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HYPERINVARIANT, CHARACTERISTIC AND MARKED SUBSPACES

PUDJI ASTUTI AND HARALD K. WIMMER

(Communicated by L. Rodman)

Abstract. Let V be a finite dimensional vector space over a field K and f a K -endomorphism
of V . In this paper we study three types of f -invariant subspaces, namely hyperinvariant sub-
spaces, which are invariant under all endomorphisms of V that commute with f , characteristic
subspaces, which remain fixed under all automorphisms of V that commute with f , and marked
subspaces, which have a Jordan basis (with respect to f|X ) that can be extended to a Jordan basis
of V . We show that a subspace is hyperinvariant if and only if it is characteristic and marked. If
K has more than two elements then each characteristic subspace is hyperinvariant.

1. Introduction

Let V be an n -dimensional vector space over a field K and let f : V → V be
K -linear. We assume that the characteristic polynomial of f splits over K such that
all eigenvalues of f are in K . In this paper we deal with three types of f -invariant
subspaces, namely with hyperinvariant, characteristic and marked subspaces. To de-
scribe these three concepts we use the following notation. Let Inv(V ) be the lattice of
f -invariant subspaces of V and let End f (V ) be the algebra of all endomorphisms of V
that commute with f . If a subspace X remains invariant for all g ∈ End f (V ) then X
is called hyperinvariant for f [13, p. 305]. Let Hinv(V) be the set of hyperinvariant
subspaces of V . It is obvious that Hinv(V) is a lattice. Because of f ∈ End f (V ) we
have Hinv(V) ⊆ Inv(V ) . We refer to [13], [9], [17], [19] for results on hyperinvariant
subspaces. The group of automorphisms of V that commute with f will be denoted
by Aut f (V ) . A subspace X of V will be called characteristic (with respect to f ) if
X ∈ Inv(V ) and α(X) = X for all α ∈Aut f (V ) . Let Chinv(V) be set of characteristic
subspaces of V . Obviously, also Chinv(V) is a lattice, and Hinv(V) ⊆ Chinv(V) .

Set ι = idV and f 0 = ι . Let 〈x〉 f = span{ f ix, i � 0} be the cyclic subspace
generated by x ∈ V . If B ⊆ V we define 〈B〉 f = ∑b∈B 〈b〉 f . Let λ be an eigenvalue
of f such that Vλ = Ker( f −λι)n is the corresponding generalized eigenspace. Let
dimKer( f −λι) = k , and let st1 , . . . ,stk , be the elementary divisors of f|Vλ . Then there
exist vectors u1, . . . ,uk , such that

Vλ = 〈u1〉 f−λ ι ⊕ ·· · ⊕ 〈uk〉 f−λ ι ,
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and ( f −λι)ti−1ui �= 0, ( f −λι)ti ui = 0, i = 1, . . . ,k . We call Uλ = {u1, . . . ,uk} a set
of generators of Vλ . Each Uλ gives rise to a Jordan basis of Vλ , namely{

u1, ( f −λι)u1, . . . ,( f −λι)t1−1u1 . . . ,uk, ( f −λι)uk, . . . ,( f −λι)tk−1uk
}
.

Define fλ = f|Vλ . Let Y be an fλ -invariant subspace of Vλ . Then Y is said to be
marked in Vλ (with respect to fλ ) if there exists a set Uλ of generators of Vλ and
corresponding integers ri , 0 � ri � ti , such that

Y =
〈
( f −λι)r1 u1

〉
f−λ ι ⊕ ·· · ⊕ 〈

( f −λι)rk uk
〉

f−λ ι .

Thus Y has a Jordan basis which can be extended to a Jordan basis of Vλ . Let σ( f ) =
{λ1, . . . ,λm} be the spectrum of f . Then

V =Vλ1
⊕ . . .⊕Vλm . (1.1)

If X ∈ Inv fV then Xλi
= X ∩Vλi

is fλi
-invariant in Vλi

, and

X = Xλ1
⊕ . . .⊕Xλm . (1.2)

We say that X is marked in V if each subspace Xλi
in (1.2) is marked in Vλi

. The set
of marked subspaces of V will be denoted by Mark(V) . We assume 0 ∈ Mark(V) .
Marked subspaces can be traced back to [13, p. 83]. They have been studied in [4], [8],
[1], and [6]. For marked (A,C)-invariant subspaces we refer to [5] and [7]. We mention
applications to algebraic Riccati equations [2] and to stability of invariant subspaces of
commuting matrices [15].

