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BLOCK COMPANION MATRICES, DISCRETE-TIME BLOCK
DIAGONAL STABILITY AND POLYNOMIAL MATRICES

HARALD K. WIMMER

(communicated by F. Hansen)

Abstract. A polynomial matrix G(z) = IZ" — ZI'.”:’OI Ciz' with complex coefficients is called
discrete-time stable if its characteristic values (i.e. the zeros of detG(z)) are in the unit disc.
A corresponding block companion matrix C is used to study discrete-time stability of G(z).
The main tool is the construction of block diagonal solutions P of a discrete-time Lyapunov
inequality P —C*PC > 0.

1. Introduction

A complex n x n matrix C is called (discrete-time) diagonally stable if there exists
a positive definite diagonal matrix P such that the corresponding Lyapunov operator
L(P) = P—C*PC is positive definite. There is a wide range of problems in systems
theory which involve diagonal stability. We refer to the monograph [7] of Kaszkurewicz
and Bhaya. For companion matrices the following result is known [8], [9].

THEOREM 1.1. Let

1 000
C— (1)

.1 00

0 ...010

be a companion matrix associated with the complex polynomial
g(2) =" — (cn 1" '+ F 1z o).
The matrix C is diagonally stable if and only if
-1
> leil < 1. (1.2)
In this paper we deal with a complex n x n polynomial matrix

G(z) = 12" — (Cuor " '+ + Crz+Go) (1.3)
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and an associated block companion matrix

Chno1 ... C1 Gy

I ...0 00
C— . (1.4)

. ...1. 00

0 ...0 10
The matrix C is said to be block diagonally stable if there exists a block diagonal matrix
P = diag(P,,—1,...,P), partitioned accordingly, such that P > 0 and L(P) =P —
C*PC > 0. How can one extend Theorem 1.1 to the block matrix C in (1.4)? Condition
(1.2) involves absolute values of the coefficients ¢; of g(z). There are different ways
to generalize the concept of absolute value from complex numbers to matrices. If the
matrices C; are normal, that is C;C; = C/C;, i =0,...,m— 1, then one can use the
positive semidefinite part of C; defined by |C;| = (C;C;)"/?. If the matrices C; are
arbitrary then one can choose the spectral norm ||C;||. In both cases one can obtain a

generalization of the sufficiency part of Theorem 1.1. The following theorem will be
proved in Section 3. It is a special case of a general result on block diagonal stability.

THEOREM 1.2. (i) Suppose the coefficients C; of (1.4) are normal. Then the block
companion matrix C is block diagonally stable if

—1
S=Y"1G <1, (1.5)
ie. wSw<w*w forall weC", w#0.
@ If |
Yoo lal <1 (1.6)
then C is diagonally stable.

The following notation will be used. If Q,R € C"™" are hermitian then we write
Q > 0 if Q is positive definite, and Q > 0 if Q is positive semidefinite. The inequality
Q>R means Q—R>0.If Q>0 then Q0'/2 shall denote the positive semidefinite
square root of Q. If A € C"™" then o(A) is the spectrum, p(A) the spectral radius
and ||A||=p ((A*A)l/ 2) is the spectral norm of A. The Moore-Penrose inverse of A
will be denoted by A*. Given the polynomial matrix G(z) in (1.3) we define o(G) =
{A € C;detG(A) =0} and p(G) = max{|A|;A € 6(G)}. In accordance with [2,
p.341] the elements of o(G) are called the characteristic values of G(z). If v € C",
v#0,and G(A)v =0, then v is said to be an eigenvector of G(z) corresponding to
the characteristic value 4. Let E; = {4 € C; A¥ = 1} be the set of k-th roots of unity.
The symbol I represents the open unit disc. Thus JID is the unit circle and D is the
closed unit disc. Limits of a sum will always extend from O to m — 1. Hence, in many
instances, they will be omitted.

