.
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1. Introduction and description of results

If A and B are Hermitian n× n matrices whose eigenvalues (repeated according
to multiplicity) are α1 � α2 � · · · � αn and β1 � β2 � · · ·βn , respectively, what can
the eigenvalues of A+B be? In [7], A. Horn described sets Tn

r of triples (I,J,K) of
subsets of {1, . . . ,n} , with |I|= |J|= |K|= r , and conjectured that a weakly decreasing
real sequence γ1 � γ2 � · · · � γn can arise as the eigenvalues of A+B , for some A and
B as above, if and only if

n

∑
i=1

αi +
n

∑
j=1

β j =
n

∑
k=1

γk

and for each triple (I,J,K) ∈ ⋃n−1
r=1 Tn

r , the so–called Horn inequality

∑
i∈I

αi +∑
j∈J

β j � ∑
k∈K

γk (1)

holds. (We recall Horn’s definition of the sets Tn
r in Section 3: see (26) and (27).)

Horn’s conjecture has been proved, due to work of Klyatchko, Tataro, Knutson and
Tao. See the article [6] of Fulton.

The purpose of this paper is to prove that analogues of some of the Horn inequal-
ities hold in all finite von Neumann algebras. This question was first considered by
Bercovici and Li in [1] (see also [2]) and the following exposition is essentially from
their papers. Let M be a von Neumann algebra with a fixed normal, faithful, tracial
state τ . If a = a∗ ∈ M , the eigenvalue function of a is the non–increasing, right–
continuous function λa : [0,1) → R given by

λa(t) = sup{x ∈ R | μa((x,∞)) > t},
where μa is the distribution of a , which is the Borel measure supported on the spectrum
of a and satisfying

τ(ak) =
∫

R

tk dμa(t) (k � 1).

For example, if
a = a∗ ∈ Mn(C) ↪→ M (2)

has eigenvalues α1 � α2 � · · · � αn , then

λa(t) = α j ,
j−1
n

� t <
j
n

, j ∈ {1, . . . ,n}.

DEFINITION 1.1. Let (I,J,K) ∈ Tn
r be a Horn triple. We say that the Horn in-

equality corresponding to (I,J,K) holds in (M ,τ) if∫
ωI

λa(t)dt +
∫
ωJ

λb(t)dt �
∫
ωK

λa+b(t)dt (3)

for all a,b ∈ Ms.a. := {x ∈ M | x = x∗} , where

ωI =
⋃
i∈I

[
i−1

n
,
i
n

)
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and similarly for ωJ and ωK .

Note that (3) becomes the usual Horn inequality (1) when a and b lie in the same
copy of the n×n matrices, as in (2).

Bercovici and Li showed in [1] that the Horn inequalities corresponding to the
Freede–Thompson inequalities (and certain generalizations of them) hold in all finite
von Neumann algebras. In [2], they showed that if (M ,τ) satisfies Connes’ embed-
ding property, namely, if it embeds in the ultraproduct Rω of the hyperfinite II1 –factor,
or equivalently (assuming separable pre–dual), if all n–tuples of self–adjoints in M
can be approximated in mixed moments by matrices, then all Horn inequalities hold
in (M ,τ) . Moreover, they showed that the set of possible triples (λa,λb,λa+b) for a
and b self–adjoints in Rω is characterized by the inequalities of the form (3). It is an
important open question, known as Connes’ embedding problem, whether all finite von
Neumann algebras having separable pre–dual satisfy Connes’ embedding property. In
the converse direction, in [4] we showed that if certain versions of the Horn inequalities
with matrix coefficients hold in all finite von Neumann algebras, then Connes’ embed-
ding problem has a positive answer. Seen in this light, it is quite interesting to learn
about which Horn inequalities must hold in all finite von Neumann algebras. Some
speculative observations about possible constructions of counter–examples to embed-
dability are found in Section 5.

One method of proving that the Horn inequality corresponding to a given Horn
triple (I,J,K) ∈ Tn

r holds in a finite von Neumann algebra (M ,τ) is to construct
projections in M satisfying certain properties with respect to flags of projections in
(M ,τ) . We say (I,J,K) has property Pn if such projections can always be con-
structed. This is the analogue of the property of the same name found in [8]. We
introduce a weaker, approximate version of this property, called property APn . (See
the first part of Section 3 for details, but note that Definition 3.4 and Proposition 3.5
are for the symmetric reformulation of the Horn sets described there.) Bercovici and
Li’s proof [1] that certain Horn inequalities must hold in all finite von Neumann alge-
bras was, to rephrase it, made by showing that they have property Pn . Following their
proof, we show that if a triple (I,J,K) has property APn , then the corresponding Horn
inequality holds in all finite von Neumann algebras.

In [8], Therianos and Thompson proved a reduction result, showing that the ana-
logue of property Pn in n× n matrices for a given triple (I,J,K) can sometimes be
deduced from the same analogue of property Pn−1 for a related triple (Ĩ, J̃, K̃) . (See
also [9].) They then used this reduction result and some explicit constructions of pro-
jections in matrices to show that Horn inequalities in Mn(C) corresponding to triples
in Tn

3 hold for all n . We show (Lemma 3.6) that a similar reduction technique holds
for properties Pn and APn in finite von Neumann algebras. Using this reduction result,
though we were not able to prove that Horn inequalities in finite von Neumann algebras
hold for all triples in

⋃
n�3 Tn

3 , we do show that they hold for all the LR–minimal triples
in this set. The moniker LR–minimal refers to the Littlewood–Richardson coefficient
of the triple (see Definition 3.8 and Lemma 3.9); it follows from Theorem 13 of [6] that
the set of Horn inequalities coming from LR–minimal triples determines the remaining
Horn inequalities, both in the case of matrices and of finite von Neumann algebras.
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As a byproduct of our reduction technique, we also show that all the Horn inequali-
ties corresponding to triples in

⋃
r∈{1,2},n�r T

n
r hold in all finite von Neumann algebras,

though this is can be more easily proved directly. As perhaps the most arduous part
of our proof, we show (Proposition 3.10) that the reduction method referred to above
preserves the Littlewood–Richardson coefficient.

Here is a brief description of the rest of this paper. In Section 2, we cover some
preliminary and (mostly) well known facts about finite von Neumann algebras. In Sec-
tion 3, we first describe minor reformulation of Horn’s triples; the reformulated set is
denoted T̃ n

r , and is invariant under the obvious action of the group of permutations
of three letters. Then we prove the analogue in finite von Neumann algebras of the
reduction result from [8]. Triples that cannot be reduced are called irreducible, natu-
rally enough. After introducing new notation c(n)(I,J,K) for Littlewood–Richardson
coefficient of (I,J,K) ∈ T̃ n

r and observing the invariance of this quantity under permut-
ing the arguments I , J and K , we prove that it is also invariant under the reduction
method referred to above. We then characterize the irreducible triples in T̃ n

3 , com-
pute their Littlewood–Richardson coefficients, and list the irreducible triples of min-
imal Littlewood–Richardson coefficient in T̃ n

4 , for n � 9. In Section 4, we exhibit a
construction of projections in finite von Neumann algebras that suffices to prove that the
Horn inequalities for all LR–minimal triples in

⋃
n�3 Tn

3 hold in all finite von Neumann
algebras. Merely because we like the argument involving almost invariant subspaces,
we prove that property AP6 holds for a certain element of T̃ 6

3 having Littlewood–
Richardson coefficient equal to 2. Section 5, which is independent of the rest of the
paper and can safely be skipped, contains some speculative remarks about how one
might construct a non–embeddable finite von Neumann algebra.

2. Preliminaries concerning finite von Neumann algebras

In the following three subsections, we review some facts, introduce some notation
and state some results that will be used later. While (most of) these are certainly not
original, for convenience, we provide some proofs.

2.1. Two projections

Let M ⊆ B(H) be a finite von Neumann algebra with a fixed normal, faithful,
tracial state τ . Let Proj(M ) denote the set of self–adjoint idempotents in M , which
are also called projections in M . Many elementary but useful facts about projections
in M follow from the standard description of the subalgebra generated by any two
of them, which we now describe. Let p,q ∈ Proj(M ) . Recall that p∧ q denotes the
projection onto the closed subspace pH∩ qH and p∨ q denotes the projection onto
the closure of pH + qH . Let A = W ∗({p,q,1}) be unital von Neumann algebra
generated by p and q . Let A denote the universal, unital C∗ –algebra generated by two
projections P and Q . As is well–known,

A ∼= { f : [0,1] → M2(C) | f continuous, f (0), f (1) diagonal},
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with

P =
(

1 0
0 0

)
, Q =

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

We have a quotient map π : A →A sending P to p and Q to q , and A is isomorphic
to the weak closure of the image of the Gelfand–Naimark–Segal representation of A
arising from the trace τ ◦π on A . We thereby identify A with

p∧q
C
γ11

⊕
p∧(1−q)

C
γ10

⊕L∞(μ)⊗M2(C)⊕
(1−p)∧q

C
γ01

⊕
(1−p)∧(1−q)

C
γ00

, (4)

where γi j � 0, where μ is a measure concentrated on a subset of the open interval
(0,1) , and where the notation in (4) means, for example, that p∧q is the projection

p∧q = 1⊕0⊕ (
0 0
0 0

)⊕0⊕0

and τ(p∧q) = γ11 . We have

p = 1⊕1⊕
(

1 0
0 0

)
⊕0⊕0 (5)

q = 1⊕0⊕
(

t
√

t(1− t)√
t(1− t) 1− t

)
⊕1⊕0 (6)

and, if

a = λ11⊕λ10⊕
(

f11 f12

f21 f22

)
⊕λ01⊕λ00 ∈ A

for λi j ∈ C and fpq ∈ L∞(μ) , then

τ(a) = λ11γ11 +λ10γ10 +
1
2

∫
( f11 + f22)dμ +λ01γ01 +λ00γ00.

Thus, the total mass of μ is

|μ | = 1− γ11− γ10− γ01− γ00.

Of course, if in (4) some γi j or μ itself should be zero, then the corresponding sum-
mand should be understood to be absent. Inspecting this situation, we observe the
following elementary result.

PROPOSITION 2.1.1. We have

p∨q = 1− (1− p)∧ (1−q), (7)

τ(p∨q) = τ(p)+ τ(q)− τ(p∧q) (8)

τ(p− (1−q)∧ p)= τ(q− (1− p)∧q). (9)

And the following useful lemmas are also immediate.
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LEMMA 2.1.2. Then there is a projection r ∈ A such that q � r + p and r is
unitarily equivalent in A to q−q∧ p. In particular, we have τ(r) = τ(q)− τ(q∧ p) .

Proof. We let

r = 0⊕0⊕
(

0 0
0 1

)
⊕1⊕0.

LEMMA 2.1.3. The projection onto the closure of pqH is equal to p− p∧(1−q) .

Proof. Multiply the right–hand–sides of (5) and (6).

2.2. Affiliated operators

One of the virtues of a finite von Neumann algebra is that its set of affiliated op-
erators forms an algebra. Here we briefly review this situation. Recall that a closed,
densely defined, (possibly unbounded) operator X from H to itself is said to be affil-
iated with M if, letting X = v|X | be the polar decomposition of X , we have v ∈ M
and all spectral projections of the positive operator |X | lie in M . Thus, we have

|X | =
∫

[0,∞)
tE|X |(dt),

for a projection–valued measure E , taking Borel subsets of [0,∞) to elements of
Proj(M ) . Since limK→+∞ τ(E|X |([0,K]) = 1, we easily see that, if p ∈ Proj(M ) , then
pH∩dom(X) is dense in pH , where dom(X) denotes the domain of X . Thus, we see
that if S and T are densely defined operators affiliated with M , then S +T and ST
are densely defined and affiliated with M .

