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BLOCK COMPANION MATRICES, DISCRETE–TIME BLOCK

DIAGONAL STABILITY AND POLYNOMIAL MATRICES
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(communicated by F. Hansen)

Abstract. A polynomial matrix G(z) = Izm −∑m−1
i=0 Cizi with complex coefficients is called

discrete-time stable if its characteristic values (i.e. the zeros of detG(z) ) are in the unit disc.
A corresponding block companion matrix C is used to study discrete-time stability of G(z) .
The main tool is the construction of block diagonal solutions P of a discrete-time Lyapunov
inequality P−C∗PC � 0 .

1. Introduction

A complex n×n matrix C is called (discrete-time) diagonally stable if there exists
a positive definite diagonal matrix P such that the corresponding Lyapunov operator
L(P) = P−C∗PC is positive definite. There is a wide range of problems in systems
theory which involve diagonal stability. We refer to the monograph [7] of Kaszkurewicz
and Bhaya. For companion matrices the following result is known [8], [9].

THEOREM 1.1. Let

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

cm−1 . . . c2 c1 c0

1 . . . 0 0 0
. . . . . . .
. . . . . . .
. . . . 1 0 0
0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.1)

be a companion matrix associated with the complex polynomial

g(z) = zm − (
cm−1z

m−1 + · · ·+ c1z+ c0
)
.

The matrix C is diagonally stable if and only if

∑m−1
i=0 |ci| < 1. (1.2)

In this paper we deal with a complex n×n polynomial matrix

G(z) = Izm − (Cm−1z
m−1 + · · ·+C1z+C0) (1.3)
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and an associated block companion matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

Cm−1 . . . C2 C1 C0

I . . . 0 0 0
. . . . . . .
. . . . . . .
. . . . I 0 0
0 . . . 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.4)

The matrix C is said to be block diagonally stable if there exists a block diagonal matrix
P = diag(Pm−1, . . . ,P0) , partitioned accordingly, such that P > 0 and L(P) = P−
C∗PC > 0. How can one extend Theorem 1.1 to the block matrix C in (1.4)? Condition
(1.2) involves absolute values of the coefficients ci of g(z) . There are different ways
to generalize the concept of absolute value from complex numbers to matrices. If the
matrices Ci are normal, that is CiC∗

i = C∗
i Ci , i = 0, . . . ,m− 1, then one can use the

positive semidefinite part of Ci defined by |Ci| = (C∗
i Ci)1/2 . If the matrices Ci are

arbitrary then one can choose the spectral norm ‖Ci‖ . In both cases one can obtain a
generalization of the sufficiency part of Theorem 1.1. The following theorem will be
proved in Section 3. It is a special case of a general result on block diagonal stability.

THEOREM 1.2. (i) Suppose the coefficients Ci of (1.4) are normal. Then the block
companion matrix C is block diagonally stable if

S =∑m−1
i=0 |Ci| < I, (1.5)

i.e. w∗Sw < w∗w for all w ∈ Cn , w �= 0 .
(ii) If

∑m−1
i=0 ‖Ci‖ < 1 (1.6)

then C is diagonally stable.

The following notation will be used. If Q,R ∈ Cn×n are hermitian then we write
Q > 0 if Q is positive definite, and Q � 0 if Q is positive semidefinite. The inequality
Q � R means Q−R � 0. If Q � 0 then Q1/2 shall denote the positive semidefinite
square root of Q . If A ∈ Cn×n then σ(A) is the spectrum, ρ(A) the spectral radius
and ‖A‖ = ρ

(
(A∗A)1/2

)
is the spectral norm of A . The Moore-Penrose inverse of A

will be denoted by A� . Given the polynomial matrix G(z) in (1.3) we define σ(G) =
{λ ∈ C; detG(λ ) = 0} and ρ(G) = max{|λ |; λ ∈ σ(G)} . In accordance with [2,
p. 341] the elements of σ(G) are called the characteristic values of G(z) . If v ∈ Cn ,
v �= 0, and G(λ )v = 0, then v is said to be an eigenvector of G(z) corresponding to
the characteristic value λ . Let Ek = {λ ∈ C; λ k = 1} be the set of k -th roots of unity.
The symbol D represents the open unit disc. Thus ∂D is the unit circle and D is the
closed unit disc. Limits of a sum will always extend from 0 to m−1. Hence, in many
instances, they will be omitted.

