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RECONSTRUCTION OF THE TRANSMISSION COEFFICIENT

FOR STEPLIKE FINITE–GAP BACKGROUNDS

IRYNA EGOROVA AND GERALD TESCHL

(Communicated by F. Gesztesy)

Abstract. We consider scattering theory for one-dimensional Jacobi operators with respect to
steplike quasi-periodic finite-gap backgrounds and show how the transmission coefficient can be
reconstructed from minimal scattering data. This generalizes the Poisson–Jensen formula for the
classical constant background case.

1. Introduction

In classical one-dimensional scattering theory the transmission coefficient can be
reconstructed from the reflection coefficient via the well-known Poisson–Jensen for-
mula. This formula plays a crucial role in inverse scattering theory since it shows how
to compute the left scattering data from the right one and vice versa. Moreover, it is
also one of the key ingredients for deriving the associated sum rules which have at-
tracted an enormous amount of interest recently (see e.g. [17], [21], [23], [24], [31]).
Furthermore, these sum rules are intimately connected with conserved quantities of the
associated completely integrable lattices (see [26], [27]). Finally, the reconstruction for-
mula can be viewed as the solution of a scalar Riemann–Hilbert factorization problem
which arises in the nonlinear steepest decent method [5] when deriving the long-time
asymptotics (see [13], [18], respectively [19]).

Moreover, the same is true in case of scattering with respect to a finite-gap back-
ground [6], [30]. In this situation the analogous formula was given in [28] including
the associated sum rules (see also [7], [9], [22]). Again there is a close relation with the
solution of a scalar Riemann–Hilbert factorization problem on the underlying Riemann
surface which arises in the nonlinear steepest decent method [14], [15], [16], and [20].

However, while scattering theory with a steplike constant background is classical
and goes back to the early sixties [4] (see [2] for the most recent results), even in this
case the reconstruction formula is unknown to the best of our knowledge except for the
case when the two spectra overlap. This might be related to the fact that the case where
the two spectra do not overlap will not be solved in terms of elementary methods, but
will already require tools from the theory of elliptic surfaces, as we will see below. In
case of steplike finite-gap backgrounds, scattering theory is again well-understood by
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now [8], [10], however, the reconstruction formula is again unknown to the best of our
knowledge (except for the case of two finite-gap backgrounds in the same isospectral
class [8]). The main purpose of our paper is to fill this gap and provide a reconstruction
formula for the left/right transmission coefficient in terms of the left/right scattering
data.

2. Notation

We begin by introducing some required background from the theory of hyperellip-
tic curves to be used in the remainder of this article. For further information and proofs
we refer for instance to [1], [3], [11], [12], or [27].

Let M be the Riemann surface associated with the function P1/2(z) , where

P(z) =
2g+1

∏
j=0

(z−Ej), E0 < E1 < · · · < E2g+1, (2.1)

g ∈ N . M is a compact, hyperelliptic Riemann surface of genus g . We will choose
P1/2(z) as the fixed branch

P1/2(z) = −
2g+1

∏
j=0

√
z−Ej, (2.2)

where √
. is the standard root with branch cut along (−∞,0) .

A point on M is denoted by p = (z,±P1/2(z)) = (z,±) , z ∈ C . The two points at
infinity are denoted by p = ∞± . We use π(p) = z for the projection onto the extended
complex plane C∪{∞} . The points {(Ej,0),0 � j � 2g+ 1} ⊆ M are called branch
points and the sets

Π± = {(z,±P1/2(z)) | z ∈ C\Σ} ⊂ M, Σ =
g⋃

j=0

[E2 j,E2 j+1], (2.3)

are called upper and lower sheet, respectively. Note that the boundary of Π± consists
of two copies of Σ corresponding to the two limits from the upper and lower half plane.

