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STOCHASTIC OPERATORS AND EXTREME POINTS

DON HADWIN, ERIC NORDGREN AND HEYDAR RADJAVI

(Communicated by J. W. Helton)

Abstract. The operators on Lp,1 � p <∞ that preserve positivity and the constants are shown to
have the composition operators as extreme points. In the case of the unit interval with Lebesgue
measure they constitute the closed convex hull of these extreme points, but this is not true of all
measure spaces.

1. Introduction

Suppose (X ,F ) is a standard Borel space and m is a probability measure on the
Borel sets F of X . An operator on Lp(m),1 � p < ∞ is called stochastic in case the
image of every nonnegative function is a nonnegative function and the constant one
function is its own image. In the special case where X is a set with n points of equal
measure Lp(m) may be identified with C

n and the definition coincides with the usual
one for row stochastic matrices. It is easy to see that for a row stochastic matrix A
whose entries consist of zeros and ones, where the one in row i lies in column φ(i) ,
the image A f of a vector f , i.e. a function on the set X = {1,2, . . . ,n} , is f ◦ φ . In
other words A is a composition operator. It is a familiar fact that these special 0,1
stochastic matrices, i.e. the composition operators, are the extreme points of the set
of row stochastic matrices and every row stochastic matrix is a convex combination of
these extreme points. Our first objective is to prove that the composition operators are
the extreme points of the stochastic operators. Also, we show in the special case when
m is Lebesgue measure on [0,1] that, relative to the weak operator topology, the convex
hull of the composition operators is dense in the set of stochastic operators on L2 , but
this is not true for all probability spaces.

Operators related to what we are calling stochastic operators have a long history.
Of particular importance is Iwanik’s paper [2] of 1976 in which he shows that the
composition operators P on the Lp space of a standard Borel space are characterized
by the properties (i) P| f | = |P f | and (ii) P1 = 1. He also points out that these two
properties imply that characteristic functions are carried to characteristic functions. As
mentioned by Iwanik, it had been proved earlier [3] by Phelps in 1963 that the class
of operators from one L∞ space to another that are contractive and satisfy 0 � P1 � 1
have the operators that send characteristic functions to characteristic functions as its
extreme points, and these are precisely the operators that preserve products.
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2. Composition operators are extreme

An operator T on Lp = Lp(m) , where 1 � p < ∞ and m is a probability measure
on a standard Borel space (X ,F ) , is called stochastic in case T f � 0 whenever f � 0
and T1 = 1. (Iwanik [2, Lemma 1] points out that the positivity condition implies
boundedness.) Let S be the set of all stochastic operators. Sourour [6, Theorem 1
and following Remark] shows that a bounded operator on Lp,1 � p < ∞ that sends
every function with nonnegative values to another such function is necessarily a pseudo-
integral operator (see also [1]). Thus there is a family of measures {μx}x∈X on X such
that for every f ∈ Lp(m) and almost every x ∈ X

T f (x) = Tμ f (x) =
∫

X
f dμx,

and the function x �→ μx(A) is measurable for every A ∈ F . A family of measures μx

will be called measurable if it satisfies the second of these conditions. In particular,
every stochastic operator T is a pseudo-integral operator, and, in addition, since T1 =
1, almost every μx is a probability measure. The paper of Sourour, [6], should be
consulted for interesting examples and properties of pseudointegral operators. We may
summarize our observations as follows.

THEOREM 1. (Sourour) A bounded operator on Lp,1 � p < ∞ is stochastic if
and only if it is a pseudointegral operator that is induced by a measurable family of
probability measures.

If T is induced by a family of measures μx , then we can define a measure μ on
X ×X by

μ(E) =
∫

X

∫
X
χE(x,y)dμx(y)dm(x)

for each measurable set E in the product space, and then

〈T f ,g〉 =
∫

X×X
f (y)g(x)dμ(x,y) (1)

whenever f ∈ Lp and g ∈ Lq where p and q are conjugate indices. Conversely, if μ
is a measure on X ×X such that it induces a bounded operator satisfying equation (1),
then one obtains a measurable family of measures from μ by taking its disintegration
with respect to m .

It is clear that if a family {νx}x∈X of measures is measurable and is dominated by
a measurable family {μx}x∈X , in the sense that νx � Mμx a.e.- [m] for some constant
M , then {νx}x∈X induces a bounded operator on Lp(m) whenever {μx}x∈X does.

Among the stochastic operators on Lp(m) are the composition operators. These
are operators of the form Cφ f = f ◦ φ for some measurable transformation φ of X
into itself. Here Cφ = Tμ with μx = δφ(x) , where for any y , δy is the unit point mass
at y . The composition operators are extreme points of the set of stochastic operators
S . This follows from the familiar fact that point masses are extreme points of the set
of probability measures. For if Cφ is an average of two stochastic operators Tλ and
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Tν , then 2δφ(x) = λx + μx a.e.- [m] . Since all the measures are probability measures,
λx = νx = δφ(x) a.e.- [m] , and hence Tλ = Tν = Cφ . Thus Cφ is extreme. The converse
is contained in the following theorem.

