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Abstract. We show that the unit ball of a full Hilbert C∗ -module is sequentially compact in
a certain weak topology if and only if the underlying C∗ -algebra is finite dimensional. This
provides an answer to the question posed in J. Chmieliński et al [Perturbation of the Wigner
equation in inner product C∗ -modules, J. Math. Phys. 49 (2008), no. 3, 033519].

1. Introduction and preliminaries

Let A be a C∗ -algebra. A linear space M that is an algebraic left A -module with
λ (ax) = a(λx) = (λa)x for x ∈ M , a∈ A , λ ∈ C , is called a pre-Hilbert A -module
(or an inner product A -module) if there exists an A -valued inner product on M , i.e.,
a mapping 〈·, ·〉 : M ×M → A satisfying

(i) 〈λx+ y,z〉 = λ 〈x,z〉+ 〈y,z〉 ;
(ii) 〈ax,y〉 = a〈x,y〉 ;
(iii) 〈x,y〉∗ = 〈y,x〉 ;
(iv) 〈x,x〉 � 0;

(v) 〈x,x〉 = 0 ⇔ x = 0,

for all x,y,z ∈ M , a ∈ A , λ ∈ C . Conditions (i) and (iii) yield the fact that the inner
product is conjugate-linear with respect to the second variable. It follows from the
definition that ‖x‖M :=

√‖〈x,x〉‖A is a norm on M , whence M becomes a normed
left A -module. A pre-Hilbert A -module M is called a Hilbert C∗ -module if it is
complete with respect to this norm. We say that a Hilbert A -module M is full if the
linear subspace 〈M ,M 〉 of A generated by {〈x,y〉 : x,y ∈ M } is dense in A . The
simplest examples are usual Hilbert spaces as Hilbert C-modules, and C∗ -algebras as
Hilbert C∗ -modules over themselves via 〈a,b〉 = ab∗.

The concept of a Hilbert C∗ -module has been introduced by Kaplansky [6] and
Paschke [11]. For more information we refer the reader e.g. to monographs [7, 9].
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Despite a formal similarity of definitions, it is well known that Hilbert C∗ -modules
may lack many properties familiar from Hilbert space theory. In fact, it turns out that
properties of a C∗ -module reflect (or originate from) the properties of the underlying
C∗ -algebra.

A particularly well behaved class is the class of Hilbert C∗ -modules over C∗ -
algebras of compact operators. There are several nice characterizations of such modules
(see e.g. [1, 4, 5, 8, 13]). In our proofs we make use of orthonormal bases which
exist only in Hilbert C∗ -modules over C∗ -algebras of compact operators (see [1, 2]).
Recall that a system of vectors {εi : i ∈ I} in a Hilbert A -module M is said to be an
orthonormal basis for M if it satisfies the following conditions:

1. pi := 〈εi,εi〉 ∈ A is a projection such that piA pi = Cpi for every i ∈ I;

2.
〈
εi,ε j

〉
= 0 for every i, j ∈ I, i 	= j;

3. {εi : i ∈ I} generates a norm-dense submodule of M .

If {εi : i ∈ I} is an orthonormal basis for M then the reconstruction formula x =
∑i∈I 〈x,εi〉εi holds for every x∈M , with the norm convergence. Since all orthonormal
bases for a Hilbert A -module M have the same cardinality (see [2]), it makes sense to
define the orthogonal dimension of M , denoted by dimA M , as the cardinal number
of any of its orthonormal bases.

Various specific properties of Hilbert C∗ -modules turn out to be particularly useful
in applications. An interesting example of investigations of this type is a recent study
of the stability of the Wigner equation (see [3] and the references therein). In particu-
lar, the main result in [3] is obtained for Hilbert C∗ -modules satisfying the following
condition:

[H] For each norm-bounded sequence (xn) in M , there exist a subsequence (xnk)
of (xn) and an element x0 ∈ M such that the sequence (

〈
xnk ,y

〉
) converges to

〈x0,y〉 in norm for any y ∈ M .

