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Abstract. The Image Space Reconstruction Algorithm (ISRA) of Daube–Witherspoon and
Muehllehner is a multiplicative algorithm for solving nonnegative least squares problems. Eg-
germont has proved the global convergence of this algorithm. In this paper, we analyze its rate
of convergence. We show that if at the minimum the strict complementarity condition is satisfied
and the reduced Hessian matrix is positive definite, then the ISRA algorithm which converges to it
does so at a linear rate of convergence. If, however, the ISRA algorithm converges to a minimum
which does not satisfy the strict complementarity condition, then the rate of convergence of the
algorithm can degenerate to being sublinear. Our results here therefor hold under more general
assumptions than in the work of Archer and Titterington who assume that at a minimum point all
Lagrange multipliers are zero.

We provide numerical examples to illustrate our rate of convergence results and to explain
why the ISRA algorithm usually appears to converge slowly. Our work here heuristically justifies
why the Lee–Seung algorithm for solving nonnegative matrix factorization problems has a slow
rate of convergence.

1. Introduction

Let m and n be positive integers. Let b ∈ IRm be a nonnegative vector and
A = (ai,j) ∈ IRm,n a nonnegative matrix such that

m∑
i=1

ai,j > 0, for j = 1, 2, . . . , n. (1.1)

We consider the following nonnegative least squares problem:

min
1
2
‖Ax − b‖2

2, subject to x � 0, (1.2)

where x ∈ IRn .
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The gradient and the Hessian matrix of the objective function of problem (1.2) are

g(x) = ATAx − ATb and G(x) = ATA,

respectively. As the Hessian matrix is positive semidefinite, problem (1.2) is a convex
optimization problem. Therefore, each of its local minimizers is a global minimizer,
see for example, Fletcher [13] and Nocedal and Wright [25]. We shall refer to a global
minimizer a minimizer from now on.

The nonnegative least squares problem arises in various applications, see for in-
stance, Berman and Plemmons [5] and Vogel [31]. Several algorithms have been
developed to solve this problem (see Bellavia [4] and Vogel [31] and references therein).
Among these algorithms, the so called Image Space Reconstruction Algorithm (ISRA)
distinguishes itself from others by its use of a multiplicative updating approach.

The ISRA algorithm was proposed by Daube–Witherspoon and Muehllehner [9] in
1986. Startingwith an initial vector x0 > 0 (that is, x0 is a vectorwhose components are
all positive), this algorithm generates a sequence of {xk} using the following updates:

xk+1
j = xk

j
(ATb)j

(ATAxk)j
, j = 1, 2, . . . , n. (1.3)

Since matrix A has positive column sums (1.1), we have that

(ATA)j,j > 0,

for each j = 1, 2, · · · , n . If (ATb)j > 0 for index j , then xk
j is well defined and xk

j > 0
for all k because (ATAxk)j � (ATA)j,j · xk

j > 0 . If the (ATb)j0 = 0 for some j0 , then
we have that x1

j0 = 0 . Although we may still have that (ATAxk)j0 > 0 and therefore
xk
j0 = 0 for all k , we can use the following pre-processing strategy to avoid a zero

denominator in iteration (1.3): Divide the index set I = {1, 2, · · · , n} into two subsets:
I0 = {j ∈ I|(ATb)j = 0} and I1 = I\I0 . Introduce the reduced matrix Ã and the
reduced vector x̃ by deleting the columns of A and the components of x corresponding
to indices in I0 respectively. We then update x̃ using the ISRA iteration:

x̃k+1
j = x̃k

j
(ÃTb)j

(ÃT Ãx̃k)j
, j ∈ I1, (1.4)

where x̃0 is chosen to be a positive vector.

REMARK 1.1. (1) We remark that there is no need to update xj , for j ∈ I0 , when
this pre–processing strategy is used. By a convergence theorem of Eggermont [11] (see
Theorem 1.2 later in this section) we can show that the sequence {x̃k} generated by
(1.4) converges to some x̃∗ which is a minimizer of the following reduced nonnegative
least squares problem:

min
1
2
‖Ãx̃ − b‖2

2, subject to x̃ � 0, (1.5)

Moreover, if we define

x∗ =
{

0, if j ∈ I0,
x̃∗j , if j ∈ I1,
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then x∗ is a minimizer of the original problem (1.2). For this reason, we will assume,
without loss of generality, that (ATb)j > 0 , for every j = 1, . . . , n, from now on.

(2) In practice, one can also use the following modified ISRA formula to avoid
division by zero (see for example, [6, 8]):

xk+1
j = xk

j
(ATb)j

(ATAxk)j + ε
, j = 1, 2, . . . , n,

where ε > 0 is a small number. A typical choice is ε = 10−9 (see [6]). Since we are
concerned with the convergence and the rate of convergence of the ISRA method in this
paper, we will not pursue further this modified ISRA method.