We now define some terms and notation and make some observations that we will
need later. Let X be a closed, densely defined operator from H to itself, having polar
decomposition X = v|X |= |X∗|v and where E|X | is the spectral measure of the positive
operator |X | . The kernel projection kerproj(X) of X is the projection onto ker(X) ,
and the domain projection of X is domproj(X) = 1−kerproj(X) . Thus,

kerproj(X) = E|X |({0})
domproj(X) = E|X |((0,+∞)) = v∗v

and
X = X ·domproj(X).

The range projection of X is ranproj(X) ∈ Proj(M ) that is the projection onto the
closure of the range of X . Thus,

ranproj(X) = E|X∗|((0,+∞)) = vv∗

and
X = ranproj(X) ·X .
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Therefore, we have
τ(domproj(X)) = τ(ranproj(X)). (10)

The partial inverse of X is the operator Y = |Y ∗|v∗ where

|Y ∗| =
∫

(0,∞)
t−1E|X |(dt).

Thus,

XY = ranproj(X) = domproj(Y )
YX = domproj(X) = ranproj(Y ).

Indeed, the restriction of X is an injective linear operator from domproj(X)H∩dom(X)
onto ran(X) , and the restriction of Y to ran(X) is this operator’s inverse.

Let
X � : Proj(M ) → {q ∈ Proj(M ) | q � ranproj(X)}

be the map defined by
X �(p) = ranproj(X p).

Clearly, X � is order preserving and, moreover, if X and Z are operators affiliated with
M , then for any p ∈ Proj(M ) ,

(XZ)�(p) = ranproj(XZp) = ranproj(X(Z�(p))) = X �Z�(p). (11)

LEMMA 2.2.1. Restricting X � gives a bijection

{p ∈ Proj(M ) | p � domproj(X)}→ {q ∈ Proj(M ) | q � ranproj(X)}. (12)

Moreover, this bijection is trace preserving and a lattice isomorphism. Finally, for any
p ∈ Proj(M ) , we have

X �(p) = X �
(
domproj(X)− (1− p)∧domproj(X)

)
(13)

τ(X �(p)) = τ(p)− τ(p∧kerproj(X)). (14)

Proof. Clearly, the restriction of X � provides an order preserving map (12). Let
Y be the partial inverse of X , described above. If p ∈ Proj(M ) and p � domproj(X) ,
then YX p = p and consquently, using (11), we have Y �X �(p) = p . Similarly, if q ∈
Proj(M ) and q � ranproj(X) , then XY = q and, consequently, X �Y �(q) = q . This
shows that the restriction of X � gives a bijection (12), whose inverse is the restriction
of Y � to {q ∈ Proj(M ) | q � ranproj(X)} .

To see that the bijection (12) is trace preserving, note that for a projection p with
p � domproj(X) , we have domproj(X p) = p , and by (10),

τ(p) = τ(ranproj(X p)) = τ(X �(p)).

An order preserving bijection between lattices is necessarily a lattice isomorphism.
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Now we will show (13). Using the form of the von Neumann algebra generated
by two projections as described in §2.1, we find that for any p,q ∈ Proj(M ) , we have

ranproj(qp) = q− (1− p)∧q.

Therefore,

X �(p) = ranproj(X p) = ranproj(X domproj(X)p)
= ranproj(X(domproj(X)− (1− p)∧domproj(X)))

= X �(domproj(X)− (1− p)∧domproj(X))

and this implies

τ(X �(p)) = τ(domproj(X)− (1− p)∧domproj(X)). (15)

Finally, (14) follows from (15) and (9).
The next result concerns what may be termed almost invariant subspaces of oper-

ators. We say M is diffuse if it has no minimal nonzero projections.

PROPOSITION 2.2.2. Assume that M is diffuse. Let X be an operator affiliated
with M and let 0 � t � τ(domproj(X)) and ε > 0 . Then there are p,q ∈ Proj(M )
such that p,q � domproj(X) , τ(p) = t , τ(q) � ε and

X �(p) � p∨q. (16)

Proof. Let n be the least positive integer such that t � nε . We will proceed by
induction on n . If n = 1, then take any p ∈ Proj(M ) with p � domproj(X) and
τ(p) = t and let q = X �(p) . Then τ(q) = τ(p) = t � ε .

For the induction step, suppose n � 2 and (n− 1)ε < t � nε . By the induction
hypothesis, there are p̃, q̃ ∈ Proj(M ) with p̃ � domproj(X) , τ(p̃) = t − ε , τ(q̃) < ε
and X �(p̃) � p̃∨ q̃ . Replacing q̃ by q̃− (p̃∧ q̃) , if necessary, we may without loss of
generality assume q̃∧ p̃ = 0. Adding something from domproj(X)− (p̃∨ q̃) to q̃ , if
necessary, we may also without loss of generality assume τ(q̃) = ε . Now let p = p̃∨ q̃ .
Then τ(p) = t and

X �(p) = X �(p̃)∨X �(q̃) � p̃∨ q̃∨X �(q̃) = p∨X �(q̃).

Let q = X �(q̃) . Then τ(q) = τ(q̃) = ε and (16) holds.

2.3. The complementary idempotents of two projections

In this subsection, we consider the idempotent affiliated operators associated to
two projections e1 and e2 in a finite von Neumann algebra M . We fix a normal faithful
tracial state τ on M and, for convenience, we regard M as acting on H := L2(M ,τ)
in the GNS–representation.
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We define possibly unbounded operators E(e1,e2) and E(e2,e1) , both with do-
main

(1− (e1∨ e2))H+ e1H+ e2H

= (1− (e1∨ e2))H+(e1− e1∧ e2)H+(e2− e1∧ e2)H+(e1∧ e2)H,

as follows. For ease of notation, we write E1 for E(e1,e2) and E2 for E(e2,e1) . We
set

Ei(η + ξ1 + ξ2 + ζ ) = ξi + ζ

if η ∈ (1−(e1∨e2))H , ξ j ∈ (e j−e1∧e2)H , ( j = 1,2) and ζ ∈ (e1∧e2)H . It is clear
that Ei is well defined.

LEMMA 2.3.1.
(i) Each operator Ei is closed, affiliatedwith the von Neumann algebra W ∗({1,e1,e2})

generated by e1 and e2 , and idempotent.

(ii) We have

ranproj(Ei) = ei, (17)

kerproj(Ei) = 1− e1∨ e2 + ei′ − e1∧ e2, (18)

domproj(Ei) = e1∨ e2− ei′ + e1∧ e2, (19)

where {i, i′} = {1,2} , and

E1 +E2 = (e1 ∨ e2)+ (e1∧ e2). (20)

(iii) Let f ∈ M be a projection with f � e1∨ e2 . Then

f � E�
1( f )∨E�

2( f )∨ (e1 ∧ e2− (1− f )∧ e1∧ e2). (21)

Proof. To show that Ei is closed, (taking i = 1), if h(n) ∈ dom(E1) converges to
h ∈ H and if E1(h(n)) converges to y ∈ H , then we may write

h(n) = η(n) + ξ (n)
1 + ξ (n)

2 + ζ (n),

where η(n) = (1−(e1∨e2))h(n) , ζ (n) = (e1∧e2)h(n) and where ξ (n)
j ∈ (e j−e1∧e2)H .

We then have convergence:

η(n) → (1− (e1∨ e2))h

ζ (n) → (e1∧ e2)h

ξ (n)
1 = E1(h(n))− ζ (n) → y− (e1∧ e2)h ∈ (e1 − e1∧ e2)H.

Thus, we also get convergence

ξ (n)
2 → z := (e1∨ e2− e1∧ e2)(h)− y ∈ (e2− e1∧ e2)H.



10 BENOÎT COLLINS AND KEN DYKEMA

Consequently, we have h = (1 − (e1 ∨ e2))h + y + z + (e1 ∧ e2)h and we conclude
E1(h) = y . So E1 is closed.

By the analysis in section 2.1, we have

W ∗({1,e1,e2}) =
e1∧e2
C
γ11

⊕
e1∧(1−e2)

C
γ10

⊕L∞(μ)⊗M2(C)⊕
(1−e1)∧e2

C
γ01

⊕
(1−e1)∧(1−e2)

C
γ00

,

for some measure μ on (0,1) , with

e1 = 1⊕1⊕
(

1 0
0 0

)
⊕0⊕0

e2 = 1⊕0⊕
(

t
√

t(1− t)√
t(1− t) 1− t

)
⊕1⊕0.

Now compressing by the appropriate central projections, we easily see that E1 and E2

are limits in s.o.t. of elements of W ∗({1,e1,e2}) , hence are affiliated with this von
Neumann algebra and, in fact, can be written as

E1 = 1⊕1⊕
(

1 −√
t/(1− t)

0 0

)
⊕0⊕0 (22)

E2 = 1⊕0⊕
(

0
√

t/(1− t)
0 1

)
⊕1⊕0, (23)

where this has the obvious meaning. It is clear from their definition that E1 and E2 are
idempotent. This shows (i).

For (ii), we see from the definition that

ker(Ei) = (1− e1∨ e2)H+(ei′ − e1∧ e2)H,

so we get (18) and (19). Also, (17) is obvious, while (20) follows from (22) and (23).
For (iii), it is straightforward to see that fH ∩ (e1H + e2H) is dense in fH ,

so letting r be the projection on the right–hand–side of (21), it will suffice to show
fH∩(e1H+e2H) ⊆ rH . Let h ∈ fH∩(e1H+e2H) . Then h = ξ1 +ξ2 +(e1∧e2)h ,
for ξi ∈ (ei − e1∧ e2)H . We have

ξi +(e1∧ e2)h = Ei(h) ∈ E�
i ( f )H,

while using Lemma 2.1.3, we have

(e1∧ e2)h ∈ (e1∧ e2) fH ⊆ (e1 ∧ e2− (1− f )∧ e1∧ e2)H.

So h ∈ rH .

3. Irreducible Horn triples

Horn’s inequalities in the n×n matrices are of the form

∑
i∈I

αi +∑
j∈J

β j � ∑
k∈K

γk. (24)
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for certain triples (I,J,K) of subsets of {1, . . . ,n} . In [7], Horn defined sets Tn
r of

triples (I,J,K) of subsets of {1, . . . ,n} of the same cardinality r , by the following
recursive procedure. By convention, a subset I of {1, . . . ,n} is indexed in increasing
order:

I = {i1, . . . , ir}, i1 < i2 < · · · < ir. (25)

Set

Un
r =

{
(I,J,K)

∣∣∣∣∑
i∈I

i+∑
j∈J

j = ∑
k∈K

k+
r(r+1)

2

}
. (26)

When r = 1, set Tn
1 = Un

1 . Otherwise, let

Tn
r =

{
(I,J,K) ∈Un

r

∣∣∣∣ ∑
f∈F

i f + ∑
g∈G

jg � ∑
h∈H

kh +
p(p+1)

2
,

for all p < r and (F,G,H) ∈ T r
p

}
.

(27)

We will consider a reformulation of Horn’s sets Tn
r , which was used also in [8].