The content of the paper is as follows. Section 2 with its auxiliary results prepares
the ground for Section 3 and the study of block diagonal solutions of discrete-time
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Lyapunov inequalities. In Section 4 special attention is given to eigenvalues of C on
the unit circle. Since C and G(z) have the same spectrum and the same elementary
divisors it will be convenient to consider the polynomial matrix G(z) instead of its block
companion C. One of the results, which will be proved in Section 4 is the following.

THEOREM 1.3. Let G(z) in (1.3) be a polynomial matrix with normal coefficients
Ci. If Y|Gi| < I then p(G) < 1. Moreover, if A € 6(G) and |A| =1 then the

corresponding elementary divisors have degree 1.

The topics of Section 4 include stability of systems of linear difference equations
and also polynomial matrices with hermitian coefficients and roots of unity as charac-
teristic values on the unit circle.

2. Auxiliary results

Throughout this paper C and G(z) will be the block companion matrix (1.4) and
the polynomial matrix (1.3), respectively.

LEMMA 2.1. Let
P:diag(mel,Pm,Q,...,Po) (21)

be a hermitian block diagonal matrix partitioned in accordance with (1.4). Set P_1 =0

and define
R= (Cm,17 cee 7C()) and D = diag(Pm,l 7Pm,2, cee ,Po 7P,1). (22)

(i) We have
L(P)=P-C'PC=D—R"P,_|R. 2.3)

(ii) Suppose L(P) > 0. Then P >0 holds if and only if
Pno1rZ2Pu2z- 2R 207 (24)

or equivalently, if and only if P,_1 > 0.
@@ii) If P> 0 and L(P) > 0 then there are positive semidefinite matrices W;,
i=0,...,m—1, such that

P 1 =Wy 1+...+W+Wpy, ..., PL=W +Wy, Ph=Wy, (2.5)

and
D = diag(Wy,—1,...,Wp). (2.6)

Proof. (i) Define

N=1|... and T =

.10 0 ...0
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Then C=N+T and N*PT =0. Therefore C*PC =T*PT +N*PN. Then N*PN =
diag(Py—2, ...,P,0) and T*PT =R*P,_|R imply (2.3).
(i) The inequality L(P) > 0 is equivalent to

R*melR < D= diag(Pm,l 7Pm,2, e ,Pl 7P0,P0). (27)

Clearly, (2.4) implies P > 0, and in particular P,,—; > 0. Now suppose L(P) >0 and
Pyn—1 > 0. Then (2.7) yields

Poz20,P—P20,....,Pp1—Pp2 20,

that is (2.4). The assertion (ii7) is an immediate consequence of (ii). O

Inequalities of the form (2.7) will be important. If r € C is nonzero and ¢g,d € R
are positive then it is obvious that 7gr < d is equivalent to 1/g > r(1/d)7. A more
general result for matrices involves Moore-Penrose inverses. We refer to [3] or [4] for
basic facts on generalized inverses.

LEMMA 2.2. Let Q and D be positive semidefinite matrices and let R be of ap-
propriate size.
(@) If Q>0 and D >0 then R*QR < D is equivalentto Q~' > RD™'R*. The
strict inequality R*QR < D is equivalentto Q' > RD™'R*.
(i) If
Qﬁ > RD'R* (2.8)

and
KerD C KerQR 2.9)

then R*QR < D.
(iii) If R“"OR < D and ImRD C ImQ, then Q° > RD'R*.

Proof. (i) We have R*QR < D if and only if
(Ql/zRD’l/z)*(Q1/2RD’1/2) <1,
which is equivalent to
(Q1/2RD’1/2)(Ql/zRD’l/z)* — 0'2RD 'R Q2 < I,
and consequently to RD™'R* < Q~!. Similarly, R*QR < D isequivalentto RD~'R* <

o'

(i) Having applied suitable unitary transformations we can assume

_ (D10 _ (010 _ (R Ry
D_(O 0)7D1>07Q_(0 0)7Q1>07 _<R21 RZ)’

where R is partitioned correspondingly. Then

¢ (D7'O ¢ (07'0
D—<6 0> and Q—<6 0).
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Hence Qﬁ > RD'R*, i.e.