Notice that in case of a Hilbert space, condition [H] is clearly satisfied: this is sim-
ply the fact that the unit (and hence each) ball in a Hilbert space is weakly sequentially
compact.

It is proved in [3, Proposition 2.1] that a Hilbert A -module M satisfies condition
[H] whenever the underlying C∗ -algebra is finite dimensional. In this note we prove the
converse, i.e., we show that condition [H] is an exclusive property of the class of Hilbert
C∗ -modules over finite dimensional C∗ -algebras. In this way we obtain a new charac-
terization of such modules and answer the question posed in [3] concerning condition
[H].

2. The result

For a Hilbert space H we denote by B(H) and K(H) the C∗ -algebras of all
bounded, respectively compact operators acting on H . We begin with a proposition
that reduces the discussion to the class of C∗ -algebras of compact operators.



A CHARACTERIZATION OF HILBERT C∗ -MODULES 237

PROPOSITION 2.1. Suppose that M is a full Hilbert C∗ -module over a C∗ -
algebra A , which satisfies condition [H]. Then A is isomorphic to a C∗ -algebra of
(not necessarily all) compact operators acting on some Hilbert space.

Proof. Let us fix y∈M . Consider the map Ty : M →M given by Ty(x) = 〈y,x〉y.
Obviously, Ty is a bounded anti-linear operator.

Let (xn) be a norm-bounded sequence in M and let (xnk) be a subsequence
of (xn) such that, for some x0 ∈ M , limk→∞

〈
xnk ,y

〉
= 〈x0,y〉 for all y ∈ M . Then

limk→∞〈y,xnk 〉y = 〈y,x0〉y for all y ∈ M . This can be restated in the following way:
for each norm-bounded sequence (xn) in M , the sequence (Ty(xn)) has a convergent
subsequence. Hence, Ty is a compact operator. Moreover, by the hypothesis, this is
true for each y ∈ M .

By [1, Proposition 1], (4) ⇒ (1), there is a faithful representation π : A → B(H)
of A on some Hilbert space H such that π(〈y,y〉) ∈ K(H). This holds for every y ∈
M , so, by polarization, π(〈x,y〉) ∈ K(H) for all x,y ∈ M , and therefore π(A ) ⊆
K(H).

By the preceding proposition, condition [H] can only be satisfied in Hilbert C∗ -
modules over C∗ -algebras of compact operators. (Here, and in the sequel, we identify
A with π(A ) , where π is the representation from the preceding proof.) However,
even if the underlying algebra is a C∗ -algebra of compact operators, one still cannot
conclude that condition [H] is satisfied.

We demonstrate this fact in the following two examples.

EXAMPLE 2.2. Consider a separable infinite dimensional Hilbert space H with
an orthonormal basis (εn) . We shall regard K(H) as a Hilbert C∗ -module over itself
via the inner product 〈a,b〉 = ab∗ . Let us show that K(H) does not satisfy [H].

For n ∈ N , denote by pn the orthogonal projection onto span{ε1, . . . ,εn} . Obvi-
ously, the sequence (pn) is norm-bounded.

Suppose that there exist a subsequence (pnk) and a compact operator a ∈ K(H)
such that limk→∞〈pnk ,y〉 = 〈a,y〉 for all y ∈ K(H) . This means pnky

∗ → ay∗ for all
y ∈ K(H) , which in turn gives us pnkyξ → ayξ for all y ∈ K(H) and for all ξ ∈ H . In
particular, for every n∈N , we can take y = pn− pn−1 (that is the orthogonal projection
to the one-dimensional subspace spanned by εn ) and ξ = εn . Then the preceding
relation yields aεn = εn for all n∈N; i.e., a is the identity operator. Since dim H =∞ ,
this is not a compact operator. Thus, the assumed property [H] leads to a contradiction.

Recall that, by [2, Example 2], dimK(H) K(H) = dim H.
Our following example shows that even a Hilbert K(H)-module M such that

dimK(H) M < ∞ need not have property [H].