Let σn be the permutation of {1, . . . ,n} given by σn(i) = n+1− i . Thus, if I is indexed
as in (25) and if we use the same convention for indexing σn(I) , namely

σn(I) = {ĩ1, . . . , ĩr}, ĩ1 < ĩ2 < · · · < ĩr,

then i j = n+1− ĩr+1− j . We let

T̃ n
r = {(σn(I),σn(J),K) | (I,J,K) ∈ Tn

r }.
Reformulating Horn’s definition, these sets are recursively defined as follows. Let Ũn

r
be the set consisting of triples (I,J,K) of subsets of {1, . . . ,n} with |I|= |J| = |K| = r
by

Ũn
r =

{
(I,J,K)

∣∣∣∣∑
i∈I

i+∑
j∈J

j + ∑
k∈K

k =
r(4n− r+3)

2

}
. (28)

If r = 1, then we have T̃ n
r = Ũn

r , while for r ∈ {2, . . . ,n−1} , we have

T̃ n
r =

{
(I,J,K) ∈Un

r

∣∣∣∣ ∑
f∈F

i f + ∑
g∈G

jg + ∑
h∈H

kh � p(4n− p+3)
2

,

for all p < r and (F,G,H) ∈ T̃ r
p

}
.

(29)

Now, for (I,J,K) ∈ T̃ n
r , the corresponding Horn inequality is

∑
i∈I

αn+1−i +∑
j∈J

βn+1− j � ∑
k∈K

γk.

This reformulation of the Horn inequalities has certain advantages. As is apparent
from the symmetry of (28) and (29), the set T̃ n

r is invariant under permuting the three
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sets I , J and K . Moreover, Proposition 3.5 and the reduction procedure resulting from
Lemma 3.6 are more natural in this alternative expression of the Horn inequalities.

In [8], S. Therianos and R.C. Thompson proved that many Horn inequalities in Tn
r

can be reduced to inequalities in Tn−1
r . We will prove that similar results hold in finite

von Neumann algebras.
For future use in this section, we record the following integration–by–parts for-

mula for Riemann–Stieltjes integrals, which is well known and easily proved.

LEMMA 3.1. Let f : [0,1] → R be continuous and let λ : [0,1] → R be mono-
tone and assume λ is (one–sided) continuous at 0 and 1 . Then the Riemann–Stieltjes
integrals

∫ 1
0 λ (t)d f (t) and

∫ 1
0 f (t)dλ (t) exist, and we have∫ 1

0
λ (t)d f (t) = λ (1) f (1)−λ (0) f (0)−

∫ 1

0
f (t)dλ (t).

DEFINITION 3.2. Let M be a diffuse, finite von Neumann algebra with a fixed
faithful normal tracial state τ . A flag in M is a linearly ordered family e = (et)0�t�1

of projections in M such that τ(et ) = t for all t .
A superflag in M is a family f = ( ft )0�t�1 of projections in M such that fs � ft

whenever s � t and τ( ft ) � t for all t ∈ [0,1] .

PROPOSITION 3.3. If f = ( ft )0�t�1 is a superflag in M , then there is a flag
e = (et)0�t�1 in M such that et � ft for all t .

Proof. Let S be the set of sets of projections of M such that for any S ∈ S and
any t ∈ [0,1] , ft ∈ S , and for all p,q ∈ S , either p � q or q � p .

The set S is a Zorn inductive set for the obvious order given by inclusion. Let S̃
be a maximal element. The set of values τ(p), p ∈ S̃ is closed by maximality. Suppose,
to obtain a contradiction, that this set is not all of [0,1] . Let t ∈ [0,1] be a value that is
not attained, and let

t− = sup{τ(p) | p ∈ S̃, τ(p) < t} , t+ = inf{τ(p) | p ∈ S̃, τ(p) > t},
so that we have t− < t < t+ . Let p± in S̃ such that τ(p±) = t± . By elementary
properties of finite diffuse von Neumann algebras, there is a projection p∈M between
p− and p+ such that τ(p) = t . This contradicts maximality of S̃ .

To construct the flag, for each t , let et be the unique p ∈ S̃ such that τ(p) = t .
Property Pn below is the von Neumann algebra analogue of Therianos and Thomp-

son’s property of the same name (which applied to matrices).

DEFINITION 3.4. Let r and n be positive integers with r � n . Consider a triple
(I,J,K) of subsets of {1, . . . ,n} , each having cardinality r . Write

I = {i1, . . . , ir}, i1 < i2 < · · · < ir (30)

J = { j1, . . . , jr}, j1 < j2 < · · · < jr
K = {k1, . . . ,kr}, k1 < k2 < · · · < kr.
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We say (I,J,K) has property Pn if whenever e , f and g are flags in any finite von
Neumann algebra (M ,τ) , there exists a projection p ∈ M such that

τ(p) =
r
n

(31)

and for all � ∈ {1,2, . . . ,r} , we have

τ(e i�
n
∧ p) � �

n
, τ( f j�

n
∧ p) � �

n
, τ(g k�

n
∧ p) � �

n
(32)

We say that (I,J,K) has property APn if whenever e , f and g are flags in any finite
von Neumann algebra (M ,τ) , and whenever ε > 0, there is a projection p ∈ M such
that

τ(p) � r
n

+ ε

and for all � ∈ {1,2, . . . ,r} , the inequalities (32) hold.

The following result is analogous to well–known facts in n× n matrices. The
proof in the case of property Pn was can easily be found in [1], and the approximate
result follows straightforwardly. For convenience, we write a proof pointing to the
appropriate parts of [1].

PROPOSITION 3.5. If (I,J,K) ∈ T̃ n
r has property Pn or, more generally, property

APn , then the Horn inequality corresponding to (σn(I),σn(J),K) holds in every finite
von Neumann algebra.

Proof. First suppose that (I,J,K) has property Pn . Let Ĩ = σn(I) , J̃ = σn(J) . We
must show, given any finite von Neumann algebra (M ,τ) and any a,b ∈ Ms.a. , that
we have ∫

ωĨ

λa(t)dt +
∫
ωJ̃

λb(t)dt �
∫
ωK

λa+b(t)dt. (33)

But ωĨ = 1−ωI := {1−t | t ∈ωI} and λa(t) =−λ−a(1−t) , so letting x =−a , y =−b
and z = a+b , the inequality (33) becomes∫

ωI

λx(t)dt +
∫
ωJ

λy(t)dt +
∫
ωK

λz(t)dt � 0,

which must be proved for all x,y,z ∈ Ms.a such that x+ y+ z = 0.
Let Ex , Ey and Ez be the spectral measures of x , y and z . As described on

page 115 of [1], there are flags e , f and g in M such that

x =
∫ 1

0
λx(t)det , y =

∫ 1

0
λy(t)d ft , z =

∫ 1

0
λz(t)dgt

where these integrals are the operator–valued analogues of Riemann–Stieltjes integrals,
and, for all t ∈ [0,1] , we have

Ex((λx(t),∞)) � et , Ey((λy(t),∞)) � ft , Ez((λz(t),∞)) � gt .
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Consider the nondecreasing function WI on [0,1] which at t takes value equal to the
Lebesgue measure of ωI ∩ [0,t] . Then WI is piecewise linear, has slope 1 on intervals
( i−1

n , i
n) for i ∈ I (thus, at points of ωI ) and has slope 0 elsewhere. Furthermore,∫

ωI

λx(t)dt =
∫ 1

0
λx(t)dWI(t), (34)

where the right–hand–side is the Riemann–Stieltjes integral.
Using that (I,J,K) has property Pn , let p ∈ M be a projection satisfying (31)

and (32).Using (32), we get
τ(p∧ et) � WI(t) (35)

whenever t = i
n with i∈ I . Moreover, taking 0 � s � t � 1 and using Proposition 2.1.1,

we have

τ(p∧ es) = τ((p∧ et)∧ es)
= τ(p∧ et)+ τ(es)− τ((p∧ et)∨ es)
� τ(p∧ et)+ τ(es)− τ(et)
= τ(p∧ et)− (t− s).

This implies both that τ(p∧ et) is a continuous function of t and that (35) holds at
all points t ∈ ωI and, of course, at t = 0, where both sides are zero. However, since
WI(t) is constant elsewhere and since τ(p∧ et) is increasing, the inequality (35) holds
for all t ∈ [0,1] . We define λx(1) to make λx continuous from the right at 1 . Using
Lemma 3.1 and that we have

WI(0) = 0 = τ(p∧ e0)

WI(1) =
r
n

= τ(p∧ e1)

we get ∫ 1

0
λx(t)dWI(t) = λx(1)

r
n

+
∫ 1

0
WI(t)d(−λx)(t) (36)

� λx(1)
r
n

+
∫ 1

0
τ(p∧ et)d(−λx)(t)

=
∫ 1

0
λx(t)d(τ(p∧ et)),

where the above inequality is because −λx is nondecreasing and the inequality (35)
holds. However, by Proposition 2.1 of [1], we have∫ 1

0
λx(t)dτ(p∧ et) � τ(xp).

Putting this together with (34) and (36), we have∫
ωI

λx(t)dt � τ(xp).
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Arguing similarly for y and z , we get∫
ωI

λx(t)dt +
∫
ωJ

λy(t)dt +
∫
ωK

λz(t)dt � τ((x+ y+ z)p) = 0,

as required.
Now suppose (I,J,K) has property APn . Letting ε > 0, we may argue as above,

except that instead of being able to choose p so that (31) and (32) are satisfied, in place
of the equality (31) we may only assume

τ(p) � r
n

+ ε.

Now instead of getting
∫ 1
0 λx(t)dWI(t) �

∫ 1
0 λx(t)d(τ(p∧et)) as we did in (36), we get∫ 1

0
λx(t)dWI(t) � |λx(1)|ε+

∫ 1

0
λx(t)d(τ(p∧ et)).

Using |λx(1)| � ‖x‖ and arguing as above, we get∫
ωI

λx(t)dt +
∫
ωJ

λy(t)dt +
∫
ωK

λz(t)dt � ε(‖x‖+‖y‖+‖z‖).

Letting ε tend to zero yields the desired inequality.
The following lemma is an analogue for finite von Neumann algebras of Lemma 1

of [8]. We will use it to reduce the set of Horn inequalities that must be verified in finite
von Neumann algebras.

Let

hx(y) =

{
0, y � x

1, y > x.

LEMMA 3.6. Let 1 � r � n be integers. Let (I,J,K) be a triple of subsets of
{1, . . . ,n} satisfying (30)and assume this triple has property Pn , respectively, property
APn . Also set i0 = j0 = k0 = 0 . Suppose u,v,w ∈ {0,1, . . . ,r} are such that

iu + jv + kw � n. (37)

Set
i′y = iy +hu(y) , j′y = jy +hv(y) , k′y = ky +hw(y) (y ∈ {1, . . . ,r}).

and let
I′ = {i′1, . . . , i′r}, J′ = { j′1, . . . , j′r}, K′ = {k′1, . . . ,k′r}.

Then (I′,J′,K′) has property Pn+1 , respectively, property APn+1 .

Proof. Let (M ,τ) be a diffuse, finite von Neumann algebra and let e , f and g
be any flags in M . Suppose (I,J,K) has property Pn . From (37), we have

τ(e iu
n+1

∨ f jv
n+1

∨g kw
n+1

) � n
n+1

.
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Let q ∈ M be a projection such that τ(q) = n
n+1 and

e iu
n+1

∨ f jv
n+1

∨g kw
n+1

� q.

