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PRESERVERS FOR NORMS OF LIE PRODUCT

CHI-KWONG L1, EDWARD POON AND NUNG-SING SZE

(Communicated by L. Rodman)

Abstract. Let ||-|| be a unitary similarity invariant norm on the set M, of n X n complex
matrices. A description is obtained for surjective maps ¢ on M, satisfying ||[AB — BA|| =
l9(A)¢(B)— ¢ (B)9(A)| forall A,B € M, . The general theorem covers the special cases when
the norm is one of the Schatten p-norms, the Ky-Fan k-norms, or the k-numerical radii.

1. Introduction

Let M, be the set of n x n matrices. A norm || - || is called a unitary similarity
invariant norm if ||{UAU*|| = ||A|| for all A € M,, and unitary U € M,,, and is called
a unitarily invariant norm if |UAV| = ||A| for all A € M, and unitary U,V € M,.
Clearly, any unitarily invariant norm is a unitary similarity invariant norm. To under-
stand a normed vector space, researchers study maps preserving the norms. Linear
maps ¢ satisfying ||¢(A)|| = ||A|| are known as linear isometries for the norm; maps ¢
satisfying ||¢(A) — ¢(B)|| = ||A — B|| are known as distance preserving maps. Linear
isometries for unitarily invariant norms and unitary similarity invariant norms are quite
well studied; see [1, 5] and the references therein. For instance, linear isometries for
unitarily invariant norms not equal to multiples of the Frobenius norm on M, always
have the form

A—UAV or Aw— UA'V

for some unitary U,V € M,,.

Since M, is an algebra, researchers also study multiplicative maps ¢ satisfying
ll¢(A)|| = ||All, or maps on a subset of M, satisfying ||¢(A)¢(B)|| = ||AB||; see [3, 2].
For instance, it was shown in [2] that for a unitary similarity invariant norm || - || on
M,, and a subset . of M,, containing all rank one idempotents, if a map ¢ : ./ — M,
satisfies ||¢(A)¢(B)|| = ||AB|| forall A,B € .7, then ¢ has the form
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A — u UAU* or A u UAU* (1.1)

for some unitary U and complex unit L4, depending on A.

In this paper, we determine the structure of surjective maps ¢ : M,, — M,, such that
forany A,B e M,,

o), (Bl = [[[A, Bll|, (1.2)

where [A,B] = AB — BA is the Lie product of A and B. In Section 2, we show that if
¢ : M, — M, is a surjective map satisfying (1.2), then there is a unitary U € M,, and a
subset .4, of normal matrices in M,, such that ¢ has the form

b(A) = UAUATU* + vul, A€M, \ N,
puaU (AN U* +val, A€ My,

where uy,v4 € C with |us| = 1, depending on A, and A — AT denotes one of the
following maps: A+ A, A+ A, A+ A" or A+ A*. The set .4, depends on the
given norm || - ||. For unitarily invariant norms, we characterize ./4; in terms of the
norm || -|| in section 3. In particular, if || - || is the Frobenius norm ||A|| = (trA*A)'/2,
then .4, can be any subset of the set of normal matrices. The situation is more intricate
for unitary similarity invariant norms which are not unitarily invariant. In Section 4,
we consider a class of norms of this nature, namely, the k-numerical radius for k €

{1,...,n—1}. In such cases, we show that .4} is always empty.

2. Unitary similarity invariant norm

In this section, let || - || be a unitary similarity invariant norm on the set M, of
n X n complex matrices. Our main result is the following.

THEOREM 2.1. Suppose n > 3, and ¢ : M, — M,, is a surjective map satisfying

Io(A), e(B)]]l = [[[A, B||.

Then there is a unitary matrix U and a subset Ny, of normal matrices such that ¢ has
the form

b(A) = UAUATU* + wal, A€ My\ M,
paU (AN U +val, A€ My,

where i, va € C with |ua| = 1, depending on A. Here, AT =A, A, A’ or A*.
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We need the following result from Semrl [7] to prove the above theorem.

THEOREM 2.2. Suppose n > 3, and ¢ : M, — M, is a bijective map satisfying

Let T" be the set of matrices A such that the Jordan form of A only has Jordan blocks of
sizes 1 or 2. Then there are an invertible matrix S, an automorphism & of the complex
field and a regular locally polynomial map A — pa(A) such that

0(A) =S(pa(AL)S™! forallAcT. 2.1)
Here, X is the matrix whose (i, j)-entry is o (X;;), and AT = A or A",

Denote by 6(A) the spectrum of A and N(A) the null space of A.

LEMMA 2.3. For any two matrices A and B, if
A, X]|| = ||[B,X]|| for all rank one X € M,, (2.2)

then there are u,v € C with |u| =1 such that one of the following holds with A=
UA +VI,.

(a) o(B)=0(A) and forany A € o(A),
N(B—AlL)=N(A—AIL,) and N(B' —Al,)=N(A"—AL,).

