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AN ELEMENTARY PROOF OF VOICULESCU’S ASYMPTOTIC
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Abstract. D. Voiculescu [2] proved that a standard family of independent random unitary k× k
matrices and a constant k× k unitary matrix is asymptotically free as k → ∞ . This result was a
key ingredient in Voiculescu’s proof [3] that his free entropy is additive when the variables are
free. In this paper, we give a very elementary proof of a more detailed version of this result [2].
We have not yet recaptured Voiculescu’s strengthened version [4].

1. Preliminaries

The theory of free probability and free entropy was introduced by D. Voiculescu
in the 1980’s, and has become one of the most powerful and exciting new tools in
the theory of von Neumann algebras. D. Voiculescu [2] proved that a standard family
of independent random unitary k× k matrices and a constant k× k unitary matrix is
asymptotically free as k → ∞ . To prove this result, Voiculescu used his noncommuta-
tive central limit theorem and the fact that the unitaries in the polar decomposition of
a family of standard Gaussian random matrices form a standard family of independent
unitary k× k random matrices. Voiculescu used this result and a Lipschitz property
and facts about Levy families to prove that the Haar measure of certain sets of tuples
of k× k matrices converges to 1 as k → ∞ (see the remarks after Theorem 3.9 in [2]).
Later, D. Voiculescu [4], using similar techniques, strengthened his asymptotic result
by removing restrictions on the type of constant matrices.

In this paper, we give a very elementary proof of Voiculescu’s asymptotic result
in [2] that uses only the basic properties of Haar measure and the definition of unitary
matrix. A simple application of Chebychev’s inequality yields the result about the
measures of sets converging to 1 (see Corollary 7).

Let Mk(C) be the k× k full matrix algebra with entries in C . For 1 � i, j � k ,
define fi j : Mk(C) → C so that any element a in Mk(C) is the matrix ( fi j(a)), i.e.,
fi j(a) is the (i, j)-entry of a . Define the normalized trace τk on Mk(C) by

τk(a) =
1
k

k

∑
i=1

fii(a), for any a ∈ Mk(C).
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A k× k matrix u is a unitary matrix if and only if

k

∑
i=1

| fi j1 (u)|2 =
k

∑
j=1

| fi1 j(u)|2 = 1, for 1 � i1, j1 � k, and

k

∑
i=1

fi j1(u) fi j2(u) =
k

∑
j=1

fi1 j(u) fi2 j(u) = 0, whenever i1 �= i2 and j1 �= j2.

Let Uk be the group of all unitary matrices in Mk(C) . Since Uk is a compact group,
there exists a unique normalized Haar measure μk on Uk . In addition,

∫
Uk

f (u)dμk(u) =
∫

Uk

f (vu)dμk(u) =
∫

Uk

f (uv)dμk(u),

for every continuous function f : Uk → C and v ∈ Uk .
By the translation-invarianceof μk , we have the following lemmas (also see Lemma

12, Lemma 13 and Lemma 14 in [1]).

LEMMA 1. If g : Cn → Cn is a continuous function, σ and ρ are permutations
of {1,2, . . . ,k} , then

∫
Uk

g( fi1 j1(u), fi2 j2(u), . . . , fin jn(u))dμk(u)

=
∫

Uk

g( fσ(i1),ρ( j1)(u), fσ(i2),ρ( j2)(u), . . . , fσ(in),ρ( jn)(u))dμk(u).

LEMMA 2. If
∫
Uk

fi1 j1(u) · · · fim jm(u) fs1t1(u) · · · fsrtr(u)dμk(u) �= 0 , then
1. m = r ,
2. (i1, i2, . . . , im) is a permutation of (s1,s2, . . . ,sr) ,
3. ( j1, j2, . . . , jm) is a permutation of (t1,t2, . . . ,tr) .