The following examples show that to a certain extent the three types of invariant
subspaces are independent of each other. Suppose f is nilpotent. If x ∈ V then the
smallest nonnegative integer � with f �x = 0 is called the exponent of x . We write
e(x) = � . A nonzero vector x is said to have height q if x ∈ f qV and x /∈ f q+1V . In
this case we write h(x) = q . We set h(0) = −∞ . For j � 0 we define V [ f j] = Ker f j .

EXAMPLE 1.1. Let K = Z2 . Consider V = K4 and

f = diag(0,N3), N3 =

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠ .

Let e1, . . . ,e4 , be the unit vectors of K4 . Then f 3 = 0 and V = 〈e1〉 f ⊕〈e2〉 f . Define
z = e1 + e3 and Z = 〈z〉 f . Then

Z = {0,z,z+ e4,e4} =
〈
v; e(v) = 2, h(v) = 0, h( f v) = 2

〉
f .

If α ∈Aut f (V ) then |α(Z)| = |Z| . Moreover α preserves height and exponent. Hence
α(Z) = Z , and Z is characteristic. Let g = diag(1,0,0,0) be the orthogonal projection
on Ke1 . Then g ∈ End f (V ) . We have gz = e1 ∈ g(Z) , but e1 /∈ Z . Therefore Z is
not hyperinvariant. The Jordan bases of Z are J1 = {z,e4} and J2 = {z + e4,e4} . If
y ∈ K4 then z �= f y and z+ e4 �= f y . Hence neither J1 nor J2 can be extended to a
Jordan basis of K4 . Therefore Z is not marked.
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EXAMPLE 1.2. Let V = K2 and f = 0. Then K2 = 〈e1〉 f ⊕ 〈e2〉 f and the
subspace X = 〈e1〉 f is marked. From α =

(
1 0
1 1

) ∈ Aut f (V ) and α(e1) = e1 + e2

follows that X is not characteristic.

In contrast to Hinv(V ) or Chinv(V ) the set Mark(V ) in general is not a lattice.

EXAMPLE 1.3. V = K6 , f = diag(0,N3,N2) . The subspaces Z1 = 〈e5〉 and Z2 =
〈e5 + e3 + e1〉 are marked but Z1 +Z2 = 〈e5〉⊕〈e3 + e1〉 is not marked. Thus the set of
marked subspaces is not closed under addition.

In this paper we study the following problems. Under what conditions is a marked
subspace characteristic? When is each characteristic subspace hyperinvariant? Because
of the Lemma 1.4 below one can deal separately with single components Vλi

in (1.1)
and the corresponding restrictions fλi

= f|Vλi , i = 1, . . . ,m .

LEMMA 1.4. An f -invariant subspace X ⊆V is hyperinvariant (resp. character-
istic, resp. marked) if and only if, with respect to fλi

, each component Xλi
in (1.2) is

hyperinvariant (resp. characteristic, resp. marked) in Vλi
.

Proof. If η ∈ End f (V ) then it is known ([11, p. 223]) that the subspaces Vλi
in

(1.1) are invariant under η , and that η|Vλi ∈ End fλi
(Vλi

) . Hence, if X ∈ Inv(V ) then
(1.2) implies

η(X) = η|Vλ1 (Xλ1
)⊕·· ·⊕η|Vλi (Xλm)

Hence if Xλi
∈ Hinv(Vλi

) , resp. Xλi
∈ Chinv(Vλi

) , i = 1, . . . ,m , then X ∈ Hinv(V ) ,
resp. X ∈ Chinv(V ).

Now suppose now that X is hyperinvariant. Let us show that Xλi
∈ Hinv(Vλi

) ,
i = 1, . . . ,m . Take i = 1. Set V̂ = Vλ2

⊕ ·· · ⊕Vλm and X̂ = Xλ2
⊕ ·· · ⊕ Xλm . Let

β1 ∈ End fλ1
(Vλ1

) . Define β = β1 + id|V̂ . Then β ∈ End f (V ) . Hence β (X) ⊆ X =
Xλ1

⊕ X̂ , and β (X) = β1(Xλ1
)⊕ X̂ . From Xλ1

⊆ Vλ1
and β1(Xλ1

) ⊆ Vλ1
we ob-

tain β1(Xλ1
) ⊆ Xλ1

. Therefore Xλ1
∈ Hinv(Vλ1

) . A similar argument shows that
X ∈ Chinv(V ) implies Xλi

∈Chinv(Vλi
) , i = 1, . . . ,m . In the case of marked subspaces

the assertion is obvious. �

2. Auxiliary results

Because of Lemma 1.4 it suffices to consider an endomorphism f with only one
eigenvalue λ . We shall assume σ( f ) = {0} such that f n = 0. Let