(b) The eigenvalues of A are not collinear, 6(B) = 0'( A) and for any A € o(A),
N(B—AL)=N(A—AIL,) and N(B' —AlL,)=N(A"—AL,).

Proof. Note that for any rank one matrix X =x)y’, [C,X] =0 if and only if x and
y' are the right and left eigenvectors of C corresponding to the same eigenvalue. To see
this, as [C,X] = (Cx)y' —x('C), then [C,X] =0 if and only if Cx = Ax and y'C = Ay’
for some A € C.

Suppose A and B satisfy (2.2). By the above observation on rank one matrices, A
and B must have the same sets of left and right eigenvectors. Furthermore, x; and x;
are the right eigenvectors of A corresponding to the same eigenvalue if and only if the
two eigenvectors correspond to the same eigenvalue of B. Thus, the eigenvalues of A
and B have the same geometric multiplicity.

Let Ay,...,A; be the distinct eigenvalues of A with xy,...,x; and yq,...,y; being
the right and left eigenvectors. Also for each pair of eigenvectors x; and y%, let ¥; be the
corresponding eigenvalue of B. Take X;; = xiy’j. Then AX;; = AiX;; and X;;A = A;X;;.
So forany 1 <i,j <k,

1A, X)) || = (| AiXij — A Xl = [ — A4 X

Similarly, ||[B,X;j]|| = |vi— v;jl||Xij|| - Therefore, |A;—A;| = |y; —v;| forall 1 <i,j<k.
Then there are i, v € C with |u| = 1 such that either
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1. i=uA;+v forall 1 <i<k;or
2. the eigenvalues of A are non-collinear and ¥; = uA; + v forall 1 <i<k.

Then the result follows with A = uA+vl,. O

LEMMA 2.4. Suppose A and B commute and satisfy (2.2). If A has at least two
distinct eigenvalues, then there are W, v € C with |u| =1 such that

(a) B=uA+vly, or

(b) A is normal with non-collinear eigenvalues and B = UA* + vI,.

Proof. As A and B commute, there is a unitary matrix U such that both U*AU
and U*BU are upper triangular, see [6, Theorem 2.3.3]. By replacing (A,B) with
(U*AU,U*BU), we may assume that A and B are upper triangular.

As A and B satisfy (2.2), Lemma 2.3 holds. Suppose Lemma 2.3(a) holds with
A = uA + vI,. Notice that ¢(B) = o(A) and

I[A,X]|| = ||[WA + VI, X]|| = ||[B,X]|| for all rank one X € M,,.

Suppose A is an eigenvalue of A and y € N(A' — Al,). For any z € C", let Z =
zy'. Then ZA = AZ and [A,Z] = (A — Al,)Z. Note that (A — AI,)Z has rank at most
one and tr((A — A1,)Z) = tr([A,Z]) =0, so (A — Al,)Z is unitarily similar to ||(A —
AL)z||||y' [|E12, where |[y'|| = ||y|| is the ¢2-norm of the vector y. Thus,

1A, Z)]| = | (A= AL)z]| |y || Ere]l-
Similarly, [|[B,Z]|| = [|(B— AL)z|[[[Y'[|[|E12|| - Hence,
(A —AL)z|| = ||(B—AL)z|| forallz€ C"and A € 6(A).
Now as
7*A*Az—2Re (A7 Az) +|A )P 2 = || (A — ALy)Z|)?
= ||(B—AL)z|* = z"B*Bz—2Re (Az"Bz) + |A|*2"z,
this implies that

2Re(Az"(A—B)z) =7 (A*A—B*B)z forallz€ C"and A € 5(A).

~

As A has at least two distinct eigenvalues, so does A. Taking any A,y € 6(A) with
A # v, we have

2Re(Az"(A—B)z) = 7" (A*A — B*B)z = 2Re (72" (A — B)z).

Thus, W((A —y)(A — B)) C iR, where W(X) is the numerical range of X. Then
(A —v)(A — B) is a skew-Hermitian matrix and hence A — B is a diagonal matrix. Now
forany 1 <i<n, b; € 6(B) =0(A). Also the ith entry of (B— b;l,)e; is zero while

only the ith entry of (A — B)e; can be nonzero. Then

(B = biil)eil|* = ||(A— biily)ei]*
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|(B = bila)ei + (A — B)e;|?
|(B — bilu)eil|* + || (A — B)ei|*.

Thus, (A—B)e; =0 forall 1 <i<n andhence B=A.
Now suppose Lemma 2.3(b) holds. Then by a similar argument, we can show that

[(A—AL)z|| = ||(B—AlL)z|| forall A € o(A) andz € C" (2.3)
and so (A —y)A — (A — y)B is a skew-Hermitian matrix. Then

A=7)Ta—(A—y)Tz=0,

or equivalently, T = ﬁ:j:TA , where T4 and Tp are the strictly upper triangular parts of
A and B. Now as the eigenvalues of A and hence A are not collinear, we can always

find another @ € o(A) such that % o # ﬁ z Then the above equation is possible only
if Ty = Tp = 0. In this case, A and B are both diagonal and hence normal. Also (2.3)
implies that A=B. [

From Lemma 2.4, we have the following consequence for diagonalizable matrices.