Throughout this paper it will be convenient to adopt the notation IRk,�
+ to denote

the set of all k × � matrices with nonnegative entries and to adopt the notation IRk
+ to

denote all the k –dimensional vectors with nonnegative entries.
The ISRA algorithm and its variants have been used in positron emission to-

mography, image deblurring, image reconstruction, and other areas, see for example,
Anconelli, Bertero, Boccacci, Carbiller, and Lanteri[1], Anderson, Yust, and Mair
[2], Archer and Titterington [3], Bertero and Boccacci [7], Daub–Witherspoon and
Muehllehner [9], Holte, Schmidlin, Linen, Rosenqvist, and Eriksson [15], Kontaxakis,
Strauss, and van Kaick [22], Kontaxakis, Strass, Thiereou, Ledesma-Carbayo, Santos,
Pavlopoulos, and Dimitrakopoulou–Strauss [23], Morales, Medero, Santiago, and Sosa
[24], Ollinger and Karp [26], and Vio, Nagy, Tenorio, and Wamsteker [30]. The perfor-
mance of the ISRA algorithm is comparable to that of the popular EMML algorithm,
see Shepp and Vardi [27] and Vardi, Shepp, and L. Kaufmann [28], which is based on
minimizing the Kullback–Leibler divergence of a nonnegative linear system.

We point out that the ISRA algorithm has several additional interesting features:
First, it can be easily parallelized, see, for example, Elsner, Koltracht, and Neumann
[12]. Second, the algorithm can be readily adapted to solve the nonnegative least squares
problem in matrix form:

min
1
2
‖AX − B‖2

F, subject to X � 0, (1.6)

where A ∈ IRm,n
+ and B ∈ IRm,p

+ are given matrices, X ∈ IRn,p is the unknown matrix,
and ‖ · ‖F is the Frobenius norm. For instance, the ISRA updates for solving (1.6) can
be implemented using the following Matlab command:

X = X. ∗ ((A′ ∗ B)./(A′ ∗ A ∗ X)); (1.7)

Third, the ISRA method lays a foundation for understanding the important Lee and
Seung [21] algorithm for solving the nonnegativematrix factorization (NNMF) problem
[20, 21, 6, 8]:

min
1
2
‖V − WH‖2

F, (1.8)

over all nonnegative matrix pairs W ∈ IRm,r and H ∈ IRr,n , for a given 1 � r �
rank(V) . The Lee–Seung [21] algorithm generates a sequence of approximation pairs
(Wk, Hk) by updating W and H as follows:
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1. Initialization. Choose matrices W0 ∈ IRm,r
+ and H0 ∈ IRr,n

+ , and set k = 0 .
2. Iteration. Iterate until convergence:

(1) Update H with W fixed:

Hk+1 = Hk . ∗ ((Wk)TV) ./ ((Wk)TWkHk) (1.9)

(2) Update W with H fixed:

Wk+1 = Wk . ∗ (V(Hk+1)T) ./ ((WkHk+1(Hk+1)T) (1.10)

(3) Set k = k + 1 .
It can be checked that theLee–Seung algorithmupdates W and H alternately, using

the ISRA iteration formula in matrix form (1.7). The consequence of this observation is
that if we are able, as we intend to do in this paper, to show that the rate of convergence
of the ISRA algorithm is, at best, linear, then this is at least a heuristic proof that the rate
of convergence of the Lee–Seung algorithm is at best linear. We comment that it is not
known if the Lee–Seung algorithm converges to a Karush–Kuhn–Tucker point of the
constrained optimization problem (1.8). For more information about the nonnegative
matrix factorization problem and its algorithms and applications, see recent surveys
[6, 8].

Continuing,De Pierro [10] andEggermont [11] have studied the global convergence
of the ISRA algorithm. In particular, Eggermont proves:

THEOREM 1.2. (Eggermont [11]) Let A ∈ IRm,n
+ and b ∈ IRn

+ . Then for any initial
x0 > 0 , the ISRA algorithm, given in (1.3), generates a sequence of iterates {xk} such
that

lim
k→∞

xk = x∗,

where x∗ is a (global) minimizer of (1.2).

REMARK1.3. (1)Theoriginal convergence theorem in [11] assumes that
m∑

i=1

ai,j = 1 ,

for j = 1, 2, . . . , n . Note that this assumption can be easily relaxed as
m∑

i=1

ai,j > 0 for

j = 1, 2, . . . , n , by right multiplying A by the diagonal matrix

diag

([
1/

m∑
i=1

ai,1, . . . , 1/

m∑
i=1

ai,n

])
.

(2) The theorem above holds for the ISRA algorithm in its matrix form (1.7).
From Theorem 1.2 we see that the global convergence of the ISRA algorithm is

well established. Thus here we shall focus on its rate of convergence. We begin by
mentioning that Archer and Titterington obtained a rate of convergence matrix in [3,
Page 94]. However, their analysis does not take into consideration the case of nonzero
Lagrange multipliers which can arise in the course of constrained optimization. Hence
theArcher andTitterington results are not applicablewhen nonzeroLagrangemultipliers
arise (see Remark 3.4 for more details below) and so in this paper we analyze the rate
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of convergence of the ISRA algorithm regardless of whether some or all the Lagrange
multipliers that arise in the course of the algorithm are zero or nonzero.

