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TRACE INEQUALITIES AND SPECTRAL SHIFT

ANNA SKRIPKA

(Communicated by L. Rodman)

Abstract. We derive monotonicity and convexity inequalities for traces of operator functions
defined on self-adjoint elements of a semi-finite von Neumann algebra. Among tools involved
in the proofs are a generalized Birman-Solomyak spectral averaging formula (obtained in the
paper), a generalized Birman-Schwinger principle, and Koplienko’s spectral shift function, a
new, more straightforward, approach to which is developed in the paper.

1. Introduction

Monotonicity and convexity of (traces of) functions of an operator argument have
been widely explored and have found a number of applications. However, in all cases,
strong restrictions have been imposed either on the operator argument (see, e.g., [5]) or
on the scalar function that gives rise to the operator function (see, e.g., [17]). In this
paper, we continue studies of monotonicity and convexity of functionals H �→ τ[ f (H)] ,
defined on self-adjoint elements of (or affiliated with) a semi-finite von Neumann al-
gebra A equipped with a normal faithful semi-finite trace τ , as well as functions
t �→ τ[ f (H(t))] , where [0,1] � t �→ H(t) is a path of self-adjoint operators in A . For
operator monotonicity and convexity, one can consult [13] and references cited therein.
In our considerations, the self-adjoint operators H are allowed to be non-sign-definite
(that is, they are not required to be positive or negative); the functions of an opera-
tor argument are mainly (but not always) defined by the spectral theorem. Discussing
monotonicity or convexity of the functions H �→ τ[ f (H)] of an operator argument given
by the spectral theorem, we assume that the scalar function f is monotone or convex,
respectively.

We obtain monotonicity and convexity results for the functional τ[ f (·)] defined on
self-adjoint elements of a semi-finite von Neumann algebra A analogous to those of
[12, 17] obtained in the particular case of A = B(H ) (see section 6). Our approach
also employs spectral perturbation machinery, but it is more algebraic in nature than the
one of [12, 17]. One of our main tools in the study of convexity of H �→ τ[ f (H)] is a
semi-finite von Neumann algebra analog of Koplienko’s spectral shift function (KoSSF)
(see section 4) and its symmetrized counterpart (see section 5). We obtain a new repre-
sentation for KoSSF that immediately implies positivity of KoSSF (see section 5), with
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no appeal to double operator integration or Klein’s convexity inequality (see section 6)
that originally were used in [12, 17]. Positivity of the symmetrized KoSSF, which is a
sum of two non-symmetrized KoSSFs, assures an algebraic direct proof of the mono-
tonicity of the function t �→ τ[Vg(H0 + tV)] for a monotone function g and a τ -trace
class operator V (see section 5).

Monotonicity of t �→ τ[Vg(H0 +tV)] is crucial in the perturbation theory approach
to the convexity of operator functions; originally it was proved for τ the standard trace
and g nonnegative by either double operator integration [3] or analytic function theory
techniques [10]. We note that the relevance of the function t �→ τ[Vg(H0 + tV )] to
convexity issues is rather natural. For instance, when the differentiation rule

d
dt
τ[ f (H0 + tV)] = τ[V f ′(H0 + tV)]

is applicable (see, e.g., [7, 14]), the function t �→ τ[V f ′(H0 + tV)] is increasing if and
only if t �→ τ[ f (H0 + tV )] is convex. In a wider setting, the function t �→ τ[ f (H0 + tV )]
can fail to be differentiable, but monotonicity of certain t �→ τ[Vg(H0 + tV)] can still
be “responsible” for convexity of t �→ τ[ f (H0 + tV)] (see section 6).

Our proofs engage Krein’s trace formula and the Birman-Solomyak spectral aver-
aging formula for the semi-finite von Neumann algebra analog of Krein’s spectral shift
function (KrSSF) [2, 6]. Monotonicity of H �→ τ[ f (H)] (see section 6) follows from
monotonicity of KrSSF with respect to a perturbation, which is proved by means of the
version of the Birman-Schwinger principle for τ -trace class perturbations of dissipa-
tive operators [18, 33]. In the case of A = B(H ) , monotonicity of KrSSF was proved
for rank-one perturbations by analytic function theory techniques and then extended to
trace class perturbations by approximation techniques. We also extend convexity results
of [10] for the function t �→ τ[ f (H(t))] to the case of a general trace τ . This involves
the Birman-Solomyak formula for a general trace τ with averaging accomplished along
a non-linear path of operators, which we prove by employing the Birman-Schwinger
principle [18, 33] (see section 3). The spectral averaging formula discussed in section
3 is an extension of weaker versions of the Birman-Solomyak formula [1, 3, 10, 22, 32]
that were obtained by double operator integration, analytic function theory, or pertur-
bation determinant techniques.

Krein’s and Koplienko’s spectral shift functions can be transferred from the finite
von Neumann algebra setting to the context of a unital C∗ algebra B with a tracial state
φ by means of the GNS-construction (see section 6). Similarly to the von Neumann
algebra case, KrSSF and KoSSF can be applied to prove monotonicity and convexity
results for the functional H �→ φ [ f (H)] on B (see section 6), which reverses the ap-
proach of [4] of using monotonicity and convexity of H �→ φ [ f (H)] to prove existence
of KrSSF and KoSSF on B , respectively.

