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BOUNDARY RIGIDITY FOR SOME

CLASSES OF MEROMORPHIC FUNCTIONS
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Abstract. Let f be a function meromorphic on the open unit disk D , with angular boundary
limits bounded by one in modulus almost everywhere on the unit circle. We give sufficient
conditions in terms of boundary asymptotics at finitely many points on the unit circle T for f
to be a ratio of two finite Blaschke products. A necessary condition is that f has finitely many
poles in D , i.e., that f is a generalized Schur function. Similar rigidity statements are presented
for generalized Carathéodory and generalized Nevanlinna functions.

1. Introduction

Let H∞ be the space of bounded analytic functions on the open unit disk D and
let S be its unit ball (called sometimes the Schur class):

S := BH∞ = { f ∈ H∞ : ‖ f‖H∞ := sup
z∈D

| f (z)| � 1}. (1.1)

The following boundary rigidity result is presented in [15].

THEOREM 1.1. Let f ∈S and let f (z) = z+O(|z−1|4) as z→ 1 . Then f (z) ≡
z.

As mentioned in [15], the term O(|z−1|4) can be replaced by o(|z−1|3) if z ∈ D

tends to 1 nontangentially. Furthermore, it was shown in [19] that the conclusion

f (z) ≡ z follows from a weaker assumption liminf
r→1−

ℜ f (r)− r
(1− r)3 = 0. The same conclu-

sion follows from the assumption that lim
n→∞

f (zn)− zn

(1− zn)3 = 0 for some sequence {zn}⊂D

converging to 1 nontangentially (not necessarily radially); see [8]. Recently, Theorem
1.1 has been extended in several directions. We refer to [20] for a continuous version
of the theorem, to [14, 21] for conditions in terms of boundary behavior of commut-
ing f ,g ∈ S (that is, f ◦ g = g ◦ f ) near their common Denjoy-Wolff point which are
sufficient for f ≡ g , and to [22] for rigidity under conditions on boundary Schwarzian
derivatives. All mentioned results establish the rigidity properties subject to functions’
behavior near one boundary point. The multi-point case was considered in [2, 10, 16].
The next theorem appears in [10].
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THEOREM 1.2. Let f ∈ S and let g be a finite Blaschke product of degree d .
Let t1, . . . ,tn be points on T and let

f (z) = g(z)+o(|z− ti|mi) for i = 1, . . . ,n (1.2)

as z tends to ti nontangentially and where m1, . . . ,mn are nonnegative integers. If[
m1 +1

2

]
+ . . .+

[
mn +1

2

]
> d = deg g, (1.3)

then f (z) ≡ g(z) . Otherwise, the uniqueness fails.

In (1.3), [x] denotes the largest integer that does not exceed a real number x .
The last statement in Theorem 1.2 means: if condition (1.3) fails for a finite Blaschke
product g and nonnegative integers m1, . . . ,mn , then for every choice of n points
t1, . . . ,tn ∈ T , there are infinitely many functions f ∈ S subject to (1.2). Thus, con-
ditions (1.2) are minimal. Theorem 1.2 can be supplemented by the following result
which is a fairly straightforward consequence of [11, Theorem 2.1].

PROPOSITION 1.3. Let us assume that a rational function g ∈ S is not a finite
Blaschke product. Then for every choice of integers n, m1, . . . ,mn , there are infinitely
many functions f ∈ S satisfying conditions (1.2).

Observe that upon identifying H∞ -functions with their boundary functions ob-
tained via nontangential boundary limits we may rewrite definition (1.1) as

S := H∞∩BL∞ (1.4)

where BL∞ denotes the closed unit ball of L∞(T) . The second component in (1.4)
imposing the metric constraint ‖ · ‖L∞ � 1 is crucial for deducing rigidity conclusions
in Theorems 1.1 and 1.2. This constraint makes sense for any meromorphic function
having non-tangential boundary limits almost everywhere on T . The objective of this
note is to verify for which classes Ω of such functions, the L∞ -norm constraint provides
the rigidity of the following sort:

(R): If g is a rational function in Ω∩BL∞ (that is, g∈Ω and |g|� 1 on T) and
if f ∈Ω∩BL∞ satisfies conditions (1.2) for some choice of integers n and m1, . . . ,mn

(perhaps depending on g), then f ≡ g .

NOTATION. For the rest of the paper we fix the following notation.

1. Bκ – the set of all Blaschke products of degree κ .

2. Bp/Bq – the set of all coprime quotients g = b/θ with b ∈ Bp and θ ∈ Bq ,
i.e., the set of all rational functions g unimodular on T and with p zeros and q
poles in D (counted with multiplicities).

3. Sκ – the generalized Schur class (introduced in [18]) consisting of all coprime
quotients of the form f = s/b where s ∈ S and b ∈ Bκ .
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4. S�κ :=
⋃

r�κ Sr , the set of quotients as in (3), but not necessarily coprime.

5. Z( f ) – the zero set of a function f .

The paper is organized as follows. In Section 2 we show that rigidity of type (R) can-
not occur for meromorphic function beyond generalized Schur classes and we establish
such rigidity property for the class S�κ (Theorem 2.1). As we will see, this mero-
morphic result follows directly from its particular case covered by Theorem 1.2. Being
specialized to the single-point case, Theorem 2.1 gives a rigidity condition in terms
of a single asymptotic expansion (Corollary 2.4). We then compare it with another
single-point rigidity result recently established in [2]. In Section 4 we prove minimal-
ity of conditions in Theorem 2.1 using some results on boundary interpolation which
are collected in Section 3. In Section 5 we formulate the analogs of Theorem 2.1 for
generalized Carathéodory and generalized Nevanlinna functions where again the proofs
will follow directly from Theorem 1.2. We will conclude this note with several open
questions which are listed in Section 6.