The plan of our paper is as follows. In Section 2we shall develop some optimization
and matrix theoretic preliminaries necessary to achieve the goals of this paper. In
Section 3 we prove our main results. We shall show that if at the minimizer the strict
complementarity condition (cf. Definition 2.2) is satisfied and the reduced Hessian
matrix (cf. (2.3)) is positive definite, then the ISRA algorithm which converges to it
does so at a linear rate of convergence. If, however, the ISRA algorithm converges to
a minimizer which does not satisfy the strict complementarity condition, then the rate
of convergence of the algorithm can deteriorate to being sublinear. In Section 4 we
will use numerical experiments to illustrate the results of this paper and expain why the
ISRA algorithm converges slowly. As explained earlier, our work here can be used to
explain heuristically why the Lee–Seung algorithm for solving NNMF problems has a
slow rate of convergence.

2. Preliminaries

In this section we present some preliminary results in optimization and matrix
theories which will be useful to establish the rate of convergence of ISRA algorithm.

Since problem (1.2) is a convex optimization problem, we have the following
necessary and sufficient condition for x∗ to be a minimizer of the problem:

LEMMA 2.1. (See Fletcher [13]) Let A ∈ IRm,n
+ and b ∈ IRm

+ . Then the point
x∗ ∈ IRn is a minimizer of (1.2) if and only if it is a Karush–Kuhn–Tucker (KKT) point
of (1.2), that is, it satisfies the following KKT conditions:

(ATAx∗)j − (ATb)j = μj, μjx
∗
j = 0, μj � 0, x∗j � 0, (2.1)

for j = 1, 2, . . . , n , where the μj ’s are the Lagrange multipliers corresponding to x∗ .

The condition that μjx∗j = 0, j = 1, 2, . . . , n , is often called the complementary
condition. A useful concept in optimization theory is the so–called strict complemen-
tarity.

DEFINITION 2.2. (Strict complementarity) Suppose that x∗ is a KKT point with
the Lagrange multipliers {μj} . We say that x∗ satisfies the strict complementarity
condition if

x∗j = 0 implies μj > 0 and μj = 0 implies x∗j > 0. (2.2)

For any x ∈ IRn
+ , we shall denote by A (x) = {j : xj = 0} to denote the active

constraint index set and by I (x) = {j : xj > 0} to denote the inactive constraint index
set of problem (1.2). Clearly A (x)

⋃
I (x) = {1, 2, . . . , n} .

Another useful concept in optimization theory is that of the reducedHessianmatrix.
If the indices in I (x) are i1, i2, . . . , ir(x) are ordered such that i1 < i2 < . . . < ir(x) ,
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then the reduced Hessian matrix of (1.2) at x ∈ IRn
+ is given by:

GR(x) =

⎡
⎢⎢⎢⎣

(ATA)i1i1 (ATA)i1i2 . . . (ATA)i1ir(x)

(ATA)i2i1 (ATA)i2i2 . . . (ATA)i2ir(x)

...
...

. . .
...

(ATA)ir(x) i1 (ATA)ir(x) i2 . . . (ATA)ir(x) ir(x)

⎤
⎥⎥⎥⎦ . (2.3)

Obviously GR(x) is positive semidefinite.
We remark that it is often assumed that the strict complementarity holds and

the reduced Hessian matrix is positive definite in the convergence rate analysis for
algorithms for constrained optimization, see for example, [13, 25].

We will also need the following two lemmas from matrix theory.

LEMMA 2.3. If T ∈ IRr,r is a positive definitematrix and D = diag(d1, d2, . . . , dr)
is a diagonal matrix such that di > 0 , for i = 1, . . . , r , then all eigenvalues of the
matrix DT are positive real numbers. Moreover,

min
1�i�r

{λi(DT)} � min
1�i�r

{di} min
1�i�r

{λi(T)}, (2.4)

where λi(·) denotes the i –th eigenvalue of a matrix.

Proof. It is a well known result of Wigner that if A and B are positive semi-
definite matrices, then the eigenvalues of their product are all nonnegative. Put
D1/2 = diag(d1/2

1 , d1/2
2 , . . . , d1/2

r ) and note that the spectrum of DT is identical to
the spectrum of D1/2TD1/2 . Let z �= 0 be the eigenvector corresponding to the eigen-
value λ = min1�i�r{λi(D1/2TD1/2)} . Then, from the Raleigh ratios we find that

λ zTz = zTD1/2TD1/2z � min
1�i�r

{λi(T)}zTDz � min
1�i�r

{λi(T)} min
1�i�r

{di}zTz.

Therefore, we have λ � min1�i�r{λi(T)}min1�i�r{di} . This implies (2.4). �
With Lemma 2.3 at hand we can prove:

LEMMA 2.4. Let T ∈ IRr,r
+ be a positive definite matrix and y ∈ IRr a vector with

positive entries. Let d1, . . . , dr be numbers such that

0 < di � yi/(Ty)i, (2.5)

for i = 1, 2, . . . , r , and put

D = diag(d1, d2, . . . , dr).