COROLLARY 2.5. Suppose A and B satisfy (2.2) and A is diagonalizable. Then
there are u,v € C with |u| =1 such that

(a) B=uA+vly, or

(b) A is normal with non-collinear eigenvalues and B = UA* + vi,.

Proof. Suppose A is diagonalizable. Then A = SDS~! for some invertible S and
diagonal D. By Lemma 2.3, B = S(uD + vI,)S~! or B=S(uD+ vI,)S~!. If A has
only one eigenvalue, then A is a scalar matrix and so is B. Then the result follows.
Suppose A has at least two eigenvalues. As A and B commute, the result now follows
by Lemma2.4. [

LEMMA 2.6. For any two matrices A and B, if
A, X]|| = ||[B,X]|| forallX € M, 2.4)

then there are i, v € C with |u| =1 such that
(@) B=uA+vl,, or
(b) A is normal with non-collinear eigenvalues and B = uA* + vI,.

Proof. Suppose A and B satisfy (2.4). Then clearly A and B commute. If A has
at least two eigenvalues, then the result follows from Lemma 2.4.
Suppose A has only one eigenvalue, say A. Then by Lemma 2.3, B has one
eigenvalue only, say y. Write A = SJS~! + Al,, where S is invertible and J = Jn, @
-+ @ Jy, is the Jordan block form of A with n; > --- > ny. Now as A and B satisfy
(2.4), A and B have the same set of commuting matrices. Then B = Sp(J)S~! + 11,
for some polynomial p of degree at most m = ny — 1 with p(0) =0.
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By a similar argument as in Lemma 2.4, we can show that
|(B—vL)z|| = ||(A—AlL)z|| forallz € C".
Then there is a unitary matrix W such that
Sp()S~' = (B—yl,) =W(A—AlL)=WSJs~ .
Write §=UT for unitary U and upper triangular T, V = U*WU and p(x) = ¥ c;x'.
Then we have
Tp()T ' =vriT'. (2.5)

Notice that both Tp(J)T~! and TJT ! are strictly upper triangular. Furthermore, the
first n; — 1 entries in the super-diagonal of Tp(J)T~! are ¢; times the corresponding
ny — 1 super-diagonal entries of TJT~!.

As V is unitary, we must have |c;| =1 and V = cily,—1 @V for some unitary
Vi € My_p,+1. Now comparing the leading n; x n; principal submatrices in (2.5), we
have

Tp(n )T = (Ll =1 @ Py DT T = 1T T

where 77 is the leading n; x n; principal submatrix of 7. Thus, Tj (Zf":2 c,-J,iZ 1) Tfl =
0 and so Y%, ciJ, =0. Hence, ¢c; =+ =c, =0. Then p(x) =cjx and so B =
clA+ ()/— Cl)t)ln. O

We are now ready to present the following.

Proof of Theorem 2.1. First we assume that ¢ is bijective. Since
1A, Bl = l[[¢(A), ¢(B)]|| forall A,B € M,,

by Theorem 2.2, ¢ has the form (2.1) with A" = A or A’. In particular, for any rank
one matrix R € M,,, there are ug, Vg € C with ug # 0 such that

O(R) = S(urRL + vrl,)S~ .

Without loss of generality, we may assume that ug >0 and vg =0.

We here consider only the case when AT = A. The case when AT = A’ is similar.
Fix an orthonormal basis {xi,...,x,} and define X;; = xix;. Take o = (ap,...,o) €
C" andlet A = Z'}:l o;jXj1.Fork=2,....n,

1A x,, 0 (08)S (Xt ) oS I = 11T (A), & (Xu) ]I = II[A, Xua] | = [| X |-

In particular, if o # 0 and oz = 1, we can deduce that

[ X21]] 1 ’ (| X31]]

(0%) . . )
HﬂxzzS(le)cS’lﬂ_uA ’5(1) (| ;5 S (X31) 0S|

‘G(sz)

(2.6)

Thus,

—Gf‘éz) ‘ is a constant. Since ¢ is an automorphism on C, it is either the identity

map A — A or the conjugate map A — A .
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Also as [|[X32, Xa]|| = [ X32]| = | [X32, X33] | »

||t M, S (X32) 0S| = [[9(X32), 0 (X22)] |
= 1[0(X32),0(X33)] | = | sty s S (X32) 58~

Thus, px,, = Ux,;, and from (2.6) and the fact that || X>|| = ||X31]|, we have
IS(X21)oS ™|l = 1S (X51)0S -