2. Rigidity for generalized Schur functions

The assumption that g ∈ BL∞ is rational together with conditions (1.2) guarantee
that the boundary limits of f ( j)(z) exist for j = 0, . . . ,mi as z tends to ti nontangentially
and moreover,

lim
z→ti

f ( j)(z) = g( j)(ti) for i = 1, . . . ,n and j = 0, . . . ,mi. (2.1)

As for the choice of Ω , it looks quite natural to start with N(D) , the class of meromor-
phic functions of bounded type. These functions have nontangential boundary limits
almost everywhere on T and N(D)∩BL∞ consists of quotients f = s/b where s ∈S
and b is a Blaschke product. Let us show that statement (R) cannot hold in this setting.
Indeed, if g ∈ BL∞ is rational, then it is of the form g = sg/bg where sg is a rational
function from S and bg is a finite Blaschke product. If θ is a finite Blachke product of
degree exceeding the total number of interpolation conditions in (2.1), then there exist
infinitely many functions s ∈ S such that

lim
z→ti

s( j)(z) = (sg ·θ )( j)(ti) for i = 1, . . . ,n and j = 0, . . . ,mi, (2.2)

and for every such s , the function f :=
s

bgθ
satisfies conditions (2.1) and clearly be-

longs to N(D)∩BL∞ . The existence of infinitely many functions s satisfying (2.2)
follows from Theorem 1.2 in case sg is a finite Blaschke product and from Proposition
1.3 otherwise; in the latter case, θ is not needed.

The latter argument shows that rigidity of type (R) cannot be achieved even if we
restrict Ω to the class of meromorphic functions with finitely many poles. Let us further
reduce Ω to the set of meromorphic functions of bounded type with a fixed bound (say,
κ ) on the total pole multiplicity. Thus we arrive at the class H∞

κ introduced in [1] and
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consisting of all quotients f = s/b where s ∈ H∞ and b ∈ Bκ . It follows from this
definition and from definition of Sκ that Sκ = (H∞

κ \H∞
κ−1)∩BL∞ so that

H∞
κ ∩BL∞ = { f =

s
b

: s ∈ S , b ∈ Bκ} =
⋃
r�κ

Sr =: S�κ . (2.3)

If g is a rational function from H∞
κ ∩BL∞ , then it is of the form g = sg/bg where sg

is a rational function from S and bg ∈ Bκ . If sg is not a finite Blaschke product,
we repeat the preceding argument (with θ ≡ 1) and invoke Proposition 1.3 to conclude
that for every choice of n , m1, . . . ,mn , there are infinitely many functions f of the
form f = s/bg with s ∈ S satisfying (1.2). Thus, a rigidity property of type (R) for
f ,g ∈ H∞

κ ∩BL∞ and g being a quotient of two finite Blaschke products is all we may
have, and the next theorem shows that we indeed have it.

THEOREM 2.1. Let κ , p,q be nonnegative integers and let t1, . . . ,tn be n distinct
points on T , let g ∈Bp/Bq and let us assume that a function f ∈ H∞

κ ∩BL∞ satisfies
conditions

f (z) = g(z)+o(|z− ti|mi) for i = 1, . . . ,n (2.4)

as z tends to ti nontangentially, for some nonnegative integers m1, . . . ,mn . If[
m1 +1

2

]
+ . . .+

[
mn +1

2

]
> κ + p, (2.5)

then f ≡ g on D .

Proof. Substituting coprime quotient representations for f and g

f (z) =
s f (z)
b f (z)

(s f ∈ S , b f ∈ Bκ) and g(z) =
b(z)
θ (z)

(b ∈ Bp, θ ∈ Bq) (2.6)

into (2.4) and then multiplying both sides in (2.4) by b f ·θ ∈ Bκ+q we get

s f (z)θ (z) = b(z)b f (z)+o(|z− ti|mi) for i = 1, . . . ,n. (2.7)

Since s f ·θ ∈S , b ·b f ∈Bκ+p and since by (2.5),
n

∑
i=1

[
mi +1

2

]
> κ+ p = deg(b ·b f ) ,

we conclude from (2.7) by Theorem 1.2 that s f ·θ ≡ b ·b f which is equivalent, by (2.6),
to f ≡ g . �

REMARK 2.2. Observe that the membership f ∈H∞
κ ∩BL∞ means that total pole

multiplicity of f does not exceed κ . Although in Theorem 2.1 we allow f and g to
have different pole multiplicities, this possibility cannot be realized under conditions
(2.5).

REMARK 2.3. If we impose the additional restriction that f and g have the same
pole multiplicity q , then the integer κ in (2.5) can be replaced by q . If we denote by
d the MacMillan degree of g (which clearly is equal to degb+ degθ = p+ q ), then
condition (2.5) looks pretty much the same as (1.3).
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Being specialized to the case n = 1, Theorem 2.1 gives the following.

COROLLARY 2.4. Let κ , p,q be nonnegative integers, let g ∈ Bp/Bq and let
f ∈ H∞

κ ∩BL∞ be such that

f (z) = g(z)+o(|z− t0|2κ+2p+1) (2.8)

as z tends to t0 ∈ T nontangentially. Then f ≡ g on D .

For the proof, it is enough to notice that the least integer m satisfying inequality[
m+1

2

]
> κ + p is m = 2κ+2p+1.

We now recall a recent result from [2] where rigidity for functions in H∞
κ ∩BL∞

was established under a slightly stronger condition than (2.8).

THEOREM 2.5. Let t0 be a point on T and let us assume that the numbers τ0 ∈ T

and τk,τk+1, . . . ,τ2k−1 ∈C are such that the matrix P = τ0TB is Hermitian, where T is
the lower triangular Toeplitz matrix with the bottom row equal [τ2k−1 τ2k−2 . . . τk+1, τk]
and B = [bi j]ki, j=1 is the k× k right lower triangular matrix with the entries

bi j =

{
0, if 2 � i+ j � k,

(−1) j−1
(

j−1
j + i− k−1

)
t j+k−1
0 , if k+1 � i+ j � 2k.