0/'o Ri\ o1 e por
(6 O)><R21)Dl (Rl RZI)’

is equivalent to Qfl > RlDflR’[ together with Rp; = 0. Because of

_ 0 _ 010\, Ri Ry
KerD—Im<I> and KerQR—Ker(0 O)R—Ker(0 0)

we have KerD C Ker QR if and only if Ry, =0. Hence, if (2.8) holds then we conclude
from (i) that D; > R1QR]. If in addition to (2.8) also (2.9) is satisfied then we obtain

D0 S Ry O 010\ (R] O
00/7\0R 00 0 R’
thatis D > ROR*.

(iii) Because of Q = (Qﬁ)ﬁ and D = (Dﬁ)ﬁ on can recur to (if). Note that
KerQ? C KerD*R* can be written as

R(KerD¥)" C (KerQ?)™. (2.10)

We have KerQ? = KerQ. Hence (2.10) is equivalent to RImD C ImQ. |
The following lemma will be used to construct block diagonal solutions of the
inequality L(P) > 0.
LEMMA 2.3. Let F and W be in C"". Suppose W >0 and
KerW C KerF and FW'F* < W. (2.11)
(i) Then
V'Fv| < V'Wv  forall veC". (2.12)
(i) If W < X then KerX C KerW and FX'F* < FWF*.
(iii) In particular, if € >0 then W+¢€l >0 and

F(WHel)"'F* < W +el. (2.13)

Proof. (i) Suppose rankW =r, r > 0. Let U be unitary such that U*WU =
diag(W;,0), Wi > 0. Then it is easy to see that (2.11) is equivalent to U*FU =
diag(F;,0) together with FlelFl* < Wi. Moreover (2.12) is valid if and only if
[ViFivi| < viWiv; forall v; € C". Thusitsuffices to show that W >0 and FWlF* <
W imply (2.12). Set M =W'/?2 and F =M 'FM~'. Then we have FF* <I, or
equivalently F*F < I, and therefore

VEv| = |(Mv)*FMy| < |Mv||F (Mv)] < |Mv]* = v'W.
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(if) We can assume W = diag(W;,0), W > 0, such that F = diag(F;,0) and
FiW,'F; <W;. Then W <X, thatis

(é) W (10) <X,

is an inequality of the form R*QR < D. We have (10)X CImW; = C". Hence Lemma

2.2(iii) yields
(10)x* (é) <wih
Therefore
FX'F* = (é) Fi (10)x* (é) Ff(10) < (é) FW'F (10) = FWF*.
(iii) The inequality (2.13) follows immediately from (i7). O

We single out two special cases where (2.11) is satisfied.

LEMMA 2.4. (i) Let F be normal. Then W = |F| satisfies
KerW =KerF and FW'F*=W. (2.14)

(ii) If W = ||F||I then (2.11) is valid.

Proof. (i) If F is normal then F =U|F|=|F|U for some unitary U . Hence
F|FFF* =U|F||FFIF|U* =U|F|U" = |F],

and the matrix W = |F| satisfies (2.14).
@) If F =0 then W =0, and (2.11) is trivially satisfied. If F # 0 then (2.11)
follows from FF* < ||F|*1. O

3. Block diagonal solutions

How can one choose n x n matrices W; in (2.5) such that P > 0 and L(P) >0
is satisfied? The conditions in the following theorem will be rather general.

THEOREM 3.1. Let W;, i=0,...,m—1, be positive semidefinite and let the block
diagonal entries of P = diag(Py,—1,Pn—2,...,P) be given by (2.5). Then P > 0.
(i) Suppose
m—1
W<, (3.1)
and
KerW; C KerC; and CW!'C; < W, (3.2)

i=0,....,m—1. Then L(P)>0.
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(ii) Suppose KerW; C KerC; and
CWiC: =W, (3.3)

i=0,...,m—1. Then L(P) >0 is equivalent to (3.1).
(iii) Suppose

Wi > 0, GW,'Cf < Wi, i=0,....m— 1, and 3" ' Wi < I. (3.4)

Then P >0 and L(P)> 0.

