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Abstract. We will give some new techniques for working with problems surrounding the Bourgain-
Tzafriri Restricted Invertibility Theorem. First we show that the parameters which work in the
theorem for all ‖T‖ � 2

√
2 closely approximate the parameters which work for all operators.

This yields a generalization of the theorem which simultaneously does restricted invertibility on
a small partition of the vectors and yields a direct proof that the Bourgain-Tzafriri Conjecture
is equivalent to the Feichtinger Conjecture. We also fill in two gaps in the theory involving the
relationship between paving results for norm one operators with zero diagonal and restricted
invertibility results.

1. Introduction

In 1987 Bourgain and Tzafriri [3] proved one of the most significant theorems in
Banach space theory which is known as the Restricted Invertibility Theorem.

THEOREM 1.1. (Bourgain-Tzafriri Restricted Invertibility Theorem) There are
universal constants 0 � c,A < 1 so that whenever T : �n

2 → �n
2 is a linear operator

for which ‖Tei‖ = 1 for 1 � i � n, then there exists a subset σ ⊂ {1,2, · · · ,n} of
cardinality |σ | � cn

‖T‖2 so that

‖∑
j∈σ

a jTe j‖2 � A ∑
j∈σ

|a j|2,

for all choices of scalars {a j} j∈σ .

In the original paper [3], using random methods, it is shown that c = A = 1
1072

works in the theorem. Joel Tropp [private communication] has informed us that mod-
ern methods applied to the original proof of Bourgain and Tzafriri can reduce these
constants to c � 1/128 and A � 1/(8

√
2π) .

In this paper, we will examine the relationship between the parameters c,A in the
Restricted Invertibility Theorem and the norm of the operator ‖T‖ . In particular, we
will show that whenever c,A hold in the theorem for all ‖T‖ � 2

√
2, then c/8, A/2
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work in the theorem for all T . In the process, we will see that the Restricted Invertibility
Theorem can be extended to a partition theorem. That is, we will show that given any
operator T of the type in the theorem, we can partition the basis into a fixed finite
number of subsets {Aj}r

j=1 so that r = 1
‖T‖2 and for each of these subsets we can

choose a fixed percentage 0 < c of the vectors satisfying the required inequality. In
particular, one of these sets has size n

‖T‖2 and this one is the one given by the Restricted

Invertibility Theorem. We will then see that this gives a direct proof that the Bourgain
Tzafriri Conjecture and the Feichtinger Conjecture are equivalent (without having to go
through the theory of C∗ -algebras).

We will also address two gaps in the existing theory. First, we will show that re-
stricted invertibility can be designed to yield (1+ ε)-Riesz basic sequences. A special
case of this was done earlier by Vershynin [12]. Next, we will give a direct method for
passing paving results for norm one operators with zero diagonal to restricted invert-
ibility results.

2. Preliminaries

In this section we give the notation to be used throughout the paper. A family of
vectors { fi}i∈I in a (finite or infinite dimensional) Hilbert space H is a frame if there
are constants 0 < A � B < ∞ (called the lower, upper frame bounds respectively) so
that for every f ∈ H

A‖ f‖2 �∑
i∈I

|〈 f , fi〉|2 � B‖ f‖2.

If we only assume the upper inequality, we call { fi}i∈I a B-Bessel sequence. If A = B
this is an A-tight frame and if A = B = 1 it is a Parseval frame. If ‖ fi‖ = 1 for ev-
ery i ∈ I this is a unit norm frame. The analysis operator of the frame is T ( f ) =
{〈 f , fi〉}i∈I . Its adjoint is the synthesis operator T ∗ : �2(I) → H and is given by
T ∗({ai}i∈I) = ∑i∈I ai fi . Now S = T ∗T is the frame operator and is a positive, self-
adjoint, and invertible operator on H given by:

S f =∑
i∈I
〈 f , fi〉 fi.

It follows that for all f ∈ H ,

〈S f , f 〉 =∑
i∈I

|〈 f , fi〉|2

If T is an invertible operator we call { fi}i∈I a Riesz basis. In this case, for all f =
{ai}n

i=1 we have

A∑
i∈I

|ai|2 � ‖∑
i∈I

aiTei‖2 � B∑
i∈I

|ai|2.