Let g(z) be the function defined by

g(z) =
a(z)x+b(z)
c(z)x+d(z)

(2.9)

where x ∈ T\{τ0} , [
a(z) b(z)
c(z) d(z)

]
= I2− (1− zz0)p(z)

(1− zt0)k

[
1 −τ0
τ0 −1

]
,

where z0 	= t0 is an arbitrary point on T and p(z) is the polynomial (note that the
matrix P is invertible by construction) given by p(z) = (1−zt0)k)R(z)P−1R(z0)∗ where

R(z) =
[

1
1−zt0

z
(1−zt0)2

. . . zk−1

(1−zt0)k

]
. Then

(1) The function g is the quotient of two finite Blaschke products with r poles in D

(where r is the number of negative eigenvalues of the matrix P) and with the
following Taylor expansion at t0 :

g(z) = τ0 +
2k−1

∑
i=k

τi(z− t0)i +O(|z− t0|2k). (2.10)

(2) If f is a function from H∞
κ ∩BL∞ with r poles in D and such that

f (z) = g(z)+O(|z− t0|2k+2), (2.11)

then f ≡ g.
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To embed Theorem 2.5 into our framework we first recall that for every quotient of
two finite Blaschke products with the Taylor expansion (2.10), the matrix P constructed
in the theorem is necessarily Hermitian and τ0 = g(t0) is unimodular (see [13, Section
2]. On the other hand, it follows from general results from [7, Section 21] that formula
(2.9) parametrizes all functions g∈Bk−r/Br of the form (2.10). Therefore, the rigidity
part in Theorem 2.5 can be reformulated equivalently in the following more compact
form.

THEOREM 2.6. Let g ∈Bk−r/Br admit the Taylor expansion (2.10) at t0 ∈ T . If
f ∈ H∞

r ∩BL∞ satisfies the nontangential asymptotic condition (2.11), then f ≡ g.

The main limitation in Theorem 2.6 is that g has quite special Taylor coefficients
at t0 (τ1 = τ2 = . . . = τk−1 = 0) (observe that the original Burns-Krantz theorem is of a
different type, since there we have τ1 = 1 and τ2 = τ3 = 0; however it was shown in [2,
Section 4] that Theorem 1.1 can be deduced from Theorem 2.5). Corollary 2.4 shows
that rigidity holds for any quotient of finite Blaschke products. Besides, Corollary 2.4
shows that the term O(|z− t0|2k+2) in (2.11) can be relaxed to o(|z− t0|2k+1) , that the
order of approximation can be of any parity (not necessarily even) and that rigidity may
hold also in case where only a bound for the pole multiplicity of f is known.

REMARK 2.7. Observe that Theorem 2.1 does not discuss the optimality of con-
ditions (2.5) and in this regard, it is not a full extent analog of Theorem 1.2. As we
will see below, conditions (2.5) are indeed optimal in the sense that if the integers κ ,
p , q and mi ’s are not as in Theorem 2.1, then the rigidity cannot be guaranteed by
conditions (2.5).

Let us observe that if g belongs to Bp/Bq and κ 	= q , then rigidity occurs for no
function f in Sκ (for the simple reason that f and g have different pole multiplicities)
no matter what conditions are imposed. Thus, it suffices to consider the case where
g ∈ Bp/Bq and f ∈ Sq . This remaining case is covered by the following theorem.

THEOREM 2.8. Let p, q , m1, . . . ,mn be nonnegative integers and let g∈Bp/Bq .
If [

m1 +1
2

]
+ . . .+

[
mn +1

2

]
� p+q, (2.12)

then for every choice of t1, . . . ,tn ∈T , there are infinitely many functions f ∈Sq subject
to equalities

f (z) = g(z)+O(|z− ti|mi+1) for i = 1, . . . ,n, (2.13)

where z tends to ti unrestrictedly in D .

The theorem states that if the total order of contact of f and g on T is not large
enough (this is the meaning of condition (2.12)), then we cannot guarantee that f ≡ g
even if conditions (2.5) are replaced by slightly stronger conditions (2.13) with the
arbitrary (rather than the nontangential) convergence of z to ti . The proof of Theorem
2.8 will be given in Section 4.
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3. Boundary Schwarz-Pick matrices and related interpolation

In this section we collect some preliminary facts needed for the proof of Theorem
2.8. Let g be a meromorphic function with the domain of holomorphy Dom(g) . For
every positive integer n , and every n -tuple z = (z1, . . . ,zn) of points in D∩Dom(g)
taken with multiplicities ki from another n -tuple k = (k1, . . . ,kn) ∈ Nn , we let |k| :=
k1 + . . .+ kn and introduce the |k|× |k| matrix

P
g
k(z) =

[
P

g
ki,k j

(zi,z j)
]n

i, j=1
(3.1)

with the ki× k j block entries

P
g
ki,k j

(zi,z j) =

⎡⎢⎣ 1
�!r!

∂ �+r

∂ z�∂ζ
r

1−g(z)g(ζ )

1− zζ

∣∣∣∣∣ z = zi
ζ = z j

⎤⎥⎦
r=0,...,k j−1

�=0,...,ki−1

. (3.2)

The matrix Pw
k (z) which will be referred to as to a Schwarz-Pick matrix, is Hermitian.

Its definition can be extended to the boundary setting as follows: given t = (t1, . . . ,tn)∈
Tn , the boundary Schwarz-Pick matrix is defined by

P
g
k(t) =

[
P

g
ki,k j

(ti,t j)
]n

i, j=1
:= lim

z→t
P

g
k(z) (3.3)

as zi ∈ D tends to ti nontangentially for i = 1, . . . ,n , provided the limit in (3.3) exists
(“the limit exists” also means that it is finite).

REMARK 3.1. Since P
g
k(z) is Hermitian, the boundary Schwarz-Pick matrix is

Hermitian whenever it exists.