The content of the paper is as follows. Section 2 with its auxiliary results prepares
the ground for Section 3 and the study of block diagonal solutions of discrete-time
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Lyapunov inequalities. In Section 4 special attention is given to eigenvalues of C on
the unit circle. Since C and G(z) have the same spectrum and the same elementary
divisors it will be convenient to consider the polynomialmatrix G(z) instead of its block
companion C . One of the results, which will be proved in Section 4 is the following.

THEOREM 1.3. Let G(z) in (1.3) be a polynomial matrix with normal coefficients
Ci . If ∑ |Ci| � I then ρ(G) � 1 . Moreover, if λ ∈ σ(G) and |λ | = 1 then the
corresponding elementary divisors have degree 1 .

The topics of Section 4 include stability of systems of linear difference equations
and also polynomial matrices with hermitian coefficients and roots of unity as charac-
teristic values on the unit circle.

2. Auxiliary results

Throughout this paper C and G(z) will be the block companion matrix (1.4) and
the polynomial matrix (1.3), respectively.

LEMMA 2.1. Let
P = diag(Pm−1,Pm−2, . . . ,P0) (2.1)

be a hermitian block diagonal matrix partitioned in accordance with (1.4). Set P−1 = 0
and define

R = (Cm−1, . . . ,C0) and D = diag(Pm−1−Pm−2, . . . ,P0−P−1). (2.2)

(i) We have
L(P) = P−C∗PC = D−R∗Pm−1 R. (2.3)

(ii) Suppose L(P) � 0 . Then P � 0 holds if and only if

Pm−1 � Pm−2 � · · · � P0 � 0, (2.4)

or equivalently, if and only if Pm−1 � 0 .
(iii) If P � 0 and L(P) � 0 then there are positive semidefinite matrices Wi ,

i = 0, . . . ,m−1 , such that

Pm−1 = Wm−1 + . . .+W1 +W0, . . . , P1 = W1 +W0, P0 = W0, (2.5)

and
D = diag(Wm−1, . . . ,W0). (2.6)

Proof. (i) Define

N =

⎛
⎜⎜⎜⎜⎝

0
I 0
. . .
. . . . .
. . . . I 0

⎞
⎟⎟⎟⎟⎠ and T =

⎛
⎜⎜⎜⎜⎝

Cm−1 . . . C0

0 . . . 0
. . . . .
. . . . .
0 . . . 0

⎞
⎟⎟⎟⎟⎠ .
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Then C = N +T and N∗PT = 0. Therefore C∗PC = T ∗PT +N∗PN . Then N∗PN =
diag(Pm−2, . . . ,P0,0) and T ∗PT = R∗Pm−1R imply (2.3).

(ii) The inequality L(P) � 0 is equivalent to

R∗Pm−1R � D = diag(Pm−1−Pm−2, . . . ,P1−P0,P0). (2.7)

Clearly, (2.4) implies P � 0, and in particular Pm−1 � 0. Now suppose L(P) � 0 and
Pm−1 � 0. Then (2.7) yields

P0 � 0, P1−P0 � 0, . . . , Pm−1−Pm−2 � 0,

that is (2.4). The assertion (iii) is an immediate consequence of (ii). �
Inequalities of the form (2.7) will be important. If r ∈ C is nonzero and q,d ∈ R

are positive then it is obvious that rqr � d is equivalent to 1/q � r(1/d)r . A more
general result for matrices involves Moore-Penrose inverses. We refer to [3] or [4] for
basic facts on generalized inverses.

LEMMA 2.2. Let Q and D be positive semidefinite matrices and let R be of ap-
propriate size.

(i) If Q > 0 and D > 0 then R∗QR � D is equivalent to Q−1 � RD−1R∗ . The
strict inequality R∗QR < D is equivalent to Q−1 > RD−1R∗ .