Proof. Let R=(Cy—1,...,Co) and
D =diag(B,—1 — Py—2,,...,Py) = diag(W,—1, ..., Wp)
be the matrices in (2.2) and (2.6). Then
RD'R* =Y CGW!C;. (3.5)

Set Q =P, =X W;. We know from (2.7) that L(P) >0 is equivalentto R*QR < D.
Because of 0 < Q the condition (3.1),1.e. Q <1, isequivalentto Q < Qﬁ.

(i) Let us show that the assumptions (3.1) and (3.2) imply RD!R* < Q' and
KerD C KerQR. From (3.5) and (3.3) we obtain RD'R* < W, = Q. Thus (3.1),
ie. O <1,yields RD*R* < Qﬁ. The inclusions KerW; C KerC; imply KerD C KerR.
Hence we can apply Lemma 2.2 (ii) and conclude that R*QR < D is satisfied.

(i) We only have to prove that L(P) > 0 implies (3.1). From (3.3) follows
RD'R* = Q. Because of ImD? =ImD we obtain

ImQ = ImRD*R* = ImRD" = ImRD.

Thus the conditions R*QR < D and ImRD C ImQ of Lemma 2.2(iii) are fulfilled.
Hence we have RD!R* < Qﬁ. Therefore Q < Qﬁ, thatis Q <I.

(iii) The assumptions (3.4) imply D >0 and RD~'R* < Q and 0 < Q < 1. There-
fore Q < Q~!, and we obtain RD™!R* < 07!, which is equivalentto R*QR < D, i.e.
to L(P) > 0. O

Taking Lemma 2.4 into account we obtain the following results.
COROLLARY 3.2. (i) Let the matrices C; be normal, and set W; = |Ci|, i=
0,...,m—1, and let P be the corresponding block diagonal matrix. Then we have
P>0 and L(P) >0 ifandonlyif ¥ |Ci| <1I.

(ii) Suppose Y ||Ci|| < 1. If Wi=||Gi||I, i=0,...,m—1, then P>0 and L(P) >

0.

Suppose the inequality (3.1) is strict and the matrices W; satisfy (3.2). According
to Lemma 2.3(iii) one can choose & > 0 small enough such that the modified matrices
W, + &l retain the property (3.2). Using Theorem 3.1(iii) we immediately obtain the
following result.
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THEOREM 3.3. Let W;, i =0,....,m — 1, be matrices with property (3.2) and
suppose

IW < (1-e) e>0.
Let €>0,i=0,...,m—1, such that Y & < €. Put
Wi=Wi+&l and B=Wi+...+Wy,i=0,....m—1,
and P =diag(B,_1,...,P). Then P>0 and L(P) > 0.

Proof of Theorem 1.2. We combine Theorem 3.3 and Corollary 3.2. If (1.5) holds
then we have

—1
2:‘”:0 ‘Cl| < (178)1
for some € > 0. We choose & >0, i=0,...,m—1, such that Y& < €, and set
P=(G|+...+|Co|)+ (&i+...+ &), i=0,...,m—1. Then
P =diag(Py-1,...,P0) >0 and L(P)>0. (3.6)

Suppose now that (1.6) holds. In this case one can choose & > 0 in such a way that the
diagonal matrices

P=(|Cll+¢&+...+||Col|+ &), i=0,....m—1, 3.7

yield a matrix P satisfying (3.6). ]

The matrices P; in (3.7) are positive scalar matrices, i.e. P; = p;l, p; > 0. The fol-
lowing theorem gives a necessary condition for the existence of such diagonal solutions
of L(P) > 0.