It is readily seen from the formula for the bottom diagonal entry in P
g
ki,ki

(zi,zi)
that higher order Carathéodory-Julia conditions

liminf
z→ti

∂ 2ki−2

∂ zki−1∂ zki−1

1−|g(z)|2
1−|z|2 < ∞ for i = 1, . . . ,n, (3.4)

where z ∈ D tends to ti arbitrarily (not necessarily nontangentially) are necessary for
the limit (3.3) to exist. These conditions are also sufficient for functions in S�κ as the
following theorem shows.

THEOREM 3.2. Let us assume that g ∈ S�κ meets conditions (3.4). Then

(1) The following nontangential boundary limits exist

g j(ti) := lim
z→ti

g( j)(z)
j!

for j = 0, . . . ,2ki −1; i = 1, . . . ,n. (3.5)
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(2) The nontangential boundary limit (3.3) exists and can be expressed in terms of
the limits (3.5) as follows:

P
g
ki,k j

(ti,t j) = H
g
ki,k j

(ti,t j)Ψk j (t j)U
g
k j

(t j)∗ (3.6)

where Ψk j (t j) is the k j × k j upper triangular matrix with the entries

ψ�r(t j) =

{
0, if � > r

(−1)r
(

r
�

)
t�+r+1
j , if � � r

(�,r = 0, . . . ,k j −1), (3.7)

where U
g
k j

(t j) is the lower triangular Toeplitz matrix:

U
g
k j

(t j) =

⎡⎢⎢⎢⎢⎣
g0(t j) 0 . . . 0

g1(t j) g0(t j)
. . .

...
...

. . .
. . . 0

gkj−1(t j) . . . g1(t j) g0(t j)

⎤⎥⎥⎥⎥⎦ ,

and where H
g
ki,k j

(ti,t j) is defined for i = j as the Hankel matrix

H
g
ki,ki

(ti,ti) = [g�+r−1(ti)]
ki
�,r=1 (3.8)

and entrywise (if i 	= j ) by

[
Hki,k j (ti,t j)

]
�,r

=
�

∑
α=0

(−1)�−α
(

�+ r−α
r

)
gα(ti)

(ti − t j)�+r−α+1

−
r

∑
β=0

(−1)�
(

�+ r−β
�

)
gβ (t j)

(ti − t j)�+r−β+1
(3.9)

for � = 0, . . . ,ki−1 and r = 0, . . . ,k j −1 .

Proof. The case n = 1 was considered in [13] (see Theorem 4.2 there; we also
refer to [12] where conditions (3.4) were first introduced and studied). Applying the
single-point version to each point ti individually we get the first statement in Theorem
3.2 and the existence of the angular limits lim

zi→ti
P

g
ki,ki

(zi,zi) for the diagonal blocks in

P
g
k(z) . The direct differentiation in (3.2) gives

[
P

g
ki,k j

(zi,z j)
]
�,r

=
min{�,r}
∑
s=0

(�+ r− s)!
(�− s)!s!(r− s)!

zr−s
i z �−s

j

(1− zi z j)�+r−s+1

−
�

∑
α=0

r

∑
β=0

min{α ,β}
∑
s=0

(α +β − s)!
(α− s)!s!(β − s)!

zβ−s
i zα−s

j g�−α(zi)gr−β (z j)∗

(1− zi z j)α+β−s+1
.
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For i 	= j , we pass to the limit in the latter equality as zi → ti and z j → t j and take into
account (3.5):

[
P

g
ki,k j

(ti, t j)
]
�,r

=
min{�,r}
∑
s=0

(�+ r− s)!
(�− s)!s!(r− s)!

tr−s
i t

�−s
j

(1− ti t j)�+r−s+1
(3.10)

−
�

∑
α=0

r

∑
β=0

min{α ,β}
∑
s=0

(α +β − s)!
(α− s)!s!(β − s)!

tβ−s
i t

α−s
j g�−α(ti)gr−β (t j)∗

(1− ti t j)α+β−s+1
.

Verification of the fact that the product on the right hand side of (3.6) gives the matrix
with the same entries as in (3.10), is straightforward and will be omitted. �

REMARK 3.3. Combining (3.3) and (3.5) gives the following factorization for the
matrix P

g
k(t) (when the latter exists):

P
g
k(t) = H

g
k(t)Ψk(t)U

g
k(t)

∗, (3.11)

where we have set

U
g
k(t) =

⎡⎢⎣U
g
k1

(t1) 0
. . .

0 U
g
kn

(tn)

⎤⎥⎦ , Ψk(t) =

⎡⎢⎣Ψk1(t1) 0
. . .

0 Ψkn(tn)

⎤⎥⎦ (3.12)

to be block diagonal matrices and where

H
g
k(t) =

[
Hki,k j (ti,t j)

]n

i, j=1
. (3.13)

REMARK 3.4. If g is analytic at t1, . . . ,tn , one can define the generalized Löwner
matrix

L
g
k(t) =

⎡⎢⎣
⎡⎣ 1

�!r!
∂ �+r

∂ z�∂ζ r

g(z)−g(ζ )
z− ζ

∣∣∣∣ z = ti
ζ = t j

⎤⎦r=0,...,k j−1

�=0,...,ki−1

⎤⎥⎦
n

i, j=1

(3.14)

commonly known for the central role it plays in minimal rational interpolation (see [3]–
[5], [9]). Upon expressing the entries in (3.14) in terms of the Taylor coefficients g j(ti)
of g at ti ’s and comparing them with formulas (3.8) and (3.9) one can easily conclude
that H

g
k(t) = L

g
k(t) .

In what follows, we will write π(P) and ν(P) for the numbers of positive and
negative eigenvalues, counted with multiplicities, of a Hermitian matrix P .