The constants A,B are called the Riesz basis bounds of { fi}i∈I . We call this a (1+ ε)-
Riesz basic sequence if we have A = 1− ε, B = 1 + ε . If { fi}M

i=1 is a frame for a
finite dimensional space �n

2 with frame operator S , let S have eigenvectors {gi}n
i=1
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with respective eigenvalues ‖T‖2 = ‖S‖ = B = λ1 � λ2 � · · · � λn . It follows that for
every f = ∑n

i=1 aigi we have

S f =
n

∑
i=1

λiaigi and so 〈S f , f 〉 =
n

∑
i=1

λi|ai|2.

A direct calculation yields:
M

∑
i=1

‖ fi‖2 =
n

∑
j=1

λ j.

For a background on frame theory we refer the reader to [5, 10].
Now let {ei}n

i=1 be the unit vector basis of �n
2 and let T : �n

2 → �n
2 be any operator

on �n
2 . Let S : �n

2 → �n
2 be the corresponding frame operator. That is,

S f =
n

∑
i=1

〈 f ,Tei〉Tei.

For any f = ∑n
i=1 aiei ,

〈S f , f 〉 = |〈T ∗T f , f 〉
= |〈T f ,T f 〉|2
= ‖T f‖2

= ‖
n

∑
i=1

aiTei‖2.

If we let P�,k be the orthogonal projection of {g j}n
j=1 onto {g j}k

j=� then {P�,kTei}n
i=1

is a frame for its span with frame bounds λk,λ� .

NOTATION 2.1. If T : �n
2 → �n

2 is a linear operator and {ei}n
i=1 is the unit vector

basis of �n
2 , we denote by D(T ) the diagonal operator of the matrix of T with respect

to the unit vectors. Also, we say that T has zero diagonal if it’s matrix with respect to
the unit vector basis has all zero’s on the diagonal.

3. An Extension of the restricted invertibility theorem

In this section we will generalize the restricted invertibility theorem from a se-
lection theorem to a partition theorem. We will give some applications of this in later
sections. For the proof we first recall a result of Berman, Halpern, Kaftal and Weiss [2].

PROPOSITION 3.1. Let (ai j)n
i, j=1 be a self-adjoint matrix with non-negative en-

tries and zero diagonal. For every r ∈ N there is a partition {Aj}r
j=1 of {1,2, · · · ,n}

so that for every j = 1,2, · · · ,r and every i ∈ Aj

∑
m∈Aj

aim � ∑
m∈A�

aim, for every 1 � � 
= j � r . (3.1)
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We are now ready to generalize the Restricted Invertibility Theorem.

THEOREM 3.2. Suppose c,A satisfy Theorem 1.1 for all ‖T‖ � 2
√

2 . Then, for
every T : �n

2 → �n
2 with ‖Tei‖ = 1 for all i = 1,2, · · · ,n, there is a partition {Aj}r

j=1 of

{1,2, · · · ,n} with r = ‖T‖2 and for every j = 1,2, · · · ,r there is a subset B j ⊂ Aj with
|Bj| � c

8 |Aj| and {Tei}i∈Bj is a Riesz basic sequence with lower Riesz basis bound A
2 .

In particular, for at least one 1 � j � r we have that |Aj| � n
‖T‖2 and this set gives the

conclusion of the restricted invertibility theorem.

Proof. By Proposition 3.1, there is a partition {Aj}r
j=1 of {1,2, · · · ,n} with r =

‖T‖2 so that for every j = 1,2, · · · ,r and every i ∈ Aj we have

∑
i
=k∈Aj

|〈Tei,Tek〉|2 � ∑
m∈A�

|〈Tei,Tem〉|2, for all � 
= j .

It follows that for all i ∈ Aj we have

∑
i
=k∈Aj

|〈Tei,Tek〉|2 � 1
r

r

∑
�=1

∑
m∈A�

|〈Tei,Tem〉|2

=
1
r

n

∑
m=1

|〈Tei,Tem〉|2

� 1
r
‖T‖2‖Tei‖2

=
‖T‖2

r
� 1.

Now, for every j = 1,2, · · · ,r and for every i ∈ Aj we have

∑
k∈Aj

|〈Tei,Tek〉|2 = |〈Tei,Tei〉|2 + ∑
i
=k∈Aj

|〈Tei,Tek〉|2 � 1+1 = 2.