Then q∧ et = et if t � iu
n+1 and, for all t , τ(q∧ et) � t− 1

n+1 . Similar results hold for
f and g . Define

e′t =

{
e nt

n+1
, 0 � t � iu

n

e nt+1
n+1

∧q, iu
n < t � 1

f ′t =

{
f nt

n+1
, 0 � t � jv

n

f nt+1
n+1

∧q, jv
n < t � 1,

g′t =

{
g nt

n+1
, 0 � t � kw

n

g nt+1
n+1

∧q, kw
n < t � 1.

Then in the cut–down von Neumann algebra qM q , equipped with the rescaled trace
n+1
n τ|qM q , e′ , f ′ and g′ are superflags. Invoking Proposition 3.3, let ẽ , f̃ and g̃ be

flags in qM q such that ẽt � e′t , f̃t � f ′t and g̃t � g′t for all t ∈ [0,1] . Then we have

ẽt = e′t = e nt
n+1

, (0 � t � iu
n

) (38)

ẽt � e′t = e nt+1
n+1

∧q , (
iu
n

< t � 1). (39)

By the assumption that (I,J,K) has property Pn , there is a projection p ∈ qM q such
that

n+1
n

τ(p) � r
n

(40)

and, for all y ∈ {1, . . . ,r} , we have

n+1
n

τ(ẽ iy
n
∧ p) � y

n
;
n+1

n
τ( f̃ jy

n
∧ p) � y

n
;
n+1

n
τ(g̃ ky

n
∧ p) � y

n
. (41)

We will show that p is the desired projection for (I′,J′,K′) to have property Pn+1 . We
have τ(p) � r

n+1 . If y ∈ {1, . . . ,u} , then i′y = iy and using (38) with t = iy
n and (41),

we get

τ(e i′y
n+1

∧ p) � y
n+1

, (42)

while if y ∈ {u+1, . . . ,r} , then i′y = iy +1, so using (39) with t = iy
n and that p � q ,

we have
ẽ iy

n
∧ p � e i′y

n+1

∧ p,

and from (41) we get (42) also in this case. In a similar manner, we get

τ( f j′y
n+1

∧ p) � y
n+1

and τ(g k′y
n+1

∧ p) � y
n+1
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for all y ∈ {1, . . . ,r} . Thus, (I′,J′,K′) has property Pn+1 .
In the case that (I,J,K) has only property APn , the same argument applies, except

that, given ε > 0, instead of (40) we get

n+1
n

τ(p) � r
n

+ ε

and this yields

τ(p) � r
n+1

+
n

n+1
ε.

REMARK 3.7. Lemma 3.6 provides a reduction procedure with respect to prop-
erties Pn and APn , in the following sense. Let (I,J,K) ∈ T̃ n

r . Suppose there are
u,v,w ∈ {0, . . . ,r} such that all of the following four statements hold:

u = r or iu+1− iu � 2 (43)

v = r or jv+1 − jv � 2 (44)

w = r or kw+1− kw � 2 (45)

iu + jv+kw � n−1, (46)

where again we set i0 = j0 = k0 = 0. Then Lemma 3.6 applies, and to verify that
(I,J,K) has property Pn , respectively, APn , it will suffice to show that (Ĩ, J̃, K̃) has
property Pn−1 , respectively, APn−1 , where

Ĩ = (ĩ1, . . . , ĩr), J̃ = ( j̃1, . . . , j̃r), K̃ = (k̃1, . . . , k̃r) (47)

are given by

ĩp =

{
ip , 1 � p � u

ip−1, u < p � r,
, j̃p =

{
jp , 1 � p � v

jp−1, v < p � r,
,

k̃p =

{
kp , 1 � p � w

kp−1, w < p � r.
(48)

In fact, we will only concern ourselves with this reduction procedure under the addi-
tional hypothesis

u+ v+w = r, (49)

which is quite natural because it insures that (I,J,K) ∈ Ũn
r implies (Ĩ, J̃, K̃) ∈ Ũn−1

r .
In fact, we will soon show that (I,J,K) ∈ T̃ n

r implies (Ĩ, J̃, K̃) ∈ T̃ n−1
r for this reduc-

tion procedure under the additional hypothesis (49), and, even more, that Littlewood–
Richardson coefficients are preserved.

An important part of the solution of Horn’s conjecture was to relate Horn’s triples
(I,J,K) ∈ Tn

r to Littlewood–Richardson coefficients. If I is a set of r distinct positive
integers, written as in (30), then we let

ρr(I) = (ir − r, ir−1− (r−1), . . . , i1 −1).
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Note that ρr(I) = (λ1,λ2, . . . ,λr) consists of integers satisfying

λ1 � λ2 � · · · � λr � 0. (50)

We let Nr
0,� denote the set of r–tuples (λ1, . . . ,λr) of integers satisfying (50), and note

that ρr is a bijection from the set of subsets of N having cardinality r onto Nr
0,� . For

n,r ∈ N , n � r , let

Λn
r = {(λ ,μ ,ν) = (ρr(I),ρr(J),ρr(K)) ∈ (Nr

0,�)3 | (I,J,K) ∈ Tn
r },

where Tn
r is the usual set of Horn triples. Using Thm. 12 of [6], we easily see

Λn
r =

{
(λ ,μ ,ν) ∈ (Nr

0,�)3

∣∣∣∣ r

∑
p=1

(λp + μp) =
r

∑
p=1

νp, ν1 � n− r, cνλ ,μ �= 0

}
,

where cνλ ,μ is the Littlewood–Richardson coefficient, which is a nonnegative integer.
(See, for example, [5] for more about these.)

The map
Φn

r : (I,J,K) �→ (ρr(σn(I)),ρr(σn(J)),ρr(K))

is an injective map from the set of triples of subsets of {1,2, . . . ,n} , each with cardi-
nality r , to (Nr

0,�)3 and restricts to a bijection from T̃ n
r onto Λn

r .

DEFINITION 3.8. Let (I,J,K) be a triple of subsets of {1, . . . ,n} , with |I|= |J|=
|K| = r . The Littlewood–Richardson coefficient of (I,J,K) , denoted c(n)(I,J,K) , is
equal to the Littlewood–Richardson coefficient cνλ ,μ , where (λ ,μ ,ν) = Φn

r ((I,J,K)) .

As already remarked, if (I,J,K) ∈ T̃ n
r then all the triples

(I,K,J), (J, I,K), (J,K, I), (K, I,J), (K,J, I)

are also in T̃ n
r . So at least the property c(n)(I,J,K) > 0 is invariant under permuting

the three sets I , J and K . We now show that the Littlewood–Richardson coefficient is
itself invariant.

LEMMA 3.9. The Littlewood–Richardson coefficient c(n)(I,J,K) is invariant un-
der permutation of the three arguments.

Proof. By definition, c(n)(I,J,K) = cνλ ,μ is the number of components of type Vν
that one finds in Vλ ⊗Vμ , where Vλ ,Vμ ,Vν are irreducible rational representations of
GL(r,C) . In other words, it is

dimHomGL(r,C)(Vν ,Vλ ⊗Vμ).

The contragredient representation of Vν is the representation of highest weights (1−
k1, . . . ,r − kr) . Following the representation theory conventions, we shall denote by
V ν this representation. The fact that Vν is irreducible implies by Schur’s lemma that
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V ν ⊗Vν contains one and only one copy of the trivial representation ε (of highest
weight (0,0, . . . ,0)).

Observe also that the determinant representation is the representation of highest
weight (1, . . . ,1) , and more generally, the power l of the determinant representation is
the irreducible representation of highest weight (l, . . . , l) . The fact that powers of the
determinant representation are of dimension one implies that when tensored with any
irreducible representation of highest weight (x1, . . . ,xr) , they yield an other irreducible
representation of highest weight (x1 + l, . . . ,xr + l) .

This implies that V ⊗detn−r has highest weight of type

(n+1− k1− r, . . . ,n+1− kr− r),

and that detn−r⊗Vν ⊗Vν contains one and only one copy of the determinant represen-
tation detn−r .

We are interested in the dimension of the GL(r,C) - Hom space

HomGL(r,C)(Vν ,Vλ ⊗Vmu) :

from the above facts it turns out that this dimension is exactly the same as that of the
dimension of

HomGL(r,C)(detn−r,detn−r ⊗Vν ⊗Vλ ⊗Vμ).

The action by permutation of sets I,J,K in T̃ n
r corresponds to the permutation of legs

of the tensor Vλ ⊗Vμ⊗ (detn−r ⊗Vν) .
The fact that the fusion rules of tensor product of groups are abelian implies

that the dimension of the Hom spaces are unchanged, so that c(n)(I,J,K) remains un-
changed under permutation of indices.

We now show that the reduction procedure of Remark 3.7 preserves Littlewood–
Richardson coefficients.

PROPOSITION 3.10. Let (I,J,K) ∈ T̃ n
r and suppose there are u,v,w ∈ {0, . . . ,r}

such that

u+ v+w = r (51)

u = r or iu+1− iu � 2

v = r or jv+1 − jv � 2

w = r or kw+1− kw � 2

iu + jv + kw � n−1, (52)

where we set i0 = j0 = k0 = 0 . Let Ĩ, J̃, K̃ be as defined in (47) and (3.7).Then

c(n−1)(Ĩ, J̃, K̃) = c(n)(I,J,K).

Proof. Note that Ĩ , J̃ and K̃ are subsets of {1, . . . ,n−1} . Let

(λ ,μ ,ν) = Φn
r (I,J,K) and (λ̃ , μ̃ , ν̃) = Φn−1

r (Ĩ, J̃, K̃). (53)
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Then for p ∈ {1, . . . ,r} we have

λp = n− r− ip + p , μp = n− r− jp + p and νp = kr+1−p− (r+1− p).

Let a = u , b = v and c = r−w . Then (51) gives c = a+b . From (3.7) and (53), we
get

λ̃p =

{
λp−1 , 1 � p � a,

λp , a < p � r

μ̃p =

{
μp−1 , 1 � p � b,

μp , b < p � r

ν̃p =

{
νp−1 , 1 � p � c,

νp , c < p � r.

We must show
cν̃λ̃ ,μ̃ = cνλ ,μ . (54)

Since cνλ ,μ = cνμ,λ (see [6] or, indeed, Lemma 3.9), and since the statement of the
lemma is invariant under interchanging the roles of λ and μ when we also interchange
a and b , it follows that if we prove the lemma in some given case a = a0 and b = b0 ,
then we may conclude that it also holds in the case a = b0 and b = a0 .

The Littlewood–Richardson coefficient cνλ ,μ is equal to the number of fillings of

ν\λ according to μ , as described on page 221 of Fulton’s article [6]. Thus, if we let f k
�

denote the number of times k appears in the � th row, then the fillings of ν\λ according
to μ are the choices of nonnegative integers ( f k

� )1�k�� such that the following hold:

λ� +
�

∑
k=1

f k
� = ν� (1 � � � r) (55)

r

∑
�=k

f k
� = μk (1 � k � r) (56)

λ�+1 +
p+1

∑
k=1

f k
�+1 � λ� +

p

∑
k=1

f k
� (0 � p < � < r) (57)

p+1

∑
�=k+1

f k+1
� �

p

∑
�=k

f k
� (1 � k � p < r). (58)

Indeed, (56) is the condition Fulton lists as (iii), (57) is equivalent to Fulton’s (ii),
and (58) is equivalent to Fulton’s (iv).

Suppose ( f̃ k
� )1�k���r is a filling of ν̃\λ̃ according to μ̃ and let

f k
� =

{
f̃ k
� +1, if 1 � k � b and � = k+a

f̃ k
� , otherwise.

