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Abstract. This paper considers the restricted shift operator associated with an infinite Blaschke
product, expressing the closure of its numerical range as the intersection of the closures of the
numerical ranges of a parametrized family of unitary dilations (or, equivalently, unitary pertur-
bations of a modified restricted shift). The techniques used are based on interpolation and Clark
measures. The results generalize known theorems for numerical ranges of matrices associated
with finite-dimensional Blaschke products, which can be expressed geometrically in terms of the
Poncelet property.

1. Introduction

A Blaschke product

B(z) = z

(
z−a
1−az

)(
z−b

1−bz

)
,

where a and b are distinct nonzero points in the disc, is a three-to-one mapping. If
we consider a point λ on the unit circle and the three points mapped by B to λ , that
is, B(z1) = B(z2) = B(z3) = λ , we may connect these points to obtain a triangle. If
we do this for each point λ on the unit circle, the intersection of all these triangles
is an ellipse with foci at the nonzero zeroes of B [4]. Gau and Wu showed (see [10,
Thm. 5.1]) that a similar result holds for Blaschke products of degree n (see also [14]).
The key observation in the papers of Gau and Wu as well as that of Mirman is that the
region we consider is the numerical range of a dilation of a matrix A with eigenvalues
at the nonzero zeroes of a finite Blaschke product. Thus, the numerical range of A
is a convex region bounded by a smooth curve C . Considering the points identified
by the Blaschke product and connecting successive points, the results in [9, 10] and
[14] show that the polygon obtained in this manner circumscribes the curve and each
line segment in the polygon is tangent to the curve C at a single point. Such curves
are known as Poncelet curves because they have the Poncelet property: beginning at
any point on the unit circle and drawing the line from the point tangent to the curve,
another point on the circle will be obtained. Continuing to draw tangent lines in this
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manner will always produce a closed polygon, and it will do so in the same number
of steps each time, a number that does not depend on the starting point on the unit
circle. Using interpolation results obtained in [11] as well as Blaschke products that
do the interpolation, new proofs of these results can be obtained along with some new
connections between Blaschke products and these curves (see [5]). This phenomenon
is illustrated in Figure 1.

Figure 1. Poncelet curves corresponding to a finite Blaschke product

This paper studies the connections between infinite Blaschke products and numer-
ical ranges. While it may not make sense to study the value of the Blaschke product on
the unit circle, if the radial limit exists at a point we will see that these points can be tied
to the study of the numerical ranges of the Blaschke products. Thus, given a Blaschke
product B of the form

B(z) =
∞

∏
n=1

a j

|a j|
a j − z

1−a jz

(the Blaschke factor being interpreted as z if a j = 0), the corresponding results for
such Blaschke products require a study of interpolation by points on the unit circle. In
Section 2, by considering compressions and dilations of appropriate operators, along
the lines of [10, Thm. 6.3], we obtain relations between the numerical ranges of the
restricted shift associated with an infinite Blaschke product and those associated with
its partial products. This allows us in Section 3 to obtain the appropriate generalization
of the Poncelet property for the numerical range of the restricted shift associated with
an infinite Blaschke product.

The main result, Theorem 2.1 of the paper, is the following (all necessary notation
is explained below).

THEOREM. Suppose that B = ∏∞
k=1 bk is an infinite Blaschke product and let UB

α
be the unitary rank-one perturbation of the restricted shift SzB associated with α ∈ T .
Then ⋂

α∈T

W (UB
α ) = W (SB).
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1.1. Notation and Background

We let θ ∈ H∞(D) be an inner function, and Kθ = H2(D)�θH2(D) , the model
space. Write PKθ : H2(D) → Kθ for the orthogonal projection.

