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Abstract. Let ‖ · ‖ be a unitary similarity invariant norm on the set Mn of n× n complex
matrices. A description is obtained for surjective maps φ on Mn satisfying ‖AB− BA‖ =
‖φ(A)φ(B)−φ(B)φ(A)‖ for all A,B ∈ Mn . The general theorem covers the special cases when
the norm is one of the Schatten p -norms, the Ky-Fan k -norms, or the k -numerical radii.

1. Introduction

Let Mn be the set of n× n matrices. A norm ‖ · ‖ is called a unitary similarity
invariant norm if ‖UAU∗‖ = ‖A‖ for all A ∈ Mn and unitary U ∈ Mn , and is called
a unitarily invariant norm if ‖UAV‖ = ‖A‖ for all A ∈ Mn and unitary U,V ∈ Mn .
Clearly, any unitarily invariant norm is a unitary similarity invariant norm. To under-
stand a normed vector space, researchers study maps preserving the norms. Linear
maps φ satisfying ‖φ(A)‖= ‖A‖ are known as linear isometries for the norm; maps φ
satisfying ‖φ(A)− φ(B)‖ = ‖A−B‖ are known as distance preserving maps. Linear
isometries for unitarily invariant norms and unitary similarity invariant norms are quite
well studied; see [1, 5] and the references therein. For instance, linear isometries for
unitarily invariant norms not equal to multiples of the Frobenius norm on Mn always
have the form

A �→UAV or A �→UAtV

for some unitary U,V ∈ Mn .
Since Mn is an algebra, researchers also study multiplicative maps φ satisfying

‖φ(A)‖ = ‖A‖ , or maps on a subset of Mn satisfying ‖φ(A)φ(B)‖ = ‖AB‖ ; see [3, 2].
For instance, it was shown in [2] that for a unitary similarity invariant norm ‖ · ‖ on
Mn and a subset S of Mn containing all rank one idempotents, if a map φ : S → Mn

satisfies ‖φ(A)φ(B)‖ = ‖AB‖ for all A,B ∈ S , then φ has the form
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A �→ μAUAU∗ or A �→ μAUAU∗ (1.1)

for some unitary U and complex unit μA , depending on A .
In this paper, we determine the structure of surjective maps φ : Mn →Mn such that

for any A,B ∈ Mn ,

‖[φ(A),φ(B)]‖ = ‖[A,B]‖, (1.2)

where [A,B] = AB−BA is the Lie product of A and B . In Section 2, we show that if
φ : Mn → Mn is a surjective map satisfying (1.2), then there is a unitary U ∈ Mn and a
subset Nn of normal matrices in Mn such that φ has the form

φ(A) =

{
μAUA†U∗ +νAIn A ∈ Mn \Nn,

μAU(A†)∗U∗ +νAIn A ∈ Nn,

where μA,νA ∈ C with |μA| = 1, depending on A , and A �→ A† denotes one of the
following maps: A �→ A , A �→ A , A �→ At or A �→ A∗ . The set Nn depends on the
given norm ‖ · ‖ . For unitarily invariant norms, we characterize Nn in terms of the
norm ‖ ·‖ in section 3. In particular, if ‖ ·‖ is the Frobenius norm ‖A‖F = (trA∗A)1/2 ,
then Nn can be any subset of the set of normal matrices. The situation is more intricate
for unitary similarity invariant norms which are not unitarily invariant. In Section 4,
we consider a class of norms of this nature, namely, the k -numerical radius for k ∈
{1, . . . ,n−1} . In such cases, we show that Nn is always empty.

2. Unitary similarity invariant norm

In this section, let ‖ · ‖ be a unitary similarity invariant norm on the set Mn of
n×n complex matrices. Our main result is the following.

THEOREM 2.1. Suppose n � 3 , and φ : Mn → Mn is a surjective map satisfying

‖[φ(A),φ(B)]‖ = ‖[A,B]‖.

Then there is a unitary matrix U and a subset Nn of normal matrices such that φ has
the form

φ(A) =

{
μAUA†U∗ +νAIn A ∈ Mn \Nn,

μAU(A†)∗U∗ +νAIn A ∈ Nn,

where μA,νA ∈ C with |μA| = 1 , depending on A. Here, A† = A, A, At or A∗ .
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We need the following result from Šemrl [7] to prove the above theorem.

THEOREM 2.2. Suppose n � 3 , and φ : Mn → Mn is a bijective map satisfying

[A,B] = 0n ⇐⇒ [φ(A),φ(B)] = 0n.

Let Γ be the set of matrices A such that the Jordan form of A only has Jordan blocks of
sizes 1 or 2. Then there are an invertible matrix S , an automorphism σ of the complex
field and a regular locally polynomial map A �→ pA(A) such that

φ(A) = S(pA(A†
σ ))S−1 for all A ∈ Γ. (2.1)

Here, Xσ is the matrix whose (i, j)-entry is σ(Xi j) , and A† = A or At .

Denote by σ(A) the spectrum of A and N(A) the null space of A .

LEMMA 2.3. For any two matrices A and B, if

‖[A,X ]‖ = ‖[B,X ]‖ for all rank one X ∈ Mn, (2.2)

then there are μ ,ν ∈ C with |μ | = 1 such that one of the following holds with Â =
μA+νIn .

(a) σ(B) = σ(Â) and for any λ ∈ σ(Â) ,

N(B−λ In) = N(Â−λ In) and N(Bt −λ In) = N(Ât −λ In).

(b) The eigenvalues of A are not collinear, σ(B) = σ(Â) and for any λ ∈ σ(Â) ,

N(B−λ In) = N(Â−λ In) and N(Bt −λ In) = N(Ât −λ In).