We now claim that S is a multiple of some unitary matrix. If not, then there
is a pair of orthonormal vectors y;,y3 such that ||Sy,| # ||Sys]|. Extend {y2,y3} to
an orthonormal basis {y1,y2,¥3,...,yn} and let x; = (y;)5-1. Then {x;,...,x,} also
forms an orthonormal basis. By the above study, we have

ISy2lllyiS ™ w2l = 1S (X21)oS ™ I = S(Xa) oS~ | = ISyl 1yiS ™ [ Erall,

which contradicts that ||Sy,|| # ||Sy3||. Thus, S is a multiple of some unitary matrix.
By absorbing the constant term, we may assume that S is unitary. Now for any rank
one matrices R and T,

IR Tl = [[[¢(R), p(T)]I| = |urtir [Ro, T5]|| = prpr[|[Ro, T5] |-

Since the norm is unitary similarity invariant, ||[R,T]|| = ||[Rc, T5]|| whenever [R,T] is
a rank one nilpotent matrix, and hence ugur =1 in this case.

Now for any rank one matrix A, we can always find two other rank one matrices B
and C such that [A,B], [A,C] and [B,C] are all rank one nilpotents. Then we must have
uap = tatc = uptc = 1. As all uu, up, Uc are positive real numbers, the equality is
possible only when uy = up = uc = 1. Then we have ¢(A) = SA;S™! = SA;S* for
all rank one A.

By replacing ¢ with the map A — S*@(A)S, we may assume that ¢(X) = X" for
all rank one matrices X, where X =X, X, X’ or X*. Then

114, BI[I = l[9(4), ¢ (B)][| = [[[A™,B7]|| = [[[4,B]"|| for all rank one A, B € M,.

Notice that the set {X : X = [A, B] for some rank one A and B} contains the set of trace
zero non-nilpotent matrices with rank at most two and so is dense in the set of trace zero
matrices with rank at most two. Thus, we see that

IX||=|IXT| forall trace zero matrices X with rank at most two.

Now define ® : M, — M, by A+ ¢(A)". Then ®(X) = X for all rank one
matrices X. For any A € M,, and rank one matrix X € M,,, as [A,X] is a trace zero
matrix with rank at most two,

114, X711 = ll[9(A), e X1l = ll[(4), X 7]| = [l[¢(A) ", X]]| = [[@(A) X]|-

Thus, ||[A,X]]| = ||[®(A),X]| for all rank one X. Then Corollary 2.5 implies that
D(A) = upA+ val, or D(A) = usA* + w1, for all diagonalizable matrices A and the
latter case happens only when A is normal.
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After absorbing the constants 4 and v4, we may assume that ®(X) = X for all
non-normal diagonalizable matrices X . Then

1A, BIIl = l[9(4), o (B)]| = [[@(A), @(B)]"|| = [[[A. B]"||

for all non-normal diagonalizable matrices A and B. Since the set of all non-normal
diagonalizable matrices is dense in M,,, we see that ||[A,B]|| = ||[A,B] || forall A,B €
M,,. Then for any A € M,,,

1A, X]] = [I[#(A), 6 ()] = [[[@(4), @(X)]"|| = [[@(A), 2(X)]|| = [|[@(4),X]|

for all non-normal diagonalizable matrices X, and so ||[A,X]| = ||[®(A),X]]|| for all
X € M,,. Now the result follows by Lemma 2.6.

Finally, we show that one only needs the surjective assumption to get the conclu-
sionon ¢.
Forany A,B € M,,, wesay A ~ B if

I1A,X]|| = |[[B.X]|| forall X € M,.

Then ~ is an equivalence relation. For each A € M,,, let Sy = {B: B ~ A} be the
equivalence class of A. By Lemma 2.6, either

(I) S4 is the set of matrices of the form uA + vI for some u,v € C with |u| =1,
or

(II) A is normal and A ~ A*, S, is the set of matrices of the form uA + vI or
UA* + vI for some u,v € C with |u|=1.

Pick a representative for each equivalence class and write <7 for the set of these
representatives. Since ¢ is surjective, Sy and ¢~!(S4) have the same cardinality ¢ for
every A € o7 . Thus there exists a map y : M, — M,, which maps ¢ ~!(S4) bijectively
onto Sy for each A € &7. Clearly y is bijective and w(A) ~ ¢(A) for all A € M,.
Then, for any A,B € M,,,

114, BIl| = ll¢(A), ¢(B)][| = lI[w(A), ¢(B)]l| = l[w(A), w(B)][l-

That is, y is a bijective map satisfying (2.2). By the previous part of our proof of the
theorem under the bijective assumption, we see that y has the desired form. Hence so
does ¢, as W(A) ~ ¢(A) implies ¢(A) = uw(A)+ vl or ¢(A) = uy(A)* + vI when
w(A)* is normal and y(A)* ~ y(A). O

REMARK 2.7. We point out that the triangle inequality of the unitary similarity
invariant norm has not been used in any part of the proofs in this section. So the result
actually holds true for more general unitary similarity invariant functions.
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3. Unitarily invariant norm

Using Theorem 2.1, one can give complete descriptions of maps ¢ satisfying
Il[¢(A),d(B)]|| = ||[A,B]|| for a specific norm by characterizing the elements in the
set .4, in the theorem. For example, let ||A||r = (trA*A)!'/? be the Frobenius norm on
M,,. We have the following.