EXAMPLE 2.3. (cf. [2, Example 1]) Let H be a Hilbert space. For ξ ,η ∈ H
define 〈ξ ,η〉 = eξ ,η ∈ K(H) , where eξ ,η (ν) = (ν|η)ξ . Also, for a ∈ K(H) , define a
left action on ξ ∈ H in a natural way as the action of the operator a on the vector ξ .

In this way H becomes a left Hilbert K(H)-module. Notice that the resulting
norm coincides with the original norm on H .
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We also know that dimK(H) H = 1. Indeed, if ε is an arbitrary unit vector then each
ξ ∈ H admits a representation of the form ξ = 〈ξ ,ε〉ε (because 〈ξ ,ε〉ε = eξ ,ε(ε) =
(ε|ε)ξ = ξ ). This means that {ε} is an orthonormal basis for H , regarded as a K(H)-
module.

Notice that the entire preceding discussion was independent on the (usual) dimen-
sion of the underlying space H . Suppose now that H is a separable infinite dimensional
Hilbert space. We claim that then H , as a Hilbert K(H)-module, does not satisfy [H].

To see this, let us fix an orthonormal basis (εn) for H . The sequence (εn) is
obviously norm-bounded. Suppose that there exist a subsequence (εnk ) of (εn) and
ε0 ∈ H such that limk→∞〈εnk ,ξ 〉 = 〈ε0,ξ 〉 for all ξ ∈ H . In particular, this would
imply limk→∞〈εnk ,ε1〉 = 〈ε0,ε1〉 , i.e., ‖eεnk ,ε1 − eε0,ε1‖ → 0. But, ‖eεnk ,ε1 − eε0,ε1‖ =
sup‖η‖=1 ‖eεnk ,ε1(η)− eε0,ε1(η)‖ = sup‖η‖=1 ‖(η |ε1)(εnk − ε0)‖ = ‖εnk − ε0‖ and the
last expression obviously does not converge to 0 as k → ∞ .

REMARK 2.4. Suppose that M is an arbitrary Hilbert C∗ -module over a C∗ -
algebra A of compact operators. It is well known that there is a family (Hj), j ∈ J ,
of Hilbert spaces such that A =

⊕
j∈J K(Hj) . Furthermore, it then follows that M =⊕

j∈J M j , where M j = K(Hj)M (i.e., M is an outer direct sum of M j ’s, where each
M j is a full Hilbert K(Hj)-module).

Now, by [2, Theorem 3] and the preceding example, we conclude that if there
exists j0 ∈ J such that dim Hj0 = ∞ then M j0 cannot satisfy [H]. Consequently, M
does not satisfy [H]. Namely, if dim M j0 = d (here d can be an arbitrary cardinal
number), then, by Theorem 3 from [2], M j0 is an orthogonal sum of d copies of

K(Hj0 )Hj0 , and, by Example 2.3, just one copy of K(Hj0 )Hj0 is enough to ruin property

[H].

From the preceding discussion we conclude that if M is a full Hilbert C∗ -module
satisfying [H], then M is necessarily a Hilbert C∗ -module over a C∗ -algebra A of
compact operators. Moreover, A has to be of the form A =

⊕
j∈J K(Hj) and each

Hj must be finite dimensional. If, moreover, J is of finite cardinality, then A is finite
dimensional. Next we show that if cardJ = ∞ with dim Hj < ∞ for all j ∈ J, then
again M cannot satisfy [H].

First, in this situation, since J as a set of infinite cardinality contains a count-
able subset J′ , M =

⊕
j∈J M j can be written as the orthogonal sum of the form

M =
(⊕

j∈J′ M j
)⊕(⊕

j∈J\J′ M j

)
. Thus, M contains, as an orthogonal summand,

a submodule of the form M ′ =
⊕

n∈N Mn , where each Mn is a module over K(Hn)
and dim Hn <∞ . Moreover, each Mn is, by [2, Theorem 3], unitarily equivalent to the
orthogonal sum of dn = dim Mn copies of K(Hn)Hn, i.e., Mn 
 ⊕dn

1 K(Hn)Hn .
If we take just one copy of each K(Hn)Hn , we conclude that M ′ (and hence M )

contains, as an orthogonal summand, a submodule of the form M ′′ 
⊕∞
n=1 K(Hn)Hn . It

is now enough to prove that M ′′ does not satisfy [H] and this can be argued essentially
in the same way as in Example 2.3.