Then
ρ(I − DT) � 1 − min

1�i�r
{di} min

1�i�r
{λi(T)}, (2.6)

where ρ(·) denotes the spectral radius of a matrix.
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Proof. Let D0 = diag((Ty)1/y1, (Ty)2/y2, . . . , (Ty)r/yr) . Then the matrix D0−T
has nonpositive off–diagonal entries and, as (D0 − T)y = 0 , D0 − T a singular M–
matrix (see for example, [5, Chapter 6]). Since D−1

0 is a diagonal M–matrix, we see
that I − D−1

0 T = D−1
0 (D0 − T) is also a singular M–matrix since it has nonpositive

off–diagonal entries and is a product of two M–matrices.
Next (2.5) implies that

DT � D−1
0 T

showing that I − DT is also an M–matrix. By Lemma 2.3, all eigenvalues of DT are
positive real numbers. It follows that all eigenvalues of the I−DT are nonnegative real
numbers. Moreover, using Lemma 2.3 we have that:

ρ(I − DT) � 1 − min
1�i�r

{λi(DT)} � 1 − min
1�i�r

{di} min
1�i�r

{λi(T)}.

�
3. Rate of Convergence of ISRA

We are now ready to begin analyzing the rate of convergenceof the ISRA algorithm.
Assume that the ISRA algorithm generates the sequence {xk} ∈ IRn using a starting
point x0 > 0 . According to Theorem 1.2,

lim
k→∞

xk = x∗,

where x∗ is a minimizer of (1.2). As discussed in Remark 1.3,without loss of generality,
we assume that (ATb)j > 0 , for all j . Then, for each k , xk

j > 0 , for all j .
We consider two cases.

3.1. When Strict Complementarity Holds

We first consider the situation that the strict complementarity holds at x∗ . We
begin our analysis by assuming that:

I (x∗) = {1, 2, . . . , r}. (3.1)

Then the Lagrange multipliers corresponding to x∗ satisfy

μj = 0, j = 1, 2, . . . , r, (3.2)

and
μj > 0, j = r + 1, r + 2, . . . , n. (3.3)

Moreover, if we partition the Hessian matrix into four blocks:

ATA =
[

T S
R Q

]
,

where T ∈ IRr,r , Q ∈ IRn−r,n−r , S ∈ IRr,n−r , and R ∈ IRn−r,r , then T is the reduced
Hessian matrix at x∗ .

We have the following rate of convergence result.
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LEMMA 3.1. Let A ∈ IRm,n
+ and b ∈ IRm

+ and suppose that the ISRA algorithm
(1.3) applied to solving problem (1.2) generates a sequence of approximations {xk}
which converges to a minimizer x∗ . Suppose that I (x∗) = {1, 2, . . . , r} . Define

M∗ =
[

Ir − D∗
1T −D∗

1S
0n−r,r D∗

2

]
, (3.4)

D∗
1 = diag

(
x∗1

(ATAx∗)1
,

x∗2
(ATAx∗)2

, . . . ,
x∗r

(ATAx∗)r

)
, (3.5)

and

D∗
2 = diag

(
(ATb)r+1

(ATAx∗)r+1
,

(ATb)r+2

(ATAx∗)r+2
, . . . ,

(ATb)n

(ATAx∗)n

)
. (3.6)

If at x∗ , the strict complementarity holds and the reduced Hessian matrix T is positive
definite, then the asymptotic rate of convergence of {xk} is ρ(M∗) and it satisfies

ρ(M∗) � max

{
1 − min

1�i�r

{
x∗i

(ATAx∗)i

}
min

1�i�r
{λi(T)}, max

r+1�i�n

{
(ATb)i

(ATAx∗)i

}}
< 1.

(3.7)
In particular, the ISRA algorithm converges linearly if ρ(M∗) �= 0 .

Proof.We begin by noticing that the ISRA updates as given in (1.3) can be rewritten
as

xk+1
j = xk

j −
xk
j

(ATAxk)j

(
(ATAxk)j − (ATb)j

)
, j = 1, 2, . . . , n. (3.8)

As I (x∗) = {1, 2, . . . , r} , the Lagrange multipliers satisfy that μj = 0 , for j =
1, 2, . . . , r . This implies that

(ATAx∗)j = (ATb)j, j = 1, 2, . . . , r. (3.9)

On using (3.9), the first r equations in (3.8) can be rewritten as

xk+1
j − x∗j = xk

j − x∗j −
xk
j

(ATAxk)j

(
ATA(xk − x∗)

)
j
, j = 1, 2, . . . , r. (3.10)

For indices j = r + 1, r + 2, . . . , n , we know that x∗j = 0 . As xk+1
j = xk+1

j − x∗j
and xk

j = xk
j − x∗j for these indices, we can rewrite the corresponding updates in (1.3)

as

xk+1
j − x∗j = (xk

j − x∗j )
(ATb)j

(ATAxk)j
, j = r + 1, r + 2, . . . , n. (3.11)

We can thus rewrite (3.10) and (3.11) in the matrix–vector form:

xk+1 − x∗ = Mk(xk − x∗), (3.12)

where

Mk =
[

Ir − Dk
1T −Dk

1S
0n−r,r Dk

2

]
, (3.13)



ON THE RATE OF CONVERGENCE OF THE IMAGE SPACE RECONSTRUCTION ALGORITHM 49

Dk
1 = diag

(
xk
1

(ATAxk)1
,

xk
2

(ATAxk)2
, . . . ,

xk
r

(ATAxk)r

)
, (3.14)

and

Dk
2 = diag

(
(ATb)r+1

(ATAxk)r+1
,

(ATb)r+2

(ATAxk)r+2
, . . . ,

(ATb)n

(ATAxk)n

)
(3.15)

Because A is a nonnegative matrix and T is positive definite, we have that
(ATAx∗)i > 0 , for i = 1, 2, . . . , r . Moreover, (ATAx∗)i = (ATb)i + μi � μi > 0 , for
i = r + 1, r + 2, . . . , n . Taking the limit of (3.13) which clearly exists, we obtain that

lim
k→∞

Mk = M∗,

where M∗ is defined in (3.4). Thus the asymptotic rate of convergence of {xk} is
ρ(M∗) .