(ii) If
Q� � RD�R∗ (2.8)

and
KerD ⊆ KerQR (2.9)

then R∗QR � D.
(iii) If R∗QR � D and ImRD ⊆ ImQ, then Q� � RD�R∗ .

Proof. (i) We have R∗QR � D if and only if

(Q1/2RD−1/2)∗(Q1/2RD−1/2) � I,

which is equivalent to

(Q1/2RD−1/2)(Q1/2RD−1/2)∗ = Q1/2RD−1R∗Q1/2 � I,

and consequently to RD−1R∗ � Q−1 . Similarly, R∗QR < D is equivalent to RD−1R∗ <
Q−1 .

(ii) Having applied suitable unitary transformations we can assume

D =
(

D1 0
0 0

)
, D1 > 0, Q =

(
Q1 0
0 0

)
, Q1 > 0, R =

(
R1 R12

R21 R2

)
,

where R is partitioned correspondingly. Then

D� =
(

D−1
1 0
0 0

)
and Q� =

(
Q−1

1 0
0 0

)
.
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Hence Q� � RD�R∗ , i.e.
(

Q−1
1 0
0 0

)
�

(
R1

R21

)
D−1

1

(
R∗

1 R∗
21

)
,

is equivalent to Q−1
1 � R1D

−1
1 R∗

1 together with R21 = 0. Because of

KerD = Im

(
0
I

)
and KerQR = Ker

(
Q1 0
0 0

)
R = Ker

(
R1 R12

0 0

)

we have KerD⊆KerQR if and only if R12 = 0. Hence, if (2.8) holds then we conclude
from (i) that D1 � R1Q1R∗

1 . If in addition to (2.8) also (2.9) is satisfied then we obtain

(
D1 0
0 0

)
�

(
R1 0
0 R2

)(
Q1 0
0 0

)(
R∗

1 0
0 R∗

2

)
,

that is D � RQR∗ .
(iii) Because of Q =

(
Q�

)�
and D =

(
D�

)�
on can recur to (ii). Note that

KerQ� ⊆ KerD�R∗ can be written as

R
(
KerD�

)⊥ ⊆ (
KerQ�

)⊥
. (2.10)

We have KerQ� = KerQ . Hence (2.10) is equivalent to R ImD ⊆ ImQ . �
The following lemma will be used to construct block diagonal solutions of the

inequality L(P) � 0.

LEMMA 2.3. Let F and W be in Cn×n . Suppose W � 0 and

KerW ⊆ KerF and FW �F∗ � W. (2.11)

(i) Then
|v∗Fv| � v∗Wv for all v ∈ Cn. (2.12)

(ii) If W � X then KerX ⊆ KerW and FX �F∗ � FW �F∗ .
(iii) In particular, if ε > 0 then W + εI > 0 and

F(W + εI)−1F∗ < W + εI. (2.13)

Proof. (i) Suppose rankW = r , r > 0. Let U be unitary such that U∗WU =
diag(W1,0), W1 > 0. Then it is easy to see that (2.11) is equivalent to U∗FU =
diag(F1,0) together with F1W

−1
1 F∗

1 � W1 . Moreover (2.12) is valid if and only if
|v∗1F1v1| � v∗1W1v1 for all v1 ∈Cr . Thus it suffices to show that W > 0 and FW−1 F∗ �
W imply (2.12). Set M = W 1/2 and F̃ = M−1FM−1 . Then we have F̃F̃∗ � I , or
equivalently F̃∗F̃ � I , and therefore

|v∗Fv| = |(Mv)∗F̃Mv| � |Mv| |F̃ (Mv)| � |Mv|2 = v∗Wv.
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(ii) We can assume W = diag(W1,0), W1 > 0, such that F = diag(F1,0) and
F1W

−1
1 F∗

1 � W1 . Then W � X , that is

(
I
0

)
W1

(
I 0

)
� X ,

is an inequality of the form R∗QR � D . We have (I 0)X ⊆ ImW1 = Cr . Hence Lemma
2.2(iii) yields (

I 0
)
X �

(
I
0

)
� W−1

1 .

Therefore

FX �F∗ =
(

I
0

)
F1

(
I 0

)
X �

(
I
0

)
F∗

1

(
I 0

)
�

(
I
0

)
F1W−1

1 F∗
1

(
I 0

)
= FW �F∗.