LEMMA 3. If d is the maximum cardinality of the sets {i1, . . . , in}, { j1, . . . , jn},
{s1, . . . ,sr} and {t1, . . . ,tr}, then, for every positive integer k � d,

∣∣∣∣
∫

Uk

fi1 j1(u) · · · fin jn(u) fs1t1(u) · · · fsrtr(u)dμk(u)
∣∣∣∣� 1

P(k,d)
,

where P(k,d) = k (k−1) · · · (k−d +1) .

2. Main result

If f : F → C , let ‖ f‖∞ = sup{| f (x)| : x ∈ F} .
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LEMMA 4. Let n,m,k be positive integers. Let F,G be finite subsets of N with
n =Card(F) and m =Card(G) . Suppose { fi,g j : i∈ F, j ∈G} is a family of mappings
from {1, . . . ,k} = H to C such that ∑k

a=1 fi (a) = 0 for i ∈ F. Then∣∣∣∣∣∣ ∑
σ :F∪G

1−1→ H

∏
i∈F

fi (σ (i))∏
j∈G

g j (σ ( j))

∣∣∣∣∣∣� km+ n
2 (n+m)n∏

i∈F
‖ fi‖∞∏

j∈G

∥∥g j
∥∥
∞ .

Proof. The proof is by induction on n. When n = 0, the obvious interpretation of
the inequality is ∣∣∣∣∣∑σ ∏j∈G

g j (σ ( j))

∣∣∣∣∣� km∏
j∈G

∥∥g j
∥∥
∞ ,

and it holds since the number of functions σ : G
1−1→ H is no more than km .

Suppose the lemma holds for n . For n + 1, let E = F \ {b} be a subset of F ,
where b ∈ F . Then the cardinality of E is n . We can define a one-to-one mapping
σ : F ∪G → H by defining the one-to-one mapping σ : E ∪G → H and choosing
s /∈ σ (E ∪G) to be σ(b) . Then∣∣∣∣∣∣ ∑

σ :F∪G
1−1→ H

∏
i∈F

fi (σ (i))∏
j∈G

g j (σ ( j))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∑

s/∈σ(E∪G)
fb(s)

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
k

∑
s=1

fb(s)

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

− ∑
σ :E∪G

1−1→ H

(
∑

s∈σ(E∪G)
fb(s)

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

∣∣∣∣∣∣
(using

k

∑
s=1

fb(s) = 0)

=

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∑

s∈σ(E∪G)
fb(s)

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∑

t∈E∪G

fb(σ(t))

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

∣∣∣∣∣∣
�

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∑
t∈E

fb(σ(t))

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

∣∣∣∣∣∣
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+

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∑
t∈G

fb(σ(t))

)
∏
i∈E

fi(σ(i))∏
j∈G

g j(σ( j))

∣∣∣∣∣∣
� ∑

t∈E

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∏

i∈E,i�=t

fi(σ(i))

)
( fb ft )(σ(t))∏

j∈G

g j(σ( j))

∣∣∣∣∣∣
+∑

t∈G

∣∣∣∣∣∣ ∑
σ :E∪G

1−1→ H

(
∏

i∈E,i�=t

fi(σ(i))

)
( fb ft)(σ(t))∏

j∈G

g j(σ( j))

∣∣∣∣∣∣
(using induction on the quantities inside the absolute value signs

and viewing fb ft as a single function)

� n((m+1)+ (n−1))n−1k
n−1
2 +m+1∏

i∈F
‖ fi‖∞∏

j∈G

‖g j‖∞

+m(m+n)nk
n
2 +m∏

i∈F
‖ fi‖∞∏

j∈G

‖g j‖∞

� (m+n+1)n+1k
n+1
2 +m∏

i∈F
‖ fi‖∞∏

j∈G

‖g j‖∞.

�

Let U n
k denote the direct product of n copies of Uk , and μn

k denote the corre-
sponding product measure. We will use −→u to denote a tuple (u1, . . . ,un) in U n

k .
The following lemma is a vastly improved estimate over Lemma 14 in [1] since

it is independent of the maximum cardinality of the indices in the integral. We require
the elementary inequalities mm � 2m2

and 1
P(k,m) � mm

km for positive integers m � k.