To prove (3.7), we first note that

ρ(M∗) = max {ρ(Ir − D∗
1T), ρ(D∗

2 )} . (3.16)

Define x̂ = [x∗1 , x
∗
2 , . . . , x

∗
r ]

T . Then clearly we have

0 <
x∗i

(ATAx∗)i
=

x̂i

(Tx̂)i
, i = 1, 2, . . . , r.

Thus from Lemma 2.4 it follows that

ρ(Ir − D∗
1T) � 1 − min

1�i�r

{
x∗i

(ATAx∗)i

}
min

1�i�r
{λi(T)} < 1. (3.17)

On the other hand, μi > 0 , for i = r+1, r+2, . . . , n , due to the strict complementarity.
Thus the KKT conditions (2.1) imply

(ATAx∗)i − (ATb)i > 0, i = r + 1, r + 2, . . . , n.

Hence we have

ρ(D∗
2) = max

r+1�i�n

{
(ATb)i

(ATAx∗)i

}
< 1. (3.18)

Combining (3.16), (3.17) and (3.18), we have (3.7). The proof is complete. �
In Lemma 3.1, we assume that the first r constraints are inactive and the rest are

active. Now we consider the the general case when

I (x∗) = {i1, i2, . . . , ir}, (3.19)

with i1 < i2 < . . . < ir . In this case, there is a permutation P such that

P(ATA)PT =
[

T̂ Ŝ
R̂ Q̂

]
,

where T̂ = GR(x∗) ∈ IRr,r is the reduced Hessian matrix at x∗ as defined in (2.3) and
Q̂ ∈ IRn−r,n−r , Ŝ ∈ IRr,n−r , and R̂ ∈ IRn−r,r . In this case, we have

P(xk+1 − x∗) = M̂∗P(xk − x∗), (3.20)
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where

M̂∗ =
[

Ir − D̂∗
1 T̂ −D̂∗

1 Ŝ
0n−r,r D̂∗

2

]
, (3.21)

D̂∗
1 = diag

(
x∗i

(ATAx∗)i
, i ∈ I (x∗)

)
,

and

D̂∗
2 = diag

(
(ATb)i

(ATAx∗)i
, i ∈ A (x∗)

)
.

Note that the the sequesces of {xk} and {Pxk} have the same asymptotic rate of
convergence.

We can now state the major result of this paper.

THEOREM 3.2. Let A ∈ IRm,n
+ and b ∈ IRm

+ and suppose that the ISRA algorithm
(1.3) applied to solving problem (1.2) generates a sequence of approximations {xk}
which converges to a minimizer x∗ . If at x∗ , the strict complementarity holds and the
reduced Hessian matrix T̂ = GR(x∗) is positive definite, then the asymptotic rate of
convergence of {xk} is

ρ(M̂∗) = max
{
ρ(Ir − D̂∗

1GR(x∗)), ρ(D̂∗
2 )
}

(3.22)

and it satisfies

ρ(M̂∗)� max

{
1− min

i∈I (x∗)

{
x∗i

(ATAx∗)i

}
min

1�i�r
{λi(GR(x∗))}, max

i∈A (x∗)

{
(ATb)i

(ATAx∗)i

}}
<1.

(3.23)
In particular, the ISRA algorithm possesses a linear rate of convergence if ρ(M̂∗) �= 0 .

REMARK 3.3. If ρ(M̂∗) = 0 , then the rate of convergence of the ISRA algorithm
is better than a linear. The reason for this is that under the assumptions of Theorem 3.2,
ρ(M̂∗) = 0 if and only if ATA is a positive definite diagonal matrix and x∗i > 0 , for
all i : 1 � i � n . In this case,

M̂∗ = In − diag

(
x∗1

(ATAx∗)1
, . . . ,

x∗n
(ATAx∗)n

)
ATA = 0.

Since A is a nonnegativematrix, that ATA is a positive definite diagonal matrix implies
that A is up to a permutation a rectangular diagonal matrix. However, this situation
hardly occurs in real applications.

3.2. When Strict Complementarity Does Not Hold

In contrast to the assumption made in Theorem 3.2, suppose that the minimizing
point generated by the ISRA algorithm does not possess the strict complementarity
condition at x∗ . Then there is an index 1 � j1 � n such that

x∗j1 = 0 and μj1 = 0.
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The KKT condition corresponding to this index then satisfies that:

(ATAx∗)j1 − (ATb)j1 = 0.

