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NORMALIZED NUMERICAL RANGES OF SOME OPERATORS
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(communicated by C.-K. Li)

Abstract. We describe the normalized numerical ranges of certain operators. First, the case of a
normal operator, acting in a two dimensional space is considered in detail, leading to the general
Kantorovich inequality. Then we pass to the finite dimensional case and settle the problem when
the Gustafson-Seddighin two component property, failing in general, takes place. In the next part
finite and infinite dimensional Jordan cells are investigated.We conclude with the description of
the normalized numerical range of a two-dimensional Toeplitz matrix.

0. Let (H, 〈 •, •〉 ) be a Hilbert space and A be a bounded linear operator, acting
in H. One of the most familiar ways of solving the equation

Ax = b

is the (Richardson’s) iterative method

xn+1 = xn − αn (Axn − b) , n ∈ Z
+,

where x0 is an initial guess and αn is a numerical parameter. The sequence {xn}
converges to the solution if ‖αnA − I‖ < 1.

Denote m (A) = inf
t∈C

‖tA − I‖ and p (A) = inf
Ax �=θ

|〈 Ax,x〉 |
‖Ax‖·‖x‖ .

Recall that the set

Wn (A) =
{ 〈Ax, x〉
‖Ax‖ · ‖x‖ : Ax �= θ

}

is said [1] to be the normalized numerical range of the operator A. From this definition
easily is deduced the equality Wn (cA) = ei arg cWn (A) for any nonzero c.

In [2] it has been shown that m2 (A) + p2 (A) = 1, so the condition p (A) > 0 is
very important for the convergence of different iterative methods of solution of Hilbert
space operator equations.

Let L ⊂ H be a subspace, invariant with respect to A and denote by AL the
restriction of A on L. Evidently Wn (AL) ⊂ Wn (A) , so description of normalized
numerical ranges of different finite dimensional operators may be useful. For a normal
operator in a two-dimensional Hilbert space such description is given in [2]. In the

Mathematics subject classification (2000): 47A12, 47B15, 47N40.
Keywords and phrases: normalized numerical range, convergence rate, Kantorovich inequality.

c© � � , Zagreb
Paper OaM-03-07

145



146 L. Z. GEVORGYAN

present note we supply more details and show how p (A) may be found for normal (and
not only normal) operators and consider finite and infinite dimensional Jordan cells.

1. Let A be a normal operator in two dimensional space, defined by the matrix

A =
(

M 0
0 N

)
, M �= 0, N �= 0 (1)

and u = {α, β} ∈ C2. Then

〈Au, u〉
‖Au‖ · ‖u‖ =

M |α|2 + N |β |2√
|M|2 |α|2 + |N|2 |β |2 ·

√
|α|2 + |β |2

.

Denoting the quotient |α|2 / |β |2 by t, we get

〈Au, u〉
‖Au‖ · ‖u‖ =

Mt + N√
|M|2 t + |N|2 · √t + 1

.

The plot of this function is the curve r = r (t) , t ∈ [0; +∞] (the value at the point t =
+∞ is assumed as the limit of this expression), joining the points sgnN = ei arg N = eiψ

and sgnM = ei arg M = eiφ . Its curvature depends, particularly, on the quotient |M| / |N|
(note that at |M| = |N| one gets the segment, joining mentioned above points and at

argM = argN - the segment, joining the points sgnM and 2
√

|M|·|N|
|M|+|N| · sgn M is run

twice in opposite directions).

PROPOSITION 1. For operator A from (1) one has

p =

√|M| · |N|
|M| + |N| · |sgnM + sgnN| = 2

√|M| · |N|
|M| + |N| ·

∣∣∣∣cos
ϕ − ψ

2

∣∣∣∣ . (2)

Proof. Straightforward calculations show that this curve lies at theminimal distance
p from the coordinate system origin (the summit of the curve, corresponding to t =
|N| / |M| ), defined by (2). �

This formula may be called Kantorovich general inequality, as for the first time it
has been proved [5] for positive operators (M > 0, N > 0). Note that at ϕ = ψ + π
the curve is reduced to the diameter of the unit circle. The modulus sign may omitted, if
the angles ϕ and ψ are chosen continuously, such that |ϕ − ψ | � π, the last condition
is supposed to be satisfied in what follows.