LEMMA 5. Suppose m is a positive integer. For every positive integers k,n with
k � m, and for all tuples (i1, . . . , im, j1, . . . , jm) with each element taking from {1, . . . ,k} ,
and (ι1, . . . , ιm,η1, . . . ,ηm) with each element taking from {1, . . . ,n} ,∣∣∣∣

∫
U n

k

fi1 j1(uι1) · · · fim jm(uιm) fs1t1(uη1) · · · fsmtm(uηm)dμn
k (�u)

∣∣∣∣� 4m2

km .

Proof. For 1 � j � n , let Tj = {1 � λ � m : ιλ = j} and T ∗
j = {1 � λ � m : ηλ =

j} . Then ∫
U n

k

fi1 j1(uι1) · · · fim jm(uιm) fs1t1(uη1) · · · fsmtm(uηm)dμn
k (�u)

=
n

∏
j=1

∫
Uk

(∏
λ∈Tj

fiλ jλ (u j) ∏
λ∈T ∗

j

fsλ tλ (u j))dμk(u j).

Hence, we can assume that n= 1. Moreover, in view of the Cauchy-Schwarz inequality,
it is sufficient to prove that

I =
∫

Uk

∣∣ fi1 j1 (u)
∣∣2 ∣∣ fi2 j2 (u)

∣∣2 · · · ∣∣ fim jm (u)
∣∣2 dμk (u) � 4m2

km . (1)
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Let d be the maximum cardinality of the sets {i1, . . . , im} and { j1, . . . , jm} . By
replacing u with u∗, which does not alter the integral but interchanges i’s with j ’s, we
can assume that d is the cardinality of {i1, . . . , im} . Then 1 � d � m. Let Bd,k be the
largest integral of the type in (1) with d = Card({i1, . . . , im}).

If d = m, then, by Lemma 3, the integral in (1) is at most 1
P(k,m) , and 1

P(k,m) �
mm

km � 4m2

km .
Now we will prove that Bd,k � 2mBd+1,k whenever 1 � d < m. For 1 � d < m ,

assume that the integral I in (1) equals Bd,k . Since d < m, at least two of i1, . . . , im
must be the same. From Lemma 1, we can assume that 1 � i1, . . . , im � d and 1 =
i1 = i2 = · · · = is and 1 /∈ {is+1, . . . , im} . Since k � m > d, we can define a unitary
matrix v with 1 on the diagonal except in the (1,1) and (k,k) positions, with 1√

2
in

the (1,1) ,(k,1) ,(k,k) positions and − 1√
2

in the (1,k) position. Since the integral
remains unchanged when we replace the variable u with vu, we obtain

Bd,k =
1
2s

∫
Uk

s

∏
β=1

∣∣∣ f1 jβ (u)+ fk jβ (u)
∣∣∣2 m

∏
α=s+1

∣∣ fiα jα (u)
∣∣2 dμk (u)

=
1
2s

∫
Uk

s

∏
β=1

(∣∣∣ f1 jβ (u)
∣∣∣2 + f1 jβ (u) fk jβ (u)+ f1 jβ (u) fk jβ (u)+

∣∣∣ fk jβ (u)
∣∣∣2) ·

m

∏
α=s+1

∣∣ fiα jα (u)
∣∣2 dμk (u)

=
1
2s

∫
Uk

s

∏
β=1

∣∣∣ f1 jβ (u)
∣∣∣2 m

∏
α=s+1

∣∣ fiα jα (u)
∣∣2 dμk (u)

+
1
2s

∫
Uk

s

∏
β=1

∣∣∣ fk jβ (u)
∣∣∣2 m

∏
α=s+1

∣∣ fiα jα (u)
∣∣2 dμk (u)+

1
2s

∫
Uk

Δdμk (u) ,

where Δ is a summation of 4s −2 terms with each of them having both an f1∗ (u) and
an fk∗ (u) factor (with or without conjugation signs) and the maximum cardinality of

the indices in each term is d +1, which implies
∣∣∣∫Uk

Δdμk (u)
∣∣∣� (4s−2)Bd+1,k .