Let {a j,b j}g
j=1 be loops on the Riemann surface M representing the canonical

generators of the fundamental group π1(M) . We require a j to surround the points
E2 j−1 , E2 j (thereby changing sheets twice) and b j to surround E0 , E2 j−1 counter-
clockwise on the upper sheet, with pairwise intersection indices given by

a j ◦ ak = b j ◦ bk = 0, a j ◦ bk = δ jk, 1 � j,k � g. (2.4)

The corresponding canonical basis {ζ j}g
j=1 for the space of holomorphic differentials

can be constructed by

ζ =
g

∑
j=1

c( j)
π j−1dπ

P1/2
, (2.5)
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where the constants c(.) are given by

c j(k) = C−1
jk , Cjk =

∫
ak

π j−1dπ
P1/2

= 2
∫ E2k

E2k−1

z j−1dz

P1/2(z)
∈ R.

The differentials fulfill∫
a j

ζk = δ j,k,

∫
b j

ζk = τ j,k, τ j,k = τk, j, 1 � j,k � g. (2.6)

For further information we refer to [11], [27, App. A].
In addition, we will need Green’s function (in the potential theoretic sense) of the

upper sheet Π+ :

LEMMA 2.1. ([28]) The Green function of Π+ with pole at z0 is given by

g(z,z0) = −Re
∫ p

E0

ωp0 p̃0 , p = (z,+), p0 = (z0,+), (2.7)

where p̃0 = p0
∗ (i.e., the complex conjugate on the other sheet) and ωpq is the normal-

ized Abelian differential of the third kind with poles at p and q.

Clearly, we can extend g(z,z0) to a holomorphic function on M\{p0} by dropping
the real part. By abuse of notation we will denote this function by g(p, p0) as well.
However, note that g(p, p0) will be multivalued with jumps in the imaginary part across
b -cycles. We will choose the path of integration in C\[E0,E2g+1] to guarantee a single-
valued function.

From the Green function we obtain the Blaschke factor (cf. [28])

B(p,ρ) = exp
(
g(p,ρ)

)
= exp

(∫ p

E0

ωρρ∗
)
, π(ρ) ∈ R, (2.8)

which has the following properties:

LEMMA 2.2. The Blaschke factor satisfies

B(E0,ρ) = 1, and B(p∗,ρ) = B(p,ρ∗) = B(p,ρ)−1; (2.9)

it is real-valued for π(p) ∈ (−∞,E0) .
Moreover,

|B(p,ρ)| = 1, p ∈ Σ, arg(B(p,ρ)) = δ j(ρ), π(p) ∈ [E2 j−1,E2 j], (2.10)

where we set E−1 = −∞ , E2g+2 = ∞ and
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δ j(ρ) =

⎧⎪⎨
⎪⎩

0, j = 0,
1
2

∫
b j
ωρρ∗ , j = 1, . . . ,g,

0, j = g+1.

(2.11)

Proof. The first part including the fact that |B(p,ρ)|= 1, p ∈ Σ , is proven in [28,
Lem. 3.3]. To see the formula for the argument first observe that ωρρ∗ is real-valued
on π−1(R\Σ) and purely imaginary on π−1(Σ) . This can be seen from the explicit
expression (2.13) for ωρρ∗ given below. Hence, taking the path of integration along
the lift of the real axis, we see that the integral is real for p = (λ ,±) with λ < E0 or
λ > E2g+1 . For p = (λ ,±) with λ ∈ [E2 j−1,E2 j] the imaginary part is constant and
given by half the b j period.