PROPOSITION 3.1. If N € M, is normal, then ||[N,X]||r = ||[[N*,X]||r for all
X € M,,. Consequently, if || - || is a multiple of the Frobenius norm in Theorem 2.1, then
¢ has the form described there and N, can be any subset of the normal matrices.

Proof. Write N =U*DU where D =diag (Ay,...,4,) is diagonal and U is unitary.
Notice that [D,X] = AoX where A is the skew-symmetric matrix with (i, j)-entry
Ai—A; and o denotes the Schur product. Then

IIN.X]llF = |[D,UXU"]||[F = [AoUXU"||F = Ao UXU"||F
= [I[D" UXU||lr = |[U"D"U, X]|[F = [IIN", X] -

The second assertion is clear. [J
Similarly, one can use Theorem 2.1 to characterize the set .4, for specific norms
such as the Schatten p-norm and Ky Fan k-norm on M, defined by

, i
|A||p—<23; ) and HAHk:ZlSj(A)

respectively. Instead of doing a case-by-case study, we prove a general result con-
cerning the characterization of .4;, for unitarily invariant norms. In the following, we

always assume that || - || is a unitarily invariant norm on M, not equal to a multiple of
the Frobenius norm. We shall always normalize ||-|| so that we may assume ||Ej||=1.
PROPOSITION 3.2. Let || - || be a unitarily invariant norm on M,,, and let
m=max{r: ||A|| = ||A||r for all A with rank at most r}.

Suppose N € M,, is a normal matrix. Then
VXTI = [IIN*,X]|| - forallX € M, 3.1

if and only if one of the following holds.

(i) N has collinear or concyclic eigenvalues;

(ii) the maximum multiplicity of eigenvalues of N is at least n —m/2;

(iii) the maximum multiplicity of eigenvalues of N equals n— (m+1)/2, provided
that for any A,B € M,, with rank at most m+ 1, ||A|| = ||B|| whenever

m+1 m+1
Al =[Bllr and T s;(4) =[] s;(B)
j=1 j=1

In all other cases, there exists X € M, with real distinct eigenvalues such that

IV, XTI ([ [N, X
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By the above proposition, we can say more about Theorem 2.1 if the underlying
norm is unitarily invariant.

THEOREM 3.3. Suppose n >3 and ¢ : M, — M, is a surjective map satisfying

114, B]l| = [lle(A), ¢(B)]]|-

Then @ has the form described in Theorem 2.1 and a normal matrix N is in Ay, only
if N satisfies Proposition 3.2(i), (ii) or (iii).

It is clear that for the Schatten p-norm on M, with p #2, A € M, satisfies
|Al|F = ||A]|, if and only if rank (A) < 1. Similarly, for the Ky Fan k-norm on M,
A € M, satisfies ||A||r = ||A||x if and only if rank (A) < 1. Consequently, we have the
following.

COROLLARY 3.4. If the norm under consideration is the Schatten p-norm with
p # 2 or Ky Fan k-norm, the set N, in Theorem 3.3 is a subset of normal matrices
with collinear or concyclic eigenvalues only.

To prove Proposition 3.2, we need the following result.

THEOREM 3.5. [Frobenius-Konig] Let A be an n X n matrix. Every diagonal of
A contains a zero entry if and only if A has an r X s zero submatrix such that r+s > n.

LEMMA 3.6. Let N € M,, be normal with collinear or concyclic eigenvalues.
Then ||[N,X]|| = [|[N*,X]|| forall X € M,,.

Proof. If N is normal with collinear eigenvalues, then N* = oN + BI,, for some
o, € C with || = 1. Then the result clearly follows.

If N is normal with concyclic eigenvalues, N = oU + 1, for some o, € C and
unitary U € M,,. Then

IV X][| = e, X][| = || [UX = XU || = || |U*(UX = XU)U”||

= [al|XU" = U"X|| = [[[ev”, X]|| = [N, X][|. - OO

Proof of Proposition 3.2. If N is normal with collinear or concyclic eigenvalues,
the result follows by Lemma 3.6.

Now assume that N has neither collinear nor concyclic eigenvalues (so N has at
least 4 distinct eigenvalues and n > 4). Let A be an eigenvalue of N with maximal
multiplicity; write n — k for its multiplicity. Without loss of generality we may replace
N by N — AI and assume rankN = k. Note k > 3.