Proof. Note that for any rank one matrix X = xyt , [C,X ] = 0 if and only if x and
yt are the right and left eigenvectors of C corresponding to the same eigenvalue. To see
this, as [C,X ] = (Cx)yt −x(ytC) , then [C,X ] = 0 if and only if Cx = λx and ytC = λyt

for some λ ∈ C .
Suppose A and B satisfy (2.2). By the above observation on rank one matrices, A

and B must have the same sets of left and right eigenvectors. Furthermore, x1 and x2

are the right eigenvectors of A corresponding to the same eigenvalue if and only if the
two eigenvectors correspond to the same eigenvalue of B . Thus, the eigenvalues of A
and B have the same geometric multiplicity.

Let λ1, . . . ,λk be the distinct eigenvalues of A with x1, . . . ,xk and y1, . . . ,yk being
the right and left eigenvectors. Also for each pair of eigenvectors xi and yt

i , let γi be the
corresponding eigenvalue of B . Take Xi j = xiyt

j . Then AXi j = λiXi j and Xi jA = λ jXi j .
So for any 1 � i, j � k ,

‖[A,Xi j]‖ = ‖λiXi j −λ jXi j‖ = |λi −λ j|‖Xi j‖.
Similarly, ‖[B,Xi j]‖= |γi−γ j|‖Xi j‖ . Therefore, |λi−λ j|= |γi−γ j| for all 1 � i, j � k .
Then there are μ ,ν ∈ C with |μ | = 1 such that either
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1. γi = μλi +ν for all 1 � i � k ; or

2. the eigenvalues of A are non-collinear and γ i = μλi +ν for all 1 � i � k .

Then the result follows with Â = μA+νIn . �

LEMMA 2.4. Suppose A and B commute and satisfy (2.2). If A has at least two
distinct eigenvalues, then there are μ ,ν ∈ C with |μ | = 1 such that

(a) B = μA+νIn , or
(b) A is normal with non-collinear eigenvalues and B = μA∗ +νIn .

Proof. As A and B commute, there is a unitary matrix U such that both U∗AU
and U∗BU are upper triangular, see [6, Theorem 2.3.3]. By replacing (A,B) with
(U∗AU,U∗BU) , we may assume that A and B are upper triangular.

As A and B satisfy (2.2), Lemma 2.3 holds. Suppose Lemma 2.3(a) holds with
Â = μA+νIn . Notice that σ(B) = σ(Â) and

‖[Â,X ]‖ = ‖[μA+νIn,X ]‖ = ‖[B,X ]‖ for all rank one X ∈ Mn.

Suppose λ is an eigenvalue of Â and y ∈ N(Ât − λ In) . For any z ∈ Cn , let Z =
zyt . Then ZÂ = λZ and [Â,Z] = (Â−λ In)Z . Note that (Â−λ In)Z has rank at most
one and tr((Â− λ In)Z) = tr([Â,Z]) = 0, so (Â− λ In)Z is unitarily similar to ‖(Â−
λ In)z‖‖yt‖E12 , where ‖yt‖ = ‖y‖ is the �2 -norm of the vector y . Thus,

‖[Â,Z]‖ = ‖(Â−λ In)z‖‖yt‖‖E12‖.
Similarly, ‖[B,Z]‖ = ‖(B−λ In)z‖‖yt‖‖E12‖ . Hence,

‖(Â−λ In)z‖ = ‖(B−λ In)z‖ for all z ∈ C
n and λ ∈ σ(Â).

Now as

z∗Â∗Âz−2Re(λ z∗Âz)+ |λ |2z∗z = ‖(Â−λ In)z‖2

= ‖(B−λ In)z‖2 = z∗B∗Bz−2Re(λ z∗Bz)+ |λ |2z∗z,
this implies that

2Re(λ z∗(Â−B)z) = z∗(Â∗Â−B∗B)z for all z ∈ C
n and λ ∈ σ(Â).

As A has at least two distinct eigenvalues, so does Â . Taking any λ ,γ ∈ σ(Â) with
λ 	= γ , we have

2Re(λ z∗(Â−B)z) = z∗(Â∗Â−B∗B)z = 2Re(γz∗(Â−B)z).

Thus, W ((λ − γ)(Â − B)) ⊆ iR , where W (X) is the numerical range of X . Then
(λ − γ)(Â−B) is a skew-Hermitian matrix and hence Â−B is a diagonal matrix. Now
for any 1 � i � n , bii ∈ σ(B) = σ(Â) . Also the i th entry of (B−biiIn)ei is zero while
only the i th entry of (Â−B)ei can be nonzero. Then

‖(B−biiIn)ei‖2 = ‖(Â−biiIn)ei‖2
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= ‖(B−biiIn)ei +(Â−B)ei‖2

= ‖(B−biiIn)ei‖2 +‖(Â−B)ei‖2.

Thus, (Â−B)ei = 0 for all 1 � i � n and hence B = Â .
Now suppose Lemma 2.3(b) holds. Then by a similar argument, we can show that

‖(Â−λ In)z‖ = ‖(B−λ In)z‖ for all λ ∈ σ(Â) and z ∈ C
n (2.3)

and so (λ − γ)Â− (λ − γ)B is a skew-Hermitian matrix. Then

(λ − γ)TA − (λ − γ)TB = 0,

or equivalently, TB = λ−γ
λ−γTA , where TA and TB are the strictly upper triangular parts of

A and B . Now as the eigenvalues of A and hence Â are not collinear, we can always

find another ω ∈ σ(Â) such that λ−ω
λ−ω 	= λ−γ

λ−γ . Then the above equation is possible only
if TA = TB = 0. In this case, A and B are both diagonal and hence normal. Also (2.3)
implies that Â = B . �

From Lemma 2.4, we have the following consequence for diagonalizable matrices.

