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STRUCTURED DECOMPOSITIONS FOR MATRIX TRIPLES:
SVD-LIKE CONCEPTS FOR STRUCTURED MATRICES
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(Communicated by Z. Drmac)

Abstract. Canonical forms for matrix triples (A.,G,G), where A is arbitrary rectangular and
G, G are either real symmetric or skew symmetric, or complex Hermitian or skew Hermitian,
are derived. These forms generalize classical singular value decompositions. In [1] a similar
canonical form has been obtained for the complex case. In this paper, we provide an alternative
proof for the complex case which is based on the construction of a staircase-like form with the
help of a structured QR-like decomposition. This approach allows generalization to the real
case.

1. Introduction

Let F denote either the complex field C or the real field R. Consider a triple
of matrices (A,G,G) with A € F™" G € F™™_ and G € F"*", where G and G
are nonsingular and either Hermitian or skew-Hermitian (in the complex case) or sym-
metric or skew-symmetric (in the real case). In this paper we derive canonical forms
(Acr, Gery GCF) under the transformation

(Acr,Ger, Gy) 1= (X*AY, X*GX ,Y*GY), (1.1)

with nonsingular matrices X € F”*" and Y € F"*". (Here A* denotes the conjugate
transpose of a matrix A if F = C or the transpose if F =R.)

The canonical form for the complex case is already known and has appeared in
[1], although uniqueness of the canonical form had not been considered there. The real
case, however, has only been investigated in [27] so far for the special case that

G:[ 0 Im} and G=1I,
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and in [28] where a numerical method was derived for this case.

In this paper, we give an alternative proof of the canonical form in the complex
case which is based on the construction of a staircase-like form with the help of a
structured QR-like decomposition. These stair-case decompositions have analogues in
the real case which allow a generalization of the results for the complex case to cover
the real case as well.

The difficulties encountered in the treatment of the real case in full generality stem
from the fact that one has to distinguish the cases that G and G are either both symmet-
ric, or both skew-symmetric, or that one is symmetric and the other skew-symmetric.
In the complex case, in contrast, there is no need to distinguish between Hermitian and
skew-Hermitian matrices G and G, because multiplication with the imaginary unit 1
easily converts an Hermitian matrix into a skew-Hermitian matrix and vice versa. A
corresponding transformation can be performed on the canonical form so that all cases
are covered by presenting the canonical form for the case that G and G are both Her-
mitian.

A third case besides the real case and the complex case with Hermitian and skew-
Hermitian G and G is obtained if one assumes that G and G are complex symmetric
or complex skew-symmetric and if one replaces the conjugate transpose in (1.1) by the
transpose. This case has been investigated in [19]. So together with this paper the
complete set of canonical forms for real and complex matrix triples of the form (1.1) is
available.

The study of the described canonical forms is motivated by the goal of unifying the
solution procedures for eigenvalue problems associated with structured matrices from
Lie and Jordan algebras related to indefinite inner products, [3, 8, 21, 22]. Consider for
example a signature matrix

I, O
2y = [ 6' —Ivl]’ T+ VI =m.

A matrix 2 € C™" is called Xy, y, -Hermitian if (Zg, y, J€)* = Zg, v, I, 1e., if
27, v, € is Hermitian. The matrix Xz, ,, 5% then possesses a factorization Xy, y, S =
AXg, v,A*, where X, v, is another signature matrix and A € R™*" with n=m + v».
This means that .7# has a factorization

S =2g v AZg, v,A".
If, for the triple (A, %z, v,,Zz,,v,), We can determine a suitable canonical form
(Ace,Ger, Gor) = (X*AY, X" Zg, v X, Y* 2y, 1Y),
then this will allow us to determine the eigenstructure of .7#, because
XX = (X" Zg, v, X) HXFAY) (Y 20,0, V) (YFA'X) = Gl AGGL AL