LEMMA 3.5. Let g ∈ Bp/Bq and let two n-tuples t ∈ T
n and k ∈ N

n be given.
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(1) If |k| = p + q, then the boundary Schwarz-Pick matrix P
g
k(t) is invertible and

moreover,
π(Pg

k(t)) = p and ν(Pg
k(t)) = q. (3.15)

(2) If |k| � p+q, then rank(Pg
k(t)) = p+q.

Proof. By the assumptions of the lemma, g is of the form

g(z) =
b(z)
θ (z)

where b ∈ Bp, θ ∈ Bq and Z(b)∩Z(θ ) = /0, (3.16)

and therefore, it satisfies condition (3.4) for every ti ∈ T and every ki � 1. Then the
boundary Schwarz-Pick matrix P

g
k(t) exists by Theorem 3.2 and is of the form (3.11),

by Remark 3.3. Observe that the upper triangular matrices U
g
k(t) and Ψk(t) are in-

vertible since all their diagonal entries are respectively of the form ±t j
i and g(ti) and

therefore, they are unimodular. Thus,

rank(Pg
k(t)) = rank(Hg

k(t)).

Since g is analytic on T , the generalized Löwner matrix L
g
k(t) exists and equals H

g
k(t) ,

by Remark 3.4. It follows from (3.16), that the MacMillan degree of g equals degg =
p + q . On the other hand, if |k| � degg , then rank(Lg

k(t))) = degg , according to
Lemma 2.5 in [3]. Summarizing we conclude that whenever |k| � degg = p+ q , we
have

rank(Pg
k(t)) = rank(Hg

k(t)) = rank(Lg
k(t)) = deg g = p+q, (3.17)

which proves the second statement of the lemma. Recall that P
g
k(t) is a |k|×|k| matrix.

Thus, if |k| = r + � , then it follows from (3.17) that the matrix P
g
k(t) is invertible. To

prove (3.15) we first check the equality

P
b
k(t)−P

θ
k(t) = U

θ
k(t)Pg

k(t)U
θ
k(t)∗ (3.18)

where b ∈ Bp and θ ∈ Bq are the finite Blaschke products from representation (3.16)
of g and the matrices Pb

k(t) , Pθ
k(t) and Ub

k(t) are defined via formulas (3.11)–(3.13).

To prove (3.18), we apply 1
�!r!

∂ �+r

∂ z�∂ζ
r to both parts of the self-evident identity

1−b(z)b(ζ )

1− zζ
− 1−θ (z)θ (ζ )

1− zζ
= θ (z)

1−g(z)g(ζ )

1− zζ
θ (ζ )

and evaluating the resulting identity at z = zi and ζ = t j for all needed values of i, j, �
and r , we get equalities between the corresponding entries in the matrix equality (3.18).
Since the matrix Uθ

k(t) is invertible, it follows from (3.17) that

π(Pg
k(t)) = π

(
P

b
k(t)−P

θ
k(t)

)
and ν(Pg

k(t)) = ν
(
P

b
k(t)−P

θ
k(t)

)
. (3.19)
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Since b is a finite Blaschke product, it follows that the boundary Schwarz-Pick matrix
Pb

k(t) is positive semidefinite and satisfies

π(Pb
k(t)) = rank(Pb

k(t)) = min{|k|,degb} = p, (3.20)

where the second equality holds by [10, Lemma 2.1] and the others are evident. Simi-
larly,

π(Pθ
k(t)) = rank(Pθ

k(t)) = min{|k|,degθ} = q. (3.21)

Combining (3.19)–(3.21) gives

π(Pg
k(t)) � π(Pb

k(t))+ν(Pθ
k (t)) = p, ν(Pg

k(t)) � ν(Pb
k(t))+π(Pθ

k(t)) = q, (3.22)

and since P
g
k(t) is invertible, i.e., since

π(Pg
k(t))+ν(Pg

k(t)) = |k| = p+q,

inequalities (3.22) imply (3.15). �

We now put boundary Schwarz-Pick matrices in the interpolation context. Given

t = {t1, . . . ,tn} ∈ T
n, k = {k1, . . . ,kn} ∈ N

n, {bi j}i=1,...,n
j=0,...,2ki−1 (bi j ∈ C), (3.23)

define the |k|× |k| matrix P by formulas similar to (3.11)–(3.13), but with g j(ti) re-
placed by bi j :

P = [Pi j]
n
i, j=1 with Pi j = Hi j ·Ψk j (t j) ·U∗

j , (3.24)

where Ψk j (t j) is the upper triangular matrix with the entries given in (3.7), where Uj

is the lower triangular Toeplitz matrix and Hii is the Hankel matrix defined by

Uj =

⎡⎢⎣ b j,0 0
...

. . .
b j,k j−1 . . . b j,0

⎤⎥⎦ , Hii =

⎡⎢⎣ bi,1 · · · bi,ki
...

...
bi,ki · · · bi,2ki−1

⎤⎥⎦ (3.25)

for i = 1, . . . ,n and where the matrices Hi j (for i 	= j ) are defined entrywise by

[Hi j]�,r =
�

∑
α=0

(−1)�−α
(

�+ r−α
r

)
bi,α

(ti − t j)�+r−α+1

−
r

∑
β=0

(−1)�
(

�+ r−β
�

)
b j,β

(ti − t j)�+r−β+1
. (3.26)

THEOREM 3.6. Let P be constructed from data (3.23) by formulas (3.24)–(3.26).
For the existence of infinitely many functions g ∈Bπ(P)/Bν(P) subject to interpolation
conditions

g j(ti) :=
g( j)(ti)

j!
= bi j ( j = 0, . . . ,2ki−1; i = 1, . . . ,n), (3.27)
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it is necessary and sufficient that

P = P∗, detP 	= 0 and |bi,0| = 1 for i = 1, . . . ,n. (3.28)

The matrix P constructed in (3.24)–(3.26) is called the Pick matrix of the interpo-
lation problem with data (3.23) and interpolation conditions (3.27).

