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Abstract. Let T = U |T | be the polar decomposition of a bounded operator T on a Hilbert
space. The transformation Δ(T ) = |T |1/2U |T |1/2 is called the Aluthge transformation, and
Γ(T ) = |T |U is called the Duggal transformation of T. We discuss Aluthge transformation and
Duggal transformation of binormal operators and centered operators. We obtain results about the
polar decomposition of Duggal transformation. We give necessary and sufficient conditions for
Γ(T ) to have the polar decomposition Γ(T ) = Γ(U) |Γ(T )|. As a consequence we get Γ(T ) =
Γ(U) |Γ(T )| to be the polar decomposition of Γ(T ) if T is binormal.

1. Introduction

In what follows, an operator means a bounded operator on a complex Hilbert space
H . An operator T is said to be positive (denoted T � 0) if 〈Tx, x〉� 0 for all x∈H .

It is well known that every operator T can be decomposed into T = U |T | with
a partial isometry U, and |T | = (T ∗T )1/2. U is determined uniquely by the kernel
condition ker(U) = ker(T ), then this decomposition is called the polar decomposition.
In [1], Aluthge defined a transformation Δ(T ) = |T |1/2U |T |1/2 which was later called
the Aluthge transformation. Aluthge transformation is very useful in the study of non-
normal operators. Moreover, for each non-negative integer n, Jung, Ko, Pearcy defined
the nth Aluthge transform Δn(T ) in [8] as Δn(T ) = Δ(Δn−1(T )) and Δ0(T ) = T. In
[6], Ito, Yamazaki, Yanagida obtained several results about the polar decomposition of
Aluthge transformation.

In [4], Foias, Jung, Ko, Pearcy defined a transformation Γ(T ) = |T |U called the
Duggal transformation. For each non-negative integer n, the nth Duggal transforma-
tion Γn(T ) can be defined as Γn(T ) = Γ(Γn−1(T )) and Γ0(T ) = T.

An operator T is said to be binormal if [ |T |, |T ∗| ] = 0, where [ A,B ] = AB−BA.
The operator T is said to be centered if the following sequence

. . . ,T 3(T 3)∗,T 2(T 2)∗,TT ∗,T ∗T,(T 2)∗T 2,(T 3)∗T 3, . . .

is commutative.
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Binormal and centered operators were defined by Campbell [2] and Morrel- Muhly
[9], respectively. Relations among these classes and that of quasinormal operators are
easily obtained as follows.

quasinormal ⊂ centered ⊂ binormal .

In [7], Ito, Yamazaki, Yanagida obtained results on the polar decomposition of the
product of two operators and of Aluthge transformation. They also studied properties
and characterizations of binormal and centered operators from the view point of polar
decomposition and Aluthge transformation.

In [6], Ito, Yamazaki, Yanagida gave an example of a binormal, invertible operator
T such that the Aluthge transformation Δ(T ) is not binormal. In this paper, first we
show that if T is a binormal, invertible operator, then the Duggal transformation Γ(T )
is binormal. We discuss some consequences of applying Aluthge transformation and
Duggal transformation successively on an invertible operator T.

We show that if T is an invertible operator with polar decomposition T = U |T |,
then the polar decomposition of Γ(T ) is Γ(T ) = U |Γ(T )|. We give necessary and
sufficient conditions for Γ(T ) to have the polar decomposition Γ(T ) = Γ(U) |Γ(T )|.

Let T = U |T | be the polar decomposition of T. A theorem in [7] says that T is
binormal if and only if Δ(T ) = Δ(U) |Δ(T )| is the polar decomposition of the Aluthge
transformation Δ(T ). We discuss a similar situation of Duggal transformations. We
prove that if T is binormal, then Γ(T ) = Γ(U) |Γ(T )| is the polar decomposition of
Γ(T ). We also give necessary and sufficient condition for Γ(T ) to have the polar de-
composition Γ(T ) = Γ(U) |Γ(T )|. In section 4, we give an alternate proof of a theorem
in [7] which deals with Aluthge transformations.

2. Aluthge and Duggal transformations of binormal operators

LEMMA 2.1. Let T =U |T | be the polar decomposition of T. The following hold.

i. Γ(T ) = U∗TU.

ii. If T is invertible, then Δ(T ) and Γ(T ) are invertible, and in that case, Δ(T ) =
|T |1/2T |T |−1/2 and Γ(T ) = |T | T |T |−1.