COROLLARY 2.5. Suppose A and B satisfy (2.2) and A is diagonalizable. Then
there are μ ,ν ∈ C with |μ | = 1 such that

(a) B = μA+νIn , or
(b) A is normal with non-collinear eigenvalues and B = μA∗ +νIn .

Proof. Suppose A is diagonalizable. Then A = SDS−1 for some invertible S and
diagonal D . By Lemma 2.3, B = S(μD+ νIn)S−1 or B = S(μD+ νIn)S−1 . If A has
only one eigenvalue, then A is a scalar matrix and so is B . Then the result follows.
Suppose A has at least two eigenvalues. As A and B commute, the result now follows
by Lemma 2.4. �

LEMMA 2.6. For any two matrices A and B, if

‖[A,X ]‖ = ‖[B,X ]‖ for all X ∈ Mn, (2.4)

then there are μ ,ν ∈ C with |μ | = 1 such that
(a) B = μA+νIn , or
(b) A is normal with non-collinear eigenvalues and B = μA∗ +νIn .

Proof. Suppose A and B satisfy (2.4). Then clearly A and B commute. If A has
at least two eigenvalues, then the result follows from Lemma 2.4.

Suppose A has only one eigenvalue, say λ . Then by Lemma 2.3, B has one
eigenvalue only, say γ . Write A = SJS−1 +λ In , where S is invertible and J = Jn1 ⊕
·· · ⊕ Jns is the Jordan block form of A with n1 � · · · � ns . Now as A and B satisfy
(2.4), A and B have the same set of commuting matrices. Then B = Sp(J)S−1 + γIn
for some polynomial p of degree at most m = n1−1 with p(0) = 0.
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By a similar argument as in Lemma 2.4, we can show that

‖(B− γIn)z‖ = ‖(A−λ In)z‖ for all z ∈ C
n.

Then there is a unitary matrix W such that

Sp(J)S−1 = (B− γIn) = W (A−λ In) = WSJS−1.

Write S =UT for unitary U and upper triangular T , V =U∗WU and p(x) =∑m
i=1 cixi .

Then we have

T p(J)T−1 = VTJT−1. (2.5)

Notice that both T p(J)T−1 and TJT−1 are strictly upper triangular. Furthermore, the
first n1 −1 entries in the super-diagonal of T p(J)T−1 are c1 times the corresponding
n1−1 super-diagonal entries of TJT−1 .

As V is unitary, we must have |c1| = 1 and V = c1In1−1 ⊕V1 for some unitary
V1 ∈ Mn−n1+1 . Now comparing the leading n1 ×n1 principal submatrices in (2.5), we
have

T1p(Jn1)T
−1
1 = (c1In1−1⊕ [vn1,n1 ])T1Jn1T

−1
1 = c1T1Jn1T

−1
1 ,

where T1 is the leading n1×n1 principal submatrix of T . Thus, T1
(
∑m

i=2 ciJi
n1

)
T−1
1 =

0 and so ∑m
i=2 ciJi

n1
= 0. Hence, c2 = · · · = cm = 0. Then p(x) = c1x and so B =

c1A+(γ− c1λ )In . �
We are now ready to present the following.

Proof of Theorem 2.1. First we assume that φ is bijective. Since

‖[A,B]‖ = ‖[φ(A),φ(B)]‖ for all A,B ∈ Mn,

by Theorem 2.2, φ has the form (2.1) with A† = A or At . In particular, for any rank
one matrix R ∈ Mn , there are μR,νR ∈ C with μR 	= 0 such that

φ(R) = S(μRR†
σ +νRIn)S−1.

Without loss of generality, we may assume that μR > 0 and νR = 0.
We here consider only the case when A† = A . The case when A† = At is similar.

Fix an orthonormal basis {x1, . . . ,xn} and define Xi j = xix∗j . Take α = (α1, . . . ,αn) ∈
C

n and let A = ∑n
j=1α jXj1 . For k = 2, . . . ,n ,

‖μAμXkkσ(αk)S(Xk1)σS−1‖ = ‖[φ(A),φ(Xkk)]‖ = ‖[A,Xkk]‖ = ‖αkXk1‖.
In particular, if α2 	= 0 and α3 = 1, we can deduce that∣∣∣∣ α2

σ(α2)

∣∣∣∣ · ‖X21‖
‖μX22S(X21)σS−1‖ = μA =

∣∣∣∣ 1
σ(1)

∣∣∣∣ · ‖X31‖
‖μX33S(X31)σS−1‖ . (2.6)

Thus,
∣∣∣ α2
σ(α2)

∣∣∣ is a constant. Since σ is an automorphism on C , it is either the identity

map λ �→ λ or the conjugate map λ �→ λ .
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Also as ‖[X32,X22]‖ = ‖X32‖ = ‖[X32,X33]‖ ,

‖μX32μX22S(X32)σS−1‖ = ‖[φ(X32),φ(X22)]‖
= ‖[φ(X32),φ(X33)]‖ = ‖μX32μX33S(X32)σS−1‖.