(59)
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We will show that the map

( f̃ k
� )1�k���r �→ ( f k

� )1�k���r (60)

is a bijection from the set of fillings of ν̃\λ̃ according to μ̃ onto the set of fillings of
ν\λ according to μ . It is straightforward to show that the “tilde” version of each of
the equalities and inequalities (55)–(58) (i.e., where each λ , μ , ν and f k

� is replaced
by λ̃ , μ̃ , ν̃ and f̃ k

� , respectively) implies the “non–tilde” version of the same. Here
we give further information about these implications:

(55)11 1 � � � c (55)00 c < � � r

(56)11 1 � k � b (56)00 b < k � r

(57)11 1 � � � a (57)11 a < � < c, p � �−a

(57)00 a < � � c, p < �−a (57)01 � = c < r, p � �−a = b

(57)00 c < � < r (58)11 1 � k < b, p � k+a

(58)00 1 � k � b, p < k+a (58)01 k = b, p � k+a = c

(58)00 b < k < r.

The subscripts above indicate by how much the left– and right–hand–sides of the corre-
sponding equations are incremented when changing from λ̃ , μ̃ , ν̃ and f̃ k

� to λ , μ , ν
and f k

� , respectively. Thus, for example, the line containing (58)01 indicates that when
k = b and p � k+a and when we pass from

p+1

∑
�=k+1

f̃ k+1
� �

p

∑
�=k

f̃ k
�

to the inequality (58) by substituting f k
� for f̃ k

� , the value of the right–hand–side in-
creases by 1 while the value of the left–hand–side remains unchanged. The fact that
the equalities and inequalities all remain valid when making these substitutions shows
that the map (60) with f k

� defined by (59) is an injection from the set of fillings of ν̃\λ̃
according to μ̃ into the set of fillings of ν\λ according to μ .

To show that this map is onto is the same as showing that whenever ( f k
� )1�k���r

is a filling of ν\λ according to μ , then we have

f k
a+k > 0 (k ∈ {1, . . . ,b}), (61)

and if c < r , then

λc+1 +
p+1

∑
k=1

f k
c+1 < λc +

p

∑
k=1

f k
c (p ∈ {b,b+1, . . . ,c−1}) (62)

and if b > 0 and c < r , then

p+1

∑
�=b+1

f b+1
� <

p

∑
�=b

f b
� (p ∈ {c,c+1, . . . ,r−1}), (63)
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where we see (61) from the definition (59) and we see (62) and (63) from the lines
with (57)01 and (58)01 , above. For enough values of a and b to prove the lemma, we
will use (52) as well as (55)–(58) to show that the inequalities (61), (62) and (63) hold.

CASE 3.10.1. a = b = 0 .

Then (λ̃ , μ̃ , ν̃) = (λ ,μ ,ν) and (54) holds trivially.

CASE 3.10.2. b = 0 , 1 � a � r .

If a = r , then there is nothing to check, so assume a < r . We have a = c∈ {1, . . . ,r−1}
and (52) becomes

νa+1 < λa , (64)

while f̃ k
� = f k

� for all k and � . It will suffice to show that (64) implies

λa+1 +
p+1

∑
k=1

f k
a+1 < λa +

p

∑
k=1

f k
a (p ∈ {0,1, . . . ,a−1}).

But we have

λa+1 +
p+1

∑
k=1

f k
a+1 � λa+1 +

a+1

∑
k=1

f k
a+1 = νa+1 < λa � λa +

p

∑
k=1

f k
a ,

and Case 3.10.2 is proved.

CASE 3.10.3. 1 � b < r and a = r−b.

Then c= r . From (52) we get n−r <λa+μb , so ν1 <λa+μb and therefore, using (55)
and (56), we have

λ1 + f 1
1 < λa + f b

b + f b
b+1 + · · · + f b

r . (65)

We must only verify that (61) holds. Suppose, for contradiction, that

f k′
a+k′ = 0 (66)

for some k′ ∈ {1, . . . ,b} . Then we get

f b
b + f b

b+1 + · · ·+ f b
r � f b−1

b−1 + f b−1
b + · · ·+ f b−1

r−1 (67)

� f b−2
b−2 + f b−2

b−1 + · · ·+ f b−2
r−2 (68)

� · · ·
� f k′

k′ + f k′
k′+1 + · · ·+ f k′

a+k′ (69)

= f k′
k′ + f k′

k′+1 + · · ·+ f k′
a+k′−1 (70)

� f k′−1
k′−1 + f k′−1

k′ + · · ·+ f k′−1
a+k′−2 (71)

� · · ·
� f 1

1 + f 1
2 + · · ·+ f 1

a , (72)
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where in (67)–(69) we have used (58) with k = b−1 and p = r−1, then with k = b−2
and p = r− 2, successively to k = k′ and p = r− b+ k′ = a+ k′ , where (70) results
from (66) and where for (71)–(72) we used (58) with k = k′ −1 and p = a+k′ −2, then
with k = k′ − 2 and p = a+ k′ − 3, successively to k = 1 and p = a . But using (57)
with p = 1 and, successively, � = a−1, � = a−2, . . . , � = 1, we have

λa + f 1
a + f 1

a−1 + · · ·+ f 1
2 � λa−1 + f 1

a−1 + f 1
a−2 + · · ·+ f 1

2 (73)

� · · ·
� λ2 + f 1

2 (74)

� λ1 , (75)

which together with (67)–(72) gives

λa + f b
b + f b

b+1 + · · ·+ f b
r � λ1 + f 1

1 .

Combining all of this with (65), we get

λ1 + f 1
1 < λ1 + f 1

1 ,

a contradiction. Thus, Case 3.10.3 is proved.

CASE 3.10.4. 1 � a � b and a+b < r .

Then (52) yields ν1 +νa+b+1 < λa + μb , or

λ1 + f 1
1 +λa+b+1 + f 1

a+b+1 + f 2
a+b+1 + · · ·+ f a+b+1

a+b+1 < λa + f b
b + f b

b+1 + · · ·+ f b
r . (76)

We now show that (61) must hold. Supposing for contradiction that we have f k′
k′+a = 0

for some k′ ∈ {1, . . . ,b} and arguing as we did in (67)–(72), we get

f b
b + f b

b+1 + · · · + f b
b+a � f b−1

b−1 + f b−1
b + · · · + f b−1

b+a−1

� · · ·
� f k′

k′ + f k′
k′+1 + · · · + f k′

k′+a

= f k′
k′ + f k′

k′+1 + · · · + f k′
k′+a−1

� f k′−1
k′−1 + f k′−1

k′ + · · · + f k′−1
k′+a−2

� · · ·
� f 1

1 + f 1
2 + · · · + f 1

a .

Using this in (76), we get

λ1 + f 1
1 +λa+b+1 + f 1

a+b+1 + f 2
a+b+1 + · · · + f a+b+1

a+b+1

< λa + f 1
a + f 1

a−1 + · · ·+ f 1
2 + f 1

1

+ f b
a+b+1 + f b

a+b+2 + · · ·+ f b
r .

(77)
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Using (73)–(75) in (77) yields

λa+b+1 + f 1
a+b+1 + f 2

a+b+1 + · · ·+ f a+b+1
a+b+1 < f b

a+b+1 + f b
a+b+2 + · · ·+ f b

r . (78)

Adding λr + f 1
r + f 2

r + · · ·+ f b−1
r to the right–hand–side of (78) and using (57) with

p = b−1 and, successively, � = r−1, � = r−2, . . . , � = a+b+2, we get

λa+b+1 + f 1
a+b+1 + f 2

a+b+1 + · · ·+ f a+b+1
a+b+1

< (λr + f 1
r + f 2

r + · · ·+ f b−1
r )+ f b

r + f b
r−1 + · · ·+ f b

a+b+1

� (λr−1 + f 1
r−1 + f 2

r−1 · · ·+ f b−1
r−1 )+ f b

r−1 + f b
r−2 + · · · f b

a+b+1

� · · ·
� λa+b+1 + f 1

a+b+1 + f 2
a+b+1 + · · ·+ f b

a+b+1 .

From this, we get
f b+1
a+b+1 + f b+2

a+b+1 + · · ·+ f a+b+1
a+b+1 < 0,

which is a contradiction. Thus, (61) is proved.
We now show that (62) holds. If it fails for some p = p′ ∈ {b,b+1, . . . ,b+a−1} ,

then we must have

λa+b+1 + f 1
a+b+1 + f 2

a+b+1 + · · ·+ f p′+1
a+b+1 = λa+b + f 1

a+b + f 2
a+b + · · ·+ f p′

a+b

and then from (76) we get

λ1 + f 1
1 +(λa+b + f 1

a+b + f 2
a+b + · · ·+ f p′

a+b)

+ ( f p′+2
a+b+1 + f p′+3

a+b+1 + · · ·+ f a+b+1
a+b+1 ) < λa + f b

b + f b
b+1 + · · ·+ f b

r . (79)

Again using (58) in the familiar way, we obtain

f b
b + f b

b+1 + · · · f b
b+a−1 � f b−1

b−1 + f b−1
b + · · ·+ f b−1

b+a−2

� · · ·
� f 1

1 + f 1
2 + · · ·+ f 1

a .

With (79), this yields

λ1 + f 1
1 +(λa+b + f 1

a+b + f 2
a+b + · · · + f p′

a+b)+ ( f p′+2
a+b+1 + f p′+3

a+b+1 + · · · + f a+b+1
a+b+1 )

< (λa + f 1
a + f 1

a−1 + · · · + f 1
2 )+ f 1

1 +( f b
a+b + f b

a+b+1 + · · · + f b
r ). (80)

Using (73)–(75) in (80), we get

(λa+b + f 1
a+b + f 2

a+b + · · · + f p′
a+b)+ ( f p′+2

a+b+1 + f p′+3
a+b+1 + · · · + f a+b+1

a+b+1 )

< f b
b+a + f b

b+a+1 + · · · + f b
r . (81)
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Adding λr + f 1
r + · · · + f b−1

r to the right–hand–side of (81) and using (57) with p =
b−1 and, successively, � = r−1, � = r−2, . . . , � = a+b , we get

(λa+b + f 1
a+b + f 2

a+b + · · ·+ f p′
a+b)+ ( f p′+2

a+b+1 + f p′+3
a+b+1 + · · ·+ f a+b+1

a+b+1 )

< λa+b + f 1
a+b + f 2

a+b + · · ·+ f b
a+b .

Thus, we get

( f b+1
a+b + f b+2

a+b + · · ·+ f p′
a+b)+ ( f p′+2

a+b+1 + f p′+3
a+b+1 + · · ·+ f a+b+1

a+b+1 ) < 0,

which is a contradiction, and (62) is proved.
Finally, we show that (63) holds. If it fails for some p = p′ ∈ {a + b,a + b +

1, . . . ,r−1} , then we have

f b+1
b+1 + f b+1

b+2 + · · ·+ f b+1
p′+1 = f b

b + f b
b+1 + · · ·+ f b

p′ .

From this and (76), we have

λ1 + f 1
1 +λa+b+1 + f 1

a+b+1 + f 2
a+b+1 + · · ·+ f a+b+1

a+b+1

< λa +( f b+1
b+1 + f b+1

b+2 + · · ·+ f b+1
p′+1)+ ( f b

p′+1 + f b
p′+2 + · · ·+ f b

r ).
(82)

Arguing as before, we have

f b+1
b+1 + f b+1

b+2 + · · · + f b+1
b+a � f b

b + f b
b+1 + · · · + f b

b+a−1

� · · ·
� f 1

1 + f 1
2 + · · · + f 1

a .