We conclude our introduction with some notation and basic definitions on the the-
ory of von Neumann algebras [7, 15, 30, 34]. Let A be a semi-finite von Neumann
algebra acting on a separable Hilbert space H and equipped with a normal semi-finite
faithful trace τ . Let L1(A ,τ) denote the τ -trace class ideal {A ∈ A : τ(|A|) < ∞}
and ‖A‖1 the τ -trace class norm τ(|A|) of A ∈ L1(A ,τ) . Let A sa denote the set
of self-adjoint operators in A and A sa

a the set of self-adjoint operators affiliated with
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A . As usual, EH(·) stands for the spectral measure of a self-adjoint operator H and
EH(λ ) for the spectral projection EH((−∞,λ )) . Finally, let P denote the set of pairs
{(H0,V ) : H0 ∈ A sa

a ,V = V ∗ ∈ L1(A ,τ)} .
We recall that a von Neumann algebra A is a ∗ -subalgebra of B(H ) containing

the identity operator and closed in the weak operator topology. A von Neumann algebra
that admits a (not necessarily unique) faithful normal semi-finite trace is called semi-
finite. A trace is a functional τ : A + �→ [0,∞] initially defined on the non-negative
elements A + of A and satisfying τ(λA + μB) = λτ(A) + μτ(B) for A,B ∈ A + ,
λ ,μ � 0 and τ(C∗C) = τ(CC∗) for C ∈ A . A trace is called faithful if it does not
annihilate non-zero elements of A + , normal if τ(Aα) ↑ τ(A) for each increasing net
{Aα} ⊂ A + converging to A in the strong operator topology, semi-finite if for each
A ∈ A + there is a net (sequence when H is separable) of elements with finite traces
which increases to A . A trace τ with the properties described above extends uniquely
to a functional on the relative τ -trace class ideal L1(A ,τ) , with extended τ satisfying
τ(AB) = τ(BA) for A ∈ L1(A ,τ) , B ∈ A . The algebra B(H ) is a semi-finite von
Neumann algebra, where the usual trace is a unique normal faithful semi-finite trace τ
defined on L1(B(H ),τ) , the (usual) trace class ideal. If τ is finite on the whole A +

(and hence, on A ), then both τ and A are called finite; in this case, L1(A ,τ) = A .
The algebra of n×n matrices with the standard trace is a finite von Neumann algebra.
An example of a finite von Neumann algebra with a unique normal faithful (finite)
trace τ which contains a discrete Laplacian Δ with no point spectrum and such that
τ[EΔ((−∞,λ ))] gives the value of the integrated density of states for Δ at point λ ∈ R

is discussed in [31]. A self-adjoint operator H is said to be affiliated with A if all its
spectral projections EH(·) belong to A .

2. Auxiliary lemmas

Many of the results in the paper will primarily be proved for operators in a fi-
nite von Neumann algebra and then extended to operators affiliated with a semi-finite
algebra by means of standard approximation lemmas stated below.

LEMMA 2.1. ([28, Theorem VIII.20(b)]) Let {H(n)}∞n=1 be a sequence of self-
adjoint operators converging to a self-adjoint operator H in the strong resolvent sense.
Then, for any bounded and continuous function g on R , the sequence of g(H(n)) con-
verges to g(H) in the strong operator topology.

LEMMA 2.2. ([28, Theorem VIII.5(d)]) Let gn be a sequence of Borel functions,
with supn ‖gn‖∞ <∞ , converging to a function g pointwise. Then, for every self-adjoint
operator H , the sequence of gn(H) converges to g(H) in the strong operator topology.

LEMMA 2.3. Let (H0,W ) ∈ P and H = H0 +W . Then, for any function g con-
tinuous and bounded on R ,

s-limn→∞g(H(n)) = g(H),

where H(n) = PnH0Pn +W , with Pn = EH0((−n,n)) , n ∈ N .
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Proof. The sequence of bounded self-adjoint operators {H(n)} converges to the
operator H in the strong resolvent sense and, therefore, the result is an immediate
consequence of Lemma 2.1. �

LEMMA 2.4. Let {H(n)}∞n=1 be a sequence of operators in A sa
a converging to

H ∈ A sa
a in the strong resolvent sense and let V ∈ L 1(A ,τ) . Then, for any function

g continuous and bounded on R ,

lim
n→∞

τ[Vg(H(n))] = τ[Vg(H)].

In particular, if {H(n)}∞n=1 is a sequence of operators in A converging to a bounded
operator H in the strong operator topology, then

lim
n→∞

τ[VH(n)] = τ[VH]. (2.1)

Proof. In view of Lemma 2.1, the general assertion of Lemma 2.4 follows from
its particular case (2.1). The proof of the latter can be found in [1, Lemma 2.5]. �

REMARK 2.5. (i) A sequence of operators {H(n)}∞n=1 as in Lemma 2.3 satisfies
the general assumption of Lemma 2.4.

(ii) Given a normal semi-finite trace τ , there exists an increasing sequence of
orthogonal projections {Qn}∞n=1 converging to I in the strong operator topology, with
τ(Qn) <∞ , n∈N . For such {Qn}∞n=1 , the sequence of H(n) = QnHQn , with H ∈A sa ,
satisfies the assumptions of Lemma 2.4.

The following fact is elementary, but, for convenience of references, it is stated in
the format of a lemma.

LEMMA 2.6. For P and Q orthogonal projections,

Q−P = QP⊥−Q⊥P.

Proof. By applying a trivial representation P = (Q+Q⊥)P, one obtains

Q−P = Q−QP−Q⊥P = QP⊥−Q⊥P. �

3. Krein’s spectral shift function

This section discusses results on KrSSF that we apply later in the study of mono-
tonicity and convexity of functions of an operator argument.

Let W 1 denote the Wiener class, that is, the set of continuous functions on R

which can be represented as Fourier-Stieltjes transforms of finite Borel measures.
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THEOREM 3.1. ([2, 6]) Let (H0,V )∈P . Then, there exists a unique L1 -function
ξτ(λ ,H0 +V,H0) satisfying Krein’s trace formula

τ[ f (H0 +V )− f (H0)] =
∫

R

f ′(λ )ξτ (λ ,H0 +V,H0)dλ , (3.1)

for every f ∈C1(R) with f ′ ∈ W 1 .

The function ξτ (λ ,H0 +V,H0) provided by Theorem 3.1 is called Krein’s spectral
shift function (KrSSF) associated with the pair of operators (H0 +V,H0) . Originally
this function was introduced in the standard trace class setting in [19, 21]. For τ the
standard trace, the requirement that f ∈ B1

∞,1 is sufficient for (3.1) to hold, while f ∈
C1(R) is not enough [24].

REMARK 3.2. Assume that τ is finite and let (H0,V ) ∈ P . Then, for any abso-
lutely continuous function f on R with f ′ ∈ L1(R) , Krein’s trace formula (3.1) holds
and, for a.e. λ ∈ R , KrSSF is the difference of the spectral distribution functions

ξτ(λ ,H0,H0 +V) = τ[EH0+V (λ )]− τ[EH0(λ )].