Since

Bd,k =
∫

Uk

s

∏
β=1

∣∣∣ f1 jβ (u)
∣∣∣2 m

∏
α=s+1

∣∣ fiα jα (u)
∣∣2 dμk (u)

=
∫

Uk

s

∏
β=1

∣∣∣ fk jβ (u)
∣∣∣2 m

∏
α=s+1

∣∣ fiα jα (u)
∣∣2 dμk (u) ,

we have

Bd,k � 1
2s

(
Bd,k +Bd,k

)
+

1
2s (4s−2)Bd+1,k.

Therefore
Bd,k � 2mBd+1,k.
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It follows that Bd,k � 2m(m−d)Bm,k � 2m2

P(k,m) � 2m2
mm

km � 4m2

km when k � m and 1 � d � m.
�

For any positive integer m , let B(m) be the Bell number of m, i.e., the number
of equivalence relations on a set with cardinality m . Suppose M is a von Neumann
algebra with a faithful tracial state τ and U (M) is the set of all unitary elements in
M and −→u = (u1, . . . ,un) ∈ U (M )n . Let Fn be a free group with standard generators
h1, . . . ,hn . Then there is a homomorphism ρ : Fn →U (M ) such that ρ(h j) = u j. We
use the notation ρ(g) = g(−→u ) = g(u1, . . . ,un).

D. Voiculescu [2] proved that a standard family of independent random unitary
k× k matrices and a constant k× k unitary matrix are asymptotically free as k → ∞ .
The following theorem gives a very elementary proof of a more detailed version of D.
Voiculescu’s result. The constants in the following theorem are far from best possible,
but they are, at least, explicit.

THEOREM 6. Suppose M > 0 and m,k are positive integers with k � m. For
every reduced words g1, . . . ,gw ∈ Fn\{e} with ∑w

i=1 length(gi) = m, and commuting
normal k×k matrices x1, . . . ,xw with trace 0 and ‖xi‖� M for all 1 � i � w, we have

1. ∣∣∣∣
∫

U n
k

τk (g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw)dμn
k (�u)

∣∣∣∣� B(m) ·2m2 · (Mw)w

k
,

2.

∫
U n

k

|τk (g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw)|2 dμn
k (�u) � B(2m) ·4m2 · (2Mw)2w

k2 ,

3. if ε > 0 and k > 2·B(m)·2m2 ·(Mw)w

ε , then

μn
k ({−→v ∈ U n

k : |τk (g1 (�v)x1g2 (�v)x2 · · ·gw (�v)xw)| � ε})

� 4 ·B(2m) ·4m2 · (2Mω)2ω

k2ε2 .

Proof. Since x1, . . . ,xw are commuting normal matrices, there is a unitary matrix
v such that, for 1 � j � w , vx jv∗ = a j is diagonal. Since τk is tracial and

g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw = v∗ (g1 (v�uv∗)a1g2 (v�uv∗)a2 · · ·gw (v�uv∗)aw)v,

we have

τk (g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw) = τk (g1 (v�uv∗)a1g2 (v�uv∗)a2 · · ·gw (v�uv∗)aw) .

Thus, by the translation-invariance of μn
k , we can assume that x1, . . . ,xw are all diagonal

matrices.
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Proof of the first statement. Write g1(�u) = uε1s1 · · ·u
εm1
sm1

, g2(�u) = u
εm1+1
sm1+1 · · ·u

εm2
sm2

, . . . ,

gw(�u) = u
εmw−1+1
smw−1+1 · · ·uεmw

smw
with each ε j ∈ {−1,1} and s j ∈ {1, . . . ,n} and with the prop-

erty that s j = s j+1 implies ε j = ε j+1 unless j ∈ {m1, . . . ,mw} . Note that mw = m since
∑ length(gi) = m. Also write x j = diag(γ j (1) , . . . ,γ j (k)) for 1 � j � w.