(iii) The inequality (2.13) follows immediately from (ii). �
We single out two special cases where (2.11) is satisfied.

LEMMA 2.4. (i) Let F be normal. Then W = |F | satisfies

KerW = KerF and FW �F∗ = W. (2.14)

(ii) If W = ‖F‖ I then (2.11) is valid.

Proof. (i) If F is normal then F = U |F| = |F |U for some unitary U . Hence

F |F |� F∗ = U |F ||F|�|F |U∗ = U |F |U∗ = |F|,

and the matrix W = |F | satisfies (2.14).
(ii) If F = 0 then W = 0, and (2.11) is trivially satisfied. If F �= 0 then (2.11)

follows from FF∗ � ‖F‖2 I . �

3. Block diagonal solutions

How can one choose n× n matrices Wi in (2.5) such that P � 0 and L(P) � 0
is satisfied? The conditions in the following theorem will be rather general.

THEOREM 3.1. Let Wi , i = 0, . . . ,m−1 , be positive semidefinite and let the block
diagonal entries of P = diag(Pm−1,Pm−2, . . . ,P0) be given by (2.5). Then P � 0 .

(i) Suppose

∑m−1
i=0 Wi � I, (3.1)

and
KerWi ⊆ KerCi and CiW

�
i C

∗
i � Wi, (3.2)

i = 0, . . . ,m−1 . Then L(P) � 0 .
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(ii) Suppose KerWi ⊆ KerCi and

CiW
�
i C

∗
i = Wi, (3.3)

i = 0, . . . ,m−1 . Then L(P) � 0 is equivalent to (3.1).
(iii) Suppose

Wi > 0, CiW
−1
i C∗

i � Wi, i = 0, . . . ,m−1, and ∑m−1
i=0 Wi < I. (3.4)

Then P > 0 and L(P) > 0 .

Proof. Let R = (Cm−1, . . . ,C0) and

D = diag(Pm−1−Pm−2, , . . . ,P0) = diag(Wm−1, . . . ,W0)

be the matrices in (2.2) and (2.6). Then

RD�R∗ =∑CiW
�
i C

∗
i . (3.5)

Set Q = Pm−1 =∑Wi . We know from (2.7) that L(P) � 0 is equivalent to R∗QR � D .
Because of 0 � Q the condition (3.1), i.e. Q � I , is equivalent to Q � Q� .

(i) Let us show that the assumptions (3.1) and (3.2) imply RD�R∗ � Q� and
KerD ⊆ KerQR . From (3.5) and (3.3) we obtain RD�R∗ � ∑Wi = Q . Thus (3.1),
i.e. Q � I , yields RD�R∗ � Q� . The inclusions KerWi ⊆KerCi imply KerD⊆KerR .
Hence we can apply Lemma 2.2 (ii) and conclude that R∗QR � D is satisfied.

(ii) We only have to prove that L(P) � 0 implies (3.1). From (3.3) follows
RD�R∗ = Q . Because of ImD� = ImD we obtain

ImQ = ImRD�R∗ = ImRD� = ImRD.

Thus the conditions R∗QR � D and ImRD ⊆ ImQ of Lemma 2.2(iii) are fulfilled.
Hence we have RD�R∗ � Q� . Therefore Q � Q� , that is Q � I .

(iii) The assumptions (3.4) imply D > 0 and RD−1R∗ � Q and 0 < Q < I . There-
fore Q < Q−1 , and we obtain RD−1R∗ < Q−1 , which is equivalent to R∗QR < D , i.e.
to L(P) > 0. �

Taking Lemma 2.4 into account we obtain the following results.

COROLLARY 3.2. (i) Let the matrices Ci be normal, and set Wi = |Ci| , i =
0, . . . ,m− 1 , and let P be the corresponding block diagonal matrix. Then we have
P � 0 and L(P) � 0 if and only if ∑ |Ci| � I .

(ii) Suppose ∑‖Ci‖� 1 . If Wi = ‖Ci‖I , i = 0, . . . ,m−1 , then P� 0 and L(P)�
0 .