For every j = 1,2, · · · ,r let n j = |Aj| . Let S j be the frame operator for {Tei}i∈Aj

with eigenvectors {g j
m}n j

m=1 and respective eigenvalues λ j
1 � λ j

2 � · · · � λ j
n j . Choose

1 � � j � n j satisfying: λ j
� j

� 4 > λ j
� j+1 . Let Pj be the orthogonal projection of span

{g j
m}n j

m=1 onto span {g j
m}� j

m=1 . So, ‖(I−Pj)T‖2 � λ j
� j+1 < 4.

Claim: ‖(I−Pj)Tei‖2 � 1
2 for all i ∈ Aj .

To prove the Claim, we check first for all i ∈ Aj ,
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∑
k∈Aj

|〈PjTei,PjTek〉|2 =
� j

∑
m=1

λ j
m|〈Tei,g

j
m〉|2

�
n j

∑
m=1

λ j
m|〈Tei,g

j
m〉|2

= ∑
k∈Aj

|〈Tei,Tek〉|2 � 2.

Since λ j
� j

� 4 we have

2 � ∑
k∈Aj

|〈PjTei,PjTek〉|2

=
� j

∑
m=1

λ j
m|〈PjTei,g

j
m〉|2

� 4
� j

∑
m=1

|〈PjTei,g
j
m〉|2

= 4‖PjTei‖2.

Thus, for all i ∈ Aj we have ‖PjTei‖2 � 1
2 . This proves the claim since now ‖(I −

Pj)Tei‖2 � 1
2 .

For each j = 1,2, · · · ,r let

Tjei =
(I−Pj)Tei

‖(I−Pj)Tei‖ , for all i ∈ Aj .

So ‖Tjei‖ = 1 for all i ∈ Aj . Now, for any scalars {ai}i∈Aj we have

‖ ∑
i∈Aj

aiTjei‖ = ‖ ∑
i∈Aj

ai

‖(I−Pj)Tei‖ (I−Pj)Tei‖

� ‖(I−Pj)T‖‖ ∑
i∈Aj

ai

‖(I−Pj)Tei‖ei‖

� 2

(
∑
i∈Aj

|ai|2
‖(I−Pj)Tei‖2

)1/2

� 2√
1/2

(
∑
i∈Aj

|ai|2
)1/2

= 2
√

2

(
∑
i∈Aj

|ai|2
)1/2

.
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Hence, ‖Tj‖ � 2
√

2. By our assumption of the restricted invertibility theorem for
‖T‖� 2

√
2, for every j = 1,2, · · · ,r there is a subset Bj ⊂ Aj with |Bj|� c

8 |Aj| giving
for all scalars {ai}i∈Bj ,

‖ ∑
i∈Bj

aiTjei‖2 � A ∑
i∈Bj

|ai|2.

Now, for any {ai}i∈Bj we have

‖ ∑
i∈Bj

aiTei‖2 = ‖ ∑
i∈Bj

ai‖(I−Pj)Tjei‖Tjei‖2

� A‖ ∑
i∈Bj

|ai|2‖(I−P� j)Tjei‖2

� A
2 ∑i∈Bj

|ai|2.

This completes the proof of the theorem.
Theorem 3.2 yields a very large total number of the vectors {Tei}n

i=1 which are
divisible into sets of Riesz basic sequences.

COROLLARY 3.3. Let c,A be as in Theorem 3.2. For every n ∈ N and every
T : �n

2 → �n
2 with ‖Tei‖ = 1 for all i = 1,2, · · · ,n, there exist disjoint subsets {Bj}r

j=1

with r = ‖T‖2 satisfying:
1. | ∪r

j=1 Bj| � cn.
2. For every j = 1,2, · · · ,r and for every {ai}i∈Bj we have

‖ ∑
i∈Bj

aiTei‖2 � A
2 ∑i∈Bj

|ai|2.

By iterating the the Restricted Invertibility Theorem, one can obtain a number of
disjoint sets giving the conclusion of Corollary 3.3. But we believe that the number of
sets given in Corollary 3.3 is close to the minimal number.

We could significantly improve Theorem 3.2 and its applications by giving a pos-
itive solution to the following problem.