Define +̇ on {1, . . . ,mw = m} by s+̇1 =
{

1, s = mw

s+1, 1 � s � mw −1
. Then we have

∫
U n

k

τk (g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw)dμn
k (�u)

=
1
k ∑

1�i1,...,imw+̇1=i1�k

(
w

∏
ν=1

γν
(
imν +̇1

))∫
U n

k

mw

∏
j=1

fi j i j+̇1

(
u
ε j
s j

)
dμn

k (�u) .

Let E = {1,2, . . . ,mw} . We can represent a choice of 1 � i1, . . . , imw � k by a
function α : E → H = {1, . . . ,k}. Thus we can replace the sum ∑

1�i1,...,imw+̇1=i1�k
with

∑
α :E→H

in the above equation. That is

(I =)
1
k ∑
α :E→H

(
w

∏
ν=1

γν (α(mν +̇1))

)∫
U n

k

mw

∏
j=1

fα( j),α( j+̇1)

(
u
ε j
s j

)
dμn

k (�u) .

It is enough to restrict sums to the functions α such that the integral

I (α) =
∫

U n
k

mw

∏
j=1

fα( j),α( j+̇1)

(
u
ε j
s j

)
dμn

k (�u) �= 0.

We call such function α good , thus

I =
1
k ∑

α :E→H
α is good

(
w

∏
ν=1

γν (α(mν +̇1))

)
I(α).

Since α is good, Lemma 2 tells us that mw must be even and exactly half of the ε j ’s
are 1 and the other half are −1. Combining Lemma 5 and the fact mw = m , we know
that

|I (α)| � 4(mw/2)2

kmw/2
=

4(m/2)2

km/2
� 2m2

km/2
. (2)

Moreover, since α is good, Lemma 2 says that if j ∈ E but j /∈ {1+̇m1, . . . ,1+̇mw} ,
then α ( j) = α ( j′) for some j′ �= j.

Next we define an equivalence relation ∼α on E by saying i ∼α j if and only if
α (i) = α ( j) . Note that if β : E → H, then the relations ∼α and ∼β are equal if and
only if there is a permutation σ : H →H such that β =σ ◦α. We define an equivalence
relation ≈ on the set of all good functions by

α ≈ β if and only if ∼α=∼β .
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It is clear that
α ≈ β =⇒ I (α) = I (β ) .

If j ∈ E, let [ j]α denote the ∼α -equivalence class of j , and let Eα denote the set
of all such equivalence classes. We can construct all of the functions β equivalent to α
in terms of injective functions

σ : Eα
1-1→ H

by defining
β ( j) = σ ([ j]α) .

Let A be a set that contains exactly one function α from each ≈ -equivalence class
of good functions. Then we can write

|I| =

∣∣∣∣∣∣∣∣∣∣∣
1
k ∑
α : E → H
α is good

(
w

∏
ν=1

γν (α(mν +̇1))

)
I(α)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣1k ∑α∈A

I(α) ∑
β≈α

w

∏
ν=1

γν (β (mν+̇1))

∣∣∣∣∣
=

1
k

∣∣∣∣∣∣∑α∈A

|I (α) ∑
σ :Eα

1-1→H

w

∏
ν=1

γν (σ ([mν +̇1]α))

∣∣∣∣∣∣
� 1

k ∑α∈A

|I (α)|
∣∣∣∣∣∣ ∑
σ :Eα

1-1→H

w

∏
ν=1

γν (σ ([mν +̇1]α))

∣∣∣∣∣∣ . (3)

Also we know that
Card (A) � B(m) . (4)

We only need to focus on
∣∣∣∑σ :Eα

1-1→H
∏w

ν=1γν (σ ([mν+̇1]α))
∣∣∣ . Let

Fα = {[mν +̇1]α : 1 � ν � w,Card ([mν+̇1]α) = 1} ,

Gα = {[mν+̇1]α : 1 � ν � w,Card ([mν +̇1]α) > 1} ,

Kα = Eα\(Fα ∪Gα) .