Using this in (82), we get

λ1 + f 1
1 +λa+b+1 + f 1

a+b+1 + f 2
a+b+1 + · · · + f a+b+1

a+b+1

< (λa + f 1
a + f 1

a−1 + · · ·+ f 1
2 )+ f 1

1

+( f b+1
a+b+1 + f b+1

a+b+2 + · · ·+ f b+1
p′+1)+ ( f b

p′+1 + f b
p′+2 + · · ·+ f b

r ).

Using this and (73)–(75), we get

λa+b+1 + f 1
a+b+1 + f 2

a+b+1 + · · · + f a+b+1
a+b+1

< ( f b+1
a+b+1 + f b+1

a+b+2 + · · · + f b+1
p′+1)+ ( f b

p′+1 + f b
p′+2 + · · · + f b

r ). (83)

adding λr + f 1
r + f 2 + r+ · · · + f b−1

r to the right–hand–side of (83) and using (57) with
p = b−1 and, successively, � = r−1, � = r−2,. . . , � = p′ +1, we get

λa+b+1 + f 1
a+b+1 + f 2

a+b+1 + · · ·+ f a+b+1
a+b+1

< ( f b+1
a+b+1 + f b+1

a+b+2 + · · ·+ f b+1
p′+1)+ (λp′+1 + f 1

p′+1 + f 2
p′+1 + · · ·+ f b

p′+1)

= λp′+1 + f 1
p′+1 + f 2

p′+1 + · · ·+ f b+1
p′+1 +( f b+1

p′ + f b+1
p′−1 + · · ·+ f b+1

a+b+1).
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Now using (57) with p = b and, successively, � = p′ , � = p′ −1,. . . , � = a+b+1, we
get

λa+b+1 + f 1
a+b+1 + f 2

a+b+1 + · · ·+ f a+b+1
a+b+1 < λa+b+1 + f 1

a+b+1 + f 2
a+b+1 + · · ·+ f b+1

a+b+1 .

This implies
f b+2
a+b+1 + f b+3

a+b+1 + · · ·+ f a+b+1
a+b+1 < 0,

which is a contradiction. Thus, Case 3.10.4 is proved.
We have now proved enough cases so that, if we also consider also the cases ob-

tained from them by interchanging a and b , then the lemma is proved.

DEFINITION 3.11. Let (I,J,K) ∈ T̃ n
r . We say (I,J,K) is TT–reducible, (or sim-

ply reducible) if the method of reduction described in Remark 3.7 can be performed,
namely, if there are u,v,w ∈ {0, . . . ,r} satisfying u + v + w = r and such that (43)–
(46) hold, (where we take i0 = j0 = k0 = 0). Naturally enough, if (I,J,K) is not
TT–reducible, then we may say it is TT–irreducible (or simply irreducible).

LEMMA 3.12. Let n � r � 2 be integers. If (I,J,K) ∈ T̃ n
r is irreducible, then

ir = jr = kr = n.

Proof. Suppose (I,J,K)∈ T̃ n
r and ir < n . We will show that (I,J,K) is reducible.

In view of the symmetry of T̃ n
r , this will suffice to prove the lemma.

Let u = r and v = w = 0. Then (43) and (46) both hold. To show that (I,J,K)
is reducible, it will suffice to show j1 � 2, for then (44) will hold and by symmetry
also (45) will hold. Inspecting (28), we must have (r,1,r) ∈ Ũ r

1 = T̃ r
1 . Considering (29)

and taking p = 1, we must have ir + j1 + kr � 2n+1, so

j1 � (2n+1)− ir− kr � (2n+1)− (n−1)−n= 2.

LEMMA 3.13. Suppose (I,J,K) ∈ T̃ n
r satisfies ir = jr = kr = n and that there are

u,v,w ∈ {0,1, . . . ,r} such that u + v +w = r and (46) holds, namely, iu + jv + kw �
n−1 . Then (43)–(45) must hold.

Proof. It will suffice to show that (43) holds. From (46), we have u � r−1.

CASE 3.13.1. v �= 0 and w = 0 .

Then ({u+1},{v},{r})∈ T̃ r
1 , and from (29) we must have

iu+1 + jv + kr � 2n+1,

which yields

iu+1− iu = (iu+1 + jv)− (iu + jv) � (n+1)− (n−1)= 2.

and (43) holds.
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CASE 3.13.2. v �= 0 and w �= 0 .

Then ({u+1,r},{v,r},{w,r})∈ T̃ r
2 , and from (29) we must have

iu+1 + ir + jv + jr + kw + kr � 4n+1,

which yields

iu+1− iu = (iu+1 + jv + kw)− (iu + jv + kw) � (n+1)− (n−1)= 2.

and (43) holds.
The other case, v = 0 and w �= 0, follows from symmetry considerations.
The above two lemmas imply the following.

PROPOSITION 3.14. Let (I,J,K) ∈ T̃ n
r . Then (I,J,K) is irreducible if and only

if u,v,w ∈ {0,1, . . . ,r} and u+ v+w = r implies

iu + jv + kw � n, (84)

where we set i0 = j0 = k0 = 0 .

The next result describes the irreducible elements of T̃ n
3 for arbitrary n � 3, which

are particularly nice. Compare this to the first part of the proof of Theorem 1 of [8].

PROPOSITION 3.15. Let 1 � r � n be integers and let (I,J,K) ∈ T̃ n
r .

(i) If r = 1 , then (I,J,K) is irreducible if and only if n = 1 and

(I,J,K) = ({1},{1},{1}).

(ii) If r = 2 , then (I,J,K) is irreducible if and only if n = 2 and

(I,J,K) = ({1,2},{1,2},{1,2}).

(iii) If r = 3 , then (I,J,K) is irreducible if and only if

(I,J,K) = ({m,m+ �,n},{m,m+ �,n},{m,m+ �,n}) (85)

for some integers � and m satisfying 1 � � � m and 2m+ � = n.

Proof. Part (i) follows immediately from Proposition 3.14.
Part (ii) follows easily from Proposition 3.14 because if (I,J,K) ∈ T̃ n

2 irreducible,
then

i2 = j2 = k2 = n, (86)

while we also have
i1 + j1 + k1 = n+1
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from (28) and (86) and, again from Proposition 3.14 we get

i1 + j1 � n , i1 + k1 � n and j1 + k1 � n. (87)

Adding up (87), we get

2(n+1) = 2(i1 + j1 + k1) � 3n,

so n � 2.
Now, for part (iii), suppose r = 3. T̃ 3

1 consists of the triples ({1},{3},{3}) and
({2},{2},{3}) and the four other triples obtained by permutations, while T̃ 3

2 consists
of the triples ({1,2},{2,3},{2,3}) and ({1,3},{1,3},{2,3}) and their permutations.
Thus, T̃ n

3 is the set of triples (I,J,K) satisfying

i1 + i2 + i3 + j1 + j2 + j3 + k1 + k2 + k3 = 6n (88)

i1 + i2 + j2 + j3 + k2 + k3 � 4n+1, i2 + i3 + j1 + j2 + k2 + k3 � 4n+1,

i2 + i3 + j2 + j3 + k1 + k2 � 4n+1, i1 + i3 + j1 + j3 + k2 + k3 � 4n+1,

i1 + i3 + j2 + j3 + k1 + k3 � 4n+1, i2 + i3 + j1 + j3 + k1 + k3 � 4n+1,

i1 + j3 + k3 � 2n+1, i3 + j1 + k3 � 2n+1, i3 + j3 + k1 � 2n+1,

i2 + j2 + k3 � 2n+1, i2 + j3 + k2 � 2n+1, i3 + j2 + k2 � 2n+1.

One checks that all (I,J,K) of the form (85) belong to T̃ n
3 , because the above hold, and

are irreducible, because if u+ v+w = 3, then (84) holds.
Let (I,J,K) ∈ T̃ n

3 be irreducible. Then, by Proposition 3.14,

i3 = j3 = k3 = n and (89)

i2 + j1 � n , i2 + k1 � n , i1 + j2 � n (90)

i1 + k2 � n , j2 + k1 � n , j1 + k2 � n.

But adding up (90),we get

2(i1 + i2 + j1 + j2 + k1 + k2) � 6n,

which, in light of (88) and (89) must be an equality. Thus, all of (90) must be equalities,
and these imply i1 = j1 = k1 = m and i2 = j2 = k2 = m+ � for some integers m, � � 1
satisfying 2m+ � = n . Using (84) with u = v = w = 1, we have 3m � n , which implies
� � m .

PROPOSITION 3.16. Let (I,J,K) ∈ T̃ n
3 be the irreducible Horn triple in (85).

Then the Littlewood–Richardson coefficient c(n)(I,J,K) is equal to � .

Proof. Let (λ ,μ ,ν) = Φn
r (I,J,K) . We have

λ = μ = (m+ �−2,m−1,0), ν = (2m+ �−3,m+ �−2,m−1) (91)
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Figure 1: A typical filling of ν\λ according to μ .

λ1 = m+ �−2 f 1
1 = m−1

λ2 = m−1 f 1
2 f 2

2

f 1
3 f 2

3

and c(n)(I,J,K) = cνλ ,μ equals the number of fillings of ν\λ according to μ , or, equiv-

alently, the number of choices of nonnegative integers f 1
1 , f 1

2 , f 2
2 , f 1

3 , f 2
3 , f 3

3 such that
the following hold:

λ1 + f 1
1 = ν1 λ2 + f 1

2 + f 2
2 = ν2 λ3 + f 1

3 + f 2
3 + f 3

3 = ν3 (92)

f 1
1 + f 1

2 + f 1
3 = μ1 f 2

2 + f 2
3 = μ2 f 3

3 = μ3 (93)

λ2 + f 1
2 � λ1 λ3 + f 1

3 � λ2 λ3 + f 1
3 + f 2

3 � λ2 + f 1
2 (94)

f 2
2 � f 1

1 f 2
2 + f 2

3 � f 1
1 + f 1

2 f 3
3 � f 2

2 . (95)

Using also the values specified in (91), from λ1 + f 1
1 = ν1 and, respectively, f 3

3 = μ3 ,
we get

f 1
1 = m−1 and f 3

3 = 0.

A typical filling is pictured in Figure 1. From (92) and (93), we get

f 1
2 + f 2

2 = �−1 f 1
3 + f 2

3 = m−1

f 1
2 + f 1

3 = �−1 f 2
2 + f 2

3 = m−1,

which yield f 1
3 = f 2

2 = �−1− f 1
2 and f 2

3 = m− �+ f 1
2 .

The filling is determined by the choice of f 1
2 ∈ {0,1, . . . , �− 1} and each such

choice leads to all the equalities and inequalities in (92)–(95) being satisfied. So we
have cνλ ,μ = � .

Let us say that a Horn triple (I,J,K) ∈ T̃ n
r is LR–minimal (or simply minimal)

if the Littlewood–Richardson coefficient c(n)(I,J,K) is equal to 1. It is known (see
Theorem 13 of [6]) that the set of Horn inequalities corresponding to LR–minimal Horn
triples determines all of the other Horn inequalities. For the purpose of showing that all
Horn inequalities hold in all finite von Neumann algebras, it will suffice to verify that
all the LR–minimal Horn inequalities hold in all finite von Neumann algebras.