Proof of Theorem 3.6. For the proof of necessity, let us assume that g∈Bπ(P)/Bν(P)
satisfies (3.27). Then the boundary Schwarz-Pick matrix P

g
k(t) exists and equals P . By

Remark 3.1, P is Hermitian. Let us assume that P is singular so that

|k| > π(P)+ν(P) = degg. (3.29)

To get a contradiction we assume that f is another function in Bπ(P)/Bν(P) satisfying
conditions (3.27) (by the assumption of the theorem, there are infinitely many such
functions). Then we have

f (z)−g(z) = o(|z− ti|2ki−1) for i = 1, . . . ,n.

Since f has the same pole multiplicity as g and since by (3.28),

n

∑
i=1

[
(2ki −1)+1

2

]
=

n

∑
i=1

ki = |k| > degg = p+q,

it follows from Theorem 2.1 that f ≡ g which is the desired contradiction. Thus, P
is invertible. The necessity of equalities |bi0| = 1 is obvious since |g| = 1 on T . The
proof of sufficiency can be found in [7, Chapter 21]. �

In fact much more was done in [7]: assuming that the necessary conditions (3.28)
are satisfied, the set of all rational functions f ∈ Sν(P) satisfying conditions

f j(ti) = g j(ti) = bi j for j = 0, . . . ,2ki−1 and i = 1, . . . ,n,

was parametrized by the linear fractional formula f =
aE +b
cE +d

where the coefficient

matrix Θ =
[

a b
c d

]
is a rational function of MacMillan degree degΘ = |k| and E is an

arbitrary rational Schur class function such that

c(ti)E (ti)+d(ti) 	= 0 for i = 1, . . . ,n.

It is worth mentioning that this description along with the explicit formula for Θ in
terms of data (3.23) were established in [7] in a more general bitangential matrix-valued
setting. For the proof of Theorem 2.8 we need one more auxiliary statement.

PROPOSITION 3.7. Let P̃ = [pi j] be an r× r Hermitian matrix and let us assume
that its principal submatrix P = [piα ,iβ ]�α ,β=1 is invertible. Then the r− � diagonal

entries pii for i 	∈ {i1, . . . , i�} (we will call these entries the diagonal entries of P̃ com-
plementary to the principal submatrix P) can be modified to produce an invertible
matrix P̃′ such that ν(P̃′) = ν(P) .
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Proof. Without loss of generality we can assume that P is the leading principal
submatrix of P̃ so that P̃ =

[
P R∗
R D

]
. Let us modify the diagonal entries in D as follows

P̃′ =
[

P R∗
R D′

]
where D′ = D+ρIr−�

and let us choose ρ > 0 large enough so that the matrix D′ −RP−1R∗ is positive defi-
nite. By the standard Schur complement argument, we then have

ν(P̃′) = ν(P)+ν(D′ −RP−1R∗) = ν(P)

and det(P̃′) = det(P) ·det(D′ −RP−1R∗) 	= 0, which completes the proof. �

4. The proof of Theorem 2.8

Given g ∈ Bp/Bq , t1, . . . ,tn ∈ T and nonnegative integers m1, . . . ,mn subject to[
m1 +1

2

]
+ . . .+

[
mn +1

2

]
= p+q, (4.1)

we will show that there are infinitely many rational functions f ∈Sq satisfying asymp-
totic equalities (2.13) or equivalently, interpolation conditions

f j(ti) = bi j := g j(ti) for 0 � j � mi; 1 � i � n. (4.2)

Observe that for rational f , conditions (2.4), (2.13) and (4.2) are equivalent. Define the

integers ki :=
[

mi+1
2

]
for i = 1, . . . ,n and the tuple k = (k1, . . . ,kn) so that assumption

(3.1) takes the form
k1 + . . .+ kn = |k| = κ + p (4.3)

and so that mi = 2ki −1 or mi = 2ki . Reindexing if necessary, we can assume without
loss of generality that the first � integers m1, . . . ,m� are odd while the remaining ones
(if any) are even. Now we split conditions (4.2) into two parts:

f j(ti) = bi j := g j(ti) for 0 � j � 2ki−1; i = 1, . . . ,n (4.4)

and
f2ki(ti) = bi,2ki := g2ki(ti) for i = �+1, . . . ,n. (4.5)

Let us consider the interpolation problem with interpolation conditions (4.4). Its Pick
matrix P coincides with the boundary Schwarz-Pick matrix P

g
k(t) . Equality (4.3) al-

lows us to apply Lemma 3.5 and to conclude that P is invertible and satisfies

π(P) = p, ν(P) = q. (4.6)

If � = n , so that (4.4) contains all the interpolation conditions we wish to satisfy by
f , then we conclude from Theorem 3.6 that there are infinitely many functions f ∈
Bp/Bq satisfying conditions (4.2).
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If � < n (i.e., if the set of conditions (4.5) is not empty) one more step is needed.
In this case we attach interpolation conditions

f2ki+1(ti) = bi,2ki+1 := gi,2ki+1(ti) for i = �+1, . . . ,n (4.7)

to (4.4) and (4.5) and consider the extended interpolation problem with interpolation
conditions (4.4), (4.5) and (4.7). The collection of bi j ’s appearing in (4.4) and (4.5)
will be called the original data, the collection {bi,2ki+1} from (3.10) will be called the
supplementary data whereas their union will be referred to as to the extended data.

For the extended interpolation problem we have an even number of conditions at
each interpolating point ti and its Pick matrix P̃ equals P

g

k̃
(t) where g and t are the

same as above and where

k̃ = (k̃1, . . . , k̃n) = (k1, . . . ,k�,k�+1 +1, . . . ,kn +1) ∈ N
n.