Case 1. Suppose 2k < m. Since both [N,X] and [N*,X] have rank at most 2k,
the norm of both is equal to their Frobenius norm. The result follows from Proposition
3.1

Now suppose 2k > m. Write N = UDU* where
D:diag(/ll,)Lz,...,/1k,0,...,0)
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and all A; are nonzero. Without loss of generality, A1, A2,43,0 are neither collinear nor
concyclic. Let A be the matrix whose (i, j)-entry is A; — A;. A transversal of an n x n
matrix is defined to be a set of n positions such that no two positions lie in the same
row or column.

Case 2. Suppose 2k > m+ 1. It suffices to show that [|[AoX|| # ||AoX|| for some
X with distinct real eigenvalues. By way of contradiction, suppose not.
Let Y be arank m+ 1 matrix such that ||Y|| # ||Y||r. Let s; > ... > ;41 be the

nonzero singular values of Y. Let t = 4/ s% + s%.
Define a matrix X = (X;;) as follows. Set

Xiz=a/(M—A3), Xz=c/(A—A3), Xigy1=b/A1, Xopp1=d/As

(a,b,c,d are free parameters).
Subcase a. If 2k < n, define

Xjk+j1=s;/A; for3<j<k,
Xirjj = —Sksj/Aj  forj=1,2,
Xivjj = —Sktj—1/A; for3 < j<k.

Set all other off-diagonal entries of X equal to zero. Finally, choose values for the
diagonal so that X has distinct real eigenvalues (this can be done by [4]).

Subcase b. If 2k > n, find a transversal of the (n—2) x (n—2) submatrix obtained
by deleting the 1st and 2nd rows, and 3rd and (k 4 1)th columns, of A, which avoids
any positions in which A has a zero. Such a transversal exists by the Frobenius-Konig
theorem (Theorem 3.5). Indeed, the largest zero submatrix of A has size (n—k) x (n—
k), so such a transversal exists if (n—k)+(n—k)<n—2,0r 2k>n+2.1f 2k=n+1,
there is only one (n—k) x (n — k) zero submatrix of A (since N has at least 4 distinct
eigenvalues). Since we have deleted the (k+ 1)th column of X, the largest forbidden
submatrix has size (n—k) x (n—k—1). Since (n—k)+ (n—k—1) <n—2 if and only
if 2k > n+ 1, we can again find such a transversal.

Define the entries of X on this transversal to be the singular values s3,...,s, of
Y divided by the entries of A in the corresponding positions. Set all other off-diagonal
entries of X equal to zero. Choose values for the diagonal so that X has distinct real
eigenvalues.

In either case, the singular values of AoX (respectively AoX) are given by the

singular values s3,...,s, of Y, together with the singular values of CCI Z (respectively
ae™ % pe~iP
oV de—id | where o =2arg(A; — A3), B =2arg;, y =2arg(A, —A3),and § =

2argA;. Given A = [‘Cl Z] and z € C, write

F(Az) = ‘

ab .
L dz} @ diag (s3,...,5)
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Letting 6 = —ot — 8 +f +v, we have F(A,1) = F(A,e'%) for any A € M, (by our
initial assumption ||AoX| = ||[AoX||). Replacing d by de’® we see that F(A,1) =
F(A,e*9) forall k € Z.
Note that
t {cosd) cos (1)}
Ap=—= |09
V2 [sing sing
has singular values 7 and 0, so F(Ay,1) = ||Y||r. Since any pair (07,0,) satisfying
0} + 03 =1* can be the singular values of A, /40 } i for some complex unit z, we are
k0 arbitrarily
ko6

done if 0/7 is irrational (by continuity, we can make [|Y||r = F(Az/4,€
close to ||Y||, giving a contradiction). Otherwise choose kg € Z so that @ = €"*0" is as
close to —1 as possible. (Since 0,4;,A4,,A3 are neither collinear nor concyclic, 8 is
not a multiple of 27.) We have argw € [27/3,4m/3],s0 |1+ w| < 1.

Since ||Y|| =F(Ay,1) =F(Ag,w) forany ¢ € [0,27], the norm is constant on all
matrices with singular values equal to

p7q7S3,...7Sn

where p* +¢> =1*, p>gq, and p >1v/3/2, ¢ <1/2. Writing B = E?;Zﬂ > 1t

follows that
|Y||r = F(B,e'") = F(B,e'Ve?)

for all 0 < y < 27/3 and k € Z. Choose v, k so that the singular values of Bo

1 1 -
L ei(w+k6)] are s1,s7. Then ||Y||r = ||Y||, a contradiction.