Thus, μX22 = μX33 and from (2.6) and the fact that ‖X21‖ = ‖X31‖ , we have

‖S(X21)σS−1‖ = ‖S(X31)σS−1‖.
We now claim that S is a multiple of some unitary matrix. If not, then there

is a pair of orthonormal vectors y2,y3 such that ‖Sy2‖ 	= ‖Sy3‖ . Extend {y2,y3} to
an orthonormal basis {y1,y2,y3, . . . ,yn} and let x j = (y j)σ−1 . Then {x1, . . . ,xn} also
forms an orthonormal basis. By the above study, we have

‖Sy2‖‖y∗1S−1‖‖E12‖ = ‖S(X21)σS−1‖ = ‖S(X31)σS−1‖ = ‖Sy3‖‖y∗1S−1‖‖E12‖,
which contradicts that ‖Sy2‖ 	= ‖Sy3‖ . Thus, S is a multiple of some unitary matrix.
By absorbing the constant term, we may assume that S is unitary. Now for any rank
one matrices R and T ,

‖[R,T ]‖ = ‖[φ(R),φ(T )]‖ = ‖μRμT [Rσ ,Tσ ]‖ = μRμT‖[Rσ ,Tσ ]‖.
Since the norm is unitary similarity invariant, ‖[R,T ]‖= ‖[Rσ ,Tσ ]‖ whenever [R,T ] is
a rank one nilpotent matrix, and hence μRμT = 1 in this case.

Now for any rank one matrix A , we can always find two other rank one matrices B
and C such that [A,B] , [A,C] and [B,C] are all rank one nilpotents. Then we must have
μAμB = μAμC = μBμC = 1. As all μA,μB,μC are positive real numbers, the equality is
possible only when μA = μB = μC = 1. Then we have φ(A) = SAσS−1 = SAσS∗ for
all rank one A .

By replacing φ with the map A �→ S∗φ(A)S , we may assume that φ(X) = X+ for
all rank one matrices X , where X+ = X , X , Xt or X∗ . Then

‖[A,B]‖ = ‖[φ(A),φ(B)]‖ = ‖[A+,B+]‖ = ‖[A,B]+‖ for all rank one A,B ∈ Mn.

Notice that the set {X : X = [A,B] for some rank one A and B} contains the set of trace
zero non-nilpotent matrices with rank at most two and so is dense in the set of trace zero
matrices with rank at most two. Thus, we see that

‖X‖ = ‖X+‖ for all trace zero matrices X with rank at most two.

Now define Φ : Mn → Mn by A �→ φ(A)+ . Then Φ(X) = X for all rank one
matrices X . For any A ∈ Mn and rank one matrix X ∈ Mn , as [A,X ] is a trace zero
matrix with rank at most two,

‖[A,X ]‖ = ‖[φ(A),φ(X)]‖ = ‖[φ(A),X+]‖ = ‖[φ(A)+,X ]‖ = ‖[Φ(A),X ]‖.
Thus, ‖[A,X ]‖ = ‖[Φ(A),X ]‖ for all rank one X . Then Corollary 2.5 implies that
Φ(A) = μAA+νAIn or Φ(A) = μAA∗ +νAIn for all diagonalizable matrices A and the
latter case happens only when A is normal.
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After absorbing the constants μA and νA , we may assume that Φ(X) = X for all
non-normal diagonalizable matrices X . Then

‖[A,B]‖ = ‖[φ(A),φ(B)]‖ = ‖[Φ(A),Φ(B)]+‖ = ‖[A,B]+‖

for all non-normal diagonalizable matrices A and B . Since the set of all non-normal
diagonalizable matrices is dense in Mn , we see that ‖[A,B]‖ = ‖[A,B]+‖ for all A,B ∈
Mn . Then for any A ∈ Mn ,

‖[A,X ]‖= ‖[φ(A),φ(X)]‖ = ‖[Φ(A),Φ(X)]+‖ = ‖[Φ(A),Φ(X)]‖ = ‖[Φ(A),X ]‖

for all non-normal diagonalizable matrices X , and so ‖[A,X ]‖ = ‖[Φ(A),X ]‖ for all
X ∈ Mn . Now the result follows by Lemma 2.6.

Finally, we show that one only needs the surjective assumption to get the conclu-
sion on φ .

For any A,B ∈ Mn , we say A ∼ B if

‖[A,X ]‖ = ‖[B,X ]‖ for all X ∈ Mn.

Then ∼ is an equivalence relation. For each A ∈ Mn , let SA = {B : B ∼ A} be the
equivalence class of A . By Lemma 2.6, either

(I) SA is the set of matrices of the form μA+νI for some μ ,ν ∈ C with |μ | = 1,
or

(II) A is normal and A ∼ A∗ , SA is the set of matrices of the form μA + νI or
μA∗ +νI for some μ ,ν ∈ C with |μ | = 1.

Pick a representative for each equivalence class and write A for the set of these
representatives. Since φ is surjective, SA and φ−1(SA) have the same cardinality c for
every A ∈ A . Thus there exists a map ψ : Mn → Mn which maps φ−1(SA) bijectively
onto SA for each A ∈ A . Clearly ψ is bijective and ψ(A) ∼ φ(A) for all A ∈ Mn .
Then, for any A,B ∈ Mn ,

‖[A,B]‖ = ‖[φ(A),φ(B)]‖ = ‖[ψ(A),φ(B)]‖ = ‖[ψ(A),ψ(B)]‖.

That is, ψ is a bijective map satisfying (2.2). By the previous part of our proof of the
theorem under the bijective assumption, we see that ψ has the desired form. Hence so
does φ , as ψ(A) ∼ φ(A) implies φ(A) = μψ(A)+νI or φ(A) = μψ(A)∗ +νI when
ψ(A)∗ is normal and ψ(A)∗ ∼ ψ(A) . �

REMARK 2.7. We point out that the triangle inequality of the unitary similarity
invariant norm has not been used in any part of the proofs in this section. So the result
actually holds true for more general unitary similarity invariant functions.
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3. Unitarily invariant norm

Using Theorem 2.1, one can give complete descriptions of maps φ satisfying
‖[φ(A),φ(B)]‖ = ‖[A,B]‖ for a specific norm by characterizing the elements in the
set Nn in the theorem. For example, let ‖A‖F = (trA∗A)1/2 be the Frobenius norm on
Mn . We have the following.