The matrix P̃ can be written in terms of bi j ’s via formulas (3.24):

P̃ =
[
P̃i j

]n

i, j=1
where P̃i j = H̃i j ·Ψk̃ j

(t j) ·Ũ∗
j (4.8)

and where Ũj and H̃i j are defined by formulas (3.25), (3.26) with ki replaced by k̃i . It
is clear that all the entries in P̃ are completely determined by the extended data. How-
ever, it turns out that all its entries but � diagonal ones are uniquely determined from
the original data. Indeed, if i 	= j , then H̃i j and Ũ j (and therefore, P̃i j ) are expressed
via formulas (3.25), (3.26) in terms of the numbers bi,0, . . . ,bi,̃ki−1 and b j,0, . . . ,b j,̃k j−1

all of which are contained in the original data, since k̃i−1 � ki � 2ki−1.

Now we examine the diagonal blocks P̃ii for i > � (if i � � , then P̃ii = Pii is
completely determined by the original data). By (4.8) and (3.25),

P̃ii =

⎡⎢⎢⎢⎣
bi,1 bi,2 · · · bi,ki

bi,2 bi,3 · · · bi,ki+1
...

...
...

bi,ki bi,ki+1 . . . bi,2ki−1

⎤⎥⎥⎥⎦Ψki(ti)

⎡⎢⎣ bi,0 . . . bi,ki−1
. . .

...
0 bi,0

⎤⎥⎦ . (4.9)

It is readily seen from (4.9) that the only entry in P̃ii that depends on the supplementary
data is the the bottom diagonal entry

γi :=
[
P̃ii

]
ki ,ki

=
[
bi,ki · · · bi,2ki−1

]
Ψki(ti)

[
bi,ki−1 · · · bi,0

]∗
(4.10)

which, on account of (3.7), can be written as

γi = (−1)ki−1t2ki−1
i bi,2ki−1bi,0 +Φ(ti,bi,0, . . . ,bi,2ki−2) (4.11)

where the second term on the right does not depend on bi,2ki−1 . Since P̃ = P
g

k̃
(t) ,

it follows that P̃ is Hermitian. Furthermore, P = P
g
k(t) is an (invertible) principal
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submatrix of P̃ and the diagonal entries in P̃ complementary to P are exactly γi ’s
from (4.11), the bottom diagonal entries in the blocks P̃ii of P̃ for i = � + 1, . . . ,n .
By Proposition 3.7, upon replacing γi in P̃ by appropriately chosen (sufficiently large)
positive numbers γ ′i (for i = � + 1, . . . ,n ) and keeping all the other entries the same,
one gets an invertible matrix P̃′ with ν(P̃′) = ν(P) = q . Furthermore, for each chosen
γ ′i , there exists (the unique) b′i,2ki−1 such that

γ ′i = (−1)ki−1t2ki−1
i b′i,2ki−1bi,0 +Φ(ti,bi,0, . . . ,bi,2ki−2)

where the second term on the right is the same as in (4.11) (since bi,0 	= 0, the latter
equality can be solved for b′i,2ki−1 ). Now we replace the supplementary interpolation
conditions (4.7) by

f2ki+1(ti) = b′i,2ki+1 for i = �+1, . . . ,n (4.12)

where the numbers on the right have nothing to do with the function g anymore. The
Pick matrix of the modified extended interpolation problem with interpolation condi-
tions (4.4), (4.5) and (4.12) is P̃′ . Since it is invertible, and since ν(P̃′) = ν(P) = q
and π(P̃′) = p+ � , it follows from Theorem 3.6 that there are infinitely many functions
f ∈ Bp+�/Bq satisfying conditions (4.4), (4.5) and (4.12). Thus, we have shown that
under assumption (4.1), there exist infinitely many rational functions f ∈Sq satisfying
conditions (4.2) or equivalently, asymptotic equalities (2.13). It is clear that one comes
up with the same conclusion if the equality assumption (4.1) is replaced by inequality
(2.4). This completes the proof of Theorem 2.8.

5. Rigidity for generalized Carathéodory and generalized Nevanlinna functions

The generalized Schur class Sκ can be alternatively characterized as the class of

all functions f meromorphic on D and such that the kernel S f (z,ζ ) =
1− f (z) f (ζ )

1− zζ
has κ negative squares on D∩Dom( f ) . A related to S κ is the class Cκ of generalized
Carathéodory functions h which by definition, are meromorphic on D and such that the

associated kernel Ch(z,ζ ) =
h(z)+h(ζ )

1− zζ
has κ negative squares on D∩Dom(h) . It is

convenient to include the function h ≡ ∞ into C0 . Then the Caley transform

f �→ h =
1+ f
1− f

(5.1)

establishes a one-to-one correspondence between Sκ and Cκ and therefore, between
S�κ and C�κ :=

⋃
r�κ

Cr . The representation f = s/b for an f ∈ Sκ combined with

(5.1) implies that h belongs to C�κ if and only if it is of the form

h =
b+ s
b− s

where b ∈ Bκ , s ∈ S and Z(s)∩Z(b) = /0 (5.2)

Theorem 2.1 in the present setting looks as follows.
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THEOREM 5.1. Let κ , p,q be nonnegative integers and let g be of the form

g =
b2 +b1

b2−b1
where b1 ∈ Bp, b2 ∈ Bq and Z(b1)∩Z(b2) = /0. (5.3)

Let us assume that a function h ∈ C�κ satisfies asymptotic equations

h(z) = g(z)+o(|z− ti|mi) for i = 1, . . . ,n (5.4)

at some points t1, . . . ,tn ∈ T and some nonnegative integers m1, . . . ,mn which in turn,
are subject to (2.5). Then h ≡ g.

Proof. Substituting (5.2) and (5.3) into (5.4) and then multiplying both sides in
(5.4) by (b2−b1)(b− s) we eventually get

s(z)b2(z) = b(z)b1(z)+o(|z− ti|mi) for i = 1, . . . ,n. (5.5)

Since s ·b2 ∈S and b ·b1 ∈Bκ+p , we invoke Theorem 1.2 (as in the proof of Theorem
2.1) to conclude from (5.5) that s ·b2 ≡ b ·b1 which implies that h ≡ g , thanks to (5.2)
and (5.3). �

REMARK 5.2. Note that analyticity of g at ti is not required in Theorem 5.1.