THEOREM 2.2. [6] Let T =U |T | be the polar decomposition of T. Then Δ(T )=
U |Δ(T )| if and only if T is binormal. (This assertion does not mean that when T is
binormal, Δ(T ) = U |Δ(T )| is the polar decomposition of Δ(T )).

THEOREM 2.3. [6] Let T = U |T | be the polar decomposition of T. If T is
binormal, then Δ(T ) = U∗UU |Δ(T )| is the polar decomposition of Δ(T ).

THEOREM 2.4. Let T be invertible and suppose that T = U |T | is the polar de-
composition of T. If T is binormal, then Δ(T ) = U |Δ(T )| is the polar decomposition
of Δ(T ).
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Proof. Since T is invertible, U is unitary. By Theorem 2.3, the proof follows. �

If S,T and V are operators with S =V ∗TV, and V is unitary, then we have |S| =
V ∗ |T |V, |S|1/2 = V ∗ |T |1/2V. Further, if T = U |T | is the polar decomposition of T,
then the polar decomposition of S is S = (V ∗UV ) |S| and hence Δ(S) = V ∗Δ(T )V.

REMARK 2.5. The binormality of T does not imply the binormality of the Aluthge
transformation Δ(T ). As shown in [6], if

A =

⎡
⎣

0 0 5
1/2

√
3/2 0√

3/2 −1/2 0

⎤
⎦

then A is a binormal operator, and the Aluthge transformation Δ(A) is not binormal.
Note that A is invertible. However, the equivalent case of Duggal transformation is
different.

THEOREM 2.6. Let T = U |T | is the polar decomposition of the operator T, and
U a coisometry. Then T is binormal if and only if Γ(T ) is binormal.

Proof. We have Γ(T ) = U∗TU. Therefore, (Γ(T ))∗Γ(T ) = U∗ |T |2 U � 0, and
|Γ(T )|=U∗ |T |U. On the other hand, Γ(T )(Γ(T ))∗ =U∗ |T ∗|2 U � 0, and |(Γ(T ))∗|=
U∗ |T ∗|U. Hence, if T is binormal, then Γ(T ) is also binormal. Conversely, if Γ(T )
is binormal, then we have U∗ |T ∗| |T |U = U∗ |T | |T ∗|U. Multiplying U and U∗ with
both sides, we obtain |T ∗| |T | = |T | |T ∗|, that is, T is binormal. �

THEOREM 2.7. Let T be invertible. If T is binormal, then Γ(Δ(T )) = Δ(Γ(T )).

Proof. Let T = U |T | be the polar decomposition of T. Since T is invertible, U
is unitary. By Lemma 2.1, Γ(T ) = U∗TU. Therefore, Δ(Γ(T )) = U∗Δ(T )U.

By Theorem 2.4, Δ(T ) =U |Δ(T )| is the polar decomposition of Δ(T ), and there-
fore, again by Lemma 2.1, Γ(Δ(T )) = U∗Δ(T )U. �

The following characterization of centered operators from the viewpoint of the
polar decomposition and the Aluthge transformation can be seen in [6].

THEOREM 2.8. [6] Let T be an operator. Then Δn(T ) is binormal for all n � 0
if and only if T is a centered operator.

THEOREM 2.9. Let T be invertible and centered. Then Γ(Δn(T )) = Δn(Γ(T ))
for all n � 0.

Proof. Since T is centered, T is binormal. Therefore, the result is true for n = 1,
by Theorem 2.7. Suppose that the result is true for n = m− 1. Then Γ(Δm−1(T )) =
Δm−1(Γ(T )).
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Now, Δm−1(T ) is invertible since T is invertible. By Theorem 2.8, Δm−1(T ) is
binormal. Therefore, by Theorem 2.7, Γ[Δ(Δm−1(T ))] = Δ[Γ(Δm−1(T ))]. Hence,

Γ(Δm(T )) = Γ[Δ(Δm−1(T ))]
= Δ[Γ(Δm−1(T ))]
= Δ[Δm−1(Γ(T ))]
= Δm(Γ(T )).

The theorem follows by induction. �

THEOREM 2.10. Let T be invertible and binormal. Then Δ(Γn(T )) = Γn(Δ(T ))
for all n � 0.