PROBLEM 3.4. Given an operator T : �n
2 → �n

2 with ‖Tei‖= 1 for all i = 1,2, · · · ,n,
does there exist a partition {Aj}r

j=1 of {1,2, · · · ,n} with r = ‖T‖2 so that letting Hj =
span {ei}i∈Aj for all j = 1,2, · · ·r yields

‖T |Hj‖ � 2
√

2?

Unfortunately, there is little or no chance that Problem 3.4 has a positive solu-
tion because a positive solution to this problem would imply a positive solution to the
famous, intractable 1959 Kadison-Singer Problem (See Section 5) - and most people
today believe that the Kadison-Singer Problem has a negative answer.
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4. Filling Two Gaps in the Literature

In this section we will fill in two gaps in the restricted invertibility theory. These
involve the relationship between the parameters in the restricted invertibility theorem
and the parameters in the following theorem of Bourgain-Tazfriri [3, 4]. For notation
in the theorem, for σ ⊂ {1,2, · · · ,n} and {ei}n

i=1 the unit vector basis of �n
2 , we denote

by Qσ the projection

Qσ

(
n

∑
i=1

aiei

)
= ∑

i∈σ
aiei.

THEOREM 4.1. There is a 0 < c < 1 and an ε > 0 so that for all natural numbers
n, all norm one zero diagonal linear operators T : �n

2 → �n
2 there exists a subset σ ⊂

{1,2, · · · ,n} with |σ | � cn and ‖QσTQσ‖ � 1− ε .

The reason we want to have a direct connection between Theorems 1.1 and 4.1 is
that we have no idea what the exact constants are in these two theorems at this time. It
is possible that c = 1− ε = 1/2 works in Theorem 4.1. It is easy to see that c � 1/2
by considering the matrix:

T =
(

0 1
1 0

)
However, it is not known if this upper bound for c is necessary for Theorem 1.1.

The point is, we would like to be able to derive the constants for one of these theorems
and then use these bounds to compute the constants for the other theorem.

First, we need to recall another result of Bourgain and Tzafriri, Theorem 1.1 [3].

THEOREM 4.2. There exists a constant c > 0 so that for all 0 < δ < 1 , all n >
c−1 and all T : �n

2 → �n
2 with zero diagonal, and given any non-negativeweights {λi}n

i=1
with ∑n

i=1λi = 1 , there exists a σ ⊂ {1,2, · · · ,n} for which

n

∑
i=1

λi � cδ

and with ‖QσTQσ‖ �
√
δ‖T‖.

The following trivial corollary of Theorem 4.2 seems to have been overlooked in
the literature. We believe, however, this result was certainly known to Bourgain and
Tzafriri and it was just an oversight that they did not state it in their paper.

COROLLARY 4.3. There exists a 0 < c < 1 so that given ε > 0 and T : �n
2 → �n

2
is a zero diagonal linear operator, then there exists a subset σ ⊂ {1,2, · · · ,n} with
|σ | � cε2n/‖T‖2 and ‖QσTQσ‖ � ε.

Proof. In Theorem 4.2, let λi = 1/n for all i = 1,2, · · · ,n and let δ = ε2/‖T‖2 .
There there is a subset σ ⊂ {1,2, · · · ,n} with

|σ |
n

= ∑
i∈σ

λi � cδ =
cε2

‖T‖2 ,
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and
‖QσTQσ‖ �

√
δ‖T‖ = ε.

Corollary 4.3 yields a standard method for moving paving results to restricted
invertibility results. The following corollary was proved in weaker form by Vershynin
[12] and later in stronger form by Vershynin [13]. For the sake of illustration, we give
Vershynin’s original proof.

PROPOSITION 4.4. There exists a 0 < c < 1 so that for every ε > 0 and every
linear operator T : �n

2 → �n
2 with ‖Tei‖ = 1 for all i = 1,2, · · · ,n, there exists a subset

σ ⊂ {1,2 · · · ,n} satisfying

|σ | � cε2n
‖T‖2

and {Tei}i∈σ is a (1+ ε)-Riesz basic sequence.