Thus we have

lim
k→∞

(ATb)j1

(ATAxk)j1
= 1.

This and the error equation:

xk+1
j1 − x∗j1 = (xk

j1 − x∗j1)
(ATb)j1

(ATAxk)j1

imply that the rate of convergence of {xk} is sublinear.

REMARK 3.4. In [3, (5.2)] Archer and Titterington obtained the following rate
matrix using the notations of this paper:

M∗ = In − diag

(
x∗1

(ATb)1
, . . . ,

x∗n
(ATb)n

)
ATA. (3.24)

The rate matrix becomes

M∗ = In − diag

(
x∗1

(ATAx∗)1
, . . . ,

x∗n
(ATAx∗)n

)
ATA, (3.25)

if all the Lagrange multipliers μj corresponding to x∗ are zero. However, nonnegative
least squares problems often have nonzero Lagrange multipliers at x∗ , as we shall
exhibit in the next section. Thus, the rate matrix (3.24) does not generally give the
correct rate except in the following two cases:

Case 1: x∗j > 0 , for j = 1, 2, . . . , n . Note that this implies μj = 0 , for all
j = 1, . . . , n . We see that in this case our results in Theorem 3.2 confirm the Archer–
Terrington finding in (3.24) that the convergence rate is linear.

Case 2: There is some index 1 � j � n such that both x∗j = 0 and μj = 0 . In
this case, the rate matrix (3.24) gives the correct sublinear rate of convergence which
agrees with the rate obtained in Subsection 3.2.

It should be remarked that in many nonnegative least squares problems, such as in
Examples 1 and 2 in the next section, we have that x∗j = 0 and μj > 0 , for indices j ’s,
and the assumptions of Theorem 3.2 hold. In this case, the rate matrix (3.24) gives a
sublinear rate while the correct rate should be linear.

4. Numerical Results

A major complaint about the ISRA algorithm from practitioners is its slow conver-
gence (see for example [26, 29, 30]). In this section, we present some numerical results
to show how that the theoretical convergence results obtained in Section 3 explain to
some extent this slow convergence behavior.

Wemention that all of our numerical experimentswere done on randomly generated
nonnegative least squares problems, using MATLAB 7.5. As often the case in practice,
we used m � n in our computation.
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Our numerical results largely confirmed that the ISRA algorithm often converges
slowly. For instance, for randomly generated A = rand(m, n) and b = rand(m, 1) , it
is typical that the rate of convergence

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
� 0.99,

for 5n � m � n � 10 .
According to Subsection 3.2, one may wonder whether the slow convergence

behavior of the ISRA algorithm is due to that the strict complementarity does not hold
at the minimizer x∗ found by the algorithm, which results in a sublinear rate. Our
numerical results indicate that, in general, this is not the case. They also show that the
algorithm converges at a slow linear rate. To illustrate this we consider two examples
which are displayed in an appendix.

For the first example and starting vector displayed in the Appendix, the ISRA
algorithm generated the minimizer

x∗ = [0 0 0 0.2222 0 0.4381 0.0512 0 0.0690 0]T

for the nonnegative least squares problem (1.2) and the corresponding Lagrange multi-
pliers were

μ = [0.0705 0.1008 0.2622 0 0.2338 0 0 0.4596 0 0.0169]T.

Note that the strict complementarity holds. However, x∗10 = 0 and μ10 ≈ 0 . We
computed the rate of convergence, which is

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
≈ 0.9951.

Thus the rate is linear. However, it is quite slow as 0.9951 is close to 1 . We also
computed ρ(Ir − D̂∗

1GR(x∗)) and ρ(D̂∗
2) . They are 0.9829 and 0.9951 respectively.

Therefore, our theoretical rate is ρ(M̂∗) ≈ 0.9951 , which is the same as the computed
rate.

For the second example and starting vector displayed in the Appendix, the ISRA
algorithm generated the minimizer:

x∗ = [0.1447 1.5040 1.0536 0 0 0 0.8190 0 0 0.4455]T

for the nonnegative least squares problem (1.2) and the corresponding Lagrange multi-
pliers

μ = [0 0 0 0.5510 0.6194 1.9888 0 0.6589 0.7666 0]T .

Note that once again the strict complementarity condition holds. Upon the computation
of the rate of convergence one obtains that:

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
≈ 0.9923.

Thus for this example too ISRA has slow linear rate of 0.9923 which is close to
1 . We also computed ρ(Ir − D̂∗

1GR(x∗)) and ρ(D̂∗
2) . They are 0.9923 and 0.9776
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respectively. Therefore, our theoretical rate is ρ(M̂∗) ≈ 0.9923 which agrees with the
computed rate.

Examples 1 and 2 and more numerical experiments have led us to the following
observation: when the ISRA algorithm is used to solve randomly generated nonnegative
least squares problems, it typically converges at a slow linear rate with the asymptotic
rate ρ(M̂∗) being close to 1 .

We have also observed that, although both ρ(M̂∗) = ρ(D̂∗
2) > ρ(Ir − D̂∗

1GR(x∗))
(as in Example 1) and ρ(M̂∗) = ρ(Ir − D̂∗

1GR(x∗)) > ρ(D̂∗
2) (as in Example 2) can

occur, the later situation seems to appear more frequently.
A natural question is why the rate of convergence of the ISRA algorithm is slow.