Let S : H2(D) → H2(D) denote the shift (multiplication by the independent vari-
able) and define Sθ ∈L (Kθ ) the restricted shift by Sθ = PKθ S|Kθ . Note that S∗θ = S∗|Kθ .
Let H be a Hilbert space. For an operator T ∈ L (H) , the numerical range W (T ) is
defined by

W (T ) = {〈Tx,x〉 : x ∈ H, ‖x‖ = 1},
and is a convex subset of C . If H is finite dimensional, then W (T ) is closed. In the
case of a normal operator T , the set W (T ) is the closed convex hull of the spectrum
spec(T ) .

2. Dilations and numerical ranges

2.1. The link with rank-one perturbations

A dilation of a Hilbert-space operator T ∈ L (H) (in the sense of Halmos [12]) is
an operator T̃ ∈L (K) , where K is a Hilbert space containing H , such that T = PHT̃|H .

In an obvious matrix notation T̃ =
(

T ∗
∗ ∗
)

. We shall not require the more complicated

Sz.-Nagy–Foias dilation [16] here, so when we talk of dilations we mean dilations in
the above sense.

In [5], a main object of study is an n× n matrix A = (ai j)i, j , defined in terms of
points a1, . . . ,an ∈ D by

ai j =

⎧⎪⎪⎨⎪⎪⎩
a j if i = j,(
∏ j−1

k=i+1(−ak)
)√

1−|ai|2
√

1−|a j|2 if i < j,

0 if i > j.

Note that the matrix A corresponds to the matrix of the operator SB , where B is a
Blaschke product with zeroes a1, ...,an , with respect to an orthonormal basis con-
structed by applying the Gram–Schmidt process to the reproducing kernels k j(z) =
1/(1− ajz) (taken in reverse order). Thus it makes sense to consider the operator Sθ
where θ is a general inner function.

Let D1 denote the class of all unitary 1-dilations of Sθ , by which we mean unitary
dilations of Sθ defined on spaces of the form Kθ ⊕C . As we shall see it is natural to
formulate the following conjecture.

CONJECTURE 2.1.

W (Sθ ) =
⋂

T̃∈D1

W (T̃ ).
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Obviously we do have ⊆ in general. We shall prove this conjecture in the special
case when θ is a Blaschke product (see Theorem 2.1).

We can characterise all unitary 1-dilations of Sθ , by means of two orthogonal
decompositions of Kθ . We refer here to [2], although the formulae can be found in
many other places, e.g., [7].

Let

M1 = C(S∗θ ) = {x(θ (z)−θ (0))/z : x ∈ C} and N1 = Kθ �M1. (1)

Also let
M2 = C(θθ (0)−1) and N2 = Kθ �M2. (2)

Then
Sθ (xS∗θ +w) = x((θθ (0)−1)θ (0)+Sw

for x ∈ C and w ∈ N1 .
Thus with respect to the two orthogonal decompositions of Kθ , Sθ has the matrix(

λ 0
0 S

)
, where |λ | < 1 and S is a surjective isometry. Indeed, if θ (0) = 0 we have

λ = 0.
Thus the unitary 1-dilations must look like

T̃ =

⎛⎝ λ 0 α
√

1−|λ |2
0 S 0

β
√

1−|λ |2 0 −αβλ

⎞⎠ , (3)

with respect to the two orthogonal decompositions of Kθ ⊕C , where α,β ∈ T . How-
ever, up to unitary equivalence, there is only one free parameter, namely, the value of
αβ .

Note that, if θ is a finite Blaschke product of degree n , then dimKθ = n and
dimKzθ = n + 1. This makes it plausible that there is a link between the unitary 1-
dilations of Sθ and the rank-1 unitary perturbations of Szθ , and this is in fact the case
for general inner functions θ . We now explain this in detail for the case θ (0) = 0. The
general case can be found in [10, Thm. 6.3].