The above Abelian differential is explicitly given by

ωpq =

(
P1/2 +P1/2(p)
2(π−π(p))

− P1/2 +P1/2(q)
2(π−π(q))

+Ppq(π)

)
dπ
P1/2

, (2.12)

where Ppq(z) is a polynomial of degree g− 1 which has to be determined from the
normalization

∫
a�
ωpp∗ = 0. In particular,

ωpp∗ =

(
P1/2(p)
π−π(p)

+Ppp∗(π)

)
dπ
P1/2

. (2.13)

3. Reconstructing the transmission coefficient

Let H±
q be two quasi-periodic finite-band Jacobi operators,1

H±
q f (n) = a±q (n) f (n+1)+a±q (n−1) f (n−1)+b±q (n) f (n), f ∈ �2(Z), (3.1)

associated with the hyperelliptic Riemann surface of the square root

P1/2
± (z) = −

2g±+1

∏
j=0

√
z−E±

j , E±
0 < E±

1 < · · · < E±
2g±+1, (3.2)

where g± ∈ N and √
. is the standard root with branch cut along (−∞,0) . In fact, H±

q

are uniquely determined by fixing a Dirichlet divisor ∑g±
j=1 μ̂

±
j , where μ̂±

j = (μ±
j ,σ±

j )
with μ±

j ∈ [E±
2 j−1,E

±
2 j] and σ±

j ∈ {−1,1} . The spectra of H±
q consist of g±+1 bands

σ± := σ(H±
q ) =

g±⋃
j=0

[E±
2 j,E

±
2 j+1]. (3.3)

1Everywhere in this paper the sub or super index ”+” (resp. ”−”) refers to the background on the right
(resp. left) half-axis.
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We are interested in scattering theory for the operator

H f (n) = a(n−1) f (n−1)+b(n) f (n)+a(n) f (n+1), n ∈ Z, (3.4)

whose coefficients are asymptotically close to the coefficients of H±
q on the correspond-

ing half-axes:
±∞
∑
n=0

|n|
(
|a(n)−a±q (n)|+ |b(n)−b±q (n)|

)
< ∞. (3.5)

Let ψ±
q (z,n) be the Floquet solutions of the spectral equations

H±
q ψ(n) = zψ(n), z ∈ C, (3.6)

that decay for z ∈ C \σ± as n → ±∞ . They are uniquely defined by the condition
ψ±

q (z,0) = 1, ψ±
q (z, ·) ∈ �2(Z±) . The solution ψ+

q (z,n) (resp. ψ−
q (z,n)) coincides

with the upper (resp. lower) branch of the Baker–Akhiezer functions of H+
q (resp. H−

q ),
see [27].

The two solutions ψ±(z,n) of the spectral equation

Hψ = zψ , z ∈ C, (3.7)

which are asymptotically close to the Floquet solutions ψ±
q (z,n) of the background

equations (3.6) as n →±∞ , are called Jost solutions.
Next, we introduce the sets

σ (2) = σ+∩σ−, σ (1)
± = σ± \σ (2), σ = σ+∪σ−, (3.8)

where σ is the (absolutely) continuous spectrum of H and σ (1)
+ ∪σ (1)

− , σ (2) are the
parts which are of multiplicity one, two, respectively.

In addition to the continuous part, H has a finite number of eigenvalues situated in
the gaps, σd = {λ1, ...,λs} ⊂ R\σ (see, e.g., [25]). For every eigenvalue we introduce
the corresponding norming constants

γ−1
±,k = ∑

n∈Z

|ψ±(λk,n)|2, 1 � k � s. (3.9)

Note that this definition has to be slightly modified in the unlikely event that ψ±
q (z,n)

and hence ψ±(z,n) has a pole at z = λk (see [10] for details). The transmission and
reflection coefficients are defined as usual via the scattering relations

T∓(λ )ψ±(λ ,n) = ψ∓(λ ,n)+R∓(λ )ψ∓(λ ,n), λ ∈ σ∓. (3.10)

Here the values of ψ±(λ ,n) for λ ∈ σ± are to be understood as limits from above
ψ±(λ ,n) = limε↓0ψ±(λ + iε,n) (the corresponding limits from below just give the
complex conjugate values ψ±(λ ,n) = limε↓0ψ±(λ − iε,n)).