From the rate (3.22) and the above observations, we expect that this is due to ρ(Ir −
D̂∗

1GR(x∗)) or ρ(D̂∗
2) being close to 1. In our next experiment, we computed

ρr,t = ρ
(

Ir − diag

(
x1

(ATAx)1
,

x2

(ATAx)2
, . . . ,

xr

(ATAx)r

)
ATA

)
. (4.1)

for randomly generated matrix A = rand(tr, r) and vector x = rand(r, 1) , where t � 1
is an integer.

Our numerical tests using various values of r and t indeed confirm that ρr,t can
be very close to 1. To illustrate this, we report two cases here.

Case 1. For fixed t = 2 and for each r : r = 1, 2, . . . , 30 , we computed twenty
ρr,2 values using twenty different matrices A and vectors x and then computed ρr,2 :
the average of these values. The values of ρr,2 for r = 2 : 30 are plotted in Figure 1
( ρ1,2 is not plotted here as ρ1,2 is always zero).

0 5 10 15 20 25 30
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 1. ρr,2 for r = 2, 3, . . . , 30
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Case 2. For fixed r = 10 and for each t = 2, 3, . . . , 200 , we computed twenty
ρ10,t values using twenty different matrices A and vectors x and then computed ρ10,t :
the average of these values. The values of ρ10,t for t = 2 : 200 are plotted in Figure 2.

0 20 40 60 80 100 120 140 160 180 200
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

Figure 2. ρ10,t for t = 2, 3, . . . , 200

From Figure 1, we see that ρ2,2 > 0.92 , ρ3,2 > 0.97 , ρ4,2 > 0.98 , and ρr,2 �
0.99 for r � 5 . From Figure 2, ρ10,t � 0.99 for t � 2 . These numerical results
indicate that for randomly generated nonnegative least squares problems, the ISRA
algorithm converges at a slow linear rate, because ρ(M̂∗) � ρ(Ir − D̂∗

1GR(x∗)) and
ρ(Ir−D̂∗

1GR(x∗)) is highly likely to be close to 1 . This numerical simulation also helps
explain why the ISRA algorithm has a slow rate of convergence when applied to the
nonnegative least squares problems arising in the real world applications, although these
problems may not always have the same structure as randomly generated problems.

5. Final Remarks

We have shown that under standard assumptions, the rate of convergence of the
ISRA algorithm is linear. We have also shown the rate can be sublinear if the strict
complementarity condition does not hold. Our numerical tests have confirmed the
folklore that the speed of the ISRA algorithm is slow. We comment that faster and more
robust methods for the nonnegative least squares problem now exist (see for example,
[4, 18]).

An interesting question is for what types of nonnegative least squares problems
the ISRA algorithm converges at a faster linear rate. An extreme case is when ATA
is a diagonal positive definite matrix. In this case, it finds a minimizer in one step.
In general, the algorithm may have a faster linear rate if GR(x∗) is more diagonally
dominant since this leads to a smaller ρ(Ir − D̂∗

1GR(x∗)) .
Another interesting question is how to extend our rate of convergence results for the

ISRA algorithm to the Lee–Seung [21] algorithm for nonnegative matrix factorization.
As the Lee–Seung algorithm updates W and H alternately, using exactly the ISRA
iteration formula in matrix form (1.7), we expect that this algorithm converges at a rate
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not faster than linear. We also expect that the Lee–Seung algorithm has a slow rate
of convergence based on our explanation in Section 4 about the rate of convergence of
ISRA algorithm. Several authors have observed that the Lee–Seung algorithm is often
very slow (see for example, [6, 8, 14, 19]). A rigorous analysis of global convergence
and rate of convergence of the Lee–Seung algorithm is desirable.