Such rank-1 perturbations are well-understood, thanks to the theory of Clark mea-
sures [3]. In particular, one may decompose Kzθ orthogonally as

Kzθ = M1⊕N1 = Cθ ⊕ (Cθ )⊥,

and
Kzθ = M2⊕N2,

as in (1) and (2). With respect to these decompositions one has Szθ = 0⊕S . It is then
possible to define for each α ∈ T a unitary operator Uα ∈ L (Kzθ ) by Uα = α1⊕ S ,
where 1 denotes the constant function, which lies in Kzθ . This is the complete set of
rank-1 unitary perturbations of Szθ .

LEMMA 2.1. [10] In the case θ (0) = 0 , all unitary 1-dilations of Sθ are equiv-
alent to rank-1 perturbations of Szθ .
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Proof. It is easily verified that Kzθ = Kθ ⊕Cθ , and Kθ = C1⊕ zKθ/z , giving us
two orthogonal decompositions

Kzθ = Cθ/z⊕Kθ/z⊕Cθ = C1⊕ zKθ/z⊕Cθ .

With respect to these two decompositions, the operator Szθ has the matrix

⎛⎝0 0 0
0 Mz 0
1 0 0

⎞⎠ ,

and its rank-1 unitary perturbation Uα is

⎛⎝0 0 α
0 Mz 0
1 0 0

⎞⎠ , so that clearly PKθUα |Kθ = Sθ ,

i.e., Uα is unitarily equivalent to a unitary 1-dilation of Sθ . But, by virtue of the
expression

T̃ =

⎛⎝0 0 α
0 Mz 0
β 0 0

⎞⎠ ,

which is derived from (3) in the case θ (0) = 0, with respect to the orthogonal decom-
positions Kθ = Cθ/z⊕Kθ/z and Kθ = C1⊕zKθ/z , we see that every unitary 1-dilation
is equivalent to some Uα . �

Thus we may reformulate Conjecture 2.1 as asserting that

W (Sθ ) =
⋂
α∈T

W (Uα). (4)

A special case of this is proved below, Theorem 2.1.

2.2. Numerical ranges of restricted shifts

From [6, Thm. 9.3.4] we know that if An = PXnAPXn is the compression of A ∈
L (H) to Xn , and if Xn is an increasing sequence of subspaces with dense union in H ,
then

spec(An) ⊆W (An) ⊆W (A), W (A) = ∪∞
n=1W (An), (5)

and moreover W (An) is an increasing sequence of sets.
This enables us to express the numerical range of SB when B is an infinite Blaschke

product in terms of the more easily-analysed numerical ranges corresponding to finite
Blaschke products.

LEMMA 2.2. Let B = ∏∞
k=1 bk be an infinite Blaschke product with elementary

Blaschke factor bk , and Bn = ∏n
k=1 bk the partial product. Then

W (SB) =
∞⋃

n=1

W (SBn).
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Proof. Note that BH2 =
⋂∞

n=1 BnH2 , a decreasing intersection, and so KB =⋃∞
n=1 KBn : for KB clearly contains the union, and if it is strictly bigger then there is

a non-zero function in KB orthogonal to all the KBn , hence in BnH2 for each n , hence
in BH2 , which is impossible.

Now SBn is the compression of SB to KBn , so by (5) the result follows, noting that
W (T ) is closed if T is defined on a finite-dimensional Hilbert space. Alternatively we
may use adjoints, since S∗Bn

= S∗B|KBn
, and W (T ∗) = {z : z ∈W (T )} for any operator

T . �
Note that the result remains true when the Bn are themselves infinite Blaschke

products, in the form W (SB) =
⋃∞

n=1W (SBn) .
We may apply the above result to describe W (Sθ ) for θ an arbitrary inner func-

tion. To do this we use Frostman’s theorem [8, p. 79] to approximate θ uniformly by
Blaschke products, whose numerical range can be described by Lemma 2.2. Note that
the orthogonal projection onto Kθ is given by

PKθ f = θP−(θ f ), for f ∈ H2,

where P− : L2(T)→ L2(T)�H2 is the orthogonal projection. Hence if ‖Bn−θ‖∞ → 0
we also have ‖PKBn