Proof. Given T as in the proposition, let L = T ∗T −D(T ∗T ) . Then L has zero di-
agonal and by Corollary 4.3 there is a subset σ ⊂{1,2, · · · ,n} so that |σ |� cε2n/‖T‖2

with ‖QσTQσ‖ < ε . Now, for all families of scalars {ai}i∈σ we have

|‖∑
i∈σ

aiTei‖2−∑
i∈σ

|ai|2| = |〈∑
i∈σ

aiTei,∑
i∈σ

aiTei〉−∑
i∈σ

|ai|2|

= ||〈Qσ (T ∗T − I)Qσ ∑
i∈σ

aiei,∑
i∈σ

aiei〉|

� ‖QσLQσ‖‖∑
i∈σ

aiei‖2

� ε‖∑
i∈σ

aiei‖2.

Now we will look at another gap in the literature of the restricted invertibility
theory. As we have just seen, there is a connection between paving (See Section 5)
and restricted invertibility. But at this point, we have no direct connection between
the restricted invertibility constants and the constants for paving. The following result
gives a fairly efficient method for moving the constants from one of these theorems to
the other.

PROPOSITION 4.5. Assume 0 < c < 1 satisfies: For all zero diagonal linear op-
erators T : �n

2 → �n
2 with ‖T‖ = 1 , there is a subset σ ⊂ {1,2, · · · ,n} with |σ | � cn

and

‖QσTQσ‖ � 1− ε
28

.

Then, for every T : �n
2 → �n

2 with ‖T‖ �
√

2 and ‖Tei‖ = 1 for all i = 1,2, · · · ,n,
there exists a partition {Aj}r

j=1 of {1,2, · · · ,n} with r = ‖T‖2 and for every j =
1,2, · · · ,r there is a subset B j ⊂ Aj with |Bj| � c|Aj| and for all families of scalars
{ai}i∈Bj

‖ ∑
i∈Aj

aiTei‖2 � ε
4 ∑i∈σ

|ai|2.
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It follows that there is a 1 � j � r with

|Bj| � c|Aj| � cn
‖T‖2 ,

which is the set called for in the Restricted Invertibility Theory.

Proof. We follow the proof of Theorem 3.2 to find:
(1) A partition {Aj}r

j=1 of {1,2, · · · ,n} so that if S j is the frame operator for

{Tei}i∈Aj , it has eigenvectors {g j
m}n j

m=1 with n j = |Aj| and respective eigenvalues λ j
1 �

λ j
2 � · · · � λ j

n j .
(2) We choose 1 � � j � n j with

λ j
� j

� 4 > λ j
� j+1

and we let Pj be the orthogonal projection of span {g j
m}n j

m=1 onto span {g j
m}� j

m=1 .
(3) We have ‖(I−Pj)Tei‖2 � 1/2 for all i ∈ Aj .
(4) If we let

Tjei =
(I−Pj)Tei

‖(I−Pj)Tei‖ , for all i ∈ Aj ,

then ‖Tj‖ � 2
√

2 so ‖T ∗
j Tj‖ � 8 and D(T ∗

j Tj) = IA j . Now, a standard calculation
yields

‖T ∗
j Tj −D(T ∗

j Tj)‖ � 7.

Let

Lj =
T ∗

j Tj −D(T ∗
j Tj)

‖T ∗
j Tj −D(T ∗

j Tj)‖ .

By our assumption, there exist subsets Bj ⊂ Aj with |Bj| � c|Aj| and

‖QBjL jQBj‖ � 1− ε
28

.

That is,

‖QBj(T
∗
j Tj −D(T ∗

j Tj)QBj‖ � 1− ε
28

‖T ∗
j Tj −D(T ∗

j Tj)‖ � 1− ε
4

.