Since the product ∏w
ν=1γν (σ ([mν +̇1]α)) is determined once σ is defined on Fα ∪Gα ,

it follows that this product is repeated at most P(k,card(Kα)) times. Hence we have∣∣∣∣∣∣ ∑
σ :Eα

1-1→H

w

∏
ν=1

γν (σ ([mν +̇1]α))

∣∣∣∣∣∣
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� P(k,card(Kα ))

∣∣∣∣∣∣ ∑
σ :Fα∪Gα

1-1→H

w

∏
ν=1

γν (σ ([mν+̇1]α))

∣∣∣∣∣∣
� kcard(Kα )

∣∣∣∣∣∣ ∑
σ :Fα∪Gα

1-1→H

w

∏
ν=1

γν (σ ([mν +̇1]α))

∣∣∣∣∣∣ . (5)

If a = [mν +̇1]α ∈ Fα , from the definition of Fα , it is clear that ν is unique.
Then define fa (σ (a)) = γν (σ (a)) . By τk(xi) = 0 for all 1 � i � w , it follows that
∑k

s=1 fa(s) = 0. If b = [mν+̇1]α ∈ Gα , from the definition of Gα , the cardinality r of
b is greater than 1. Then define gb (σ (b)) = (γν (σ (b)))r . Therefore∣∣∣∣∣∣ ∑

σ :Fα∪Gα
1-1→H

w

∏
ν=1

γν (σ ([mν+̇1]α))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
σ :Fα∪Gα

1-1→H

∏
a∈Fα

fa (σ (a)) ∏
b∈Gα

gb (σ (b))

∣∣∣∣∣∣
(letting F = Fα ,G = Gα and using Lemma 4 )

� k[card(Fα )/2]+card(Gα )wwMw. (6)

As we mentioned before that card([ j]α) = 1 implies [ j]α ∈ Fα , we see that

[card(Fα)/2]+ card(Gα)+ card(Kα) � card(E)/2 = mw/2. (7)

Combining inequalities (2), (3), (4), (5), (6) and (7) together, we have

|I| � 1
k
B(m) ·2m2 · (Mw)w .

Proof of the second statement. Notice that

|τk (g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw)|2

=
1
k2 ∑

1�i1,...,imw+1=i1�k

(
w

∏
ν=1

γν (imν+1)

)
mw

∏
j=1

fi j i j+1

(
u
ε j
s j

)
·

∑
1�l1,...,lmw+1=l1�k

(
w

∏
λ=1

γλ
(
lmλ+1

)) mw

∏
t=1

flt lt+1

(
uεtst
)
.

Define +̇ on the set {1,2, . . . ,2mw} by

x+̇1 =

⎧⎨
⎩

1, x = mw

mw +1, x = 2mw

x+1, 1 � x � mw −1 or mw +1 � x � 2mw −1
.
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Let E = {1,2, . . . ,2mw} and H = {1, . . . ,k}. Then we have

∫
U n

k

|τk (g1 (�u)x1g2 (�u)x2 · · ·gw (�u)xw)|2 dμn
k (�u)

=
1
k2 ∑

α :E→H

(
w

∏
ν=1

γν (α(mν +̇1))

)(
w

∏
λ=1

γλ (α((mλ +̇1)+mw))

)
·

∫
U n

k

mw

∏
j=1

fα( j)α( j+̇1)

(
u
ε j
s j

) mw

∏
t=1

fα(t+mw)α((t+̇1)+mw)
(
uεtst
)
.