−PKθ ‖→ 0.
However, as in [6, Prob. 9.3.3], we know that if ‖A1 −A2‖ < ε , then W (A1) ⊆

{z ∈ C : dist(z,W (A2)) < ε} .
Thus W (Sθ ) is the limit of the sets W (Sn) where Sn is a restricted shift corre-

sponding to a Blaschke product.
Let B be an infinite Blaschke product. Then the zeroes of B accumulate on a

compact subset Z of T . In the case that Z = T , for 0 < η < π/2 we define the closed
set Eη ⊂ T to consist of all points at an (angular) distance at least η from Z . Observe
that Bn → B uniformly on the set Kη consisting of all points in C at a distance at most
η/2 from Eη .

We shall require a technical lemma.

LEMMA 2.3. For all ε > 0 sufficiently small, satisfying also 0 < ε < η/2 , there
is an integer n such that for every α ∈ T , and z ∈ Eη with B(z) = α one can find
w ∈ Kη ∩T with |w− z| < ε and Bn(w) = α .

Proof. Write
δ (ε) = inf

z∈Eη
inf

z′∈Kη ,|z−z′|=ε
|B(z)−B(z′)|,

noting that for ε sufficiently small δ (ε) > 0 since otherwise there exist sequences
zn ∈ Eη and z′n ∈ Kη with 0 < |zn − z′n| → 0, such that B(zn)−B(z′n) = 0 (since the
infimum is attained in each case). Let ζ be any limit point of (zn) ; then B′(ζ ) = 0,
by the argument principle, which is impossible since the zeroes of B′ in D lie in the
closed convex hull of the zeroes of B [1, Thm. 2.1].

Now, Bn → B uniformly on Kη , and so for n sufficiently large we have |Bn−B|<
δ (ε) on Kη ; hence by Rouché’s theorem, Bn −α has a zero w in {γ : |γ − z| < ε}
whenever B(z) = α . Since α ∈ T and Bn is inner, w also lies on T . �
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We are now ready to prove a special case of Conjecture 2.1.

THEOREM 2.1. Suppose that B = ∏∞
k=1 bk is an infinite Blaschke product and

let UB
α be the unitary rank-one perturbation of the restricted shift SzB associated with

α ∈ T . Then ⋂
α∈T

W (UB
α ) = W (SB).

Proof. By Lemma 2.1, we have W (SB) ⊆⋂α∈TW (UB
α ) .

It remains to check that ⋂
α∈T

W (UB
α ) ⊆W (SB). (6)

We know by Lemma 2.2 that W (SB) =
⋃∞

n=1W (SBn) , where Bn = ∏n
k=1 bk and

UBn
α is the unitary rank-one perturbation of the restricted shift SzBn , associated with α .

Moreover, by [5, 10] and Lemma 2.1, W (SBn) =
⋂
α∈TW (UBn

α ) . Therefore (6) is
equivalent to ⋂

α∈T

W (UB
α ) ⊆

∞⋃
n=1

(⋂
α∈T

W (UBn
α )

)
. (7)

We intend to prove first that

⋂
α∈T

W (UB
α )◦ ⊆

∞⋃
n=1

⋂
α∈T

W (UBn
α )◦. (8)

To do this we need the following technical lemma.

LEMMA 2.4. Let z ∈W (UB
α )◦ . Then there exist n(α) and ε(n(α)) > 0 such that

z ∈W (UBn
α ′ )◦ , whenever n � n(α) , α ′ ∈ T and |α−α ′| < ε(n(α)) .