COROLLARY 3.17. Let n � 3 be an integer. Then T̃ n
3 has an element that is an

LR–minimal and irreducible Horn triple (I,J,K) if and only if n = 2m+1 is odd, and
then the unique such triple is

(I,J,K) = ({m,m+1,n},{m,m+1,n},{m,m+1,n}).
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We were unable to find a nice characterization of the LR–minimal and irreducible
Horn triples in T̃ n

4 . However, the complete list of such (up to permutation of I , J and
K ) for several values of n is given in Table 1. These were found using the Littlewood–
Richardson Calculator package [3] of Anders Skovsted Buch and Maple.

Table 1: LR–minimal and irreducible triples in T̃ n
4 .

n (I,J,K)

4 ({1,2,3,4},{1,2,3,4},{1,2,3,4})
5 /0

6 ({1,3,4,6},{2,3,5,6},{2,3,5,6}), ({2,3,4,6},{2,3,4,6},{2,3,5,6})
7 ({2,3,5,7},{2,4,5,7},{3,4,5,7}), ({2,3,6,7},{2,4,5,7},{2,4,5,7})
8 ({1,4,5,8},{3,4,7,8},{3,4,7,8}), ({2,3,5,8},{3,5,6,8},{3,5,6,8}),

({2,3,6,8},{2,5,6,8},{3,5,6,8}), ({2,4,5,8},{3,4,6,8},{3,4,7,8}),
({2,4,5,8},{3,4,6,8},{3,5,6,8}), ({3,4,5,8},{3,4,5,8},{3,4,7,8}),
({3,4,5,8},{3,4,6,8},{3,4,6,8})

9 ({2,3,6,9},{3,6,7,9},{3,6,7,9}), ({2,5,6,9},{3,4,7,9},{3,6,7,9}),
({2,5,6,9},{3,4,7,9},{4,5,7,9}), ({2,5,6,9},{3,4,8,9},{3,5,7,9}),
({3,4,6,9},{3,5,6,9},{3,6,7,9}), ({3,4,6,9},{3,5,6,9},{4,5,7,9}),
({3,4,6,9},{3,5,7,9},{4,5,6,9}), ({3,4,7,9},{3,5,6,9},{4,5,6,9}),
({3,5,6,9},{3,5,6,9},{3,4,8,9})

4. Construction of projections

In this section, we exhibit a construct of projections which we use in combination
with results of previous sections to prove that all of the LR–minimal Horn inequalities
corresponding to triples in T̃ n

3 for arbitrary n must hold in all finite von Neumann
algebras.

LEMMA 4.1. Let M be a finite von Neumann algebra with normal, faithful tra-
cial state τ . Suppose 0 < β � 2

5 and e1,e2,e3 ∈ M are projections with

τ(ei) � 1
2

+
β
4

, (i ∈ {1,2,3}). (96)

Then there is a projection p ∈ M satisfying τ(p) � 3
2β and τ(p∧ ei) � β for all

i ∈ {1,2,3} .

Proof. Let q0 = e1∧ e2∧ e3 .
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CASE 4.1.1. τ(q0) � β .

To prove the lemma in this case, we simply let p � q0 be such that τ(p) = β .

In the remaining cases, let

q1 = (e2 ∧ e3)−q0 , q2 = (e1 ∧ e3)−q0 and q3 = (e1 ∧ e2)−q0.

We clearly have

qi∧q j = (ei −q0)∧ (e j −q0) = 0, (i �= j)

and, using (8) and (96),

τ(q0)+ τ(qi) = τ(e j ∧ ek) � β
2

, (97)

where {i, j,k} = {1,2,3} . We assume, without loss of generality,

τ(q1) � τ(q2) � τ(q3). (98)

CASE 4.1.2. τ(q0) � β and τ(q1)+ τ(q2) � β − τ(q0)

Take projections q′2 � q2 and q′3 � q3 such that

τ(q′i) = min(τ(qi),
β
2
− τ(q0)

2
), (i ∈ {2,3})

and let q′1 � q1 be such that

τ(q′1)+ τ(q′2) = β − τ(q0). (99)

Then τ(q′3) � τ(q′2) , we have

τ(q0 +q′2∨q′3) � β

τ(q0 +q′1∨q′3) � β

and we may, therefore, choose projections

q4 � e1− (q0 +q′2∨q′3)
q5 � e2− (q0 +q′1∨q′3)

so that
τ(q4) = β − τ(q0)− τ(q′2)− τ(q′3)
τ(q5) = β − τ(q0)− τ(q′1)− τ(q′3).

(100)

Let
p = q0∨q′1∨q′2∨q′3∨q4∨q5.
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Then
τ(p) � τ(q0)+ τ(q′1)+ τ(q′2)+ τ(q′3)+ τ(q4)+ τ(q5)

= 2β − τ(q0)− τ(q′3).
(101)

If q′3 = q3 , then using (97) we get τ(p) � 3
2β . On the other hand, if q′3 �= q3 , then

τ(q′3) = β
2 − τ(q0)

2 and from (101) we have τ(p) � 3
2β − 1

2τ(q0) � 3
2β .

But also
p∧ e1 � q0 +(q′2∨q′3)+q4

p∧ e2 � q0 +(q′1∨q′3)+q5

p∧ e3 � q0 +(q′1∨q′2),

which by (100) and (99) gives τ(p∧ei) � β for all i∈ {1,2,3} . This finishes the proof
in Case 4.1.2.

CASE 4.1.3. τ(q0) � β and τ(q1)+ τ(q2) � β − τ(q0) .

Using (8), we have

τ((e1 −q0)∨ (e2−q0)) = τ(e1)+ τ(e2)−2τ(q0)− τ(q3)

� 1+
β
2
−2τ(q0)− τ(q3)

and, using (8) again, we get

τ((e3 − (q1∨q2)−q0)∧
(
(e1−q0)∨ (e2−q0)

)
)

� (τ(e3)− τ(q1)− τ(q2)− τ(q0))

+ (1+
β
2
−2τ(q0)− τ(q3))− (1− τ(q0))

� 1
2

+
3β
4

−
3

∑
i=1

τ(qi)−2τ(q0)

� 1
2
− β

4
− τ(q1)− τ(q2)− τ(q0) (102)

� β − τ(q1)− τ(q2)− τ(q0), (103)

where (102) follows because the assumptions in this case and the ordering (98) imply
τ(q3) � β

2 − τ(q0)
2 � β − τ(q0) and (103) results from β � 2

5 .
Thus, we may take a projection

f � (e3 − (q1∨q2)−q0)∧
(
(e1−q0)∨ (e2−q0)

)
such that

τ( f ) = β − τ(q1)− τ(q2)− τ(q0). (104)
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Let us write E1 = E(e1−q0,e2−q0) and E2 = E(e2−q0,e1−q0) for the idempotents
defined in section 2.3. Let r1 = E�

1( f ) and r2 = E�
2( f ) . By Lemma 2.3.1, we have

ri � ei−q0 and τ(ri) � τ( f ) (for i = 1,2) and

f � r1 ∨ r2∨q3. (105)

Choose any projections
s1 � e1−q0− (r1∨q2∨q3)
s2 � e2−q0− (r2∨q1∨q3)

such that
τ(s1) = β − τ(q0)− τ(r1∨q2∨q3)

τ(s2) = β − τ(q0)− τ(r2∨q1∨q3).
(106)

This is possible because

τ(r2 ∨q1∨q3) � τ( f )+ τ(q1)+ τ(q3) = β − τ(q0)+ τ(q3)− τ(q2) � β − τ(q0)

and, similarly, τ(r1 ∨q2∨q3) � β − τ(q0) . Let

p = q0∨q1∨q2∨q3∨ r1∨ r2 ∨ s1∨ s2.

We have
τ(q2∨q3∨ r1 ∨ s1) = τ(s1)+ τ(r1∨q2∨q3) = β − τ(q0),

so
τ(q0∨q1∨q2∨q3∨ r1 ∨ s1) � β + τ(q1)

and

τ(p) � τ(q0 ∨q1∨q2∨q3∨ r1∨ s1 ∨ s2)+ τ(r2)− τ(r2∧ (q1∨q3))

� τ(q0 ∨q1∨q2∨q3∨ r1∨ s1)+ τ(r2)+ τ(s2)− τ(r2∧ (q1∨q3))

� 2β − τ(q0)+ τ(q1)+ τ(r2)− τ(r2∨q1∨q3)− τ(r2∧ (q1∨q3))

= 2β − τ(q0)+ τ(q1)− τ(q1∨q3)

= 2β − τ(q0)− τ(q3) � 3
2
β ,

where for the last inequality we used (97). On the other hand, we have

p∧ e1 � q0∨q2∨q3∨ r1 ∨ s1 = q0 +(q2∨q3∨ r1)+ s1

p∧ e2 � q0∨q1∨q3∨ r2 ∨ s2 = q0 +(q1∨q3∨ r2)+ s2 ,

so from (106) we get τ(p∧ ei) � β for i = 1,2. Using (105), we have

p∧ e3 � q0∨q1∨q2∨ f = q0 +(q1∨q2)+ f ,

so from (104) we have τ(p∧ e3) � β . This finishes the proof in Case 4.1.3, and the
lemma is proved.

The above lemma applies with β = 2
n to give the following.
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EXAMPLE 4.2. Let m � 2 be an integer and let n = 2m+ 1. Suppose e1,e2,e3

are projections in a finite von Neumann algebra M with τ(ei) � m+1
n , ( i ∈ {1,2,3} ).

Then there is a projection p∈M with τ(p) � 3
n and with τ(p∧ei) � 2

n ( i∈ {1,2,3} ).

THEOREM 4.3. Let 1 � r � n be integers and let (I,J,K) ∈ T̃ n
r . If either r ∈

{1,2} or r = 3 and the triple (I,J,K) is LR–minimal, then the Horn inequality corre-
sponding to (I,J,K) holds in all finite von Neumann algebras.

Proof. By Proposition 3.5, it will suffice that each such (I,J,K) has property Pn .
It follows from Lemma that every (I,J,K) can be reduced (as in Definition 3.11) to
an irreducible triple, which will be LR–minimal if the original triple (I,J,K) is LR–
minimal. By Lemma 3.6, it will, therefore, suffice to show that every irreducible triple
(I,J,K) ∈ T̃ n

r with r ∈ {1,2} has property Pn , and every irreducible and LR–minimal
triple (I,J,K) ∈ T̃ n

3 has property Pn .
By Proposition 3.15, for r=1 and r=2, we only need to verify that ({1},{1},{1})

∈ T̃ 1
1 has property P1 and ({1,2},{1,2},{1,2})∈ T̃ 2

2 has property P2 . But these facts
are immediate. For r = 3, by Corollary 3.17, we need only see that the triple

({m,m+1,n},{m,m+1,n},{m,m+1,n}) (107)

has property Pn , where for integers m � 1 and n = 2m + 1. When m = 1, this is
immediate from the definition. Take m � 2. Let e , f and g be flags in a finite von
Neumann algebra M , with specified trace τ . Then . It follows from Lemma 4.1 (see
Example 4.2) that there is a projection p in M such that τ(p) = 3

n , and

τ(em+1
n

∧ p) � 2
n

, τ( f m+1
n

∧ p) � 2
n

, τ(gm+1
n

∧ p) � 2
n

. (108)

τ(e n
n
∧ p) = τ( f n

n
∧ p) = τ(g n

n
∧ p) = τ(p) =

3
n

.