THEOREM 3.4. [f there exists a matrix P =diag(pm—11,...,pol) suchthat P >
0 and L(P) > 0 then

1 «
> GeHr <.
Proof. Set W; =P, —P,_; and w; = p; — p;—1 such that W; = w;I. Then (2.4)
implies w; > 0. Let R= (Cy—1,...,Co), Q=>W;,and D = diag(W,,—1,...,Wp), be
defined as in Lemma 2.1. Then P >0 and L(P) >0 imply 0 < Q and 0 < R*QOR <

D. Hence, if W; =0 then C; = 0. Therefore we may discard corresponding zero
blocks in D and R and assume D > 0. Then RD™'R* < 07!, that is

ZCI-CTW% < (Zwi)ill. (3.8)

Since (3.8) is equivalent to

Y wi Y y'GC; W) <Y if y#0,



BLOCK DIAGONAL STABILITY 119

we obtain
1
VWi

Set H = Y(CiC})"/?. The target is the proof of H < I. The Cauchy-Schwarz inequality
yields

(S Wml) Bl P —=yf <P forall y#o. (3.9)

Y2 = | S (e 2y < (S]cch)y])? =

1 2 1
0L l(C.e) 2= < 12 o122 2
(Zhvwil-l@en'—=s)” < Bivak Zlaen' ol
Then (3.9) implies |Hy|> < [y|?, if y # 0. Therefore we have H? < I. Because of
0 < H thisis equivalentto H < 1. O

4. Characteristic values on the unit circle

If the matrices C; are normal and if (1.5) holds then (3.6) implies p(C) < 1.
The weaker assumption Y,|C;| < 1 yields p(C) <1 such that o(G)NJD may
be nonempty. In this section we are concerned with eigenvalues A of C (or charac-
teristic values of G(z)) with |[A| = p(C) = 1. It will be shown that the corresponding
elementary divisors are linear, if Y |C;| < 1. For that purpose we first derive a result
on the Lyapunov inequality L(X) =X — A*XA > 0, which allows for the case where
the matrix X is semidefinite. If X >0 and L(X) > 0 then it is well known that all
solutions of the linear difference equation x(r + 1) = Ax(¢) are bounded for t — . In
that case p(A) < 1,andif A € 6(A)NJD then the corresponding blocks in the Jordan
form of A are of size 1 x 1.

LEMMA 4.1. Let A and X be complex k x k matrices satisfying
X>0 and L(X)=X—-A"XA > 0.
Then KerX is an A-invariant subspace of CX. Suppose
0(Akerx) € D. 4.1)

Then p(A) < 1. If A is an eigenvalue of A on the unit circle then the corresponding
elementary divisors have degree 1.

Proof. If ue€KerX then u*L(X)u=—u*A*XAu>0. Thus X >0 yields XAu=
0,i.e. AKerX C KerX. Suppose 0 g KerX g Ck. After a suitable change of basis
of C* we can assume X = diag(0, X;), X> > 0. Then

_ 1 _ (A1 A2
KerX—Im<0> and A—<0 Ay )
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Thus (4.1) is equivalent to p(A;) < 1. Moreover, the assumption L(X) > 0 yields
X» —A3XA5 > 0. Because of X, >0 we obtain 0(A;) C D, and therefore p(A) < 1.
Now consider A € 6(A)NJD. Then o(A;)NJdD =0 implies A € 0(Az). Hence it
follows from X, > 0 that elementary divisors corresponding to A are linear. |

There is a one-to-one correspondence between eigenvectors of C and eigenvectors
of the polynomial matrix G(z). We have Cu = Au, u # 0, if and only if

u= (/l’"ilvT,...,)LvT,vT)T 4.2)
and the vector v satisfies G(A)v=0,v # 0. Then
A"y = (Cu A" L+ 4 CIA+Co)v = (Cpts...,C1,Co)u. (4.3)
If A # 0 then (4.3) and v # 0 imply that there exists an index ¢ such that

Cv+#0, and Cv =0 if i <1. (4.4)

THEOREM 4.2. Suppose P =diag(P,—1,...,P1,P) >0, and L(P) >0, and
Ker(P,—P—1) C KerC;, i=0,...,m—1. 4.5)

Then
O-(C|KerP) < {0} (4.6)

We have p(C) < 1. Moreover, if A € 6(C) and |A| =1 then the corresponding ele-
mentary divisors of C have degree 1.