The following result is an immediate consequence of [10, Lem. 5.1].
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THEOREM 3.1. ([10]) Suppose a(n) , b(n) satisfy (3.4), then a(n) , b(n) are uni-
quely determined by one of the sets of its “partial” scattering data S+ or S− , where

S± =
{

R±(λ ), λ ∈ σ±; |T±(λ )|2, λ ∈ σ (1)
∓ ;

λ1, . . . ,λs ∈ R\ (σ+∪σ−), γ±,1, . . . ,γ±,s ∈ R+

}
. (3.11)

This leads to the natural question if there is a simple way to compute S+ from
S− and vice versa (i.e., without solving the inverse scattering problem). It turns out
that this question reduces to the reconstruction of the transmission coefficient T±(z)
from S± . In fact, this follows from the following lemma.

LEMMA 3.2. ([10]) The transmission coefficients T±(z) admit a meromorphic
extension to C\σ . In general they have simple poles at the eigenvalues λk of H .
In addition, there are simple poles at μ±

j ∈ R\σ± which are not poles of ψ±
q (z,1)

(i.e., σ±
j = ∓1 ) and simple zeros at μ∓

j ∈ R\σ∓ which are poles of ψ∓
q (z,1) (i.e.,

σ∓
j = ∓1 ). A pole at μ±

j could cancel with a zero at μ∓
j or could give a second order

pole if μ±
j = λk .

Moreover, the entries of the scattering matrix have the following properties:

(a) ρ+(z)T+(z) = ρ−(z)T−(z),

(b)
T±(λ )
T±(λ )

= R±(λ ), λ ∈ σ (1)
± ,

(c) 1−|R±(λ )|2 =
ρ±(λ )
ρ∓(λ )

|T±(λ )|2, λ ∈ σ (2),

(d) R±(λ )T±(λ )+R∓(λ )T±(λ ) = 0, λ ∈ σ (2),

where

ρ±(z) =
∏g±

j=1(z− μ±
j )

P1/2
± (z)

. (3.12)

Hence, the problem is to reconstruct the meromorphic function T+(z) , z ∈ C\σ
from its boundary values

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|T+(λ )|2, λ ∈ σ (1)

− ,

|T+(λ )|2 = ρ−(λ )
ρ+(λ ) (1−|R+(λ )|2), λ ∈ σ (2),

T+(λ )
T+(λ )

= R+(λ ), λ ∈ σ (1)
+ .

(3.13)

That is, we know its absolute value on σ− and its argument on the rest σ (1)
+ . There will

be three Riemann surfaces involved, the one corresponding to σ = σ+ ∪σ− and the
ones corresponding to σ± . All objects corresponding to σ will be denoted as in Sec-
tion 2, while the objects associated with σ± will have an additional ± sub/supscript.
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THEOREM 3.3. The transmission coefficient T+(z) can be reconstructed from the
reflection coefficient R+(z) and the eigenvalues λ j via

T+(z) =

(
∏

μ−
j ∈M−

B−(z,μ−
j )

)(
∏

μ+
j ∈M+

B−(z,μ+
j )−1

)(
s

∏
k=1

B−(z,λk)−1

)
×

exp

(
Q(z)−1

π i

∫
σ (1)
−

Q log(|T+|)ωzz∗ (3.14)

+
Q(z)−1

2π i

∫
σ (2)

Q
(
log
(ρ−
ρ+

)
+ log(1−|R+|2)

)
ωzz∗

+
Q(z)−1

2π

∫
σ (1)

+

Q
(
arg(R+)+ δ−)ωzz∗

)
, (3.15)

where the integrals are taken over the lift of the indicated spectra to the upper sheet Πu

(of the Riemann surface associated with σ ). Moreover, we use the convention that we
identify z with (z,+) , and similarly for λk , μ±

j , whenever used in the argument of a
function defined on a Riemann surface. Here

M± = {μ±
j |μ±

j ∈ R\σ and σ±
j = −1}, (3.16)

Q(z) =∏
j

√
z− e j, where e j are defined via

⋃
j

[e2 j,e2 j+1] = σ (1)
+ , (3.17)

and
δ−(λ ) =∑

�

δ−
� χ[E−

2�−1,E
−
2�]