Observe that M ′′ is also a Hilbert C∗ -module over a direct sum
⊕∞

n=1 K(Hn) ⊂
K(H) , where H =

⊕∞
n=1 Hn is an infinite dimensional Hilbert space. For each n ∈ N
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take a unit vector εn ∈ Hn ⊂ H . Let xn = (ε1,ε2, . . . ,εn,0,0, . . .), n ∈ N . Notice that
〈xn,xn〉 = ∑n

i=1 eεi,εi . Since this is an orthogonal projection onto an n -dimensional
subspace of H , we have ‖xn‖ = 1; thus, (xn) is a norm-bounded sequence in M ′′ .
Suppose now that there exists a subsequence (xnk) and x0 = (ξ1,ξ2, . . .) ∈ M ′′ such
that limk→∞〈xnk ,y〉= 〈x0,y〉 for all y∈M ′′ . Inserting y = (ε1−ξ1,0,0, . . .) we obtain
‖〈xnk ,y〉− 〈x0,y〉‖ = ‖〈ε1 − ξ1,ε1 − ξ1〉‖ → 0, which implies ξ1 = ε1 . Similarly, for
y = (0,ε2− ξ2,0, . . .) we obtain ξ2 = ε2 and, proceeding in the same way, ξn = εn for
all n ∈ N . This gives us x0 = (ε1,ε2,ε3, . . .) , which is impossible since this sequence
does not belong to M ′′ .

After all, combining the preceding discussion with Proposition 2.1 from [3], we
get our main result.

THEOREM 2.5. A full Hilbert C∗ -module over a C∗ -algebra A satisfies condi-
tion [H] if and only if A is a finite dimensional C∗ -algebra.

REMARK 2.6. We may ask ourselves if one could replace condition [H] with a
weaker one:

[H’] For each norm-bounded sequence (xn) in M and for every y ∈ M there exists a
subsequence (xnk) of (xn) such that the sequence (

〈
xnk ,y

〉
) converges in norm.

Observe that [H’] is sufficient to prove Proposition 2.1, so full Hilbert C∗ -modules
with property [H’] have to be over C∗ -algebras of compact operators. Also, it is obvious
that [H’] is fulfilled in every Hilbert C∗ -module over a finite dimensional C∗ -algebra.
However, our next example shows that [H’] does not characterize these Hilbert modules;
in other words, [H’] is not sufficient for [H].

Consider a separable infinite dimensional Hilbert space H and the C∗ -algebra
A ⊂ K(H) of all diagonal (with respect to a fixed orthonormal basis) operators with
diagonal entries converging to 0. Let M = A . Then A is a Hilbert C∗ -module
whose underlying C∗ -algebra A is infinite dimensional. By the preceding theorem,
the Hilbert C∗ -module A cannot satisfy [H].

On the other hand, since A is a Hilbert C∗ -module over the (commutative) C∗ -
algebra A of compact operators, by [1, Theorem 4] (see also its proof), all mappings
Ty : A → A given by Ty(x) = 〈y,x〉y are compact. But here we have Ty(x) = yx∗y =
x∗y2 for all y ∈ A . In particular, taking self-adjoint y we get that x �→ x∗y is compact
for every positive y ∈ A , and since positive elements of a C∗ -algebra span the whole
C∗ -algebra, we get that the operator x �→ x∗y = 〈y,x〉 is compact for every y ∈A . This
shows that our Hilbert C∗ -module A satisfies [H’].

Acknowledgement. The authors are thankful to the referee for several valuable
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[1] LJ. ARAMBAŠIĆ, Another characterization of Hilbert C∗ -modules over compact operators, J. Math.
Anal. Appl. 344 (2008), 735–740.

[2] D. BAKIĆ, B. GULJAŠ,Hilbert C∗ -modules over C∗ -algebras of compact operators, Acta. Sci. Math.
(Szeged), 68 (2002), 249–269.
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