PROPOSITION 3.1. If N ∈ Mn is normal, then ‖[N,X ]‖F = ‖[N∗,X ]‖F for all
X ∈ Mn . Consequently, if ‖ ·‖ is a multiple of the Frobenius norm in Theorem 2.1, then
φ has the form described there and Nn can be any subset of the normal matrices.

Proof. Write N =U∗DU where D = diag(λ1, . . . ,λn) is diagonal and U is unitary.
Notice that [D,X ] = Λ ◦X where Λ is the skew-symmetric matrix with (i, j)-entry
λi−λ j and ◦ denotes the Schur product. Then

‖[N,X ]‖F = ‖[D,UXU∗]‖F = ‖Λ◦UXU∗‖F = ‖Λ◦UXU∗‖F

= ‖[D∗,UXU∗]‖F = ‖[U∗D∗U,X ]‖F = ‖[N∗,X ]‖F .

The second assertion is clear. �
Similarly, one can use Theorem 2.1 to characterize the set Nn for specific norms

such as the Schatten p -norm and Ky Fan k -norm on Mn defined by

‖A‖p =

(
n

∑
j=1

s j(A)p

) 1
p

and ‖A‖k =
k

∑
j=1

s j(A),

respectively. Instead of doing a case-by-case study, we prove a general result con-
cerning the characterization of Nn for unitarily invariant norms. In the following, we
always assume that ‖ · ‖ is a unitarily invariant norm on Mn not equal to a multiple of
the Frobenius norm. We shall always normalize ‖·‖ so that we may assume ‖E11‖= 1.

PROPOSITION 3.2. Let ‖ · ‖ be a unitarily invariant norm on Mn , and let

m = max{r : ‖A‖ = ‖A‖F for all A with rank at most r}.
Suppose N ∈ Mn is a normal matrix. Then

‖[N,X ]‖ = ‖[N∗,X ]‖ for all X ∈ Mn (3.1)

if and only if one of the following holds.
(i) N has collinear or concyclic eigenvalues;
(ii) the maximum multiplicity of eigenvalues of N is at least n−m/2 ;
(iii) the maximum multiplicity of eigenvalues of N equals n−(m+1)/2 , provided

that for any A,B ∈ Mn with rank at most m+1 , ‖A‖ = ‖B‖ whenever

‖A‖F = ‖B‖F and
m+1

∏
j=1

s j(A) =
m+1

∏
j=1

s j(B).

In all other cases, there exists X ∈ Mn with real distinct eigenvalues such that
‖[N,X ]‖ 	= ‖[N∗,X ]‖ .
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By the above proposition, we can say more about Theorem 2.1 if the underlying
norm is unitarily invariant.

THEOREM 3.3. Suppose n � 3 and φ : Mn → Mn is a surjective map satisfying

‖[A,B]‖ = ‖[φ(A),φ(B)]‖.
Then φ has the form described in Theorem 2.1 and a normal matrix N is in Nn only
if N satisfies Proposition 3.2(i), (ii) or (iii).

It is clear that for the Schatten p -norm on Mn with p 	= 2, A ∈ Mn satisfies
‖A‖F = ‖A‖p if and only if rank(A) � 1. Similarly, for the Ky Fan k -norm on Mn ,
A ∈ Mn satisfies ‖A‖F = ‖A‖k if and only if rank(A) � 1. Consequently, we have the
following.

COROLLARY 3.4. If the norm under consideration is the Schatten p-norm with
p 	= 2 or Ky Fan k -norm, the set Nn in Theorem 3.3 is a subset of normal matrices
with collinear or concyclic eigenvalues only.

To prove Proposition 3.2, we need the following result.

THEOREM 3.5. [Frobenius-König] Let A be an n×n matrix. Every diagonal of
A contains a zero entry if and only if A has an r× s zero submatrix such that r+ s > n.

LEMMA 3.6. Let N ∈ Mn be normal with collinear or concyclic eigenvalues.
Then ‖[N,X ]‖ = ‖[N∗,X ]‖ for all X ∈ Mn .

Proof. If N is normal with collinear eigenvalues, then N∗ = αN +β In for some
α,β ∈ C with |α| = 1. Then the result clearly follows.

If N is normal with concyclic eigenvalues, N = αU +β In for some α,β ∈ C and
unitary U ∈ Mn . Then

‖[N,X ]‖ = ‖[αU,X ]‖ = |α|‖UX −XU‖= |α|‖U∗(UX −XU)U∗‖
= |α|‖XU∗−U∗X‖ = ‖[αU∗,X ]‖ = ‖[N∗,X ]‖. �

Proof of Proposition 3.2. If N is normal with collinear or concyclic eigenvalues,
the result follows by Lemma 3.6.

Now assume that N has neither collinear nor concyclic eigenvalues (so N has at
least 4 distinct eigenvalues and n � 4). Let λ be an eigenvalue of N with maximal
multiplicity; write n− k for its multiplicity. Without loss of generality we may replace
N by N−λ I and assume rankN = k . Note k � 3.

Case 1. Suppose 2k � m . Since both [N,X ] and [N∗,X ] have rank at most 2k ,
the norm of both is equal to their Frobenius norm. The result follows from Proposition
3.1.