In this case, Krein’s trace formula can be proved by the integration by parts argument.
The linear functional in (3.1) defined on L1 -functions f ′ is continuous and, hence,
an L∞ -function ξτ(λ ,H0 +V,H0) appearing in the representation of the functional is
unique. Another representation for KrSSF,

ξτ(λ ,H0,H0 +V) = τ
[
EH0+V (λ )EH0(λ )⊥

]− τ
[
EH0+V (λ )⊥EH0(λ )

]
,

can be derived by applying Lemma 2.6 to the projections P = EH0(λ ) and Q = EH0+V (λ ) .

LEMMA 3.3. ([2, 19]) For (H0,V ) ∈ P ,
∫

R

ξτ(λ ,H0 +V,H0)dλ = τ(V ),
∫

R

|ξτ (λ ,H0 +V,H0)|dλ � ‖V‖1 .

Given a pair (H0,H0 +V )∈P of bounded operators, KrSSF can be reconstructed
from KrSSFs for finite trace truncations of the pair (H0,H0 +V) .

LEMMA 3.4. Let (H0,V ) ∈ P , with H0 bounded, and let Qn ↑ I be a sequence
of orthogonal projections in A with τ(Qn) < ∞ . Let [a,b] be a segment containing
σ(H0)∪σ(H0 +V) . Then, for f ∈C[a,b] ,
∫

[a,b]
f (λ )ξτ (λ ,H0,H0+V)dλ = lim

n→∞

∫
[a,b]

f (λ )ξτ (λ ,QnH0Qn,QnH0Qn+QnVQn)dλ .

Proof. It is straightforward to see that for a polynomial

f (x) = a0 +a1x+a2x
2 + . . .+amxm, with m � 2 and a0, . . . ,am ∈ C,
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τ[ f (H0 +V)− f (H0)] = a1τ(V )+ τ[a2((H0 +V)2−H2
0 )+ . . .+am((H0 +V)m −Hm

0 )]
= a1τ(V )+ τ[V p(H0,V )]

and

τ[ f (QnH0Qn +QnVQn)− f (QnH0Qn)] = a1τ(QnVQn)+ τ[V p(QnH0Qn,QnVQn)],

where p is a polynomial in two variables. By Lemma 2.4, one has

τ[V p(H0,V )] = lim
n→∞

τ[V p(QnH0Qn,QnVQn)]

and, thus,

τ[ f (H0 +V )− f (H0)] = lim
n→∞

τ[ f (QnH0Qn +QnVQn)− f (QnH0Qn)]. (3.2)

Combining (3.2) and Theorem 3.1 proves the lemma for f a polynomial. By Lemma
3.3, the L1 -norms of functions ξτ(λ ,H0,H0+V ) and ξτ(λ ,QnH0Qn,QnH0Qn+QnVQn)
are totally bounded by ‖V‖1 and, hence, the assertion of the lemma extends to the func-
tions in C[a,b] . �

REMARK 3.5. In the case of the standard trace τ and bounded H0 , taking Qn ↑ I
such that ‖[H0,Qn]‖2 → 0 suffices to prove existence of KrSSF [35].

Krein’s spectral shift function can be transferred from a finite von Neumann al-
gebra to a unital C∗ -algebra with tracial state by means of the Gelfand-Naimark-Segal
construction (cf. [27, 34]).

LEMMA 3.6. Let B be a unital C∗ -algebra with a tracial state φ . Let π be a
∗ -homomorphism into a finite von Neumann algebra A possessing a faithful normal
finite trace τ such that for every A∈Bsa and every continuous function f : σ(A) �→R ,
φ [ f (A)] = τ[ f (π(A))] . Then for H0 and V in Bsa and for a.e. λ ∈ R ,

ξφ (λ ,H0,H0 +V) = ξτ(λ ,π(H0),π(H0 +V)).

Proof. Application of Krein’s trace formula to a C1 function f implies

φ [ f (H0 +V)− f (H0)] = τ[ f (π(H0 +V))− f (π(H0))]

=
∫

R

f ′(λ )ξτ(λ ,π(H0 +V ),π(H0))dλ .

By uniqueness of the Riesz representation for the continuous functional φ [ f (H0 +
V )− f (H0)] , which is defined on the space of continuous functions f ′ , the function
ξτ(λ ,π(H0),π(H0 +V)) coincides with KrSSF for the pair (H0,H0 +V) . �

We conclude this section with the Birman-Solomyak formula, where averaging is
performed along a non-linear path of self-adjoint operators affiliated with a semi-finite
von Neumann algebra. Preceding versions of this formula can be found in [3, 32, 11,
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1, 22]. Our proof is adjustment of the one of [11, Theorem 4.3] to the case of a semi-
finite von Neumann algebra with employment of the analog of the Birman-Schwinger
principle for dissipative operators [18, 33] instead of theory of operator-valuedHerglotz
functions originally used in [11].

THEOREM 3.7. Assume that H0 ∈ A sa
a and [0,1] � s �→ V (s) ∈ L1(A ,τ) is a

path of self-adjoint operators continuously differentiable in the norm ‖·‖1 +‖·‖ . Then,
for every λ ∈ R and t ∈ [0,1] ,

∫ t

0
τ
[
V ′(s)EH0+V (s)(λ )

]
ds =

∫ λ

−∞
ξτ(s,H0 +V(t),H0 +V(0))ds. (3.3)

Proof. Assume first that V (s) � 0. It was derived in the proof of the Birman-
Schwinger principle for a semi-finite trace [33, Theorem 3.1] that

∫
R

ξ (λ ,H0 +V(s),H0)
λ − z

dλ

= τ
[
log

(
I +V(s)1/2(H0 − zI)−1V (s)1/2)− log(I)

]
. (3.4)

Following the lines in the proof of [11, Lemma 4.2] with employment of [33, Lemma
2.5], one obtains

d
ds
τ
[
log

(
I +V(s)1/2(H0− zI)−1V (s)1/2)]

= τ
[
V ′(s)(H0 +V (s)− zI)−1], for z ∈ C\R.