Proof. The result is true for n = 1, by Theorem 2.7.
Suppose that the result is true for n = m−1. Then Δ(Γm−1(T )) = Γm−1(Δ(T )).
Since T is invertible and binormal, by Lemma 2.1 and Theorem 2.6, Γn(T ) is

invertible and binormal for all n � 0. Since Γm−1(T ) is binormal and invertible, by
Theorem 2.7, Δ[Γ(Γm−1(T ))] = Γ[Δ(Γm−1(T ))]. Hence,

Δ(Γm(T )) = Δ[Γ(Γm−1(T ))]
= Γ[Δ(Γm−1(T ))]
= Γ[Γm−1(Δ(T ))]
= Γm(Δ(T )).

The theorem follows by induction. �

THEOREM 2.11. Let T be invertible and centered. Then

Γm(Δn(T )) = Δn(Γm(T ))

for all m,n � 0.

Proof. Every centered operator is binormal. Therefore the proof follows by The-
orem 2.8 and Theorem 2.10. �

3. Polar decomposition of Aluthge and Duggal transformations

The following result shows the polar decomposition of the product of two opera-
tors.

THEOREM 3.1. [5] Let T = U |T |and S = V |S| be the polar decompositions. If
T and S are doubly commutative (i.e., [T , S] = [T , S∗] = 0), then

TS = UV |TS|
is the polar decomposition of TS.
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The following is a generalization of this result.

THEOREM 3.2. [7] Let T = U |T |, S = V |S| and |T | |S∗| = W | |T | |S∗| | be the
polar decompositions. Then

TS = UWV |TS|
is also the polar decomposition.

This theorem can be used to obtain the polar decomposition of the Duggal trans-
formation of an invertible operator as follows.

THEOREM 3.3. Let T be invertible. If T = U |T | is the polar decomposition of
T, then

Γ(T ) = U |Γ(T )|
is the polar decomposition of Γ(T ).

Proof. Since T is invertible, U is unitary and |T | is invertible. We have, |U | =
|U∗|= I, the identity operator, because UU∗ =U∗U = I = I2 and I � 0. Since ker I =
kerU = kerU∗ = {0}, we see that U = UI is the polar decomposition of U. We
have |T |∗ |T | = |T |2 and |T | � 0. Therefore, | |T | | = |T |. Since |T | is invertible,
ker |T | = ker I = {0}, and hence |T | = I | |T | | is the polar decomposition of |T |.
Also |T | |U∗| = |T |. Replacing T and S by |T | and U respectively in Theorem 3.2,
we obtain |T |U = IIU | |T |U | is the polar decomposition of |T |U, or in other words,
Γ(T ) = U |Γ(T )| is the polar decomposition of Γ(T ). �

LEMMA 3.4. If U is a partial isometry, then |U | = U∗U and U = U |U | is the
polar decomposition of U. Also, Γ(U) = Δ(U) = U∗UU.

Proof. Since U∗U is a projection, (U∗U)2 = U∗U and U∗U � 0. Therefore,
|U | = (U∗U)1/2 = U∗U. Since U∗U is the support of U, we have UU∗U = U, i.e.,
U |U |=U. The kernel condition for the polar decomposition is satisfied automatically.
Hence U = U |U | is the polar decomposition of U.

Since |U | = U∗U = (U∗U)2 and U∗U � 0, we have |U |1/2 = U∗U. Therefore,
Γ(U) = |U |U =U∗UU and Δ(U) = |U |1/2 U |U |1/2 = (U∗U)U(U∗U) =U∗UU. �

Let T =U |T | and S =V |S| be the polar decompositions. The following theorem
gives an equivalent condition so that TS = UV |TS| becomes the polar decomposition.

THEOREM 3.5. [7] Let T = U |T | and S = V |S| be the polar decompositions.
Then |T | |S∗| = |S∗| |T | if and only if

TS = UV |TS|
is the polar decomposition.

We use this theorem to prove the following result on the polar decomposition of
the Duggal transformation of an operator.
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THEOREM 3.6. Let T = U |T | be the polar decomposition of T. Then Γ(T ) =
Γ(U) |Γ(T )| is the polar decomposition of Γ(T ) if and only if |T | |U∗| = |U∗| |T |.

Proof. Since U is a partial isometry, (kerU)⊥ is the initial space of U. Since
U∗U is the support of both T and U, we see that ran(U∗U) = (kerU)⊥ = (kerT )⊥.

Also, U∗U is self-adjoint. Therefore, ker |T |= kerT = [ran(U∗U)]⊥ = ker(U∗U).
Every projection is a partial isometry, in particular, U∗U is a partial isometry. Further,
(U∗U) |T | = |T | (U∗U) = |T |. Hence |T | = (U∗U) |T | is the polar decomposition of
|T |, recalling | |T | | = |T |.