Now suppose 2k > m . Write N = UDU∗ where

D = diag(λ1,λ2, . . . ,λk,0, . . . ,0)
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and all λ j are nonzero. Without loss of generality, λ1,λ2,λ3,0 are neither collinear nor
concyclic. Let Λ be the matrix whose (i, j)-entry is λi−λ j . A transversal of an n×n
matrix is defined to be a set of n positions such that no two positions lie in the same
row or column.

Case 2. Suppose 2k > m+1. It suffices to show that ‖Λ◦X‖ 	= ‖Λ◦X‖ for some
X with distinct real eigenvalues. By way of contradiction, suppose not.

Let Y be a rank m+1 matrix such that ‖Y‖ 	= ‖Y‖F . Let s1 � . . . � sm+1 be the

nonzero singular values of Y . Let t =
√

s2
1 + s2

2 .

Define a matrix X = (Xi j) as follows. Set

X13 = a/(λ1−λ3), X23 = c/(λ2−λ3), X1,k+1 = b/λ1, X2,k+1 = d/λ2

(a,b,c,d are free parameters).

Subcase a. If 2k � n , define

Xj,k+ j−1 = s j/λ j for 3 � j � k,

Xk+ j, j = −sk+ j/λ j for j = 1,2,

Xk+ j, j = −sk+ j−1/λ j for 3 < j � k.

Set all other off-diagonal entries of X equal to zero. Finally, choose values for the
diagonal so that X has distinct real eigenvalues (this can be done by [4]).

Subcase b. If 2k > n , find a transversal of the (n−2)×(n−2) submatrix obtained
by deleting the 1st and 2nd rows, and 3rd and (k + 1)th columns, of Λ , which avoids
any positions in which Λ has a zero. Such a transversal exists by the Frobenius-König
theorem (Theorem 3.5). Indeed, the largest zero submatrix of Λ has size (n−k)× (n−
k) , so such a transversal exists if (n−k)+(n−k)� n−2, or 2k � n+2. If 2k = n+1,
there is only one (n− k)× (n− k) zero submatrix of Λ (since N has at least 4 distinct
eigenvalues). Since we have deleted the (k + 1) th column of X , the largest forbidden
submatrix has size (n−k)× (n−k−1) . Since (n−k)+(n−k−1)� n−2 if and only
if 2k � n+1, we can again find such a transversal.

Define the entries of X on this transversal to be the singular values s3, . . . ,sn of
Y divided by the entries of Λ in the corresponding positions. Set all other off-diagonal
entries of X equal to zero. Choose values for the diagonal so that X has distinct real
eigenvalues.

In either case, the singular values of Λ ◦X (respectively Λ ◦X ) are given by the

singular values s3, . . . ,sn of Y , together with the singular values of

[
a b
c d

]
(respectively[

ae−iα be−iβ

ce−iγ de−iδ

]
, where α = 2arg(λ1 −λ3) , β = 2argλ1 , γ = 2arg(λ2−λ3) , and δ =

2argλ2 . Given A =
[
a b
c d

]
and z ∈ C , write

F(A,z) =
∥∥∥∥
[
a b
c dz

]
⊕diag(s3, . . . ,sn)

∥∥∥∥ .
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Letting θ = −α − δ + β + γ , we have F(A,1) = F(A,eiθ ) for any A ∈ M2 (by our
initial assumption ‖Λ ◦X‖ = ‖Λ ◦X‖ ). Replacing d by deiθ we see that F(A,1) =
F(A,eikθ ) for all k ∈ Z .

Note that

Aφ =
t√
2

[
cosφ cosφ
sinφ sinφ

]

has singular values t and 0, so F(Aφ ,1) = ‖Y‖F . Since any pair (σ1,σ2) satisfying

σ2
1 +σ2

2 = t2 can be the singular values of Aπ/4◦
[
1 1
1 z

]
for some complex unit z , we are

done if θ/π is irrational (by continuity, we can make ‖Y‖F = F(Aπ/4,e
ikθ ) arbitrarily

close to ‖Y‖ , giving a contradiction). Otherwise choose k0 ∈ Z so that ω = eik0θ is as
close to −1 as possible. (Since 0,λ1,λ2,λ3 are neither collinear nor concyclic, θ is
not a multiple of 2π .) We have argω ∈ [2π/3,4π/3] , so |1+ω |� 1.

Since ‖Y‖ = F(Aφ ,1) = F(Aφ ,ω) for any φ ∈ [0,2π ] , the norm is constant on all
matrices with singular values equal to

p,q,s3, . . . ,sn

where p2 + q2 = t2 , p � q , and p � t
√

3/2, q � t/2. Writing B =
[
t/2 t/2
t/2 t/2

]
, it

follows that
‖Y‖F = F(B,eiψ) = F(B,eiψeikθ )

for all 0 � ψ � 2π/3 and k ∈ Z . Choose ψ , k so that the singular values of B ◦[
1 1
1 ei(ψ+kθ)

]
are s1,s2 . Then ‖Y‖F = ‖Y‖ , a contradiction.

Case 3. Now suppose 2k = m+1. We divide into two subcases.
Subcase a. Suppose ‖A‖ = ‖B‖ whenever

rankA, rankB � 2k, ‖A‖F = ‖B‖F , and
2k

∏
j=1

s j(A) =
2k

∏
j=1

s j(B).