Now, for all families of scalars {ai}i∈Bj we have

‖ ∑
i∈Bj

aiTei‖2 � ‖ ∑
i∈Bj

ai(I−Pj)Tei‖2

= 〈∑
i∈Bj

ai(I−Pj)Tei, ∑
i∈Bj

ai(I−Pj)Tei〉
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= 〈∑
i∈Bj

‖(I−Pj)Tei‖ai
(I−Pj)Tei

‖(I−Pj)Tei‖ , ∑
i∈Bj

‖(I−Pj)Tei‖ai
(I−Pj)Tei

‖(I−Pj)Tei‖〉

= 〈∑
i∈Bj

‖(I−Pj)Tei‖aiTjei, ∑
i∈Bj

‖(I−Pj)Tei‖aiTjei〉

= T ∗
j Tj ∑

i∈Bj

‖(I−Pj)Tei‖aiei, ∑
i∈Bj

‖(I−Pj)Tei‖aiei〉

= 〈D(T ∗
j Tj) ∑

i∈Bj

‖(I−Pj)Tei‖aiei, ∑
i∈Bj

‖(I−Pj)Tei‖aiei〉−

〈(T ∗
j Tj −D(T ∗

j Tj)) ∑
i∈Bj

‖(I−Pj)Tei‖aiei, ∑
i∈Bj

‖(I−Pj)Tei‖aiei〉

� ∑
i∈Bj

‖(I−Pj)Tei‖2|ai|2−

‖QBj(T
∗
j Tj −D(T ∗

j Tj))QBj‖〈∑
i∈Bj

‖(I−Pj)Tei‖aiei, ∑
i∈Bj

‖(I−Pj)Tei‖aiei〉

� 1
4 ∑i∈Bj

|ai|2 − 1− ε
4 ∑

i∈Bj

‖(I−Pj)Tei‖2|ai|2

� 1
4 ∑i∈Bj

|ai|2 − 1− ε
4 ∑

i∈Bj

|ai|2

=
ε
4 ∑i∈Bj

|ai|2.

5. The Bourgain-Tzafriri Conjecture

The restricted invertibility theorem gave rise to what we call today the Bourgain-
Tzafriri Conjecture.

THEOREM 5.1. There is a universal constant A > 0 so that for every B > 1 there
is a natural number r = r(B) satisfying: For any natural number n, if T : �n

2 → �n
2

is a linear operator with ‖T‖ � B and ‖Tei‖ = 1 for all i = 1,2, · · · ,n, then there is
a partition {Aj}r

j=1 of {1,2, · · · ,n} so that for all j = 1,2, · · · ,r and all choices of
scalars {ai}i∈Aj we have:

‖ ∑
i∈Aj

aiTei‖2 � A ∑
i∈Aj

|ai|2.

If we allow the constant A to depend upon the norm of the operator T above
we call this the weak Bourgain-Tzafriri Conjecture. For years everyone believed that
the Bourgain-Tzafriri Conjecture was equivalent to the famous 1959 Kadison-Singer
Problem [11] but no one was quite able to give a formal proof of the equivalence. Now
we have formal proofs that these two are in fact equivalent [8, 9].

PROBLEM 5.2. (Kadison-Singer Problem) Does every pure state on the (abelian)
von Neumann algebra D of bounded diagonal operators on �2 have a unique extension
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to a (pure) state on B(�2) , the von Neumann algebra of all bounded linear operators
on the Hilbert space �2 ?

A state of a von Neumann algebra R is a linear functional f on R for which
f (I) = 1 and f (T ) � 0 whenever T � 0 (whenever T is a positive operator). The
set of states of R is a convex subset of the dual space of R which is compact in the
ω∗ -topology. By the Krein-Milman theorem, this convex set is the closed convex hull
of its extreme points. The extremal elements in the space of states are called the pure
states (of R ).

Most people today believe that the Kadison-Singer Problem has a negative answer.
Indeed, even Kadison and Singer believd their problem had a negative answer when
they posed it [11].

It was shown in 1979 by Anderson [1] that the Kadison-Singer Problem is equiv-
alent to what is now known as Anderson’s Paving Conjecture:

THEOREM 5.3. (Anderson’s Paving Conjecture) For ε > 0 , there is a natural num-
ber r so that for every natural number n and every linear operator T on ln2 whose
matrix has zero diagonal, we can find a partition (i.e. a paving) {Aj}r

j=1 of {1, · · · ,n} ,
such that

‖QAjTQAj‖ � ε‖T‖ for all j = 1,2, · · · ,r .

Another related conjecture is the Feichtinger Conjecture in Hilbert space frame
theory (See [6, 7, 8]).

THEOREM 5.4. (The Feichtinger Conjecture) Is every unit norm frame a finite
union of Riesz basic sequences?