st1 , . . . , stk , 0 < t1 � · · · � tk, (2.1)

be the elementary divisors of f . We call U = (u1, . . . ,uk) a generator tuple of V if

V = 〈u1〉 f ⊕·· ·⊕ 〈uk〉 f (2.2)
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and if U is ordered according to (2.1) such that

e(u1) = t1 � · · · � e(uk) = tk.

Let U be the set of generator tuples of V . In the following we omit the subscript f
in (2.2) and we write 〈ui〉 instead of 〈ui〉 f . We say that a k -tuple r = (r1, . . . ,rk) of
integers is admissible if

0 � ri � ti, i = 1, . . . ,k. (2.3)

Each U ∈ U together with an admissible tuple r gives rise to a subspace

W (r,U) = 〈 f r1u1〉 ⊕ · · · ⊕ 〈 f rk uk〉, (2.4)

which is marked in V . Conversely, a subspace W is marked in V only if W = W (r,U)
for some U ∈U and some admissible r . The following example shows that, in general,
W (r,U) �= W (r,Ũ) if U �= Ũ .

EXAMPLE 2.1. Let V = K5 and f = diag(N2,N3) . Then V = 〈e1〉⊕ 〈e3〉 , and
U = (e1,e3) and Ũ = (e1,e3 + e1) are generator tuples. Choose r = (1,0) . Then the
corresponding subspaces W (r,U) = 〈e2〉⊕ 〈e3〉 and W (r,Ũ) = 〈e2〉 ⊕ 〈e3 + e1〉 are
different from each other.

The construction of invariant subspaces of the form W (r,U) is a standard proce-
dure in linear algebra and systems theory. It is used in [16], [12, p.61], [3, p.28], [18].
Hence it is important to know whether for a given r different choices of U will always
result in the same subspace. Theorem 3.1 will provide a necessary and sufficient con-
dition for r such that W (r,U) is independent of the choice of U . Let r be admissible
and define

W (r) = f r1V ∩V [ f t1−r1 ] + · · ·+ f rkV ∩V [ f tk−rk ]. (2.5)

Subspaces of the form f νV and V [ f μ ] are hyperinvariant, and Hinv(V ) is a lattice.
Therefore (see e.g. [9]) we have W (r) ∈ Hinv(V ) .

The following lemma shows that each α ∈Aut f (V ) is uniquely determined by the
image of a given generator tuple.

LEMMA 2.2. Let U = (u1, . . . ,uk) ∈ U be given. For α ∈ Aut f (V ) define
ΘU(α) =

(
α(u1), . . . ,α(uk)

)
. (i) Then

α 
→ ΘU(α), ΘU : Aut f (V ) → U ,

is a bijection. (ii) If Ũ = Θ(α) then W (r,Ũ) = α
(
W (r,U)

)
.

Proof. (i) It is easy to see that ΘU(α) ∈ U . Hence ΘU maps Aut f (V ) into U .
Let x ∈V and

x =∑k
i=1∑

e(ui)−1
j=0 ci j f

jui. (2.6)

Suppose α,β ∈ Aut f (V ) and ΘU(α) = ΘU(β ) = (û1, . . . , ûk) . Then

α(x) =∑∑ci j f
j ûi = β (x).
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Hence α = β , and ΘU is injective. Now consider Ũ = (ũ1, . . . , ũk) ∈U . Let x∈V be
the vector in (2.6). Define γ : x 
→ ∑i∑ j ci j f jũi . Then γ ∈ Aut f (V ) and Ũ = ΘU(γ) .
Hence ΘU is surjective.
(ii) It is obvious that α

(
W (r,U)

)
= 〈 f r1α(u1)〉 f ⊕·· ·⊕ 〈 f rkα(uk)〉 f = W (r,Ũ) . �

In group theory fully invariant subgroups play the role of hyperinvariant subspaces.
Hence the decomposition (2.8) below is an analog to a distributive law in Lemma 9.3
in [10, p. 47].