Integrating on both sides of the equality above and comparing the result with (3.4) gives
∫

R

ξ (λ ,H0 +V(s2),H0)− ξ (λ ,H0 +V (s1),H0)
λ − z

dλ

=
∫ s2

s1
τ
[
V ′(s)(H0 +V(s)− zI)−1]ds. (3.5)

Decompose V ′(s) into

V ′(s) = (V ′(s))+ − (V ′(s))−, with 0 � (V ′(s))± ∈ L1(A ,τ).

Making consecutive use of the spectral theorem, the monotone convergence theo-
rem, and the Fubini theorem in the second integral in (3.5) yields

∫
R

ξ (λ ,H0 +V(s2),H0)− ξ (λ ,H0 +V(s1),H0)
(λ −Re(z))2 +(Im(z))2 dλ

=
∫ s2

s1

∫
R

dτ
[
(V ′(s))1/2

+ EH0+V (s)(λ )(V ′(s))1/2
+

]
(λ −Re(z))2 +(Im(z))2 ds

−
∫ s2

s1

∫
R

dτ
[
(V ′(s))1/2

− EH0+V (s)(λ )(V ′(s))1/2
−

]
(λ −Re(z))2 +(Im(z))2 ds

=
∫

R

1
(λ −Re(z))2 +(Im(z))2

∫ s2

s1
dτ

[
V ′(s)EH0+V (s)(λ )

]
ds.
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By uniqueness of the Poisson transform, we conclude equality of the measures

ξ (λ ,H0 +V(s2),H0 +V(s1))dλ =
(
ξ (λ ,H0 +V(s2),H0)− ξ (λ ,H0 +V (s1),H0)

)
dλ

=
∫ s2

s1
τ
[
V ′(s)EH0+V (s)(dλ )

]
ds.

The case of a general, non-sign-definite, perturbation V (s) can be treated literally the
same way as in [11, Theorem 4.3]. �

4. Koplienko’s spectral shift function

By analogy with the studied case of a standard trace-class perturbation, we define
Koplienko’s spectral shift function (KoSSF) for the pair (H0,H0 +V ) , with (H0,V ) ∈
P , to be

ητ (λ ,H0,H0 +V) = τ[VEH0(λ )]−
∫ λ

−∞
ξτ(t,H0 +V,H0)dt, λ ∈ R. (4.1)

KoSSF (4.1) enjoys a number of properties completely analogous to those known
in the standard setting of the spectral perturbation theory.

LEMMA 4.1. Given (H0,V )∈P , λ �→ητ (λ ,H0,H0+V ) is a function of bounded
variation with ‖ητ(·,H0,H0 +V)‖∞ � 2‖V‖1 .

The following representation to be used in the proof of positivity of KoSSF is
ensured by (4.1) and Theorem 3.7.

LEMMA 4.2. Let (H0,V ) ∈ P . Then

ητ(λ ,H0,H0 +V ) =
∫ 1

0
τ[VEH0(λ )−VEH0+sV (λ )]ds.

Alternatively, KoSSF can be defined as the unique L∞ -function satisfying Ko-
plienko’s trace formula.

THEOREM 4.3. Let (H0,V ) ∈ P and f ∈ C1(R) , with f ′ ∈ W 1 an absolutely
continuous function. Then,

τ
[
f (H0 +V)− f (H0)−V f ′(H0)

]
=

∫
R

f ′′(λ )ητ (λ ,H0,H0 +V)dλ . (4.2)

Proof. By Krein’s trace formula,

τ[ f (H0 +V )− f (H0)] =
∫

R

f ′(λ )ξτ (λ ,H0 +V,H0)dλ . (4.3)

Applying the spectral theorem and Lemma 2.4 yields

τ[V f ′(H0)] =
∫

R

f ′(λ )dτ[VEH0(λ )]. (4.4)
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Combining (4.3) and (4.4) and then integrating by parts imply

τ
[
f (H0 +V)− f (H0)−V f ′(H0)

]

= −
∫

R

f ′(λ )d

(
τ[VEH0(λ )]−

∫ λ

−∞
ξτ(t,H0 +V,H0)dt

)

= −
[

f ′(λ )
(
τ[VEH0(λ )]−

∫ λ

−∞
ξτ(t,H0 +V,H0)dt

)]∣∣∣∣
∞

−∞
(4.5)

+
∫

R

f ′′(λ )
(
τ[VEH0(λ )]−

∫ λ

−∞
ξτ(t,H0 +V,H0)dt

)
dλ . (4.6)

Since f ′ is a Fourier-Stieltjes transform of a finite Borel measure, ‖ f ′‖∞ is finite. By
Lemma 3.3,

lim
λ→∞

∫ λ

−∞
ξτ(t,H0 +V,H0)dt = τ(V )

and by Lemma 2.4,

lim
λ→∞

τ[VEH0+V (λ )] = τ(V ).

Therefore, the expression in (4.5) equals 0. The integral in (4.6) exists since f ′′ ∈
L1(R) and, by Lemma 4.1, ητ(·,H0,H0 +V) is bounded. �

REMARK 4.4. If τ is finite and H0 is bounded, then (4.2) holds for f ∈C1[a,b]
with f ′ absolutely continuous on [a,b] , where [a,b] ⊃ σ(H0)∪σ(H0 +V) .

COROLLARY 4.5. Let (H0,V )∈P . Then ητ(·,H0,H0 +V) is locally integrable.
If, in addition, H0 ∈ A , then

‖ητ(·,H0,H0 +V )‖1 =
1
2
τ(V 2).