Formula (2) in an inconvenient form is cited in [4] (formula (3.6-6)). To be fair, we
mention that this shortcoming is corrected in the next paper [6]. It should be noted that
assertions in both papers, concerning this problem are either incomplete or erroneous.
First, the equality

inf
Ax �=θ

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ = 1,
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according to the Schwartz inequality, means that for any x, Ax �= θ

inf
Ax �=θ

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ =

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ = sup

Ax �=θ

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ .

The second part concerns normal operators, acting in a finite dimensional space. To
formulate corresponding assertion, introduce some notations. Denote by L the set of
all two-dimensional subspaces, generated by the eigenelements of A. In the cited above
paper is stated that

inf
Ax �=θ

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ = inf

L∈L
inf
x∈L

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ .

The next example shows that this is not always the case.

EXAMPLE 1. Let

A =

⎛
⎜⎝

1 0 0

0 −1+i
√

3
2 0

0 0 − 1+i
√

3
2

⎞
⎟⎠

and x = {1 ; 1 ; 1} . Then Ax �= 0 and 〈Ax, x〉 = 0. It is easy to see that

inf
x∈Lk

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ = 0.5, k = 1, 2, 3.

The minima are attained on the elements {1 ; 1 ; 0} , {1 ; 0 ; 1} and {0 ; 1 ; 1 } .

This example also shows that Theorem 3.11 from [6] saying that for a unitary op-
erator U with countable spectrum lying on the (mimimal) arc with endpoints exp (iβ1)
and exp (iβ2) the equality

inf
Ux �=θ

|〈Ux, x〉 |
‖Ux‖ · ‖x‖ =

∣∣∣∣cos
β1 − β2

2

∣∣∣∣
holds, in general, is not true.

Note that this theorem is valid without restriction on operator’s spectrum, but only
when |β1 − β2| � π. Evidently, in this case the modulus sign may be omitted. If
|β1 − β2| > π, then the infimum is equal to zero.

PROPOSITION 2. For operator A from (1) the normalized numerical range is sym-
metric with respect to the midpoint perpendicular of the segment [sgnM ; sgn N] .

Proof. Turning the whole picture by the angle ϕ−ψ
2 , one may assume that the

points M and N are aeiα and be−iα respectively. Then
⎧⎪⎪⎨
⎪⎪⎩

x (t) =
at + b√

a2t + b2 · √1 + t
cosα

y (t) =
at − b√

a2t + b2 · √1 + t
sinα
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Change the variable s =
√

a
√

t−√
b√

a
√

t+
√

b
, mapping the segment [0; +∞] onto [−1; 1] . Then

t = b
a

(
1+s
1−s

)2
and 1 + t = a(1−s)2+b(1+s)2

a(1−s)2 , implying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =
2
√

ab
(
1 + s2

)
√(

a (1 + s)2 + b (1 − s)2
) (

a (1 − s)2 + b (1 + s)2
) cosα

y =
4
√

abs√(
a (1 + s)2 + b (1 − s)2

)(
a (1 − s)2 + b (1 + s)2

) sinα

The first of these functions is even and the second is odd, which proves our
assertion. �

Using this fact, we can establish an interesting property of the normalized numerical
range of a normal operator, acting in a two-dimensional unitary space. As it is well
known, the symmetry with respect to the axis of a unit vector v is defined by the
operator, generated by the correspondence r 
→ 2 〈 r, v〉 v − r . Recall also that the
inner product (at the canonical identification of R2 and C ) is defined by the formula

〈 r, v〉 = Re (rv) . We have v = ei ϕ+ψ
2 , so 2 〈 r, v〉 v − r = 2 Re

(
re−i ϕ+ψ

2

)
ei ϕ+ψ

2 − r.

Carrying out calculations and using the identity 2ei ϕ+ψ
2 cos ϕ−ψ

2 = eiϕ + eiψ , we get

|M| teiψ + |N| eiϕ√
|M|2 t + |N|2 · √1 + t

.

So the normalized numerical ranges of operators A =
(

M 0
0 N

)
and B =( |M| ei arg N 0

0 |N| ei arg M

)
coincide.