Case 3. Now suppose 2k = m+ 1. We divide into two subcases.
Subcase a. Suppose ||A|| = ||B|| whenever

2% 2%
rankA, rankB < 2k, ||A||[r = ||B||F, and  []s;(4) =[]s;(B).
=1 =1

Recall that N has rank k. Then ||[N,X]|| = ||[N*,X]|| for all X € M, since
[N,X] and [N*,X] both have rank at most 2k, have the same Frobenius norm, and
the products of the largest 2k singular values are the same. To see this last asser-
tion, we may assume N = D & 0,_;, where D € M, is a nonsingular diagonal matrix,

and write X = {X“ Xi2

where X1 € M. Using QR decompositions, we may write
Xo1 X

Xi2=[BO]V and Xp; =U {g} where U,V € M,,_; are unitary and B,C € M. Then

[D.X11] D[BO] {

Kl o0 |[63]

X = {[D,XH] DXlz] _ [lk 0} : i 0

—X1D 0 ou
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SO
2k 2k
Hlsj([N,X]) = |(detDB)(detCD)| = |(detD*B)(detCD*)| = Hlsj([N*,X])
= J=

as claimed.

Subcase b. Suppose Case 3a does not holds. That is, there exist positive numbers
ai,...,ay, and by,..., by such that

2k 2k 2k 2k
Yaj=Y0b; and [Ja;=]]b;
j=1 =1 =1 =1

but ||diag (ay,...,ax)|| # ||diag(by,...,by)||. Without loss of generality we may as-
sume a; = b; for j > 4.
Let C = a} +a3+d3 and D = aja3a3, and define

Q={(x,3,2) : > +y*+22=C,x**Z =D, andx >y >z >0}.

Let
Smin = min{x : (x,y,z) € Q for some y,z}

and
Smax = max{x: (x,y,z) € Q for some y,z}.

One sees that Q = {(x,y(x),z(x)) : X € [Smin,Smax]} Where y(x),z(x) are the unique
(continuous) functions such that (x,y(x),z(x)) € Q. Let

h(x) = [|diag (x,y(x),z(x),aa,.. ., ax)||.

Since h is continuous but not constant on the interval [$,in, Smax|, there is some
T € (Smin,Smax) such that A(T) # h(spmin). Let

£ = 0{x € [Spuins Smax] © h(x) = h(T)}.

Note that s,,;, < t, since, by continuity of &, h(t) = h(T).
Clearly, the set

00c
st(Y): [Y||7 =C,|detY? =D,Y = [0 f O], c,f,g>0
g00

iS Just [Smin, Smax] - By continuity, (Suin,Smax) is a subset of
abc

s1(A): |A||2 =C, |detA]> =D, A= |d fO|, a,b,c,d,f,g>0p,
g00



200 CHI-KWONG L1, EDWARD POON AND NUNG-SING SZE

abc
sowecanfind A= |d f 0| witha,...,g>0, ||[A||>=C, |detA]> =D, and s;(A) =1.
g00
Define a matrix X = (X;;) as follows. Set

Xiz=a/(M—2A3), Xigr1=b/M1, Xigra=c/h,

Xp=d/(Aa—2A3), Xopp1=f/la, Xit13=—8/23,

Xj’k+j=aj+1/lj for 3 < j <k,

Xir21 = —@kia/rM, Xipap = —ais/Aa, Xiwjj=—aij/A; ford <j<k
Set all other off-diagonal entries of X equal to zero. Choose values for the diagonal
so that X' has distinct real eigenvalues. Then the singular values of AoX (respectively
AoX) are given by ay,...,a,, together with the singular values of A (respectively

a b c

B=|d fe'® 0| where 0 is as defined in Case 2b, so ¢ # 1).
g 00

By way of contradiction, suppose ||AoX|| = |[[AoX]|. We have
h(t) = [AoX || = [[AoX|| = h(s1(B)),
so s1(B) >t by the definition of ¢. On the other hand, we have
51(B = p(B'B) < p(A*A) = 51 (A2 = 2
since |B*B| < A*A but |B*B| # A*A (see the proof of Theorem 8.4.5 in [6]; here |C]
denotes the matrix with (i, j)-entry |C;;|), giving the desired contradiction. [
4. k-numerical radius
If the norm in Theorem 2.1 is unitary similarity invariant but not unitarily invariant,
it is not so easy to characterize the set .4;. In the following, we consider a class of
unitary similarity invariant norms and show that the set .4;, in Theorem 2.1 has to be
empty. Recall that for 1 < k < n, the k-numerical range of A € M,, is the set
Wi(A) = {tr (AP) : P € M,,,P* =P = P*, r P =k},
and the k-numerical radius of A is the quantity

wie(A) = max{|u| : u € W(A)}.

Notice that wy () is a unitary similarity invariant norm but not a unitarily invariant
norm. We have the following result.
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THEOREM 4.1. Suppose 1 < k <n, and ¢ : M,, — M, is a surjective map satis-
fying
wr([0(A),9(B)]) = wi(J[A,B]) forall A,B€ M,.

Then ¢ has the form described in Theorem 2.1 with Ay, = 0. That is,
0(A) = uAUATU* + vl for all A € M,

for some unitary U, pa,va € C with |ua| =1, depending on A, and AT =A, A, A" or
A*.