Proof. The first assertion is an immediate consequence of Lemma 4.1. Applying
Theorem 4.3 to f (t) = t2 and then making use of nonnegativity of ητ (·,H0,H0 +V)
(see Lemma 5.6 in the next section) imply the second assertion. �

REMARK 4.6. Koplienko’s trace formula

τ
[

f (H0 +V)− f (H0)− d
dt

(
f (H0 + tV)

)∣∣∣∣
t=0

]
(4.7)

=
∫

R

f ′′(λ )ητ(λ ,H0,H0 +V)dλ ,

with τ the standard trace and V a Hilbert-Schmidt operator, was originally proved in
[16] for f a rational bounded function with non-real poles. For V in the trace class,
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ητ(λ ,H0,H0 +V) is given explicitly by (4.1); for V in the Hilbert-Schmidt class, ex-
istence of KoSSF has been established implicitly with employment of double operator
integration and approximation techniques. The class of functions satisfying (4.7) was
subsequently extended in [23, 25]. In all considered extensions of (4.7), the function
t �→ f (H0 + tV) has to be differentiable in the operator norm. It is known that for
differentiability of the operator function t �→ f (H0 + tV) the condition that f belong
to the Besov space B1

∞,1(R) is sufficient, while f ∈ C1(R) is not (see [26] and refer-
ences cited therein). When V is in the τ -trace class, a double operator integral repre-
sentation for the derivative of the differentiable function t �→ f (H0 + tV ) assures that
τ
[

d
dt f (H0 + tV)

]
= τ[V f ′(H0 + tV)] (see, e.g., [1]).

Repeating the approximation argument in the proof of Lemma 3.4, one can express
KoSSF for (H0,H0 +V) as a weak limit of KoSSFs for truncated operators.

LEMMA 4.7. Let (H0,V ) ∈ P , with H0 bounded, and let Qn ↑ I be a sequence
of orthogonal projections in A with τ(Qn) < ∞ . Let [a,b] be a segment containing
σ(H0)∪σ(H0 +V) . Then, for f ∈C[a,b] ,

∫
[a,b]

f (λ )ητ (λ ,H0,H0 +V)dλ

= lim
n→∞

∫
[a,b]

f (λ )ητ (λ ,QnH0Qn,QnH0Qn +QnVQn)dλ .

Similarly to KrSSF, KoSSF can be transferred from a finite von Neumann alge-
bra to a unital C∗ -algebra with a tracial state by means of the Gelfand-Naimark-Segal
construction.

LEMMA 4.8. Assume the hypothesis of Lemma 3.6. Then for H0 and V in Bsa

and for a.e. λ ∈ R ,

ηφ (λ ,H0,H0 +V) = ητ(λ ,π(H0),π(H0 +V)).

5. Symmetrized Koplienko’s spectral shift function

In this section, we obtain a helpful representation for KoSSF, which implies a di-
rect proof of positivity of KoSSF. We also introduce a symmetrized KoSSF, whose pos-
itivity is used to give an algebraic proof of monotonicity of the function t �→ τ[Vg(H0 +
tV )] for a monotone function g and (H0,V ) ∈ P . The symmetrized KoSSF comple-
ments Krein’s spectral shift function in a sense that the first one measures, in a certain
way, how far the spectrum of an operator shifts while the second one what portion of
the spectrum shifts under a perturbation.

Given two operators A,B in A sa
a , with B− A ∈ L1(A ,τ) , we define a sym-

metrized Koplienko’s spectral shift function by

γτ(λ ,A,B) = ητ(λ ,A,B)+ητ(λ ,B,A), λ ∈ R. (5.1)
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LEMMA 5.1. Let A,B be operators in A sa
a , with (A,B−A) ∈ P . Then, for any

λ ∈ R ,

γτ(λ ,A,B) = τ[(B−A)(EA(λ )−EB(λ ))] (5.2)

= τ
[
(B−A)EA(λ )EB(λ )⊥

]
+ τ

[
(A−B)EA(λ )⊥EB(λ )

]
. (5.3)

Proof. The representation (5.2) follows from (4.1), (5.1), and the property of the
ξ -function ξ (λ ,A,B) = −ξ (λ ,B,A) . Then by Lemma 2.6 applied to Q = EA(λ ) and
P = EB(λ ) we also have (5.3). �

It follows from (5.2) that

γτ (λ ,B,A) = γτ(λ ,A,B) = γτ(0,A−λ I,B−λ I).

As one can see from (5.3), the quantity γτ (λ ,A,B) describes the net shift of the spec-
trum of A (or B) across point λ when the perturbation B−A (or A−B) is applied.
In the particular case when A and B are matrices diagonalizable in the same basis,
γτ(0,B,A) measures the sum of the distances between the corresponding sign-different
eigenvalues of A and B .

In the case of a finite trace τ and bounded operators A and B , KoSSF admits
representations similar to (5.2) and (5.3) for the symmetrized KoSSF.

LEMMA 5.2. Let τ be finite and let A,B be operators in A sa . Then, for any
λ ∈ R ,

ητ(λ ,A,B) = τ[(λ I−B)(EB(λ )−EA(λ ))]

= τ
[
(λ I−B)EB(λ )EA(λ )⊥

]
+ τ

[
(B−λ I)EB(λ )⊥EA(λ )

]
.

Proof. Clearly,

τ[(λ I−B)(EB(λ )−EA(λ ))] (5.4)

= λτ[EB(λ )−EA(λ )] − τ[BEB(λ )−BEA(λ )],

with the second summand equal to

τ[(B−A)EA(λ )]− τ[BEB(λ )−AEA(λ )]. (5.5)

Applying the spectral theorem and integrating by parts yields

τ[BEB(λ )−AEA(λ )] =
∫ λ

−∞
t dτ[EB(t)−EA(t)] (5.6)

=
(
tτ[EB(t)−EA(t)]

)∣∣λ−∞−
∫ λ

−∞
τ[EB(t)−EA(t)]dt,

with
(
tτ[EB(t)−EA(t)]

)∣∣λ−∞ = λτ[EB(λ )−EA(λ )]. (5.7)
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Combining (5.4)–(5.7) and comparing the result with (4.1) completes the proof of the
lemma. �

The main results of this section are the theorem and two its consequences stated
below. They will be used in the next section in the proof of monotonicity and convexity
results.

THEOREM 5.3. Let (H0,V ) ∈ P . Let g be a function continuous, bounded, and
decreasing on R . Then

t �→ τ[Vg(H0 + tV)]

is decreasing.

COROLLARY 5.4. For any (H0,V ) ∈ P and λ ∈ R , the function

[0,1] � t �→ τ[VEH0+tV (λ )]

is decreasing.