6. Appendix

EXAMPLE 1. In this example, A ∈ IR20,10 , b ∈ IR20 , and x0 ∈ IR10 are the
following:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1759 0.6476 0.5822 0.4046 0.3477 0.8217 0.5144 0.8507 0.7386 0.5523
0.7218 0.6790 0.5407 0.4484 0.1500 0.4299 0.8843 0.5606 0.5860 0.6299
0.4735 0.6358 0.8699 0.3658 0.5861 0.8878 0.5880 0.9296 0.2467 0.03200
0.1527 0.9452 0.2648 0.7635 0.2621 0.3912 0.1548 0.6967 0.6664 0.6147
0.3411 0.2089 0.3181 0.6279 0.04450 0.7691 0.1999 0.5828 0.08350 0.3624
0.6074 0.7093 0.1192 0.7720 0.7549 0.3968 0.4070 0.8154 0.6260 0.04950
0.1917 0.2362 0.9398 0.9329 0.2428 0.8085 0.7487 0.8790 0.6609 0.4896
0.7384 0.1194 0.6456 0.9727 0.4424 0.7551 0.8256 0.9889 0.7298 0.1925
0.2428 0.6073 0.4795 0.1920 0.6878 0.3774 0.7900 0.0005000 0.8908 0.1231
0.9174 0.4501 0.6393 0.1389 0.3592 0.2160 0.3185 0.8654 0.9823 0.2055
0.2691 0.4587 0.5447 0.6963 0.7363 0.7904 0.5341 0.6126 0.7690 0.1465
0.7655 0.6619 0.6473 0.09380 0.3947 0.9493 0.09000 0.9900 0.5814 0.1891
0.1887 0.7703 0.5439 0.5254 0.6834 0.3276 0.1117 0.5277 0.9283 0.04270
0.2875 0.3502 0.7210 0.5303 0.7040 0.6713 0.1363 0.4795 0.5801 0.6352
0.09110 0.6620 0.5225 0.8611 0.4423 0.4386 0.6787 0.8013 0.01700 0.2819
0.5762 0.4162 0.9937 0.4849 0.01960 0.8335 0.4952 0.2278 0.1209 0.5386
0.6834 0.8419 0.2187 0.3935 0.3309 0.7689 0.1897 0.4981 0.8627 0.6952
0.5466 0.8329 0.1058 0.6714 0.4243 0.1673 0.4950 0.9009 0.4843 0.4991
0.4257 0.2564 0.1097 0.7413 0.2703 0.8620 0.1476 0.5747 0.8449 0.5358
0.6444 0.6135 0.06360 0.5201 0.1971 0.9899 0.05500 0.8452 0.2094 0.4452

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.12393227759807
0.49035729346802
0.85299815534082
0.87392740586173
0.27029433229270
0.20846135875131
0.56497957073820
0.64031182516276
0.41702895164289
0.20597551553224
0.94793312129317
0.082071207097726
0.10570942658172
0.14204112190400
0.16646044087642
0.62095864393531
0.57370976484120
0.052077890285870
0.93120138460825
0.72866168167827

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.737841653797590
0.0634045006928180
0.860440563038232
0.934405118961213
0.984398312240972
0.858938816683866
0.785558989265031
0.513377418587575
0.177602460505865
0.398589496735843

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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EXAMPLE 2. In this example, A ∈ IR20,10 , b ∈ R20 , and x0 ∈ R10 are the
following:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7136 0.4923 0.7150 0.5864 0.9300 0.2859 0.02160 0.8295 0.3889 0.2753

0.6183 0.6947 0.8562 0.6751 0.3990 0.5437 0.5598 0.8491 0.4547 0.7167

0.3433 0.9727 0.2815 0.3610 0.04740 0.9848 0.3008 0.3725 0.2467 0.2834

0.9360 0.3278 0.7311 0.6203 0.3424 0.7157 0.9394 0.5932 0.7844 0.8962

0.1248 0.8378 0.1378 0.8112 0.7360 0.8390 0.9809 0.8726 0.8828 0.8266

0.7306 0.7391 0.8367 0.01930 0.7947 0.4333 0.2866 0.9335 0.9137 0.3900

0.6465 0.9542 0.1386 0.08390 0.5449 0.4706 0.8008 0.6685 0.5583 0.4979

0.8332 0.03190 0.5882 0.9748 0.6862 0.5607 0.8961 0.2068 0.5989 0.6948

0.3983 0.3569 0.3662 0.6513 0.8936 0.2691 0.5975 0.6539 0.1489 0.8344

0.7498 0.6627 0.8068 0.2312 0.05480 0.7490 0.8840 0.07210 0.8997 0.6096

0.8352 0.2815 0.5038 0.4035 0.3037 0.5039 0.9437 0.4067 0.4504 0.5747

0.3225 0.2304 0.4896 0.1220 0.04620 0.6468 0.5492 0.6669 0.2057 0.3260

0.5523 0.7111 0.8770 0.2684 0.1955 0.3077 0.7284 0.9337 0.8997 0.4564

0.9791 0.6246 0.3531 0.2578 0.7202 0.1387 0.5768 0.8110 0.7626 0.7138

0.5493 0.5906 0.4494 0.3317 0.7218 0.4756 0.02590 0.4845 0.8825 0.8844

0.3304 0.6604 0.9635 0.1522 0.8778 0.3625 0.4465 0.7567 0.2850 0.7209

0.6195 0.04760 0.04230 0.3480 0.5824 0.7881 0.6463 0.4170 0.6732 0.01860

0.3606 0.3488 0.9730 0.1217 0.07070 0.7803 0.5212 0.9718 0.6643 0.6748

0.7565 0.4513 0.1892 0.8842 0.9227 0.6685 0.3723 0.9880 0.1228 0.4385

0.4139 0.2409 0.6671 0.09430 0.8004 0.1335 0.9371 0.8641 0.4073 0.4378

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.585184097528289

4.07340844759291

1.62427719315255

1.23114057117321

1.71356610561640

1.87846070004794

2.73276896541479

2.80960077132988

1.97911114312001

1.99065439765668

2.57683609605786

3.28765271047956

4.75457599132480

3.61174257163749

2.00039872681169

4.15935669664905

0.671691708643541

0.302333859699142

0.421235261573298

0.819491591648541

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.32421992029405

0.30172677720465

0.011680991130340

0.53990509384963

0.095372692627822

0.14651485644223

0.63114120701496

0.85932041142879

0.97422163123871

0.57083842747218

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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