Proof. Set W; = P, — P;_1. Let u in (4.2) be an eigenvector of C. If Pu=0 then
Wov =WiAv=--- = W,,_1A" v = 0. Hence (4.5) yields C;Alv=0,i=0,...,m—1.
Then (4.3) implies A™v =0, and we obtain A = 0, which proves (4.6). O

Without the assumption KerW; C KerC; in (3.2) or (4.5) one can not ensure
that ¢(C) C D. Consider the following example. Take G(z) = "I —Cy with Cy =
diag(y,3I;), and choose Wy = diag(l;,0) >0 and W; =0, i =1,...,m—1. Then
P = diag(Wy, ..., W) and L(P) = diag(Wy,...,Wy,0). We have P#0, P >0, and
L(P) > 0. But, in contrast to Theorem 4.2, this does not imply p(C) < 1.

Theorem 4.2 clearly applies to those block diagonal solutions of L(P) > 0 which
are provided by Theorem 3.1(i). Thus, if W; >0,i=0,...,m—1,and

S'W; <1, and KerW; C KerC; and GW'C; < Wi, 4.7

and if P = diag(Py—1,Pu—2,...,P) is be given by (2.1) then we are in the setting of
Theorem 4.2. In the following it will be more convenient to pass from C to the polyno-
mial matrix G(z). We shall derive conditions for eigenvectors of G(z) corresponding
to characteristic values on the unit circle.
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THEOREM 4.3. Let W;, i =0,...,m— 1, be positive semidefinite matrices satis-
fing A7), If G(A)v=0, v#£0, and |A| =1, then

(Zj’iglm)v:v, and  CiA™ "y =Wv, i=0,...,m—1. 4.8)
Moreover, v:G(A) =0.
Proof. Set P,_1 =Y W;. According to (2.3) we have
L(P) =diag(Wy—1, ..., Wo) — (Cu—1, ---,C0)* Pu—1 (C—1, - - -, Co).

Let u= (A" ..., AvT vT) be the eigenvector of C generated by v. Because of
|[A| =1 we have L(P)u=0. Then (4.3) yields

Wmfllmil C::171
L(P)u = 5 v—| oAy =o. (4.9)
WiA c
Wo C;

Let us show that P,,_;v = v. From (4.3) follows v*A"v =1*Y CiA!v. Because of the
assumption CiWiﬁCi* < W; we can apply Lemma 2.3(i) and obtain

vy < ZV*WI-V = V'P,_qv.
Therefore v*(I — P,,—1)v < 0. On the other hand, according to (4.7), we have P, =
> W; < I. Thus we obtain (I — P,,_1)v = 0. Then (4.9) implies (4.8).

Because of A4 =1 we obtain v*CiA' = A”v*W; from (4.8). Hence v*Ciz' =
AMy* (%)IWI , which implies

VG =van (1) 1= 2 (3)W]. (4.10)

Then v'G(A) = v A"[I — SWi] = v A" (I — Pp_y) = 0. 0

Let us use the identity v*G(4) =0 to give a different proof of the linearity of
elementary divisors associated to A € 0(G) NdD. Suppose (4.7) and [A|=1 and
G(A)v =0, v#0. According to [2] it suffices to show that the eigenvector v can not
be extended to a Jordan chain of length greater than 1. If there exists a w such that
G'(A)v+ G(A)w =0 then

VG (A =v* (m/lmf1 - ZiC,-)L’;I)v =0.
Lemma 2.3(i) would imply mv*v < 2;";01 iv*W;v, which is a contradiction to v*P,_1v=
2:":61 ViWiv=1.