It has been known for awhile [6] that the Feichtinger Conjecture is equivalent to
the weak Bourgain-Tzafriri Conjecture. Recently [8] it was shown that weak BT is
equivalent to the Kadison-Singer Problem. But this proof takes weak BT back into
the theory of C∗ -algebras and verifies KS directly. However, Theorem 3.2, shows that
verifying the BT Conjecture for any operator is equivalent to verifying it for operators
T with ‖T‖ � 2

√
2. i.e. This is a direct proof that the weak BT Conjecture, and hence

the Feichtinger Conjecture, is equivalent to the Bourgain-Tzafriri Conjecture.
Next we will see that Problem 3.4 is stronger than the Kadison-Singer Problem.

First, we state a weaker problem.

PROBLEM 5.5. There exist a constant 4 < K so that for every n ∈ N , every
T : �n

2 → �n
2 with ‖Tei‖ = 1 for all i = 1,2, · · · ,n, there is a partition {Aj}r

j=1 of
{1,2, · · · ,n} with r = r(‖T‖) so that if we let Hj = span {Tei}i∈Aj then for every
j = 1,2, · · · ,r we have

‖T |Hj‖ � K.

It is clear that a positive solution to Problem 3.4 implies a positive solution to
Problem 5.5. Now we will show that Problem 5.5 is equivalent to the Kadison-Singer
Problem. For this we need a result of Weaver [14] which gives another equivalent form
of KS called KS′r .
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CONJECTURE 5.6. (KSr
′ ) There exists universal constants B � 4 and ε >

√
B so

that the following holds. Let { fi}M
i=1 be elements of �n

2 with ‖ fi‖= 1 for i = 1,2, · · · ,M
and suppose for every f ∈ �n

2 ,

M

∑
i=1

|〈 f , fi〉|2 = B‖ f‖2. (5.1)

Then, there is a partition {Aj}r
j=1 of {1,2, · · · ,n} so that for all f ∈ �n

2 and all j =
1,2, · · · ,r ,

∑
i∈Aj

|〈 f , fi〉|2 � (B− ε)‖ f‖2.

THEOREM 5.7. The following are equivalent:

1. Problem 5.5.

3. The Kadison-Singer Problem.

Proof. (1)⇒ (2) : We will check that Conjecture 5.6 holds. So let B = K2 , r = B
and for n ∈ N choose { fi}M

i=1 norm one vectors in �n
2 satisfying

M

∑
i=1

|〈 f , fi〉|2 � B‖ f‖2, for all f ∈ �n
2 .

Define T : �M
2 → �n

2 by Tei = fi for all i = 1,2, · · · ,M . Without loss of generality we
may assume that the range of T is in �M

2 (by applying a unitary operator if necessary).
Now, for all f ∈ �M

2 ,

‖T ∗ f‖2 =
M

∑
i=1

|〈 f , fi〉|2 � B‖ f‖2.

By our assumption in (1), there is a partition {Aj}r
j=1 of {1,2, · · · ,M} so that if Hj =

span {ei}i∈Aj then for all j = 1,2, · · · ,r

‖T |Hj‖ � K < K2−K = B−
√

B.

That is,

‖(T |Hj

)∗
f‖2 = ∑

i∈Aj

|〈 f , fi〉|2 < (B−
√

B)‖ f‖2.

Thus, Conjecture 5.6 holds and so KS holds.
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(2) ⇒ (1) : Let T : �n
2 → �n

2 be an operator with ‖Tei‖ = 1 for all i = 1,2, · · ·n .
Let L = T ∗T −D(T ∗T ) where D(T ∗T ) is the diagonal of the operator T ∗T . Choose
0 < ε so that 1+ ε‖L‖ � 8. By the Paving Conjecture, there is a partition {Aj}r

j=1 of
{1,2, · · · ,n} with r = f (‖L‖) so that for every j = 1,2, · · · ,r we have

‖QAjLQAj‖ � ε‖L‖.

Hence,

‖QAjT
∗TQAj‖ � 1+ ε‖L‖.

Let Hj = span {ei}i∈Aj for all j = 1,2, · · · ,r and let Tj = T |Hj . For every f ∈ �n
2 we

have

‖Tj f‖2 = ‖TQAj f‖2

= 〈TQAj f ,TQAj f 〉
= 〈QAjT

∗TQAj f , f 〉
� ‖QAjT

∗TQAj‖‖ f‖2

� (1+ ε‖L‖)‖ f‖2

� 8‖ f‖2.

It follows that ‖Tj‖ � 2
√

2 and so Problem 5.5 has a positive solution.
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