COROLLARY 5.5. For any (H0,V ) ∈ P and every value of the spectral parame-
ter λ ∈ R , the symmetrized KoSSF and the representative of KoSSF given by (4.1) are
nonnegative.

The proofs of the main results proceed in several steps.
In the particular case of a finite trace and bounded operators, Lemma 5.2 immedi-

ately implies positivity of KoSSF.

LEMMA 5.6. Let τ be finite and let A,B ∈ A sa . Then, for every λ ∈ R ,

ητ(λ ,A,B) � 0.

Proof. By the spectral theorem,

(λ I−B)EB((−∞,λ )) =
∫

(−∞,λ )
(λ − t)dEB(t) � 0,

(B−λ I)EB([λ ,∞)) =
∫

[λ ,∞)
(t−λ )dEB(t) � 0,

and hence,

τ
[
(λ I−B)EB(λ )EA(λ )⊥

]
� 0 and τ

[
(B−λ I)EB(λ )⊥EA(λ )

]
� 0.

Combining the latter inequalities with Lemma 5.2 completes the proof. �
Applying Lemma 4.7 extends the result of Lemma 5.6 to a wider setting.

LEMMA 5.7. Let A,B ∈ A sa satisfy (A,B− A) ∈ P . Then, for a.e. λ ∈ R ,
ητ(λ ,A,B) � 0 and γτ(λ ,A,B) � 0 .
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To complete the proofs of Theorem 5.3, Corollary 5.4, and Corollary 5.5 in their
most general setting, we need the two lemmas below.

LEMMA 5.8. For any (H0,V ) ∈ P and t1,t2,λ ∈ R ,

γτ(λ ,H0 + t1V,H0 + t2V ) = (t2− t1)
(
τ[VEH0+t1V (λ )]− τ[VEH0+t2V (λ )]

)
.

Proof. The result follows from (5.2) by letting A = H0 + t1V and B = H0 +
t2V . �

LEMMA 5.9. Let A,B ∈ A sa . For g ∈C∞(R) ,

τ[(B−A)(g(B)−g(A))] =
∫

R

g′(λ )γτ (λ ,A,B)dλ .

Proof. It is a straightforward consequence of definition (5.1) and Theorem 4.3
applied to f ∈C∞

0 (R) with f ′
∣∣
[a,b] = g , where [a,b] ⊃ σ(A)∪σ(B) . �

Now we are ready to complete the proofs of Theorem 5.3, Corollary 5.4, and
Corollary 5.5.

Proof of Theorem 5.3. It follows from Lemma 5.7 and Lemma 5.9 that t �→ τ[Vg(H0

+ tV)] is decreasing when H0 is bounded and g ∈C∞(R) is bounded and decreasing.
By Lemma 2.2 and Lemma 2.4, the function t �→ τ[Vg(H0 + tV )] is decreasing for g
continuous, bounded, and decreasing. Next, if H0 is unbounded, let Pn = EH0((−n,n)) ,
n ∈ N , and let H(n)(t) = PnH0Pn + tV , H(t) = H0 + tV , t ∈ [0,1] . Applying Lemma
2.3 yields

s- lim
n→∞

g(H(n)(t)) = g(H(t)),

and hence by Lemma 2.4,

τ[Vg(H(t1))] � τ[Vg(H(t2))],

for t1 � t2 . �

Proof of Corollary 5.4. For each λ ∈ R , there is a sequence of real-analytic de-
creasing functions gλ approximating χ(−∞,λ ) and such that gλ (H0 + tV ) approaches
EH0+tV ((−∞,λ )) in the strong operator topology (see, e.g., [10, proof of Theorem
1.8]). Applying Theorem 5.3 and Lemma 2.4 completes the proof. �

Proof of Corollary 5.5. Combining Corollary 5.4 and Lemma 5.8 proves positivity
of the symmetrized KoSSF; combining Lemma 4.2 and Corollary 5.4 proves positivity
of KoSSF. �

REMARK 5.10. Positivity of KoSSF for a trace class perturbation V was proved
by employing the Birman-Solomyak spectral averaging formula [3, 11] and for V in
the Hilbert-Schmidt class by approximating from the finite rank perturbation case [16].
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6. Monotonicity and convexity

In this section, we utilize the results of the preceding sections to prove monotonic-
ity and convexity of some functions of an operator argument.

As it is shown in the theorem below, KrSSF is monotone with respect to the per-
turbation.

THEOREM 6.1. Let (H0,V ) ∈ P , with V � 0 . Then for a.e. λ ∈ R ,

ξτ(λ ,H0 +V,H0) � 0.

Proof. It follows from the Birman-Schwinger principle in semi-finite von Neu-
mann algebras [33] that for a.e. λ ∈ R ,

ξτ(λ ,H0 +V,H0) = lim
ε→0+

ξτ
(
I, I +V 1/2(H0−λ I− iεI)−1V 1/2).

Here the ξ -index ξτ
(
I, I +V 1/2(H0 −λ I− iεI)−1V 1/2

)
equals

1
π
τ
[
arg

(
I +V 1/2(H0−λ I− iεI)−1V 1/2)− arg(I)

]
, (6.1)

where arg(·) is the principal branch of the argument with cut along the negative imagi-
nary semi-axis. The expression in (6.1) is nonnegative, so ξτ(λ ,H0 +V,H0) is nonneg-
ative as well. �

As an application of Krein’s trace formula, we obtain monotonicity of the func-
tional τ[ f (·)] .

COROLLARY 6.2. Let (H0,V ) ∈ P , with V � 0 . Then,

τ[ f (H0 +V)− f (H0)] � 0

holds for any increasing function f satisfying Krein’s trace formula (3.1). If, in addi-
tion, τ is finite, then

τ[ f (H0 +V)] � τ[ f (H0)]

holds for every increasing continuous bounded function f on R .