LEMMA 2.3. Suppose

V = V1⊕·· ·⊕Vq, Vi ∈ Inv(V ), i = 1, . . . ,q. (2.7)

(i) If X is a hyperinvariant subspace of V , or
(ii) if X characteristic and |K| > 2 , then

X = (X ∩V1)⊕·· ·⊕ (X ∩Vq). (2.8)

Proof. If x ∈V then x =∑q
i=1 xi, xi ∈Vi . Set Xi = X ∩Vi , and S =⊕q

i=1Xi . Then
S ⊆ X . To prove the converse inclusion we note that

f x =∑q
i=1 f|Vi

(xi). (2.9)

(i) Let πi be the projection on Vi induced by (2.7). Then (2.9) implies πi ∈ End f (V ) .
Hence, if x ∈ X then and πi(x) = xi ∈ X . Thus xi ∈ Xi , and therefore X ⊆ S .
(ii) Let a ∈ K be different from 0 and 1, and define γi = ι−aπi . Then γi ∈ Aut f (V ) .
Hence γi(x) = x−axi ∈ X if x ∈ X . Thus we obtain xi ∈ Xi . �

EXAMPLE 2.4. In Lemma 2.3 (ii) one can not drop the assumption |K| > 2. Sup-
pose |K| = 2, and let V and f be as in Example 1.1. The subspace Z = 〈e1 + e3〉 is
characteristic. Both V1 = 〈e1〉 and V2 = 〈e2〉 are in Inv(V ) , and we have V =V1⊕V2 .
But Z∩V1 = 0 and Z∩V2 = 〈e4〉 imply Z � (Z∩V1)⊕ (Z∩V2) .

The next lemma is an intermediate result.

LEMMA 2.5. Each hyperinvariant subspace of V is marked, and

Hinv(V ) ⊆ Mark(V )∩Chin(V ). (2.10)

Proof. Let U = (u1, . . . ,uk) ∈ U . If X is invariant then X ∩ 〈ui〉 = 〈 f ri ui〉 for
some ri . Thus, if X is hyperinvariant then (2.8) in Lemma 2.3 implies X =⊕k

i=1〈 f ri ui〉 .
Therefore X is marked, and Hinv(V ) ⊆ Chin(V ) yields the inclusion (2.10). �
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3. Hyperinvariant = characteristic + marked

We now characterize those marked subspaces which are characteristic. The theo-
rem below includes results from [2] with new proofs.

THEOREM 3.1. Let U ∈ U and let r = (r1, . . . ,rk) be admissible. Then the
following statements are equivalent.

(i) The subspace W (r,U) is characteristic.

(ii) The subspace W (r,U) is independent of the generator tuple U , i.e.

W (r,U) = W (r,Ũ) f or all Ũ ∈ U . (3.1)

(iii) The tuples t = (t1, . . . ,tk) and r = (r1, . . . ,rk) satisfy

r1 � · · · � rk (3.2)

and
t1− r1 � · · · � tk − rk. (3.3)

(iv) We have W (r,U) = W (r) .

(v) W (r,U) is the unique marked subspace W such that the elementary divisors of
W and of V/W are

st1−r1 , . . . ,stk−rk , and sr1 , . . . ,srk . (3.4)

(vi) The subspace W (r,U) is hyperinvariant.

Proof. (i) ⇔ (ii) It follows from Lemma 2.2 that the two statements are equiva-
lent.
(iv) ⇒ (vi) This follows from the fact that W (r) is hyperinvariant.
(v) ⇔ (ii) Let Ũ ∈ U . Then W (r,U) and the quotient space V/W (r,U) , and also
W (r,Ũ) and V/W (r,Ũ) , have elementary divisors given by (3.4). (Note that in the
right-hand side of (2.4) there may be summands of the form 〈ui〉 or 〈 f ti ui〉 = 0. Thus
(3.4) may contain trivial entries of the form s0 = 1.)
(vi) ⇒ (i) Obvious, because of Hinv(V) ⊆ Chinv(V) .
(iii) ⇒ (iv) From e(ui) = ti follows

〈 f ri ui〉 = 〈ui〉[ f ti−ri ] ⊆ f riV ∩V [ f ti−ri ].