Suppose the inequality (3.1) is strict and the matrices Wi satisfy (3.2). According
to Lemma 2.3(iii) one can choose εi > 0 small enough such that the modified matrices
Wi + εiI retain the property (3.2). Using Theorem 3.1(iii) we immediately obtain the
following result.



118 HARALD K. WIMMER

THEOREM 3.3. Let Wi , i = 0, . . . ,m− 1 , be matrices with property (3.2) and
suppose

∑m−1
i=0 Wi � (1− ε) I, ε > 0.

Let εi > 0 , i = 0, . . . ,m−1 , such that ∑εi < ε . Put

W̃i =Wi + εiI and P̃i = W̃i + . . .+W̃0, i = 0, . . . ,m−1,

and P̃ = diag(P̃m−1, . . . , P̃0) . Then P̃ > 0 and L(P̃) > 0 .

Proof of Theorem 1.2. We combine Theorem 3.3 and Corollary 3.2. If (1.5) holds
then we have

∑m−1
i=0 |Ci| � (1− ε) I

for some ε > 0. We choose εi > 0, i = 0, . . . ,m− 1, such that ∑εi < ε , and set
Pi = (|Ci|+ . . .+ |C0|)+ (εi + . . .+ ε0)I , i = 0, . . . ,m−1. Then

P = diag(Pm−1, . . . ,P0) > 0 and L(P) > 0. (3.6)

Suppose now that (1.6) holds. In this case one can choose εi > 0 in such a way that the
diagonal matrices

Pi = (‖Ci‖+ εi + . . .+‖C0‖+ ε0)I, i = 0, . . . ,m−1, (3.7)

yield a matrix P satisfying (3.6). �

The matrices Pi in (3.7) are positive scalar matrices, i.e. Pi = piI, pi > 0. The fol-
lowing theorem gives a necessary condition for the existence of such diagonal solutions
of L(P) > 0.

THEOREM 3.4. If there exists a matrix P = diag(pm−1I, . . . , p0I) such that P >
0 and L(P) > 0 then

∑m−1
i=0 (CiC

∗
i )

1/2 < I.

Proof. Set Wi = Pi −Pi−1 and wi = pi − pi−1 such that Wi = wiI . Then (2.4)
implies wi � 0. Let R = (Cm−1, . . . ,C0) , Q = ∑Wi , and D = diag(Wm−1, . . . ,W0) , be
defined as in Lemma 2.1. Then P > 0 and L(P) > 0 imply 0 < Q and 0 � R∗QR <
D . Hence, if Wj = 0 then Cj = 0. Therefore we may discard corresponding zero
blocks in D and R and assume D > 0. Then RD−1R∗ < Q−1 , that is

∑CiC
∗
i

1
wi

<
(
∑wi

)−1
I. (3.8)

Since (3.8) is equivalent to

∑wi ∑y∗CiC
∗
i

1
wi

y < y∗y, if y �= 0,
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we obtain

(
∑ |√wi|2

)
∑

∣∣(CiC
∗
i )

1/2 1√
wi

y
∣∣2 < |y|2 for all y �= 0. (3.9)

Set H =∑(CiC∗
i )

1/2 . The target is the proof of H < I . The Cauchy-Schwarz inequality
yields

|Hy|2 =
∣∣∑(CiC

∗
i )

1/2 y
∣∣2 �

(
∑

∣∣(CiC
∗
i )

1/2 y
∣∣)2 =(

∑ |√wi| ·
∣∣(CiC

∗
i )

1/2 1√
wi

y
∣∣)2

� ∑ |√wi|2 ∑
∣∣(CiC

∗
i )

1/2 1√
wi

y
∣∣2.