Proof. Since W (UB
α ) is the closed convex hull of spec(UB

α ) , and since W (UB
α )◦

is convex, for z ∈W (UB
α )◦ , there exist ξ1, . . . ,ξk ∈ spec(UB

α ) such that z = ∑k
j=1λ jξ j ,

with λ j � 0 for each j , and ∑k
j=1λ j = 1 and such that z lies in the interior of the

convex hull of {ξ1, . . . ,ξk} .
If ξ j is an accumulation point of the zeroes of B , and hence in spec(SB) , then

ξ j ∈W (SB) , and so by Lemma 2.2 we can find n j independent of α such that for any

n � n j there is a point η(n)
j ∈W (UBn

α ) , such that for n � n j we can have |η(n)
j −ξ j| as

small as we wish.
If ξ j is not an accumulation point, then B(ξ j) = α and, choosing η sufficiently

small, and applying Lemma 2.3 we may for n � n j find a solution η j to Bn(η j) = α
arbitrarily close to ξ j .

Since z is in the interior of the convex hull of {ξ1, . . . ,ξk} , it is also in the interior
of the convex hull of {η1, . . . ,ηk} if |ξ j −η j| is sufficiently small for each j . Thus
z ∈W (UBn

α )◦ for n sufficiently large, say, n � n(α) := max{n1, . . . ,nk} .
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Clearly there is a neighbourhood of α in T , say |α ′ −α| < ε(n(α)) , where we
still have z ∈W (UBn

α ′ )◦ . �
Continuing with the proof of Theorem 2.1, we use the compactness of T to find

α1, . . . ,αm ∈ T such that every point of T is at a distance at most ε(n(α j)) from one
of the points α j .

We apply Lemma 2.4, taking N = max{n(α1), . . . ,n(αm)} . It follows that (8)
holds.

Observe that
⋂
α∈TW (UB

α )◦ is nonempty. For if B has at least three non-collinear
zeroes, then these lie in the spectrum of SB , and thus there is a nontrivial triangle in
W (SB) , and hence in every W (UB

α ) . Otherwise, the zeroes of B all lie on a line, and
accumulate non-tangentially at either one or two points on T . We then have a sequence
of arcs (ξ0eiβn ,ξ0eiβn−1)n tending towards one of the accumulation points, say ξ0 ∈ T ,
on which B is analytic and attains all the values in T . Note, however that for ξ ∈T one
has ξ ∈W (UB

α ) whenever B(ξ ) =α and B is analytic at ξ . From these considerations
and the convexity of W (UB

α ) we see that there are points lying in the interior of every
W (UB

α ) simultaneously. Indeed, each numerical range contains a common triangle with
one vertex at ξ0 (see Figure 2).

ξ0

ξ0eiβ1

ξ0eiβ0

ξ0eiβ2

ξ0eiβ3

Figure 2. The interior of W(UB
α ) is nonempty

Finally, if z ∈ ⋂α∈TW (UB
α ) , then taking w ∈ ⋂α∈TW (UB

α )◦ , we see that every
point of the line segment joining z and w , with the possible exception of z itself,
lies in

⋂
α∈TW (UB

α )◦ , and hence in
⋃∞

n=1
⋂
α∈TW (UBn

α )◦ . We conclude that z lies in⋃∞
n=1

(⋂
α∈TW (UBn

α )
)

, as required. �

3. The Geometric Viewpoint

Suppose now that Bn(0) = 0. We have seen that

W (SBn) =
⋂
α∈T

W (UBn
α ).
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Now the numerical range of UBn
α is a polygon with n vertices, each at the points Bn

maps to α . When we interpolate two sets of points on the unit circle {z1, . . . ,zn}
and {z1

′, . . . ,zn
′} to two distinct values, α and α ′ on the unit circle with a Blaschke

product B of degree n satisfying B(0) = 0, then this Blaschke product is unique. As
noted above, for finite Blaschke products we know that W (SBn) is the intersection of the
W (UBn

α ) . Geometrically, this means that if we take the intersection of all the closed sets
bounded by the polygons that we get from the W (UBn

α ) , the numerical range of SBn will
be this intersection. The previous result says that even in the case of an infinite Blaschke
product, a similar result holds. Since UB

α is unitary, W (UB
α ) is the closed convex hull

of its spectrum, just as in the finite case. If the Blaschke product is discontinuous at a
point γ ∈ ∂D , then, an argument based on Rouché’s theorem, similar to the one used
in Lemma 2.3, implies that for n large, Bn will assume the value α close to γ , and so
W (SBn) will contain points close to α . We now consider the geometric picture in the
case in which there is an isolated singularity. Geometrically, this is the most interesting
case.