Recall that N has rank k . Then ‖[N,X ]‖ = ‖[N∗,X ]‖ for all X ∈ Mn since
[N,X ] and [N∗,X ] both have rank at most 2k , have the same Frobenius norm, and
the products of the largest 2k singular values are the same. To see this last asser-
tion, we may assume N = D⊕ 0n−k , where D ∈ Mk is a nonsingular diagonal matrix,

and write X =
[
X11 X12

X21 X22

]
where X11 ∈ Mk . Using QR decompositions, we may write

X12 =
[
B 0
]
V and X21 = U

[
C
0

]
where U,V ∈ Mn−k are unitary and B,C ∈ Mk . Then

[N,X ] =
[
[D,X11] DX12

−X21D 0

]
=
[
Ik 0
0 U

]⎡⎣ [D,X11] D
[
B 0
]

−
[
C
0

]
D 0n−k

⎤
⎦[Ik 0

0 V

]
,
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so

2k

∏
j=1

s j([N,X ]) = |(detDB)(detCD)| = |(detD∗B)(detCD∗)| =
2k

∏
j=1

s j([N∗,X ])

as claimed.

Subcase b. Suppose Case 3a does not holds. That is, there exist positive numbers
a1, . . . ,a2k and b1, . . . ,b2k such that

2k

∑
j=1

a2
j =

2k

∑
j=1

b2
j and

2k

∏
j=1

a j =
2k

∏
j=1

b j

but ‖diag(a1, . . . ,a2k)‖ 	= ‖diag(b1, . . . ,b2k)‖ . Without loss of generality we may as-
sume a j = b j for j � 4.

Let C = a2
1 +a2

2 +a2
3 and D = a2

1a
2
2a

2
3 , and define

Ω= {(x,y,z) : x2 + y2 + z2 = C, x2y2z2 = D, and x � y � z > 0}.

Let
smin = min{x : (x,y,z) ∈Ω for some y,z}

and
smax = max{x : (x,y,z) ∈Ω for some y,z}.

One sees that Ω = {(x,y(x),z(x)) : x ∈ [smin,smax]} where y(x),z(x) are the unique
(continuous) functions such that (x,y(x),z(x)) ∈Ω . Let

h(x) = ‖diag(x,y(x),z(x),a4, . . . ,a2k)‖.

Since h is continuous but not constant on the interval [smin,smax] , there is some
τ ∈ (smin,smax) such that h(τ) 	= h(smin). Let

t = inf{x ∈ [smin,smax] : h(x) = h(τ)}.

Note that smin < t , since, by continuity of h , h(t) = h(τ) .
Clearly, the set⎧⎨

⎩s1(Y ) : ‖Y‖2
F = C, |detY |2 = D,Y =

⎡
⎣0 0 c

0 f 0
g 0 0

⎤
⎦ , c, f ,g > 0

⎫⎬
⎭

is just [smin,smax] . By continuity, (smin,smax) is a subset of⎧⎨
⎩s1(A) : ‖A‖2

F = C, |detA|2 = D, A =

⎡
⎣a b c

d f 0
g 0 0

⎤
⎦ , a,b,c,d, f ,g > 0

⎫⎬
⎭ ,
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so we can find A =

⎡
⎣a b c

d f 0
g 0 0

⎤
⎦ with a, . . . ,g > 0, ‖A‖2

F =C , |detA|2 = D , and s1(A) = t .

Define a matrix X = (Xi j) as follows. Set

X13 = a/(λ1−λ3), X1,k+1 = b/λ1, X1,k+2 = c/λ1,

X23 = d/(λ2−λ3), X2,k+1 = f/λ2, Xk+1,3 = −g/λ3,

Xj,k+ j = a j+1/λ j for 3 � j � k,

Xk+2,1 = −ak+2/λ1, Xk+3,2 = −ak+3/λ2, Xk+ j, j = −ak+ j/λ j for 4 � j � k.

Set all other off-diagonal entries of X equal to zero. Choose values for the diagonal
so that X has distinct real eigenvalues. Then the singular values of Λ◦X (respectively
Λ ◦ X ) are given by a4, . . . ,an , together with the singular values of A (respectively

B =

⎡
⎣a b c

d f eiθ 0
g 0 0

⎤
⎦ where θ is as defined in Case 2b, so eiθ 	= 1).

By way of contradiction, suppose ‖Λ◦X‖= ‖Λ◦X‖ . We have

h(t) = ‖Λ◦X‖= ‖Λ◦X‖ = h(s1(B)),

so s1(B) � t by the definition of t . On the other hand, we have

s1(B)2 = ρ(B∗B) < ρ(A∗A) = s1(A)2 = t2

since |B∗B| � A∗A but |B∗B| 	= A∗A (see the proof of Theorem 8.4.5 in [6]; here |C|
denotes the matrix with (i, j)-entry |Ci j|), giving the desired contradiction. �

4. k -numerical radius

If the norm in Theorem 2.1 is unitary similarity invariant but not unitarily invariant,
it is not so easy to characterize the set Nn . In the following, we consider a class of
unitary similarity invariant norms and show that the set Nn in Theorem 2.1 has to be
empty. Recall that for 1 � k < n , the k -numerical range of A ∈ Mn is the set

Wk(A) = {tr(AP) : P ∈ Mn,P
2 = P = P∗, trP = k},

and the k -numerical radius of A is the quantity

wk(A) = max{|μ | : μ ∈Wk(A)}.

Notice that wk(·) is a unitary similarity invariant norm but not a unitarily invariant
norm. We have the following result.
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THEOREM 4.1. Suppose 1 � k < n, and φ : Mn → Mn is a surjective map satis-
fying

wk([φ(A),φ(B)]) = wk([A,B]) for all A,B ∈ Mn.