Then (3.9) implies |Hy|2 < |y|2 , if y �= 0. Therefore we have H2 < I . Because of
0 � H this is equivalent to H < I . �

4. Characteristic values on the unit circle

If the matrices Ci are normal and if (1.5) holds then (3.6) implies ρ(C) < 1.
The weaker assumption ∑ |Ci| � 1 yields ρ(C) � 1 such that σ(G)∩ ∂D may
be nonempty. In this section we are concerned with eigenvalues λ of C (or charac-
teristic values of G(z)) with |λ | = ρ(C) = 1. It will be shown that the corresponding
elementary divisors are linear, if ∑ |Ci| � 1. For that purpose we first derive a result
on the Lyapunov inequality L(X) = X −A∗XA � 0, which allows for the case where
the matrix X is semidefinite. If X > 0 and L(X) � 0 then it is well known that all
solutions of the linear difference equation x(t +1) = Ax(t) are bounded for t → ∞ . In
that case ρ(A) � 1, and if λ ∈ σ(A)∩∂D then the corresponding blocks in the Jordan
form of A are of size 1×1.

LEMMA 4.1. Let A and X be complex k× k matrices satisfying

X � 0 and L(X) = X −A∗XA � 0.

Then KerX is an A-invariant subspace of Ck . Suppose

σ(A|KerX ) ⊆ D. (4.1)

Then ρ(A) � 1 . If λ is an eigenvalue of A on the unit circle then the corresponding
elementary divisors have degree 1 .

Proof. If u∈KerX then u∗L(X)u =−u∗A∗XAu � 0. Thus X � 0 yields XAu =
0, i.e. AKerX ⊆ KerX . Suppose 0 � KerX � Ck . After a suitable change of basis
of Ck we can assume X = diag(0, X2) , X2 > 0. Then

KerX = Im

(
I
0

)
and A =

(
A1 A12

0 A2

)
.
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Thus (4.1) is equivalent to ρ(A1) < 1. Moreover, the assumption L(X) � 0 yields
X2−A∗

2X2A2 � 0. Because of X2 > 0 we obtain σ(A2)⊆D , and therefore ρ(A) � 1.
Now consider λ ∈ σ(A)∩∂D . Then σ(A1)∩∂D = /0 implies λ ∈ σ(A2) . Hence it
follows from X2 > 0 that elementary divisors corresponding to λ are linear. �

There is a one-to-one correspondence between eigenvectors of C and eigenvectors
of the polynomial matrix G(z) . We have Cu = λu , u �= 0, if and only if

u = (λm−1vT , . . . ,λvT ,vT )T (4.2)

and the vector v satisfies G(λ )v = 0, v �= 0. Then

λm v = (Cm−1λm−1 + . . .+C1λ +C0)v = (Cm−1, . . . ,C1,C0)u. (4.3)

If λ �= 0 then (4.3) and v �= 0 imply that there exists an index t such that

Ctv �= 0, and Civ = 0 if i < t. (4.4)

THEOREM 4.2. Suppose P = diag(Pm−1, . . . ,P1,P0) � 0 , and L(P) � 0 , and

Ker(Pi −Pi−1) ⊆ KerCi, i = 0, . . . ,m−1. (4.5)

Then
σ(C|KerP) ⊆ {0}. (4.6)

We have ρ(C) � 1 . Moreover, if λ ∈ σ(C) and |λ | = 1 then the corresponding ele-
mentary divisors of C have degree 1 .

Proof. Set Wi = Pi−Pi−1 . Let u in (4.2) be an eigenvector of C . If Pu = 0 then
W0v =W1λv = · · · =Wm−1λm−1v = 0. Hence (4.5) yields Ciλ iv = 0, i = 0, . . . ,m−1.
Then (4.3) implies λmv = 0, and we obtain λ = 0, which proves (4.6). �

Without the assumption KerWi ⊆ KerCi in (3.2) or (4.5) one can not ensure
that σ(C) ⊆ D . Consider the following example. Take G(z) = zmI−C0 with C0 =
diag(Is,3Is) , and choose W0 = diag(Is,0) � 0 and Wi = 0, i = 1, . . . ,m− 1. Then
P = diag(W0, . . . ,W0) and L(P) = diag(W0, . . . ,W0,0) . We have P �= 0, P � 0, and
L(P) � 0. But, in contrast to Theorem 4.2, this does not imply ρ(C) � 1.