Another popular class related to Sκ is the class Nκ of generalized Nevanlinna
functions, that is, the functions h meromorphic on the open upper half-plane C+ and

such that the associated kernel Nh(z,ζ ) =
h(z)−h(ζ )

z− ζ
has κ negative squares on C

+∩
Dom(h) . The function h ≡ ∞ is assumed to be in N0 . The classes Nκ and Sκ are
related by

h(ζ ) = i · 1+ f (γ(ζ ))
1− f (γ(ζ ))

, γ(ζ ) =
ζ − i
ζ + i

(5.6)

which allows us to characterize Nκ -functions by the fractional representation

h = i · b+ s
b− s

(5.7)

where s (analytic and bounded by one in modulus in C+ ) and b∈Bκ do not have com-
mon zeroes. For the rest of the paper we denote by Bk(C+) the set of finite Blaschke
products of the form

b(ζ ) =
k

∏
i=1

ζ −ai

ζ − ai
(ζ , ai ∈ C

+).

Here is Theorem 2.1 for generalized Nevanlinna functions.
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THEOREM 5.3. Let κ , p,q be two nonnegative integers, let g be of the form

g = i · b2 +b1

b2−b1
where b1 ∈ Bp(C+), b2 ∈ Bq(C+), Z(b1)∩Z(b2) = /0. (5.8)

Let λ1, . . . ,λn be real points, let m1, . . . ,mn be nonnegative integers and let us assume
that a function h ∈ N�κ satisfies the asymptotic equations

h(ζ ) = g(ζ )+o(|ζ −λi|mi) for i = 2, . . . ,n (5.9)

as ζ ∈ C+ tends to λi nontangentially and the asymptotic equation

h(ζ ) = g(ζ )+o(|ζ |−m1) (5.10)

as z tends to infinity staying inside the angle {z : ε < argz < π − ε} . If the numbers
m1, . . . ,mn are subject to (2.5), then h ≡ g.

Proof. Let z := γ(ζ ) where γ is given in (5.6). Then t1 := γ(∞) = 1 ∈ T and
since λi ∈ T , we have ti := γ(λi) ∈ T for i = 2, . . . ,n . Observe that

|z− t j| = |γ(ζ )− γ(λ j)| = 2|ζ −λ j|
|(ζ + i)(λ j + i)| = O(|ζ −λ j|)

for j = 2, . . . ,n and |z− t1| = |z−1| = |γ(ζ )−1| = 2
|ζ+i| = O(|ζ |−1) . Therefore, and

since γ maps C+ onto D conformally, we can write (5.9) and (5.10) as

h(γ−1(z)) = g(γ−1(z))+o(|z− ti|mi) for i = 1, . . . ,n (5.11)

It remains to note that the functions −ih◦ γ−1 and −ih◦ γ−1 are generalized Carathéo-
dory functions satisfying the assumptions of Theorem 5.1. Therefore, they are equal
identically and thus, h ≡ g . �

6. Concluding remarks and open questions

The results presented above indicate some additional potential contained in Theo-
rem 1.2 which has not been pointed out in [10]. However, we see at least three settings
the extensions of Theorem 2.1 to which would be of considerable interest.

1. Rigidity forced by countably many boundary interpolation conditions.

Let g∈N(D)∩BL∞ and let the nontangenial boundary limits limz→ti g
( j)(z) exist

for 0 � j � mj � ∞ and 1 � i � n � ∞ where now n and m1, . . . ,mn can be infinite.

QUESTION 1. For what g as above and what n and mi the following statement
holds true: whenever f ∈ N(D)∩BL∞ satisfies asymptotic equalities (2.4), f ≡ g?

The class of functions g for which the above rigidity holds might be much larger
than B�/Br as well as infinitely many interpolation conditions may guarantee rigidity
for functions beyond S�∞ :=

⋃
r�0 Sr .
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2. Rigidity for matrix valued functions. A p×q matrix valued function F is said to
belong to the class Np×q(D) if all its entries are the functions from N(D) and it belongs
to BL∞p×q if ‖F(t)‖op � 1 almost everywhere on T . As in the scalar case we define
Np×q(D)∩BL∞p×q and we modify conditions (2.4) as follows:

‖F(z)ci −G(z)ci‖ = o(|z− ti|mi) for i = 1, . . . ,n, (6.1)

where now ci are vectors from Cq . In other words we assume that sufficient condi-
tions for rigidity may be split not only between different points on T but also between
different directions in Cq . The question is the same as in the scalar case:

QUESTION 2. For what G ∈ Np×q(D)∩BL∞p×q having nontangenial boundary

limits lim
z→ti

G( j)(z) (or just lim
z→ti

G( j)(z)ci ) for 0 � j � mj � ∞ and 1 � i � n � ∞ and

what ci ∈ Cq , the following statement holds true: whenever F ∈ N(D)∩BL∞ satisfies
asymptotic equalities (6.1), F ≡ G?

3. Rigidity without boundary interpolation conditions. In all previous cases we
assumed that g itself admits nontangential boundary expansions of the requisite or-
ders which allowed us to rewrite conditions (2.4) in interpolation form (2.1). Then the
question concerning rigidity reduces to the question whether or not certain boundary in-
terpolation problem has a unique solution. We expect that rigidity may occur in a quite
different situation. We formulate the question in the holomorphic setting of Theorem
1.2 and expect that the meromorphic counterpart is not much harder.

QUESTION 3. Does there exist g ∈S which does not have nontangential bound-
ary limits at t1, . . . ,tn ∈ T and such that for every f ∈ S satisfying conditions (2.4) for
some integers m1, . . . ,mn , it holds that f ≡ g?
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