THEOREM 2. A stochastic operator on Lp,1 � p < ∞ is an extreme point of the
family of all stochastic operators if and only if it is a composition operator.

Proof. Sufficiency has already been established. For necessity suppose T ∈S , but
T is not a composition operator. Then T is induced by a measurable family {μx}x∈X
such that μx is not a point mass for all x in a set F0 with m(F0) > 0.

The σ -algebra F is generated by a countable sequence of sets (An) , and con-
sequently to every x ∈ F0 corresponds at least one n such that 0 < μx(An) < 1. The
function tn on F0 defined by tn(x) = μx(An) is measurable for each n , and for ev-
ery x ∈ F0 there is an n for which tn(x) ∈ (0,1) . Thus there is a single n such that
tn(x) ∈ (0,1) on a subset F1 of F0 of positive measure. In fact, by choosing a suffi-
ciently small ε ∈ (0,1/2) , we may suppose tn(x)∈ (ε,1−ε) for all x in a set F ⊂F1 of
positive measure. We will from here on write simply A for this An and put B = X \A .
Thus for all x ∈ F we have both ε < μx(A) < 1− ε and ε < μx(B) < 1− ε , and also
μx(A)+ μx(B) = 1.

Our objective is to define measurable families of probability measures {λx} and
{νx} , both different from {μx} , such that for some fixed τ ∈ (0,1) we have μx =
τλx +(1− τ)νx for all x ∈ X . First define probability measures αx and βx as follows:
if D ∈ F , then

αx(D) =

⎧⎨
⎩
μx(D∩A)
μx(A)

if x ∈ F ,

μx(D) if x 
= F

and

βx(D) =

⎧⎨
⎩
μx(D∩B)
μx(B)

if x ∈ F ,

μx(D) if x 
= F .

Then clearly μx = μx(A)αx + μx(B)βx for x ∈ F .
Let λx = (1− ε)αx + εβx . Then for x ∈ F , μx(A) < 1− ε = λx(A) and λx(B) =

ε < μx(B) , so λx is not a multiple of μx . Also, define νx by

νx =

⎧⎨
⎩
μx(A)− ε+ ε2

1− ε
αx +

μx(B)− ε2

1− ε
βx if x ∈ F ,

μx if x /∈ F .

(This definition is obtained by putting τ = ε and solving the equation μx = τλx +(1−
τ)νx for νx .) It is easy to check that the coefficients of αx and βx in the above equation
are positive and add up to one, so {νx} is a measurable family of probability measures.
Also, as just mentioned, the family {μx} is a convex combination of the families {λx}
and {νx} , i.e. for all x ,

μx = τλx +(1− τ)νx.
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Finally, for x ∈ F , we have λx(A) = 1− ε > μx(A) , so λx 
= μx .
Since {λx} is dominated by a multiple of {μx} (ελx � μx ), it induces a stochastic

operator Tλ , and νx induces a stochastic operator Tν . These operators satisfy T =
τTλ + (1− τ)Tν , and hence T is not extreme. Thus only composition operators are
extreme.

A proof of the preceding theorem could also have been constructed by employing
a measurable cross section theorem. Combining the preceding theorem with Iwanik’s
Theorem 1 in [2], we obtain the following very slight improvement of his characteriza-
tion.

THEOREM 3. For a stochastic operator T on Lp,1 � p < ∞ the following are
equivalent:

(a) T is an extreme point of the set of all stochastic operators;

(b) T is a composition operator;

(c) T is multiplicative in the sense that if f ,g and f g belong to Lp , then T ( f g) =
(T f )(Tg);

(d) T preserves squares in the sense that if f and f 2 are in Lp , then T ( f 2) =
(T f )2 ;

(e) T preserves the class of characteristic functions.

(f) T1 = 1 and |T f | = T | f | for all f ∈ Lp .

Proof. The preceding theorem shows the equivalence of (a) and (b). Iwanik proves
the equivalence of (b), (e) and (f). Finally, it is clear that each of (b), (c) and (d) implies
its successor.

3. Convex hull of extreme points

We wish to show that the set S of stochastic operators is the strong operator
topology closure of the convex hull of its set of extreme points. The set S is not
bounded, and therefore is not compact in either the strong or weak operator topologies.
Thus the Krein Milman Theorem is not directly applicable.

THEOREM 4. The strong operator topology closed convex hull of the set of com-
position operators on L2 of the unit interval with Lebesgue measure contains all stochas-
tic operators.

Proof. Given a stochastic operator T = Tμ , we will approximate μ by measures
μn supported on lines of slope one. The corresponding stochastic operators Tn will be
shown to converge to T in the weak operator topology, and it will be shown that each
Tn is a convex combination of composition operators, and ‖Tn‖ � ‖T‖ . To accomplish
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this we will first introduce a sequence of partitions of the unit square J and with each
partition a family of measures mi j .