By Theorem 2.1, we only need to prove that .4;, has to be empty. We start with
the following lemma.

LEMMA 4.2. Suppose C € M3 has trace zero and tr (C*C) = 1. Then
wi(C) =wy(C) < /2/3.

The equality holds if and only if C is unitarily similar to &(J3 — I3) for some & € C
with |E| = 1/v/6. (Recall J, is the n x n matrix whose every entry is one.)

Proof. Since trC = 0, we have u € Wi(C) if and only if —u € W2(C). So,
Wl(C) = Wz(C) .

For each 1 € [0,27), let H; = (¢!C+e~"C*)/2. Then tr(H;) =0 and tr (H?) <
tr (C*C) = 1. Thus, H; has eigenvalues hy > hy > hj satisfying hy +hy +h3 = 0 and
h2 +h3+h3 < 1. Itis easy to show that

Wl(Ht) = max{hl,—h3} < m,

and the equality holds if and only if (hy,ha,h3) = £(2,—1,—1)/+/6. Consequently,
w1 (C) =max{w;(H;) :t €[0,2m)} < +/2/3,

and the equality holds if and only if there is ¢ € [0,27) such that H, has eigenvalues
(2,—1,—1)/+/6, that is, H, is unitarily similar to (J3 —5)/v/6. Note that e"C =
H, +iG, such that tr (C*C) = tr (H?) +tr (G?). As tr (C*C) = tr (H?) =1, r G? = 0 so
that G, = 0. Thus, w; (C) = \/2/3 if and only if there is 7 € [0,27) such that ¢"C = H,
is unitarily similar to (J3 —51)/v6. O

Proof of Theorem 4.1. First, suppose .4;, contains a normal matrix with collinear
eigenvalues N. Then N* = aN + 1 for some o, € C with || =1, and so ¢(N) =
un(NT)* +vnl = iy (NT) 4 OyI where fiy = oy and 9y = Buy + vy if NT =N or
N', or fiy = 0luy and ¥y = Buy + vy if NT =N or N*. In all cases, we can replace
N by A\ {N}. Thus, we may assume that .4;, does not contain any normal matrix

with collinear eigenvalues.
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Now assume .4, contains a normal matrix A with at least three non-collinear
eigenvalues. Applying a unitary similarity, we may assume that A = diag(ay,...,a,)
where aj,a;,a3 are the three distinct non-collinear points.

For any non-normal X € M,,, wi([A,X]) = wr([¢(A), 9 (X)]) = wi([A*,X]). Since
this is true for all non-normal X € M,,, by continuity of the map X — wy(X) and the fact
that the set of non-normal matrices is dense in M,,, we see that wy([A, X]) = wr([A*, X])
forany X € M, .

Let

/(a1 —a2) 1/ (a1 — a3)

0
B=1/1/6 [1/(aa—a)) 0 1/(az —a3) | ©0,-3.
1/(a3—a1) 1/((137(12) 0

Then [A,B] = (J3 — )/V6®0,_3 has eigenvalues 2/v/6,—1/v6,—1/v6,0,...,0

Note that if H is Hermitian with eigenvalues h; > --- > hy,, then

k k
wk(H)—max{Zhj,ZhnjH}. 4.1)

j=1 j=1
Hence wi([|A,B]) = +/2/3. Now, [A*,B] = C®0,_3 with

0bc

c=+/1/6|b0d|,

cdO

where b = (a; —a3)/(a1 —az), c= (a1 —a3)/(a; —a3) and d = (ar — a3)/(az — a3)
are complex units. If k=1, then w;(C$0,-3) =w;(C). If 1 <k <n, then

wi(C®0,_3) = max {w ((¢"C+e "C*) ®0,_3) /2:1 € [0,27) } = w(C).

Note that C satisfies the hypothesis of Lemma 4.2, and w; (C) =w(C) = m Thus,
there is u € C with |u| = 1 such that uC is Hermitian with eigenvalues (2, —1,—1)/v/6.
Replacing (A,B) by (A,B)/./it, we may assume that u = 1. So, C is Hermman and
we have b?> = ¢ = d?> = 1. Thus, b,c,d € {1,—1}, and two of the real values in
{b,c,d} are equal. Without loss of generality, assume b = c.

Case 1. If b=c=1, then a; —a; =a; —ay and a;, — az = a; —az. So, both
a; —ay and a; — az are real. It follows that a;,a;,as are collinear. This contradicts the
fact that a;,a»,as are non-colinear.

Case 2. If b=c=—1,then a; —a = 7((11 7a2) and a; — a3z = 7((11 7(13).
Thus, a; —ay and a; — a3 are real multiples of i. It follows that a;,a;,a3 are collinear.
Contradiction arrived.

So, we see that .4, cannot contain a matrix with three non-collinear eigenvalues
and so .4, is empty. [J
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