Proof. The general statement of the corollary follows from Theorem 6.1. The
particular case can be proved by consecutive approximations of a continuous function
f by functions of class C1 in the case of a bounded H0 and then of an unbounded
H0 by its bounded truncations. These approximations are justified by Lemma 2.2 and
Lemma 2.3, respectively. �

REMARK 6.3. The assumption of Corollary 6.2 that f be bounded can be dropped
when A is finite and H0 and V are (bounded) elements of A sa .
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As an analog of a geometric characterization of convexity of a function of a scalar
argument in terms of the tangent lines to its graph, we have Klein’s convexity inequality

τ[ f (H0 +V)− f (H0)−V f ′(H0)] � 0 (6.2)

for certain functions f of a self-adjoint operator argument.

THEOREM 6.4. Let (H0,V ) ∈ P . Then, (6.2) holds for any f satisfying Ko-
plienko’s trace formula (4.2) with f ′ increasing. If, in addition, τ is finite, then the
inequality (6.2) holds for any bounded f ∈C1(R) with f ′ increasing and bounded.

Proof. The general statement of the theorem follows from Corollary 5.5. For a
finite τ , bounded H0 and f ∈ C2(R) , (6.2) follows from Remark 4.4 and Corollary
5.5. Any smooth convex function f on a compact set can be approximated uniformly
by a sequence { fn} of convex functions in C2 such that f ′ is approximated uniformly
by { f ′n} . For a finite τ and bounded H0 , this approximation extends (6.2) to the class
of bounded smooth convex functions f (see Lemma 2.2). To conclude the proof of
(6.2), we approximate an unbounded operator H0 by a sequence of bounded ones as in
Lemma 2.3. �

REMARK 6.5. Klein’s convexity inequality in the finite dimensional case was dis-
cussed in [29] and in the case when τ is a tracial state on a unital C∗ algebra in [27]. For
τ the standard trace, and H0 and V bounded self-adjoint operators, V in the Hilbert-
Schmidt class, the inequality (6.2) holds for all convex functions f in C∞(R) , which
follows from positivity of KoSSF [16]. This observation (see, e.g., [12]) also builds on
Koplienko’s trace formula [16].

REMARK 6.6. Along with Theorem 4.3, (6.2) yields
∫

R

g(λ )ητ(λ ,H0,H0 +V)dλ � 0,

for any 0 � g ∈ L1(R) , which implies positivity of KoSSF for almost every value of
the spectral parameter λ , while techniques of section 5 guarantee positivity of the rep-
resentative of KoSSF given by (4.1) for every λ ∈ R .

REMARK 6.7. Let B be a unital C∗ -algebra with a tracial state φ . Monotonic-
ity of the functional φ [ f (·)] on Bsa (obtained in [27]) was employed in [4] to prove
existence of KrSSF on Bsa . By Lemma 3.6, existence and monotonicity of KrSSF
on B follow immediately from existence and monotonicity of KrSSF on a finite von
Neumann algebra, respectively. Therefore, monotonicity of φ [ f (·)] also follows from
Krein’s trace formula. Klein’s convexity inequality was applied in [4] in the proof of
existence of KoSSF on Bsa . By Lemma 4.8, existence of KoSSF on B follows im-
mediately from existence of KoSSF on a finite von Neumann algebra. Consequently,
Klein’s convexity inequality on B also follows from Koplienko’s trace formula.
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Convexity of the functional V �→ τ[ f (H0 +V)− f (H0)] , with f convex, can be
proved by utilizing results of this section, sections 3, and 5 and ideas of the proof of
[17, Theorem 1 and Corollary 2].

LEMMA 6.8. Let H0 ∈ A sa
a . Then for any λ ∈ R , the function

V �→
∫ λ

−∞
ξ (t,H0 +V,H0)dt

is concave and the function

V �→ τ[VEH0(λ )]−
∫ λ

−∞
ξ (t,H0 +V,H0)dt

is convex on the set of self-adjoint elements of L1(A ,τ) .

Proof. Follows from Theorem 3.7 and Corollary 5.4. �

REMARK 6.9. Concavity of the integral spectral shift function with respect to the
perturbation generalizers the important property of a finite Hermitian matrix H that the
sum S(H) of the negative eigenvalues of H is concave with respect to H (cf. [20]).
In the standard trace class setting, concavity of the integral spectral shift function with
respect to the perturbation was discussed in [10, 17].

THEOREM 6.10. Let [0,1] � s �→ H0 +V (s) be an operator concave (convex)
path, with ∪s∈[0,1](H0,V (s)) ⊂ P . Then,

s �→ τ[ f (H0 +V(s))− f (H0)] (6.3)

is concave (convex) for any absolutely continuous concave (convex) function f satisfy-
ing Krein’s trace formula and such that f ′ is bounded on R . If, in addition, τ is finite,
then the function s �→ τ[ f (H0 +V(s))] is concave (convex) for any bounded continuous
concave (convex) function f .

Proof. Step 1. Assume that f is concave.
Assume first that V (s) = sV , for some V ∈ L1(A ,τ) . By Lemma 6.8, for any

nonnegative, bounded, and nonincreasing function g on R , the function

s �→
∫

R

g(λ )ξ (λ ,H0 +V (s),H0)dλ (6.4)

is concave. If f ′ � 0, then Krein’s trace formula (3.1) and concavity of the function in
(6.4) with g = f ′ imply concavity of the function in (6.3).

Assume now that s �→ V (s) is an arbitrary concave function. If f ′ � 0, then by
Corollary 6.2,

τ
[
f
(
H0 +V(αs1 +(1−α)s2)

)− f (H0)
]

� τ
[
f
(
α(H0 +V(s1))+ (1−α)(H0 +V(s2))

)− f (H0)
]
, (6.5)
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for α,s1,s2 ∈ [0,1] . Applying concavity of the function (6.3) along the linear path

t �→W (t) = t(H0 +V(s1))+ (1− t)(H0 +V(s2))

joining W (0) = H0 +V(s2) and W (1) = H0 +V(s1) yields

τ
[
f
(
α(H0 +V(s1))+ (1−α)(H0 +V (s2))

)− f (H0)
]

= τ
[
f
(
W (α ·1+(1−α) ·0)

)− f (H0)
]

� ατ[ f (W (1))− f (H0)]+ (1−α)τ[ f (W(0))− f (H0)]

= ατ
[
f
(
H0 +V(s1)

)− f (H0)
]
+(1−α)τ

[
f
(
H0 +V(s2)

)− f (H0)
]
.