By Lemma 3.4, U = U |U | is the polar decomposition of U and Γ(U) = U∗UU.
Replacing T and S in Theorem 3.5 by |T | and U respectively, we see that

| |T | | · |U∗| = |U∗| · | |T | |

if and only if
|T |U = U∗UU | |T |U |

is the polar decomposition of |T |U.
Hence

|T | · |U∗| = |U∗| · |T |
if and only if

Γ(T ) = U∗UU |Γ(T )|
is the polar decomposition of Γ(T ).
Therefore

|T | · |U∗| = |U∗| · |T |
if and only if

Γ(T ) = Γ(U) |Γ(T )|
is the polar decomposition of Γ(T ). �

Let T = U |T | be the polar decomposition of T. A theorem in [7] says that T is
binormal if and only if Δ(T ) = Δ(U) |Δ(T )| is the polar decomposition of the Aluthge
transformation Δ(T ). In the following two theorems we discuss the similar situation of
Duggal transformations.

THEOREM 3.7. Let T =U |T | be the polar decomposition of T. If T is binormal,
then Γ(T ) = Γ(U) |Γ(T )| is the polar decomposition of Γ(T ).

Proof. Let F =UU∗. Then F is the support of T ∗. If T is binormal, then ker |T ∗|
is invariant under |T |. Therefore, (ker |T ∗|)⊥ is invariant under |T |. But (ker |T ∗|)⊥ =
(kerT ∗)⊥ = ranF. Therefore, F |T |F = |T |F, and hence |T |F = F |T |. It follows that
|T | |U∗| = |U∗| |T |. By Theorem 3.6, Γ(T ) = Γ(U) |Γ(T )| is the polar decomposition
of Γ(T ). �
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THEOREM 3.8. Let T =U |T | be the polar decomposition of T, and E,F the ini-
tial and final projections, respectively, of the partial isometry U. If Γ(T ) =Γ(U) |Γ(T )|
is the polar decomposition of Γ(T ), then EF = FE, or equivalently, U is binormal.

Proof. We have, E = U∗U and F = UU∗. If Γ(T ) = Γ(U) |Γ(T )| is the polar
decomposition of Γ(T ), then by Theorem 3.6, |T | |U∗| = |U∗| |T |. Thus, |T | F =
F |T |, and therefore, ran |T | is invariant under F. Hence ran |T | is invariant under F.
But ran |T | = (kerT )⊥ = ranE. Hence EF = FE.

Next, U is binormal, if and only if, |U | |U∗| = |U∗| |U |, if and only if, EF =
FE. �

REMARK 3.9. Let T be an operator, and T = U |T | the polar decomposition of
T. Let E,F be the initial and final projections, respectively, of the partial isometry U.
By Lemma 3.4, Γ(U) = Δ(U) = U∗UU. Theorem 3.1 in [7] says that if U is a partial
isometry, then the following assertions are mutually equivalent: (i) U is binormal, (ii)
Δ(U) is a partial isometry, (iii) U2 is a partial isometry. Thus if Γ(T ) = Γ(U) |Γ(T )|
is the polar decomposition of Γ(T ), then the following hold.

i. |T | |U∗| = |U∗| |T |.
ii. EF = FE.

iii. U is binormal.

iv. Γ(U) is a partial isometry.

v. Δ(U) is a partial isometry.

vi. U2 is a partial isometry.

On the other hand, if T is binormal, then Γ(T ) = Γ(U) |Γ(T )| is the polar decompo-
sition of Γ(T ), and this in turn implies each of the above statements.

THEOREM 3.10. Let T = U |T | be the polar decomposition of T. If Γn(T ) =
Γn(U) |Γn(T )| is the polar decomposition of Γn(T ) for all n = 0,1,2, . . . , then |U∗|
commutes with every |Γn(T )|, or in other words, ranU is invariant under every |Γn(T )|.

Proof. Let E = U∗U and F = UU∗. We note that ranU = ranF.
First we show that for all n = 1,2, . . . , |Γn(T )|= (Γn−1(U))∗ |Γn−1(T )|(Γn−1(U)).