Hence W (r,U) ⊆W (r) . We have to show that the conditions (3.2) and (3.3) imply the
converse inclusion

W (r) = f r1V ∩V [ f t1−r1 ] + · · ·+ f rkV ∩V [ f tk−rk ] ⊆W (r,U).

With regard to the decomposition V = 〈u1〉⊕ · · ·⊕ 〈uk〉 we define

D(μ ,ν) = f rν 〈uμ〉 ∩ 〈uμ〉 [ f tν−rν ].
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The subspaces f rνV ∩ V [ f tν−rν ] are hyperinvariant. Therefore Lemma 2.3(i) yields

f rνV ∩V [ f tν−rν ] =
k⊕

μ=1

(
f rνV ∩V [ f tν−rν ]∩〈uμ〉

)
=

k⊕
μ=1

D(μ ,ν).

Hence

W (r) =
k

∑
μ,ν=1

D(μ ,ν). (3.5)

Set q(μ ,ν) = max{rν , tμ − (tν − rν)} . We have

〈uμ〉[ f tν−rν ] =

{
〈uμ〉, if tν − rν � tμ ,

f tμ−(tν−rν )〈uμ〉, if tν − rν � tμ .

Hence
D(μ ,ν) = f q(μ,ν)〈uμ〉.

Let us show that rμ � q(μ ,ν) for all μ . If μ � ν , then (3.3) implies

q(μ ,ν) = (tμ − tν)+ rν = (tμ − rμ)− (tν − rν)+ rμ � rμ .

If μ � ν then tμ − tν � 0, and therefore q(μ ,ν) = rν . Hence (3.2) implies q(μ ,ν) �
rμ . It follows that

D(μ ,ν) = f q(μ,ν)〈uμ〉 ⊆ f rν 〈uμ〉 ⊆W (r,U).

for all μ ,ν . Thus (3.5) yields W (r) ⊆W (r,U) .
(ii) ⇒ (iii) We modify the entries of U and replace uk by ũk = uk−1 + uk . Then
Ũ = (u1, . . . ,uk−1, ũk) ∈ U . Set Yk = ⊕k−1

i=1 〈 f ri ui〉 . Then W (r,U) = W (r,Ũ) implies

Yk ⊕〈 f rkuk〉 = Yk ⊕〈 f rk(uk−1 +uk)〉.
From

f rkuk−1 + f rkuk ∈ 〈 f rk−1uk−1〉⊕ 〈 f rkuk〉
follows rk−1 � rk . Proceeding in this manner we obtain the chain of inequalities in
(3.2). In order to prove (3.3) we start with the entry of u1 of U and replace it by u1 +
f t2−t1u2 . Because of e(u1+ f t2−t1u2)= e(u1) we have Û = (u1+ f t2−t1u2,u2, . . . ,uk)∈
U . Set Y1 = ⊕k

i=2〈 f ri ui〉 . Then W (r,U) = W (r,Û) implies

〈 f r1u1〉⊕Y1 = 〈 f r1(u1 + f t2−t1u2)〉⊕Y1.

From
f r1u1 + f r1+(t2−t1)u2 ∈ 〈 f r1u1〉⊕ 〈 f r2u2〉

follows r2 � r1 +(t2−t1) , i.e. t1−r1 � t2−r2 , such that we the end up with (3.3). �
Let [k] denote the greatest integer less than or equal to k . If c∈ R and 0 < c < 1,

then r = ([ct1], . . . , [ctm]) is admissible, and it is not difficult to verify that r satisfies
(3.2) and (3.3). We remark that admissible tuples of the form r̂ = ([ 1

2 t1], . . . , [ 1
2 tk])

play a role in the study of maximal invariant neutral subspaces [18]. It follows from
Theorem 3.1 that the construction of such subspaces is independent of the choice of the
underlying Jordan basis.



268 P. ASTUTI AND H. K. WIMMER

THEOREM 3.2. (i) We have

Hinv(V ) = Chinv(V )∩Mark(V ). (3.6)

(ii) [9] A subspace W of V is hyperinvariant if and only if W = W (r) for some r
satisfying (3.2) and (3.3).

Proof. (i) From Theorem 3.1 follows Mark(V )∩Chinv(V ) ⊆ Hinv(V ) . The re-
verse inclusion is (2.10) in Lemma 2.5. This yields (3.6). Hence a subspace is hyperin-
variant if and only if it is both characteristic and marked.
(ii) If W is hyperinvariant then W is marked, that is W = W (r,U) . Therefore we can
apply Theorem 3.1(iv). It was noted earlier that W (r) ∈ Hinv(V ) . �

We note that hyperinvariant subspaces can be characterized completely by the dis-
tributive law in Lemma 2.3.