In the case of an arbitrary (not necessarily nonnegative) f ′ , the proof completes
by applying the result to a nondecreasing function f + ct , with c > 0.

Step 2. Assume that f is convex. Its derivative f ′ can represented as a difference
of a constant function and a non-increasing bounded function g . Applying the theo-
rem to an antiderivative of g (which satisfies Krein’s trace formula since f and every
constant function do) completes the proof of convexity of the function in (6.3).

Step 3. Let τ be finite. Approximating a continuous concave (convex) function
f by smooth concave (convex) functions extends the result of the theorem to the case
of bounded continuous f and bounded H0 (see Lemma 2.2). Applying Lemma 2.3
extends the result to the case of an unbounded operator H0 . �

Concavity of the function in (6.3) implies concavity of the functional τ[ f (·)] on
the elements of A sa that differ by elements in L1(A ,τ) .

COROLLARY 6.11. Let (H0,V1),(H0,V2)∈P . Then for any α ∈ [0,1] and f an
absolutely continuous concave function satisfying Krein’s trace formula (3.1) and such
that f ′ is bounded,

τ[ f (α(H0 +V1)+ (1−α)(H0 +V2))− f (H0)] (6.6)

� ατ[ f (H0 +V1)− f (H0)]+ (1−α)τ[ f (H0 +V2)− f (H0)].

If, in addition, τ is finite, then

τ[ f (αA+(1−α)B)] � ατ[ f (A)]+ (1−α)τ[ f (B)] (6.7)

holds for any A,B ∈ A sa
a , α ∈ [0,1] , and f a bounded continuous concave function

on R .

Proof. Let V (s) = V1 + s(V2−V1) , s ∈ [0,1] . Then by Theorem 6.10,

τ[ f (α(H0 +V(0))+ (1−α)(H0 +V(1)))− f (H0)] (6.8)

� ατ[ f (H0 +V(0))− f (H0)]+ (1−α)τ[ f (H0 +V (1))− f (H0)].

Comparing the left and right hand sides of (6.6) and (6.8) completes the proof. �
Adjusting the proof of [17, Corollary 2] to the case of a general trace implies

concavity of the integral KrSSF with respect to a concave path of perturbations.
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THEOREM 6.12. Let [0,1]� s �→H0+V(s) be an operator path, with ∪s∈[0,1](H0,
V (s)) ⊂ P . Assume that s �→ V (s) is operator concave. Then, for any λ ∈ R , the
function

s �→
∫ λ

−∞
ξ (t,H0 +V(s),H0)dt

is concave.

Another result on convexity of the function t �→ τ[ f (H(t))] is adaptation of [10,
Theorem 3.6] to the case of a general trace.

THEOREM 6.13. Let H0 ∈ A sa
a and let [0,1] � s �→ V (s) ∈ L1(A ,τ) be a path

of self-adjoint operators twice continuously differentiable in the norm ‖·‖1 +‖·‖ such
that V ′′(s) � 0 . Let f be a concave (convex) C1 -function with f ′ ∈ W 1 an absolutely
continuous function. Assume, in addition, that H0 is bounded from below and f ′(λ ) =
o(1) , as λ → ∞ . Then

s �→ τ[ f (H0 +V(s))− f (H0)]

is concave (convex).

Proof. Applying Krein’s trace formula and then integrating by parts imply

τ[ f (H0 +V (s))− f (H0)] = −
∫

R

f ′′(λ )
∫ λ

−∞
ξτ(t,H0 +V(s),H0)dt dλ . (6.9)

Therefore, concavity (convexity) of the function in (6.9) amounts to the concavity of

s �→
∫ λ

−∞
ξ (t,H0 +V(s),H0)dt,

which is a consequence of Theorem 3.7 and decrease of the function

t �→ τ[V ′(t)EH0+V (t)((−∞,λ ))].

The latter can be proved by following the lines in the proof of [10, Theorem 1.8] and
replacing the standard trace with τ . �

REMARK 6.14. In the case of operators H defined on a finite dimensional Hilbert
space and τ the standard trace, proofs of convexity of H �→ τ[ f (H)] were based on the
analysis of the eigenvalues (see, e.g., [12]).

In the case of τ a tracial state on a unital C∗ -algebra, convexity of the functional
τ[ f (·)] on the self-adjoint elements of the algebra was obtained in [27] by continuous
variational techniques [8, 9]. For τ a normal semi-finite faithful trace on a semi-finite
von Neumann algebra A , convexity of τ[ f (·)] , with f (0) = 0, on sign-definite τ -
measurable operators affiliated with A was proved in [5] by invoking the notion of
spectral dominance. In the latter case, convexity of τ[ f (·)] was shown to be equivalent
to Jensen’s inequality for traces [5]. The arguments of [5] did not involve pairing of el-
ements that differ by a τ -trace class operator, and, in particular, did not involve KrSSF.
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Restricting τ[ f (·)] to the positive elements of A sa
a in [5] allowed the functional τ[ f (·)]

to attain the value of ∞ or −∞ .
In the particular case of τ the standard trace and A the algebra of bounded lin-

ear operators B(H ) on a separable Hilbert space H , convexity of the functional
V �→ τ[ f (H0 +V)− f (H0)] was also obtained on the trace class non-sign-definite self-
adjoint operators V , with the additional requirement that f (H0 +V )− f (H0) be in
the trace class, where H0 is a self-adjoint operator. An operator f (H0 +V )− f (H0)
is in the trace class if, for instance, f is a C1 -function whose derivative is in the
Wiener class. For bounded operators, convexity of V �→ τ[ f (H0 +V )− f (H0)] for
a convex f ∈C∞(R) was carried over from the finite-dimensional case by standard ap-
proximation arguments (see, e.g., [12]). The case of unbounded operators was treated
in [17] by spectral perturbation theory techniques, including Krein’s trace formula
[19] and the Birman-Solomyak spectral averaging formula [3, 11] for KrSSF [19].
Similar techniques were applied in the proof of convexity of functions [0,1] � t �→
τ[ f (H(t))− f (H(0))] [10, 17].
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