If one of the eigenvalues, e.g. N is equal to zero, then

〈Au, u〉
‖Au‖ · ‖u‖ =

M |α|
|M| ·

√
|α|2 + |β |2

=
|α|√

|α|2 + |β |2
sgn M, (α �= 0) ,

meaning that Wn (A) is the half-segment (0; sgnM] .
Denote by SpA the spectrum of A. Let for the operator A the following equality

be satisfied
‖αA − I‖ = sup

z∈SpA
|αz − 1| for all α (3)

(this condition, particularly, is satisfied for normal operators).

EXAMPLE 2. Let S be the operator of the simple unilateral shift. For any α, β ∈ C

one has
‖αS + βI‖ = sup

|z|�1
|αz + β | = |α| + |β | .
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In [3] it has been shown (particularly, for normal operators) that m (A) < 1 if
and only if the coordinate system’s origin O does not belong to the convex hull of
SpA. If this condition is satisfied, then there exists a unique circle D (C, R) with the
center at C and of radius R, containing SpA, leaving outside O and having the least
ratio R/OC among all circles, satisfying the above conditions. This circle will be
referred as optimal. It has been proved that the optimal for any convex compact subset
F circumference contains at least two points of F. One has the equality

m (A) = R/OC. (4)

This formula implies the general form of the Kantorovich inequality

inf
Ax �=θ

|〈Ax, x〉 |
‖Ax‖ · ‖x‖ =

√
1 − R2

OC2
. (5)

The optimal for the segment [λ1; λ2] circle has the center at

C =
|λ1| + |λ2|

sgnλ 1 + sgnλ 2

and the radius is

R =
∣∣∣∣ λ1 − λ2

sgn λ1 + sgnλ2

∣∣∣∣ ,
so the ratio

R
OC

=
|λ1 − λ2|
|λ1| + |λ2| . (6)

The last equality and formula (5) lead to formula (2).
It is easy to see that the Gustafson-Seddighin two component property will take

place if and only if the optimal for SpA circle is optimal for at least a segment, joining
two eigenvalues of A. This, in his turn is equivalent to the condition that the optimal
for some two eigenvalues circle contains SpA. On the other hand, if the optimal for
SpA circle D is not optimal for a segment [λ1; λ2] ⊂ SpA, then the boundary of D
contains at least a third point from SpA. So, to find the optimal for SpA circle the
following algorithm may be proposed. First, using formula (6) the quotient should be
calculated for different pairs of eigenvalues and their maximum should be found. If
the corresponding circle does not contain SpA, then all circles, passing through three
vertices of the convex hull of SpA should be traced. One of them will be the optimal
one.

The general Kantorovich inequality holds not only for normal operators with the
spectrum SpA = [λ1; λ2] , but for any operator, satisfying condition (3) and having the
spectrum, containing the points λ1 and λ2 and contained in the optimal for the segment
[λ1; λ2] circle.

For the operator, considered in the Example 2 we have

‖t (S + αI) − I‖ = |t| + |tα − 1| .
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For |α| > 1 one gets

m (S + αI) = inf
t∈C

{|t| + |αt − 1|} =
1
|α| .

According to the Kantorovich general inequality

m (S + αI) =
|α| + 1 − (|α| − 1)
|α| + 1 + |α| − 1

=
1
|α| .

2. Let the operator A be nilpotent with the index 2, i. e. A2 = 0. As it is
well known, any Hilbert space H may be represented as the orthogonal sum H =
N (A∗) ⊕ R (A) , where N (A) is the null-space, and R (A) is the range of the operator
A. Let h = f + g, f ∈ N (A∗) , g ∈ R (A) . Evidently Ah = Af , 〈Ah, h〉 =
〈Af , f + g〉 = 〈 f , A∗ (f + g)〉 = 〈 f , A∗g〉 = 〈Af , g〉 , implying (at f /∈ N (A) )

〈Ah, h〉
‖Ah‖ · ‖h‖ =

〈Af , g〉
‖Af ‖ ·

√
‖f ‖2 + ‖g‖2

.

Changing f by λ f , λ ∈ C, we get

λ 〈Af , g〉
|λ | · ‖Af ‖ ·

√
|λ |2 · ‖f ‖2 + ‖g‖2

.