Theorem 4.2 clearly applies to those block diagonal solutions of L(P) � 0 which
are provided by Theorem 3.1(i). Thus, if Wi � 0, i = 0, . . . ,m−1, and

∑Wi � I, and KerWi ⊆ KerCi and CiW
�
i C∗

i � Wi, (4.7)

and if P = diag(Pm−1,Pm−2, . . . ,P0) is be given by (2.1) then we are in the setting of
Theorem 4.2. In the following it will be more convenient to pass from C to the polyno-
mial matrix G(z) . We shall derive conditions for eigenvectors of G(z) corresponding
to characteristic values on the unit circle.
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THEOREM 4.3. Let Wi , i = 0, . . . ,m− 1 , be positive semidefinite matrices satis-
fying (4.7). If G(λ )v = 0 , v �= 0 , and |λ | = 1 , then

(
∑m−1

i=0 Wi

)
v = v, and C∗

i λ
m−iv = Wi v, i = 0, . . . ,m−1. (4.8)

Moreover, v∗G(λ ) = 0 .

Proof. Set Pm−1 = ∑Wi . According to (2.3) we have

L(P) = diag(Wm−1, . . . ,W0)− (Cm−1, . . . ,C0)∗Pm−1 (Cm−1, . . . ,C0).

Let u = (λm−1vT , . . . ,λvT ,vT ) be the eigenvector of C generated by v . Because of
|λ | = 1 we have L(P)u = 0. Then (4.3) yields

L(P)u =

⎛
⎜⎜⎜⎝

Wm−1λm−1

...
W1λ
W0

⎞
⎟⎟⎟⎠v−

⎛
⎜⎜⎜⎝

C∗
m−1
...

C∗
1

C∗
0

⎞
⎟⎟⎟⎠Pm−1λm v = 0. (4.9)

Let us show that Pm−1v = v . From (4.3) follows v∗λm v = v∗∑Ciλ i v . Because of the
assumption CiW

�
i C∗

i � Wi we can apply Lemma 2.3(i) and obtain

v∗v � ∑v∗Wi v = v∗Pm−1v.

Therefore v∗(I−Pm−1)v � 0. On the other hand, according to (4.7), we have Pm−1 =
∑Wi � I . Thus we obtain (I−Pm−1)v = 0. Then (4.9) implies (4.8).

Because of λ λ = 1 we obtain v∗Ciλ i = λmv∗Wi from (4.8). Hence v∗Cizi =
λmv∗

(
z
λ
)i

Wi , which implies

v∗G(z) = v∗λm
[( z
λ

)m
I−∑

( z
λ

)i
Wi

]
. (4.10)

Then v∗G(λ ) = v∗λm[I−∑Wi] = v∗λm(I−Pm−1) = 0. �
Let us use the identity v∗G(λ ) = 0 to give a different proof of the linearity of

elementary divisors associated to λ ∈ σ(G)∩ ∂D . Suppose (4.7) and |λ | = 1 and
G(λ )v = 0, v �= 0. According to [2] it suffices to show that the eigenvector v can not
be extended to a Jordan chain of length greater than 1. If there exists a w such that
G′(λ )v+G(λ )w = 0 then

v∗G′(λ )v = v∗
(
mλm−1 −∑ iCi λ i−1

)
v = 0.

Lemma 2.3(i) would imply mv∗v � ∑m−1
i=0 iv∗Wiv , which is a contradiction to v∗Pm−1v =

∑m−1
i=0 v∗Wiv = 1.

If the matrices Wi in (4.7), and thus the matrices P in Theorem 4.2, are chosen
according to Lemma 2.4 then more specific results can be obtained.
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THEOREM 4.4. Suppose ∑m−1
i=0 ‖Ci‖ � 1 . If there exists a λ ∈ σ(G) with |λ | =

1 then

∑m−1
i=0 ‖Ci‖ = 1. (4.11)

Set
γ(z,λ ) = λm

[( z
λ

)m −∑‖Ci‖
( z
λ

)i
]
.

Then there exists a unitary matrix V such that

G(z) = V

(
Γ(z) 0
0 G̃(z)

)
V ∗,

Γ(z) = diag
(
γ(z,λ1), . . . ,γ(z,λr)

)
, |λ1| = · · · = |λr| = 1, and

ρ(G̃) < 1. (4.12)

Proof. We choose Wi = ‖Ci‖ I in Theorem 4.3. Then

Pm−1 =∑Wi =
(
∑‖Ci‖

)
I.