Simultaneously the eigenstructure for the 2z, , -Hermitian matrix I =2y A" Zn, WA,
is obtained, because Y 1%, |, A*Z; \, AY = G 'ALGLlA.
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In general, the canonical form (1.1) of the matrix triple (A,G, G) will allow us to
simultaneously determine the eigenstructures of the two structured matrices

H =G 'AGAY, H =G 'A*GTA. (1.2)

Structured matrices with such product representations cover all the structured matrices
from the Lie and Jordan algebras (see [3]), associated with the sesquilinear forms

X6 =xGy,  (xy)g=x"Cy. (1.3)

Furthermore, the form (1.1) can be interpreted as a generalization of the singular
value decomposition (SVD) [9] of a matrix A € C"*", i.e., the decomposition

(o] 0

Aw:=UAV=| = L o1 =200
o
0 0

with unitary matrices U,V . Indeed, the SVD can be considered as a canonical form for
the matrix triple (A,I,,I,) under the transformation

(A Iy 1) = (A, I 1) = (X*AY, X I, X, Y*L,Y). (1.4)

Here, the equation for the first components of the two matrix triples in (1.4) is the actual
singular value decomposition, while the equations for the second and third components
just force the transformation matrices to be unitary. The canonical form then displays
the eigenstructure of the I, -selfadjoint matrix A*A and the I,,-selfadjoint matrix AA*,
because the nonzero singular values o7,..., 0, are just the square roots of the nonzero
eigenvalues of A*A and AA*.

When generalizing the concept of the singular value decomposition to analogous
factorizations for linear maps . : C" — C™, where the spaces C" and C™” are equipped
with indefinite inner products given by invertible Hermitian matrices G € C™*" and
G € €™, one may consider to apply a transformation A — X*AY to a matrix rep-
resentation of ., where X and Y are matrices that are unitary with respect to the
sesquilinear forms (1.3), i.e., where X*GX =G, Y *GY =G. Howeyver, if one allows
general changes of bases in the spaces C" and C™, i.e., changes that affect the in-
definite inner products as well, then this corresponds exactly to the transformation as
in (1.1) and the canonical forms will appear to be less complicated.

Generalizations of the singular value decomposition in the sense of this paper have
been studied earlier in the literature, probably starting with [10, 11]. The generalized
singular value decomposition defined there corresponds to (1.1) for the case that for
all three matrices Ac, #o = G AG A%, and 2, == G 'AX .G Ay a diagonal
representation can be chosen. The general complex case (allowing also non-diagonal
representations) was then discussed in [1].

In [15], the canonical forms of the matrices X*/X and XX were investigated,
where X/ = H~'XH denotes the adjoint of a matrix X € C"™*" with respect to the



306 CHRISTIAN MEHL, VOLKER MEHRMANN AND HONGGUO XU

indefinite inner product induced by the nonsingular Hermitian matrix H € C"*". This
question is motivated from the theory of polar decompositions in indefinite inner prod-
uct spaces. It is said that a matrix X € C"*" allows an H -polar decomposition, if there
exists an H -selfadjoint matrix B, i.e., a matrix satisfying B*H = HB, and an H -unitary
matrix U, i.e., a matrix satisfying U*HU = H, such that X = UB. It was shown in
[20] that X allows an H -polar decomposition if and only if the two matrices X Hx
and XX have the same canonical forms as H -selfadjoint matrices. Setting A =X,
G=H"'!, and G = H, we find that

XHx =6"'4*"G'A=# and XX =AG'A*G'=G#G ',

and thus, the canonical forms of X X and XX can be read off from the canonical
form for the matrix triple (A,G,G) = (X,H',H). Consequently, many of the results
from [15] can be recovered from the results in this paper. Recently, the relation of
the spectra of X*/X and XX* has been investigated in terms of infinite dimensional
indefinite inner product spaces (also known as Krein spaces) in [23].