The rest of the proof is similar to the proof of the first statement.
Proof of the third statement. The third statement follows from statement 1 and

statement 2 and Chebychev’s inequality. The proof is similar to the proof of Theorem
2 in [1]. �

The following corollary is a direct consequence of the third statement of Theo-
rem 6.

COROLLARY 7. Suppose M,m,k are positive integers. Let D be a finite set of
commuting normal matrices with trace 0 in Mk(C) and ‖x‖ � M for all x ∈ D . Let

E = {(g1, . . . ,gr,x1, . . . ,xr) : r ∈ N,g1, . . . ,gr are reduced words in Fn \ {e}
such that

r

∑
i=1

length(gi) � m, and x1, . . . ,xr ∈ D}.

If e = (g1, . . . ,gr,x1, . . . ,xr) ∈ E and −→v ∈ U n
k , define e(−→v ) = g1(−→v )x1 · · ·gr(−→v )xr .

Then

μn
k

(⋂
e∈E

{−→v : |τk(e(−→v ))| < ε}
)

� 1− 4 · card(E ) ·B(2m) ·4m2 · (2Mr)2r

k2ε2 .

Lemma 5.1 [3] follows directly from the corollary above.
Let M be a von Neumann algebra with a tracial state τ and X1,X2, . . . ,Xn be

elements in M . For any R,ε > 0, and positive integers m and k , define ΓR(X1, . . . ,Xn;
m,k,ε) to be the subset of Mk(C)n consisting of all (x1, . . . ,xn) in Mk(C)n such that
‖x j‖ � R for 1 � j � n , and

∣∣∣τk(xη1
i1
· · ·xηq

iq )− τ(Xη1
i1

· · ·Xηq
iq )
∣∣∣< ε,

for all 1 � i1, . . . , iq � n , all η1, . . . ,ηq ∈ {1,∗} and all q with 1 � q � m .

Suppose
−→
U is a n-tuple in M and, for each positive integer k , −→uk is a n-tuple

in Mk(C) , then we say −→uk converges to
−→
U in distribution if p(−→uk ) → p(

−→
U ) for all

∗ -monomials p.
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COROLLARY 8. Let M,m be positive integers and ε > 0 . Suppose M is a von
Neumann algebra with a faithful trace τ . Suppose X1, . . . ,Xs are commuting normal
operators in M , U1, . . . ,Un are free Haar unitary elements in M and {X1, . . . ,Xs} ,
{U1, . . . ,Un} are free. For any positive integer k , let {x(k,1), . . . ,x(k,s)} be a set of
commuting normal k× k matrices such that supk, j ‖x(k, j)‖ � M and

(x(k,1), . . . ,x(k,s)) → (X1, . . . ,Xs)

in distribution as k → ∞ .
If

Ωk = {(v1, . . . ,vn) ∈
U n

k : (x(k,1), . . . ,x(k,s),v1, . . . ,vn) ∈ ΓM(X1, . . . ,Xs,U1, . . . ,Un;m,k,ε)},
then

lim
k→∞

μn
k (Ωk) = 1.

Lemma 5.2 [3] follows directly from the corollary above.
We end this paper with one last corollary.

COROLLARY 9. Let M,m be positive integers and ε > 0 . Suppose M is a von
Neumann algebra with a faithful trace τ . Suppose X1, . . . ,Xs are free normal opera-
tors in M . Suppose {x(k,1), . . . ,x(k,s)} is a set of normal k× k matrices such that
supk, j ‖x(k, j)‖ � M and, for 1 � j � s, x(k, j) → Xj in distribution as k → ∞ .

If

Θk = {(v1, . . . ,vs) ∈ U s
k : (v∗1x(k,1)v1, . . . ,v

∗
s x(k,s)vs) ∈ ΓM(X1, . . . ,Xs;m,k,ε)},

then
lim
k→∞

μn
k (Θk) = 1.
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