If |λ | = 1, and G(λ )v = 0, v �= 0, then (4.8) yields Pm−1v = v , and we obtain (4.11).
Suppose λ1 ∈ σ(G)∩ ∂D . Then (4.8) implies v∗Ci = v∗λm−i

1 ‖Ci‖ , i = 0, . . . ,m− 1.
Thus v∗ is a common left eigenvector of the matrices Ci . Let V = (v,v2, . . . ,vn) be
unitary. Then

V ∗CiV =
(
λm−i

1 ‖Ci‖ 0
si Ĉi

)

with si ∈ Cn−1 . Hence

V ∗(C∗
i Ci)V =

(‖Ci‖2 + s∗i si ∗
∗ ∗

)

implies si = 0, and therefore V ∗CiV = diag
(
λm−i

1 ‖Ci‖, Ĉi
)
. Then (4.10) yields

G(z) = V

(
γ(z,λ1) 0

0 G2(z)

)
V ∗.

If ρ(G2) = 1 then G2(z) can be reduced accordingly. The outcome of that reduction
is (4.12). �

Suppose (4.11) holds and C0 �= 0. Define γ(z) = zm −∑‖Ci‖zi . Then γ(1) = 0,
and γ(z,λ ) = λm γ( z

λ ) . Let σ(γ) denote the set of roots of γ(z) . It follows from
Corollary 4.7 below that σ(γ)∩∂D ⊆ Ed for some d | m , and it is known from [6] or
[1] that σ(γ)∩ ∂D = Ed . Hence we have (4.12) with σ

(
γ(z,λ j)

)∩ ∂D = λ jEd j , for
some λ j ∈ ∂D and d j |m .

Proof of Theorem 1.3. If the coefficients Ci of G(z) are normal then Wi = |Ci|
is the appropriate choice in (4.7). Hence the assertions follow from Corollary 3.2 and
Theorem 4.2. �
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Theorem 1.3 yields a stability result for the linear time-invariant difference equa-
tion

x(t +m) = Cm−1x(t +m−1) + · · · + C1x(t +1) + C0x(t), (4.13a)

x(0) = x0, . . . ,x(m−1) = xm−1. (4.13b)

It is well known (see e.g. [5]) that the solutions of (4.13) are bounded if and only if
all characteristic values of G(z) = Izm −∑Cizi are in the closed unit disc and if those
lying on the unit circle have linear elementary divisors. Moreover, limx(t) = 0 if and
only if σ(G) ⊆ D .

THEOREM 4.5. Let Ci , i = 0, . . . ,m−1 , be normal. If ∑ |Ci| � I then all solu-
tions

(
x(t)

)
of (4.13) are bounded for t → ∞ .

If the matrix G(z) has positive semidefinite coefficients Ci , and ∑Ci � I and C0 >
0, then the characteristic values in ∂D are m-th roots of unity [10]. From Theorem 4.3
we immediately obtain the following more general result.

THEOREM 4.6. [11] Let G(z) be a polynomial matrix with hermitian coefficients
Ci and assume ∑ |Ci| � I . Suppose |λ | = 1 , G(λ )v = 0 , v �= 0 , and let t be such
that Ctv �= 0 and Civ = 0 if i < t . Then v∗Ctv �= 0 , and

λm−t = signv∗Ctv. (4.14)

Proof. We consider (4.8) with Wi = |Ci| . Then Ct = C∗
t yields

λm−t Ctv = |Ct |v.
Hence we have |Ct |v �= 0. Therefore |Ct | � 0 implies v∗|Ct |v �= 0. From v∗Ctv ∈ R
and v∗|Ct |v> 0 and |λ |= 1 follows λm−t ∈{1,−1} . More precisely, we have (4.14).

�

COROLLARY 4.7. Let g(z) = zm−∑m−1
i=0 cizi be a real polynomial such that c0 >

0 and ∑ |ci| = 1 . If λ is a root of g(z) and |λ | = 1 then λm = 1 .
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