Then φ has the form described in Theorem 2.1 with Nn = /0 . That is,

φ(A) = μAUA†U∗ +νAI for all A ∈ Mn

for some unitary U , μA,νA ∈ C with |μA|= 1 , depending on A, and A† = A, A, At or
A∗ .

By Theorem 2.1, we only need to prove that Nn has to be empty. We start with
the following lemma.

LEMMA 4.2. Suppose C ∈ M3 has trace zero and tr(C∗C) = 1 . Then

w1(C) = w2(C) �
√

2/3.

The equality holds if and only if C is unitarily similar to ξ (J3 − I3) for some ξ ∈ C

with |ξ | = 1/
√

6 . (Recall Jn is the n×n matrix whose every entry is one.)

Proof. Since trC = 0, we have μ ∈ W1(C) if and only if −μ ∈ W2(C) . So,
w1(C) = w2(C) .

For each t ∈ [0,2π) , let Ht = (eitC + e−itC∗)/2. Then tr(Ht) = 0 and tr(H2
t ) �

tr(C∗C) = 1. Thus, Ht has eigenvalues h1 � h2 � h3 satisfying h1 +h2 +h3 = 0 and
h2

1 +h2
2 +h2

3 � 1. It is easy to show that

w1(Ht) = max{h1,−h3} �
√

2/3,

and the equality holds if and only if (h1,h2,h3) = ±(2,−1,−1)/
√

6. Consequently,

w1(C) = max{w1(Ht) : t ∈ [0,2π)} �
√

2/3,

and the equality holds if and only if there is t ∈ [0,2π) such that Ht has eigenvalues
(2,−1,−1)/

√
6, that is, Ht is unitarily similar to (J3 − I3)/

√
6. Note that eitC =

Ht + iGt such that tr(C∗C) = tr(H2
t )+ tr(G2

t ) . As tr(C∗C) = tr(H2
t ) = 1, trG2

t = 0 so
that Gt = 0. Thus, w1(C) =

√
2/3 if and only if there is t ∈ [0,2π) such that eitC = Ht

is unitarily similar to (J3− I3)/
√

6. �

Proof of Theorem 4.1. First, suppose Nn contains a normal matrix with collinear
eigenvalues N . Then N∗ = αN +β I for some α,β ∈ C with |α| = 1, and so φ(N) =
μN(N†)∗ +νNI = μ̂N(N†)+ ν̂NI where μ̂N = αμN and ν̂N = βμN +νN if N† = N or
Nt , or μ̂N = αμN and ν̂N = βμN +νN if N† = N or N∗ . In all cases, we can replace
Nn by Nn \ {N} . Thus, we may assume that Nn does not contain any normal matrix
with collinear eigenvalues.
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Now assume Nn contains a normal matrix A with at least three non-collinear
eigenvalues. Applying a unitary similarity, we may assume that A = diag(a1, . . . ,an)
where a1,a2,a3 are the three distinct non-collinear points.

For any non-normal X ∈Mn , wk([A,X ]) = wk([φ(A),φ(X)]) = wk([A∗,X ]) . Since
this is true for all non-normal X ∈Mn , by continuity of the map X �→wk(X) and the fact
that the set of non-normal matrices is dense in Mn , we see that wk([A,X ]) = wk([A∗,X ])
for any X ∈ Mn .

Let

B =
√

1/6

⎡
⎣ 0 1/(a1−a2) 1/(a1−a3)

1/(a2−a1) 0 1/(a2−a3)
1/(a3−a1) 1/(a3−a2) 0

⎤
⎦⊕0n−3.

Then [A,B] = (J3 − I3)/
√

6⊕ 0n−3 has eigenvalues 2/
√

6,−1/
√

6,−1/
√

6,0, . . . ,0.
Note that if H is Hermitian with eigenvalues h1 � · · · � hn , then

wk(H) = max

{
k

∑
j=1

h j,−
k

∑
j=1

hn− j+1

}
. (4.1)

Hence wk([A,B]) =
√

2/3. Now, [A∗,B] = C⊕0n−3 with

C =
√

1/6

⎡
⎣0 b c

b 0 d
c d 0

⎤
⎦ ,

where b = (a1− a2)/(a1−a2) , c = (a1− a3)/(a1−a3) and d = (a2− a3)/(a2−a3)
are complex units. If k = 1, then w1(C⊕0n−3) = w1(C) . If 1 < k < n , then

wk(C⊕0n−3) = max
{
wk
(
(eitC+ e−itC∗)⊕0n−3

)
/2 : t ∈ [0,2π)

}
= w2(C).

Note that C satisfies the hypothesis of Lemma 4.2, and w1(C) = w2(C) =
√

2/3. Thus,
there is μ ∈C with |μ |= 1 such that μC is Hermitian with eigenvalues (2,−1,−1)/

√
6.

Replacing (A,B) by (A,B)/
√μ , we may assume that μ = 1. So, C is Hermitian, and

we have b2 = c2 = d2 = 1. Thus, b,c,d ∈ {1,−1} , and two of the real values in
{b,c,d} are equal. Without loss of generality, assume b = c .

Case 1. If b = c = 1, then a1 − a2 = a1 − a2 and a1 − a3 = a1 − a3 . So, both
a1−a2 and a1−a3 are real. It follows that a1,a2,a3 are collinear. This contradicts the
fact that a1,a2,a3 are non-colinear.

Case 2. If b = c = −1, then a1 − a2 = −(a1 − a2) and a1 − a3 = −(a1 − a3) .
Thus, a1−a2 and a1−a3 are real multiples of i . It follows that a1,a2,a3 are collinear.
Contradiction arrived.

So, we see that Nn cannot contain a matrix with three non-collinear eigenvalues
and so Nn is empty. �
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