(λ ) (3.18)

with (cf. Lemma 2.2)

δ−
� = − ∑

μ−
j ∈M−

δ−
� (μ−

j )+ ∑
μ+

j ∈M+

δ−
� (μ+

j )+
s

∑
k=1

δ−
� (λk). (3.19)

Proof. We start by considering the multivalued function

t+(z) =

(
∏

μ−
j ∈M−

B−(z,μ−
j )−1

)(
∏

μ+
j ∈M+

B−(z,μ+
j )

)(
s

∏
k=1

B−(z,λk)

)
T+(z) (3.20)

which has neither zeros nor poles on Πu and satisfies{
|t+(λ )|2 = |T+(λ )|2, λ ∈ σ−,

arg(t+(λ )) = arg(T+(λ ))+ δ−
� , λ ∈ σ (1)

+ ∩ [E−
2�−1,E

−
2�].

(3.21)

Moreover, the absolute value of t+(z) is single-valued and hence its logarithm is a
harmonic function on Πu which can be reconstructed from its boundary values. To
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accommodate the fact that we know its absolute value on σ− and its argument on σ (1)
+

we consider
Q(z) log(t+(z)). (3.22)

Note that since t+(z) might still have zeros and poles on σ , the function log(t+(z))
might have logarithmic singularities on σ .

Since Q(λ ) is real-valued for λ ∈ R\σ (1)
+ and purely imaginary for λ ∈ σ (1)

+ , we
infer that the real part of Q(z) log(t+(z)) is harmonic on Πu and can be reconstructed
from its boundary values

Re
(
Q(λ ) log(t+(λ ))

)
=

{
Q(λ ) log(|T+(λ )|), λ ∈ σ−,

iQ(λ )
(
arg(T+(λ ))+ δ−

�

)
, λ ∈ σ (1)

+ ∩ [E−
2�−1,E

−
2�],
(3.23)

using Green’s function:

Re
(
Q(z) log(t+(z))

)
=Re

(
1
π i

∫
σ−

Q log(|T+|)ωzz∗

+
1
π

∫
σ (1)

+

Q
(
arg(T+)+ δ−)ωzz∗

)
. (3.24)

Dropping the real part we get

T+(z) =

(
∏

μ−
j ∈M−

B−(z,μ−
j )

)(
∏

μ+
j ∈M+

B−(z,μ+
j )−1

)(
s

∏
k=1

B−(z,λk)−1

)
×

× exp

(
Q(z)−1

π i

∫
σ−

Q log(|T+|)ωzz∗

+
Q(z)−1

π

∫
σ (1)

+

Q
(
arg(T+)+ δ−)ωzz∗

)
. (3.25)

In fact, by [29, Thm. 1] both the left-hand and the right-hand side have the same abso-
lute value and hence can only differ by a constant with absolute value one (in particular,
the right-hand side is single-valued since the left-hand side is). This constant must be
one since both sides are real-valued for real-valued z to the left of σ .
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[31] A. ZLATOŠ, Sum rules for Jacobi matrices and divergent Lieb-Thirring sums, J. Funct. Anal., 225 2
(2005), 371–382.

(Received September 22, 2008) Iryna Egorova
B.Verkin Institute for Low Temperature Physics

47 Lenin Avenue
61103 Kharkiv

Ukraine
e-mail: egorova@ilt.kharkov.ua

Gerald Teschl
Faculty of Mathematics

Nordbergstrasse 15
1090 Wien

Austria
International Erwin Schrödinger Institute for Mathematical Physics

Boltzmanngasse 9
1090 Wien

Austria
e-mail: Gerald.Teschl@univie.ac.at

http://www.mat.univie.ac.at/˜gerald/

Operators and Matrices
www.ele-math.com
oam@ele-math.com

http://www.mat.univie.ac.at/~gerald/