Fix a natural number n , and subdivide J into 22n squares Ji j , each of side length
2−n . Thus, if Ii = [(i− 1)2−n, i2−n) for 1 � i � 2n , then Ji j = Ii × I j . If Di j =
{((i−1)2−n + x,( j−1)2−n + x) : 0 � x < 2−n} is the diagonal of Ji j , then define mi j

by mi j(E)= m(π(E∩Di j)) , where π is the projection of J onto the x -axis, so π(x,y)=
x . Then mi j is a measure of total mass 2−n that is supported on Di j for 1 � i, j � 2n . It
is easy to see that the marginal measures of mi j are the restrictions of m to the intervals
Ii and I j respectively. We remark that if Ei j is the pseudo-integral operator induced by
mi j , then Ei j is a partial isometry with initial space L2(I j) and final space L2(Ii) . If
f ∈ L2(I j) , so f is an L2 function supported on I j , then Ei j f is just the translate of f
by the appropriate amount and is supported on Ii . The collection of all Ei j is a set of
matrix units corresponding to the decomposition L2 =

⊕2n

k=1 L2(Ik)
Define numbers ai j corresponding to the Ji j by ai j = μ(Ji j) , and let μn be the

measure on J defined by

μn =
2n

∑
i, j=1

ai j2nmi j.

The factor 2n in each term is required to make each 2nmi j into a probability measure
and thus μn is an approximation to μ that agrees with it on the σ -algebra Fn gener-
ated by the intervals Ii . We will show that if Tn is the pseudointegral operator generated
by μn , then

(a) Tn = ∑2n

i, j=1 ai j2nEi j ,

(b) Tn is a convex combination of composition operators,

(c) ‖Tn‖ � ‖T‖ , and

(d) the sequence (Tn) converges to T in the weak operator topology.

The equation (a) is immediate from the definition of μn . To see that (b) holds
observe that for each i ,

2n

∑
j=1

ai j2n =
2n

∑
j=1

μ(Ji j)2n = μ(Ii× I)2n = 1.

The last equality follows because μx is a probability measure for each x . Therefore
the matrix (ai j2n) is a stochastic matrix and is consequently a convex combination of
extreme points (bi j) . The extreme points of the stochastic matrices are 0,1 matrices, so
if (bi j) is such a matrix, then for each row i there is a unique column j(i) containing a
one. Put

ν =
2n

∑
i, j=1

bi j2nmi j =
2n

∑
i=1

mi, j(i).

The corresponding operator Tν is a composition operator since νx is a point mass for
each x . The convex combination of matrices (bi j) that yields (ai j2n) corresponds to
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a convex combination of operators of the form Tν that yields Tn . Thus Tn is a convex
combination of composition operators.

To see that (c) holds note first that since the Ei j form a system of matrix units, (a)
above implies ‖Tn‖ = ‖(ai j2n)‖ , where (ai j2n) acts on C2n

. Let e1,e2, . . . ,e2n be the
standard orthonormal basis for C

2n
, where the entries of ei are all 0 except for a 1 in

position i . Define V : C2n → L2 by putting Vei = 2n/2χIi for 1 � i � 2n and extending
linearly. Then V is an isometry from C2n

onto the subspace of L2 spanned by the χIi ,
i.e. the Fn -measurable functions in L2 . Also, for each f ∈ L2 , V ∗ f =∑2n

i=1 ciei , where
ci = 〈 f ,2nχIi〉 . Observe that by equation (1)

〈V ∗TVe j,ei〉 = 2n〈TχIj ,χIi〉 = 2nai j,

and thus
‖Tn‖ = ‖(2nai j)‖ = ‖V ∗TV‖ � ‖T‖.

Finally, take arbitrary unit vectors f and g in L2 , and consider 〈(T −Tn) f ,g〉 . For
arbitrary n define V as in the preceding paragraph and put Pn = VV ∗ . The projections
Pn converge strongly to the identity operator, so for given ε > 0 and sufficiently large
n the lengths of f −Pn f and g−Png will be less than ε . Equation (a) above implies
that the range of Pn is invariant under Tn , and thus equation(3) implies

〈(T −Tn)Pn f ,Png〉 = 0.

Thus
〈(Tn −T) f ,g〉 = 〈(Tn−T )( f −Pn f ),Pkg〉+ 〈(Tn−T ) f ,g−Png〉,

and each of the two terms on the right hand side has an absolute value less than 2‖T‖ε .
Hence T is the weak operator topology limit of the Tn .

Consider the case where X = [0,1] and m is Lebesgue measure on [0,1/2] plus
a point mass of 1/2 at 1. If Cφ is a composition operator on L2(m) , then φ(1) =
1, and consequently 〈Cφ χ[0,1/2],χ{1}〉 = 0. Let T be the stochastic operator induced
by the family of measures where μx is twice Lebesgue measure on [0,1/2] . Then
〈Tχ[0,1/2],χ{1}〉 = 1/2, but for any convex combination S of composition operators
〈Sχ[0,1/2],χ{1}〉 = 0. Thus T can not be a limit of such convex combinations.
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