Since Γn−1(T ) = Γn−1(U) |Γn−1(T )| and Γn(T ) = Γn(U) |Γn(T )| are polar decom-
positions, by Theorem 3.6,

|(Γn−1(U))∗| · |Γn−1(T )| = |Γn−1(T )| · |(Γn−1(U))∗|.
Therefore, Γn−1(U)(Γn−1(U))∗ commutes with |Γn−1(T )|. Since Γn−1(U) is a par-
tial isometry, Γn−1(U)(Γn−1(U))∗Γn−1(U) = Γn−1(U). Therefore,

(Γn(T ))∗Γn(T ) = (|Γn−1(T )|Γn−1(U))∗ |Γn−1(T )|Γn−1(U)
= (Γn−1(U))∗ |Γn−1(T )|2Γn−1(U)
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= (Γn−1(U))∗ |Γn−1(T )|2Γn−1(U)(Γn−1(U))∗Γn−1(U)
= (Γn−1(U))∗ |Γn−1(T )|Γn−1(U)(Γn−1(U))∗ |Γn−1(T )|Γn−1(U)
= ((Γn−1(U))∗ |Γn−1(T )|Γn−1(U))2.

Since (Γn−1(U))∗ |Γn−1(T )|Γn−1(U) � 0, we see that

|Γn(T )| = (Γn−1(U))∗ |Γn−1(T )|Γn−1(U).

Next we show that if n is a positive integer, then |Γn(T )|commutes with |(Γ(U))∗|
if and only if |Γn(T )|commutes with |U∗|. Since Γ(T ) = Γ(U) |Γ(T )| is the polar de-
composition of Γ(T ), by Theorem 3.8, we have EF = FE. Since (Γ(U))∗ is a partial
isometry, we have (Γ(U)(Γ(U))∗ )2 = Γ(U)(Γ(U))∗. Also Γ(U)(Γ(U))∗ � 0. There-
fore,

|(Γ(U))∗| = (Γ(U)(Γ(U))∗ )1/2 = Γ(U)(Γ(U))∗ = U∗UUU∗U∗U = EFE = EF.

Since U,Γ(U),Γ2(U), . . . are partial isometries, we have

Γ(U) = U∗UU,Γ2(U) = (Γ(U))∗Γ(U)Γ(U), . . . .

It follows that
Γ(U)E = Γ(U),Γ2(U)E = Γ2(U), . . . .

In particular, Γn−1(U)E =Γn−1(U) and therefore E (Γn−1(U))∗ = (Γn−1(U))∗. Hence

|Γn(T )| |(Γ(U))∗| = (Γn−1(U))∗ |Γn−1(T )|Γn−1(U)EF

= (Γn−1(U))∗ |Γn−1(T )|Γn−1(U)F

= |Γn(T )|F
and

|(Γ(U))∗| |Γn(T )| = EF (Γn−1(U))∗ |Γn−1(T )|Γn−1(U)
= FE (Γn−1(U))∗ |Γn−1(T )|Γn−1(U)
= F (Γn−1(U))∗ |Γn−1(T )|Γn−1(U)
= F |Γn(T )|.

Thus |Γn(T )|commutes with |(Γ(U))∗| if and only if |Γn(T )|commutes with F. Hence
|Γn(T )|commutes with |(Γ(U))∗| if and only if |Γn(T )|commutes with |U∗|.

Finally we show that |Γn(T )| |U∗| = |U∗| |Γn(T )| for all n = 0,1,2, . . . . Let n be
any nonnegative integer. Since Γn+1(T ) = Γn+1(U) |Γn+1(T )| is the polar decompo-
sition of Γn+1(T ), by Theorem 3.6,

|Γn(T )| |(Γn(U))∗| = |(Γn(U))∗| |Γn(T )|,
i.e., |Γ(Γn−1(T ))| commutes with |(Γ(Γn−1(U)))∗|. Since Γn−1(T )=Γn−1(U) |Γn−1(T )|
is the polar decomposition of Γn−1(T ), by applying to Γn−1(T ) what we proved
in the previous paragraph we see that |Γn(T )| commutes with |(Γn−1(U))∗|. Since
Γn(T ) = Γ2(Γn−2(T )) and Γn−2(T ) = Γn−2(U) |Γn−2(T )| is the polar decomposition
of Γn−2(T ), by applying similar argument to Γn−2(T ), we see that |Γn(T )| commutes
with |(Γn−2(U))∗|. Proceeding like this we obtain |Γn(T )| commutes with |U∗|. �
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4. Semigroup properties of factors in the polar decomposition and some
applications

Ito, Yamazaki, and Yanagida in [7] proves Theorem 4.1 stated below using proper-
ties of the polar decomposition of the product of two operators. In this section we give
an alternate proof of this theorem using semigroup properties of factors in the polar
decomposition proved by Catepillan and Szymanski in [3].