Thus, the setting is the following: We consider a Blaschke product B with B(0) =
0 and a singularity at the point z = 1 (and only the point z = 1). Ordering the points
where B∗(z) = α in terms of their arguments, we may connect a point where B∗(z) =
α to the subsequent one. Consider two points z1 and z2 on the unit circle that are
successive points with the property that B∗(z1) = B∗(z2) = α .

Apply Lemma 2.2 to conclude that W (SB) =
⋃

nW (SBn) . For n sufficiently large,
we know that Bn(z1,n) = Bn(z2,n) = α for some points z1,n and z2,n on T with |z1 −
z1,n|+ |z2 − z2,n| < ε(n) , where ε(n) → 0. Now by [4] and [13, p. 10], the line
joining two points z1,n and z2,n identified by Bn is tangent to W (SBn) at the point

ζn = (m1,nz2,n +m2,nz1,n)/(m1,n +m2,n) where mj,n =
Bn(z j,n)

z j,nB′
n(z j,n)

. It follows from [4]

that 0 < mj,n < 1.
Thus, z1,n → z1 and z2,n → z2 . Now, because B has a singularity at the point

z = 1 only and we assume that neither z1 nor z2 are the point z = 1, we know that B
is analytic in a neighbourhood of z1 and in a neighbourhood of z2 . Thus, Bn and its
derivative B′

n converge uniformly to B and B′ , respectively, on these neighbourhoods.
In particular, B′

n(z j,n) remains bounded as n → ∞ and is bounded away from 0. Thus,
the points ζn ∈W (SBn) ⊆ W (SB) converge to a point ζ = (m1z2 +m2z1)/(m1 +m2) ,
and using the formula presented above for mj , we see that 0 < mj < 1 for j = 1,2. In
particular, the line joining z1 to z2 intersects W (SB) . Note that our assumptions on the
sequence allow us to find an explicit formula for m1 and m2 . In fact,

mj =
B(z j)

z jB′(z j)
for j = 1,2.

We claim that there are two possibilities for the line segment joining z1 and z2 ;
that is, we claim that it can either be a bounding line segment or it will cross W (SB)
at exactly one point. To see why this is, suppose that the line segment joining z1 and
z2 intersects W (SB) in more than one point and that the line segment is not contained
in the boundary of W (SB) . Rotating, we may assume that the line joining z1 and z2
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is horizontal. Now we assume that this line segment intersects W (SB) in (at least) two
points, w1 and w2 . But the convexity of W (SB) implies that the line segment joining
these two points is contained in W (SB) . Since it is not a bounding line segment, there
must be a point of W (SB) on either side of this line segment. Let w denote a point
above this line segment. Thus, w ∈W (SB) ⊆ ⋂γ∈TW (UB

γ ) . In particular, w ∈W (UB
α )

and it lies above the line joining z1 and z2 . Since W (UB
α ) is the closed convex hull of

its spectrum, there must be a point of the spectrum of UB
α lying above z1 and z2 . Since

B is analytic on the arc joining z1 and z2 , this contradicts our assumption that there is
no point between z1 and z2 at which B assumes the value α .

REMARK 3.1. As observed by one of the referees, another link between a re-
stricted shift and its unitary perturbations Uα is given by the formula

Sθ =
∫

T

Uα
|dα|
2π

,

as in [15]. It is possible that this identity will lead to further results in the same direction.
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