Considering values |λ | = 1, we see that Wn (A) has a circular symmetry. Letting
|λ | → ∞ we conclude that it contains some circle. Choosing g parallel to Af , we get

‖g‖√
‖f ‖2 + ‖g‖2

,

showing that the circle has radius equal to 1. From here we may deduce the following

PROPOSITION 3. The normalized numerical range of the operator

J2 =
(

0 1
0 0

)

is the open unit circle {z : |z| < 1} .

Evidently the normalized numerical range of n− dimensional Jordan cell Jn will
be the same.

Note [2] that the normalized numerical range of the unilateral shift S is the open
unit circle and for S∗ - the closed unit circle.

Let now

A =
(

1 1
0 1

)
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and u = {α, β} , where α, β ∈ C. Then Au = {α + β , β} and

〈Au, u〉
‖Au‖ · ‖u‖ =

|α|2 + βα + |β |2√
|α + β |2 + |β |2 ·

√
|α|2 + |β |2

.

Denoting α = zβ , we get

〈Au, u〉
‖Au‖ · ‖u‖ =

1 + z + |z|2√
|1 + z|2 + 1 ·

√
|z|2 + 1

or
〈Au, u〉

‖Au‖ · ‖u‖ =
1 + x + x2 + y2 + iy√

(x + 1)2 + y2 + 1 ·
√

x2 + y2 + 1

def
= w (x, y) .

Fixing x or y , we get coordinate curves w = f (y) or w = g (x) . The boundary of
this region is the caustic of the set of coordinate curves. Using the derivatives, it is easy
to check that the point, where the minimum of g (x) is attained, does not depend on y
and takes place at x = − 1

2 . Another proof of this fact may derived from the formula

w (x, y) =

(
x + 1

2

)2
+ 3

4 + y2 + iy√(
1
2 + x + 1

2

)2
+ y2 + 1 ·

√(
1
2 − (

x + 1
2

))2
+ y2 + 1

.

Therefore, the boundary of this domain is the curve, which is obtained from the
general formula for w = f (y) putting the extremal value x = − 1

2 . Find now the image
of the vertical straight line z = −0.5 + iy, y ∈ R

f (y) =
0.75 + y2 + iy

1.25 + y2
.

Direct calculations show that

0.75 + y2 + iy
1.25 + y2

= 0.8 + 0.2 cos t +
i√
5

sin t, t ∈ (0; 2π) .

It is easy to see that inf
Au�=θ

|〈Au,u〉 |
‖Au‖·‖u‖ is attained on the element u = {1;−2} and is

equal to 0.6, and sup
Au�=θ

|〈 Au,u〉 |
‖Au‖·‖u‖ is attained on the element u = {1; 0} and is equal to 1.

More tedious calculations prove the following

PROPOSITION 4. The normalized numerical range of the operator

A =
(

1 k
0 1

)

is the domain, bounded by the ellipse

z =
4

4 + |k|2 +
1

4 + |k|2 cos t + i
1√

4 + |k|2
sin t, t ∈ [0; 2π) .
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Hence the normalized numerical range of the operator

J2 + λ I2 =
(
λ 1
0 λ

)

will be the domain, bounded by the ellipse

z =

⎛
⎝ 4 |λ |2

4 |λ |2 + 1
+

1

4 |λ |2 + 1
cos t + i

1√
4 |λ |2 + 1

sin t

⎞
⎠ exp (i argλ ) , t ∈ [0; 2π) .

Consider now the operator I +S∗, where S is the operator of the simple unilateral
shift. The subspace, generated by the first m elements {ek}m

1 of the basis, shifted by S
is invariant with respect to I + S∗ and its restriction on that subspace has the matrix

Im + Jm =

⎛
⎜⎜⎝

1 1 0 · · · 0
0 1 1 · · · 0
· · · · ·
0 0 0 · · · 1

⎞
⎟⎟⎠ .

Evidently Wn (I2 + J2) ⊂ Wn (I3 + J3) ⊂ · · · ⊂ Wn (I + S∗) .