THEOREM 4.1. [7] Let T = U |T | be the polar decomposition of T. Then the
following are equivalent.

i. T is centered.

ii. Δn(T ) = Δn(U) |Δn(T )| is the polar decomposition for all nonnegative integer
n.

iii. T n = Un |Tn| is the polar decomposition for all natural number n.

THEOREM 4.2. [7] Let T = U |T | be the polar decomposition of T. Then T is
binormal if and only if Δ(T ) = Δ(U) |Δ(T )| is the polar decomposition of Δ(T ).

DEFINITION 4.3. Let S be a commutative semigroup with unit, H a Hilbert
space, L (H ) the space of all bounded operators on H , and π : S → L (H ) be
a mapping. The mapping π is called a semigroup homomorphism if π(s + t) =
π(s)π(t), s, t ∈ S and π(0) = I. The mapping π is called a centered homomorphism if
it is a semigroup homomorphism, and the set {π(s)∗π(s),π(t)π(t)∗, s, t ∈ S} is com-
mutative.

Note that here L (H ) is considered as a semigroup under the operation of multi-
plication of operators.

THEOREM 4.4. [3] Let π : S → L (H ) be a semigroup homomorphism. Let

π(s) = θ (s)μ(s)

be the polar decomposition of the operator π(s), s ∈ S.

i. If π is centered, then θ is a semigroup homomorphism.

ii. Assume additionally that for each s,t ∈ S there exists r ∈ S such that s = t + r
or t = s+ r. If θ is a semigroup homomorphism, then π is centered.

The semigroup N satisfies the additional condition in (ii) of Theorem 4.4, but the
semigroup N×N does not.

Alternate proof of Theorem 4.1. Let π : N → L (H ) be defined by

π(n) = Tn, n ∈ N.
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Then π is a semigroup homomorphism. Let

π(n) = θ (n)μ(n)

be the polar decomposition of the operator π(n), n ∈ N. Now, θ (1) = U and μ(1) =
|T |.

Assume that T is centered. Then the set

{π(n)∗π(n),π(m)π(m)∗, n,m ∈ N} = {(Tn)∗Tn,Tm(Tm)∗, n,m ∈ N}

is commutative, and therefore, π is a centered homomorphism. By Theorem 4.4,
θ : N → L (H ) is a semigroup homomorphism. Therefore, for every n ∈ N, Un =
(θ (1))n = θ (n). Hence the polar decomposition of Tn = π(n) is Tn = θ (n)μ(n) =
θ (n)|π(n)|= Un |Tn| for every n ∈ N. This proves (i) ⇒ (iii).

Assume that Tn = Un |Tn| is the polar decomposition for all natural number n.
Then θ (n) =Un for all n ∈ N. Therefore, for n,m ∈ N, θ (n+m) =Un+m =UnUm =
θ (n)θ (m), and hence θ is a semigroup homomorphism. By Theorem 4.4, π is a
centered homomorphism. It follows that T is centered. This proves (iii) ⇒ (i).

The rest of the proof is essentially the same as that in [7]. We give it here for
completeness.

To prove (i) ⇒ (ii). Assume that T is centered. By Theorem 2.8, Δn(T ) is
binormal for all n ∈ N. By Theorem 4.2,

Δ(T ) = Δ(U) |Δ(T )| is the polar decomposition of Δ(T ). (1)

Next since Δ(T ) is binormal and since (1) holds, we have by Theorem 4.2,

Δ2(T ) = Δ2(U) |Δ2(T )| is the polar decomposition of Δ2(T ).

Repeating this method, we have Δn(T ) = Δn(U) |Δn(T )| is the polar decomposition for
all nonnegative integer n.

To prove (ii) ⇒ (i). Assume that Δn(T ) = Δn(U) |Δn(T )| is the polar decomposi-
tion for all nonnegative integer n. By Theorem 4.2, Δn(T ) is binormal for all n ∈ N.
Hence T is centered by Theorem 2.8. �

REMARK 4.5. Let T = U |T | be the polar decomposition of T. If T is centered,
then for all n = 0,1,2, . . . , Γ(Un) is binormal and Γ(Tn) = Γ(Un) |Γ(Tn)| is the polar
decomposition of Γ(Tn).
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