Since τ(em
n
) = τ(em+1

n
)− 1

n from (8) of Proposition 2.1.1 we get

τ(em
n
∧ p) = τ(em

n
∧ (em+1

n
∧ p)) = τ(em+1

n
∧ p)+ τ(em

n
)− τ((em+1

n
∧ p)∨ em

n
) (109)

� τ(em+1
n

∧ p)+ τ(em
n
)− τ(em+1

n
) (110)

= τ(em+1
n

∧ p)− 1
n

� 1
n

, (111)

and similarly

τ( f m
n
∧ p) � 1

n
τ(gm

n
∧ p) � 1

n
. (112)

Now (108)–(112) taken together show that p satisfies the requirements of Definition 3.4
and the triple (107) has property Pn .

We would like to end this section with an argument that we discovered in an at-
tempt to show that the triple

({2,4,6},{2,4,6},{2,4,6})∈ T̃ 6
3 (113)
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has propertyAP6 . This triple is irreducible by Proposition 3.15 and by Proposition 3.16,
the corresponding triple (λ ,μ ,ν) has Littlewood–Richardson coefficient equal to 2.
The corresponding Horn inequality,

α1 +α3 +α5 +β1 +β3 +β5 � γ2 + γ4 + γ6 ,

is known to hold in all finite von Neumann algebras. Indeed, in the 6×6 matrices, by
the ordering of eigenvalues, we have

α1 +α3 +α5 +β1 +β3 +β5 � 1
2

6

∑
i=1

(αi +βi) =
1
2

6

∑
i=1

γi � γ2 + γ4 + γ6

and clearly a similar argument works in finite von Neumann algebras for integrals of
eigenvalue functions. Nonetheless, it is an interesting question whether the triple (113)
has property P6 , or at least AP6 . For the latter property, given arbitrary flags e , f and
g in a finite von Neumann algebra and given ε > 0, we would need to find a projection
p such that

τ(p) � 1
2

+ ε

τ(e 2
6
∧ p) � 1

6
, τ( f 2

6
∧ p) � 1

6
, τ(g 2

6
∧ p) � 1

6
(114)

τ(e 4
6
∧ p) � 2

6
, τ( f 4

6
∧ p) � 2

6
, τ(g 4

6
∧ p) � 2

6
.

The following lemma proves this, but under the added hypothesis that the projections
from the flags appearing in (114) be in general position. Although we are not able to
use this argument to prove that any further Horn inequalities hold in all finite von Neu-
mann algebras (beyond those treated in Theorem 4.3), we hope that the construction of
projections (and in particular, the use of “almost invariant subspaces” in the argument)
may be of interest.

LEMMA 4.4. Let e1,e2,e3, f1, f2, f3 be projections in a finite von Neumann alge-
bra M with normal faithful tracial state τ , satisfying

ei � fi, τ(e1) =
1
3
, τ( fi) =

2
3
, (1 � i � 3),

and let ε > 0 . Assume further that whenever {i, j,k} = {1,2,3} , we have

ei∧ f j = 0 (115)

ek ∧ (ei ∨ e j) = 0. (116)

Then there is a projection p ∈ M such that

τ(p) � 1
2

+ ε,

τ(p∧ ei) � 1
6
, (1 � i � 3)

τ(p∧ fi) � 1
3
, (1 � i � 3).
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Proof. Throughout, we let {i, j,k} = {1,2,3} . Let us first show

τ( fi ∧ f j) =
1
3

. (117)

The inequality � is clear from (8) in Proposition 2.1.1. On the other hand, ei ∧ f j =
ei∧ ( fi ∧ f j) , so again from (8), we get

τ(ei ∧ f j) � τ(ei)+ τ( fi∧ f j)− τ( fi) = τ( fi ∧ f j)− 1
3

,

so from (115) we get � in (117). By (115), we also get

τ(ei ∨ e j) =
2
3

, (118)

which in turn yields

τ( fk ∧ (ei∨ e j)) =
1
3

. (119)

Indeed, � is clear from (8) and (118), while from (116)

ek ∧ (ei ∨ e j) = ek ∧ ( fk ∧ (ei∨ e j))

and (8) we get � in (119). Let us write E j
i = E(ei,e j) , etc., for the idempotents defined

in Section 2.3. We have

domproj(E j
i ) = ei ∨ e j − e j

kerproj(E j
i ) = (1− ei∨ e j)+ e j

ranproj(E j
i ) = ei .

Let S j
i = E j

i · ( fk ∧ (ei∨ e j)) be the composition of operators. We have

kerproj(E j
i )∧ ( fk ∧ (ei ∨ e j)) = (kerproj(E j

i )∧ (ei ∨ e j))∧ fk = e j ∧ fk = 0.

Thus, we have

domproj(S j
i ) = fk ∧ (ei ∨ e j), ranproj(S j

i ) = ei ,

and we have the picture in Figure 4, where the spokes represent projections of trace 1
3 .

Consider the operator
X = S3

1T
1
3 S2

3T
3
2 S1

2T
2
1 .

Then X goes once around the wheel in Figure 4. Since we have

domproj(T 2
1 ) = e1

ranproj(T 2
1 ) = f3 ∧ (e1∨ e2) = domproj(S1

2)

ranproj(S1
2) = e2 = domproj(T 3

2 )

ranproj(T 3
2 ) = f1 ∧ (e2∨ e3) = domproj(S2

3)

ranproj(S2
3) = e3 = domproj(T 1

3 )

ranproj(T 1
3 ) = f2 ∧ (e1∨ e3) = domproj(S3

1)

ranproj(S3
1) = e1 ,
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we see
domproj(X) = e1 = ranproj(X).

e1

f3 ∧ (e1 ∨ e2)

e2

f1 ∧ (e2∨ e3)

e3

f2 ∧ (e1∨ e3)

S1
2

S2
3

S3
2

S1
3

S3
1 S2

1

T 1
3

T 2
1

T 3
2

Figure 2: Some projections and operators.

By Proposition 2.2.2, there is a projection q1 � e1 such that

τ(q1) =
1
6

, τ(q1∨X �(q1)) � 1
6

+ ε.

Let

r3 = (T 2
1 )�(q1) , q2 = (S1

2)
�(r3) , r1 = (T 3

2 )�(q2) , q3 = (S2
3)

�(r1) , and r2 = (T 1
3 )�(q3).

Thus (S3
1)

�(r2) = X �(q1) and τ(qi) = τ(ri) = 1
6 , ( i = 1,2,3). Let

p = q1∨q2∨q3∨X �(q1).

Then

τ(p) � τ(q1∨X �(q1))+ τ(q2)+ τ(q3) � 1
2

+ ε

and p∧ ei � qi , so

τ(p∧ ei) � 1
6

, (i = 1,2,3).

On the other hand, we have

(E2
1 )�(r3) = (S2

1)
�(r3) = q1

(E1
2 )�(r3) = (S1

2)
�(r3) = q2
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and from Lemma 2.3.1, we get r3 � q1 ∨ q2 . Similarly, we get r1 � q2 ∨ q3 and r2 �
X �(q1)∨q3 . Thus, for every k ∈ {1,2,3} , we have rk � p and fk ∧ p � qk ∨ rk . Since
qk ∧ rk � ek ∧ (ei ∨ e j) = 0, where {i, j,k} = {1,2,3} , we have

τ( fk ∧ p) � τ(qk ∨ rk) = τ(qk)+ τ(rk) =
1
3

and the lemma is proved.

5. Possibilities for construction of a non–embeddable example

This section is speculative and can be skipped without compromising understand-
ing of the rest of the paper.

Suppose you knew, (say, you met a time traveler from the future), that Connes’
embedding problem has a negative answer and, even more, that the Horn inequality as-
sociated to a triple (I,J,K)∈ Tn

r fails to hold in some finite von Neumann algebra. How
could you find and describe a finite von Neumann algebra where this Horn inequality
fails? In this section, we describe an approach, though it is not one that would be guar-
anteed to work. We actually attempted to carry out this approach, without success, at
the beginning of our work with Horn inequalities in finite von Neumann algebras. We
did not benefit from an oracle of any sort, and we chose a Horn inequality (to try to
violate in a finite von Neumann algebra) by simple guessing. (The particular one that
we chose is, in fact, now known to hold in all finite von Neumann algebras, by results
of this paper.)

We seek operators a and b whose distributions are, respectively,

μa =
n

∑
i=1

δαi , μb =
n

∑
j=1

δβ j

and we postulate that a+b has distribution

μa+b =
n

∑
k=1

δγk ,

for some real numbers

α1 � α2 � · · · � αn , β1 � β2 � · · · � βn and γ1 � γ2 � · · · � γn , (120)

where the trace equality
n

∑
i=1

αi +
n

∑
j=1

β j =
n

∑
k=1

γk (121)

holds and Horn’s inequality (1) fails. After rescaling, we may suppose

1+∑
i∈I

αi +∑
j∈J

β j = ∑
k∈K

γk (122)



HORN INEQUALITIES 39

In fact, pick some specific values of α1, . . . ,αn , β1, . . . ,βn and γ1, . . . ,γn such that
(120), (121) and (122) all hold. Finding a finite von Neumann algebra in which such a
and b can be found is equivalent to finding a positive trace τ on the algebra C〈X ,Y 〉
of polynomials in noncommuting variables X and Y such that τ(1) = 1, and for all
k ∈ N , we have

τ(Xk) =
1
n

n

∑
i=1

αk
i , τ(Yk) =

1
n

n

∑
i=1

β k
i , and (123)

τ((X +Y)k) =
1
n

n

∑
i=1

γk
i . (124)

Indeed, such a trace will give rise, via the Gelfand–Naimark–Segal construction, to
a Hilbert space and a representation of C〈X ,Y 〉 whose closure in the strong operator
topology is the desired finite von Neumann algebra, with a and b being the images of
X and Y under the representation.

For such a trace τ , the moments τ(Xk) and τ(Yk) are, of course, specified by (123)
above. It remains to choose values for mixed moments. In light of the trace property,
this amounts to choosing values for all expressions of the form

τ(X p1Yq1 · · ·X p�Yq�) (125)

for positive integers � and p1,q1, . . . , p�,q� . Of course, the trace condition implies that
the value of (125) is unchanged by cyclically permuting the � pairs (p1,q1), . . . ,(p�,q�) .
For convenience, let us say that the expression (125) is in canonical form if p1 =
max1� j�� p j and q1 = max{ j|p j=p1} q j and p2 = max{ j|p j=p1,q j=q1} p j+1 , etc., and we
choose values of the mixed moments (125) that are in canonical form.

Some linear relations between these moments are implied by the predetermined
values found in (124). For example, taking k = 2,3,4, we get

2τ(XY ) = τ((X +Y )2)− τ(X2)− τ(Y 2)

3(τ(X2Y )+ τ(XY 2)) = τ((X +Y )3)− τ(X3)− τ(Y 3)

4(τ(X3Y )+ τ(XY 3))+2τ(XYXY ) = τ((X +Y )4)− τ(X4)− τ(Y 4).

Finally, the positivity of τ is equivalent to the positive semidefinitenesss of every matrix
of the form (

τ(w∗
i w j))1�i, j�n ,

for every finite list (w1, . . . ,wn) of distinct words in the free semigroup generated by X
and Y , where w∗

i is the word wi taken in reverse order.

Added in proofs. It has been more recently shown, in [10], that all Horn inequali-
ties hold in all II1 –factors.

RE F ER EN C ES

[1] H. BERCOVICI AND W.S. LI, Inequalities for eigenvalues of sums in a von Neumann algebra. Recent
advances in operator theory and related topics (Szeged, 1999), Oper. Theory Adv. Appl., 127 (2001),
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