THEOREM 3.3. A subspace X ∈ Inv(V ) is hyperinvariant if and only if X satisfies

X = (X ∩V1)⊕·· ·⊕ (X ∩Vq) (3.7)

when
V = V1⊕·· ·⊕Vq, Vi ∈ Inv(V ), i = 1, . . . ,q. (3.8)

Proof. Because of Lemma 2.3 it remains to prove sufficiency. Let U = (u1, . . . ,uk)∈
U and Ũ = (ũ1, . . . , ũk) ∈ U . Then

V = 〈u1〉⊕ · · ·⊕ 〈uk〉 = 〈ũ1〉⊕ · · ·⊕ 〈ũk〉. (3.9)

Define Xi = 〈ui〉 ∩X and X̃i = 〈ũi〉 ∩X , i = 1, . . . ,k . Then Xi = 〈 f ri ui〉 and X̃i =
〈 f r̃i ũi〉 for some ri, r̃i . Set r = (r1, . . . ,rk) and r̃ = (r̃1, . . . , r̃k) . In (3.9) we have
two direct sums of the form (3.8). Hence the assumption (3.7) implies X = W (r,U) =
W (r̃,Ũ) . We can pass from U to Ũ in at most k steps, changing a single entry at
each step. Suppose we replace uk in U by ũk . Then Û = (u1, . . . ,uk−1, ũk) ∈ U , and
V = 〈u1〉⊕ · · ·〈uk−1〉⊕ 〈ũk〉 . Set Yk = ⊕k−1

i=1 〈 f ri ui〉 . Then

X = Yk ⊕〈 f r̃k ũk〉 = Yk ⊕〈 f rkuk〉.

Considering the elementary divisors of V/X we deduce r̃k = rk , and at the end we
obtain r = r̃ , and therefore W (r,U) = W (r,Ũ) . We conclude that X = W (r,U) is
independent of the choice of the generator tuple U . Hence X is hyperinvariant. �

Let us reexamine Example 1.1 and consider a field K of characteristic different
from 2.

EXAMPLE 1.1 (CONTINUED). Let charK �= 2. Then γ : (e1,e2) 
→ (2e1,e2) deter-
mines an f -automorphism. For Z = 〈e1 + e3〉 we have γ(Z) = 〈2e1 + e3〉 �= Z . Hence
in this case Z ∈ Inv(V ) is not characteristic.
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To identify the characteristic subspaces we screen Inv(V ) . Note that

Aut f (V ) =
{
α : (e1,e2) 
→ (ae1 +be4,ce2 +de3 +ge4 +he1),

a,b,c,d,g,h ∈ K,a �= 0,c �= 0
}
.

The nonzero cyclic subspaces are of the form 〈e2 + ce1〉 , 〈e3 + ce1〉 , and 〈ae4 +
ce1〉 , a,c ∈ K , (a,c) �= (0,0) . Only 〈e3〉 = fV and 〈e4〉 = f 2V are characteristic.
Moreover, X is a direct sum of two cyclic subspaces if and only if X ∈ {V,〈e3〉 ⊕
〈e1〉 = V [ f 2],〈e4〉⊕ 〈e1〉 = V [ f ]} . These three subspaces are characteristic. We find
Hinv(V ) = {0, fV, f 2V, V [ f ], V [ f 2], V} . Hence Hinv(V ) = Chinv(V ) . The example
is a special case of the following general result (see also [14, p. 67]).

THEOREM 3.4. If |K| > 2 then each characteristic subspace of V is hyperin-
variant, i.e. Chinv(V ) = Hinv(V ) .

Proof. Because of Lemma 1.4 it suffices to consider the case where f has only
one eigenvalue. We can assume f n = 0. If |K| > 2 and X is characteristic then it
follows from Lemma 2.3(ii) that (2.7) implies (2.8). Therefore, according to Theorem
3.3, the subspace X is hyperinvariant. �

In the case of vector spaces over K = Z2 it is an open problem to describe all
subspaces that are characteristic without being hyperinvariant.

Acknowledgement. We are indebted to L. Rodman for a valuable remark.
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