If the matrices W; in (4.7), and thus the matrices P in Theorem 4.2, are chosen
according to Lemma 2.4 then more specific results can be obtained.
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THEOREM 4.4. Suppose Y70!(|Cil| < 1. If there exists a A € 6(G) with |A| =
1 then

e licl =1 4.11)
Set . .
v =2"[(2)" = Zlal ()]

Then there exists a unitary matrix V such that

o1+ (75 )

F(Z) = dlag (Y(LA]),...J/(Z,A;’)), |A’1| == M‘V‘ =1, and
p(G)<1. (4.12)

Proof. We choose W; = ||C;|| I in Theorem 4.3. Then

Bu =X W= (Sl 1

If |A|=1,and G(A)v=0, v#£0, then (4.8) yields P,_jv= v, and we obtain (4.11).
Suppose A; € 6(G)NID. Then (4.8) implies v'C; = v*A"||Ci||, i=0,...,m—1.
Thus v* is a common left eigenvector of the matrices C;. Let V = (v,v,...,v,) be
unitary. Then
v — (MG o
VGV = ( 5 e

with s; € C"~1. Hence

ES

|12 ko
VH(CIC)V = (Ic,| i *)
implies s; = 0, and therefore V*C;V = diag ()Ll"1’i||Ci||, é,) . Then (4.10) yields

G(z)=V (”(Z’O’h) GZO(Z)> il

If p(G2) =1 then Gy(z) can be reduced accordingly. The outcome of that reduction
is (4.12). O

Suppose (4.11) holds and Cy # 0. Define ¥(z) = 2" — Y ||Ci||z'. Then y(1) =0,
and y(z,A) = A"y(5). Let o(y) denote the set of roots of y(z). It follows from
Corollary 4.7 below that o(y)NdD C E; for some d | m, and it is known from [6] or
[1] that o(y)NdD = E,. Hence we have (4.12) with o(y(z,4;)) NdD = AjEq;, for
some A; € dD and d;|m.

Proof of Theorem 1.3. If the coefficients C; of G(z) are normal then W; = |C;]
is the appropriate choice in (4.7). Hence the assertions follow from Corollary 3.2 and
Theorem 4.2. ]
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Theorem 1.3 yields a stability result for the linear time-invariant difference equa-
tion

x(t+m) =Cpox(t+m—1)+--- + Cix(t + 1) + Cox(1), (4.13a)
x(0) =xg, ..., x(m—1) = x_1. (4.13b)

It is well known (see e.g. [5]) that the solutions of (4.13) are bounded if and only if
all characteristic values of G(z) =Iz" —Y.Ciz' are in the closed unit disc and if those
lying on the unit circle have linear elementary divisors. Moreover, limx(z) =0 if and
only if o(G) CD.

THEOREM 4.5. Let C;, i=0,...,m—1, be normal. If Y |C;| <1 then all solu-
tions (x(t)) of (4.13) are bounded for t — oo.

If the matrix G(z) has positive semidefinite coefficients C;, and ¥,C; <1 and Cy >
0, then the characteristic values in dID are m-th roots of unity [10]. From Theorem 4.3
we immediately obtain the following more general result.

THEOREM 4.6. [11] Let G(z) be a polynomial matrix with hermitian coefficients
C; and assume Y |Cj| <I. Suppose |A|=1, G(A)v=0, v#0, and let t be such
that CGiv#0 and Civ=0if i <t. Then v*Gv #0, and

AT =signv* G, (4.14)

Proof. We consider (4.8) with W; = |C;|. Then G, =C; yields
Amit CtV = |Ct| V.

Hence we have |G;|v # 0. Therefore |G;| >0 implies v*|CG;|v # 0. From v*Gv € R
and v¥*|G[v>0 and |A|=1 follows A"~ " € {1,—1}. More precisely, we have (4.14).
]

COROLLARY 4.7. Let g(z) =7" —E?";Ol ciz' be a real polynomial such that co >
0 and Ylcil=1.1If A isarootof g(z) and |A| =1 then A™ =1.
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