PROPOSITION 5. For infinite dimensional Jordan cell I + S∗

Wn (I + S∗) = {z : |z| � 1, Re z > 0} .

Proof. Easily may be checked that any point from the circle {λ : |λ − 1| < 1} ={
λ : |λ |2 < 2 Reλ

}
is an eigenvalue of the operator I + S∗ and the corresponding

eigenelement has the form hλ =
∞∑

n=1
(λ − 1)n−1 en. Consider the element u = hλ −h1.

We have
‖u‖2 = 〈 hλ − h1, hλ − h1〉 = ‖hλ‖2 − 1,

(I + S∗) u = λhλ − h1,

‖(I + S∗) u‖2 = |λ |2 · ‖hλ‖2 − 2 Re λ + 1,

〈 (I + S∗) u, u〉 = λ · ‖hλ‖2 − λ .

Therefore

M (u) =
〈 (I + S∗) u, u〉

‖(I + S∗) u‖ · ‖u‖ =
λ

(
‖hλ‖2 − 1

)
√
|λ |2 · ‖hλ‖2 − 2 Re λ + 1 ·

√
‖hλ‖2 − 1

.

We also have ‖hλ‖2 = 1
1−|λ−1|2 = 1

2 Re λ−|λ |2 . Fixing argλ = α,
(|α| < π

2

)
, consider

the segment of the straight line, lying in the abovementioned circle. Letting λ approach
to the boundary of the circle, we get M (u) → eiα and M (u) → 0. As

〈 (I + S∗) hλ , hλ 〉
‖(I + S∗) hλ‖ · ‖hλ‖ =

λ ‖hλ‖2

|λ | · ‖hλ‖2 = sgnλ ,

hence
Wn (I + S∗) = {z : |z| � 1, Re z > 0} .

�
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PROPOSITION 6. The normalized numerical range of the operator

B =
(

0 M
N 0

)
M �= 0, N �= 0

is an ellipse.

Proof. Let u = {α, β} . Then

〈Bu, u〉
‖Bu‖ · ‖u‖ =

Mβα + Nαβ√
|Mβ |2 + |Nα|2 ·

√
|α|2 + |β |2

.

After transformations, described before Proposition 4 this quotient may be reduced
to the form

mz + z√
m2 + |z|2 ·

√
1 + |z|2

· exp

(
i
argM + argN

2

)
, m =

|M|
|N| , z ∈ C. (7)

The first factor is equal to

mreit + re−it

√
m2 + r2 · √1 + r2

=
r (m + 1) cos t + ir (m − 1) sin t√

m2 + r2 · √1 + r2
.

This curve (at fixed r ) is an ellipsewith semi-axes r(m+1)√
m2+r2·√1+r2 and r|m−1|√

m2+r2·√1+r2 ,

each of which attains its maximum value at r =
√

m. Therefore the boundary of this
domain is the curve, which results if the substitution z =

√
m exp (it) is carried out in

(7). Hence, the domain, bounded by the ellipse

w (t) =
(

cos t + i
|M| − |N|
|M| + |N| sin t

)
· exp

(
i
argM + argN

2

)
, t ∈ [0 ; 2π)

is the normalized numerical range of the operator B. �

RE F ER EN C ES

[1] W. AUZINGER, Sectorial operators and normalized numerical range, Appl. Numer. Math. 45 (2003),
367–388.

[2] L. GEVORGYAN, On the convergence rate of iterations and the normalized numerical range, Math. Sci.
Res. J. 8 (2004), no. 1, 16–26.

[3] L. GEVORGYAN, On some ill conditioned operator equations, Dokl. Nats Akad Nauk Armen. 107 (2007),
no. 2, 111–117.

[4] K. GUSTAFSON, D. RAO, Numerical Range, Springer, Berlin, 1997.
[5] L. V. KANTOROVICH, Funkcional’ny analiz i prikladnaya matematika, Uspehi Mat Nauk. 3(28), 89–185

(1948).
[6] M. SEDDIGHIN, Antieigenvalues and total antieigenvalues of normal operators, J. Math. Anal. Appl. 274

(2002) 239–254.

(Received June 5, 2008) L. Z. Gevorgyan
State Engineering University of Armenia

Department of Mathematics
e-mail: levgev@hotmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