A canonical form closely related to the one obtained under the transformation (1.1)
is the canonical form for pairs of matrices (B,C), B € C"™*" C € C"*™ under transfor-
mations of the form

(B,C) — (X 'BY,Y"!CX). (1.5)

This form corresponds to the canonical representation of the quiver 1 = 2, see [4, 13]
and the discussion in [24]. In particular, this canonical form reveals the Jordan struc-
tures of the products BC and CB. In our framework, this corresponds to a canoni-
cal form of the pair of matrices (G~'A,G~'A*) rather than for the triple (A,G,G).
When focussing on matrix triples, our approach is more general, because the canonical
form for the pair (G’IA,CA}’lA*) can be easily read off from the canonical form for
(A,G,G), but not vice versa. Moreover, the canonical form for (A,G,G) allows the
construction of structured canonical forms for the structured matrices and matrix pen-
cils mentioned in the previous paragraphs. The approach via (1.5), on the other hand,
focusses on different aspects and allows to consider pairs (B,C), where the ranks of
B and C are distinct. This case is not covered by the canonical forms obtained in this
paper or in [19] as the considered pairs of matrices always have the same rank.

The paper is organized as follows. In Section 2 we review the definitions of matri-
ces having structures with respect to indefinite inner products and provide some auxil-
iary results. In Section 3 we then derive the canonical forms for the complex case and
for the real case when G and G are both real symmetric. In Section 4 we study the case
that one of G, G is real symmetric and the other is real skew-symmetric. In Section 5
we present the canonical forms for the case that both G,G are real skew-symmetric.

Throughout the paper we use F to denote the field of real or complex matrices,
ie., F=R or F=C. R_ (R;) is the set of real negative (positive) numbers, and C_
(C.) is the open left (right) half complex plane. The n x n identity and n x n zero
matrices are denoted by I, and &), respectively. The m X n zero matrix is denoted by
Omxn and e is the jth column of the identity matrix or, equivalently, the jth standard
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basis vector of F". Moreover, we introduce

I 0 O
Ip O 0 I,
Zn,v,r‘S: 0-1,0 |, Zn,vzzn,v,0:|:g_1:|» Jn:[ ]
0 0 O v

The transpose and conjugate transpose of a matrix A are denoted by A7 and A*, re-
spectively. We use A| & ... @ Ay to denote a block diagonal matrix with diagonal blocks
Ay Ap If A=[a;j] € " and B € F* | then A® B = [a;;B] € F"**" denotes the
Kronecker product of A and B. For a real symmetric or complex Hermitian matrix A
we call (7,v,0) the Sylvester inertia index with 7, v, § being the number of positive,
negative, and zero eigenvalues of A, respectively. For a square matrix A, 0(A) denotes
the spectrum of A. We use

Al 0
R, = s In(A) =
0

DO

to denote the n x n reverse identity or the n X n upper triangular Jordan block associated
with the eigenvalue A, respectively, and

[a b 10 0

—ba 0 1

ab .

a b —ba
Alan)=ho| ] A0 0= e
01
a b
| 0 —ba]

for blocks associated with complex conjugate eigenvalues in the real Jordan form of a
real matrix.

2. Matrices structured with respect to sesquilinear forms

Our general theory will cover and generalize results for the following classes of
matrices.

DEFINITION 2.1. Let G € F™" be invertible and let 77, ¢ € F"*" be such that
(G =G and (GH ) =-GX.

1) If F=C and G is Hermitian or skew-Hermitian, then ¢ is called G-Hermitian
and X is called G-skew-Hermitian.
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2) If F =R and G is symmetric, then F¢ is called G-symmetric and ¥ is called
G -skew-symmetric.

3) If F =R and G is skew-symmetric, then ¢ is called G-Hamiltonian and %" is
called G-skew-Hamiltonian.

G-Hermitian and G-symmetric matrices are often called G-selfadjoint matrices
as they are selfadjoint with respect to the indefinite inner product induced by G. In
this paper, we prefer the notions G-Hermitian and G-symmetric in order to clearly
distinguish between the complex and the real case. Observe that transformations of the
form

(A#,G) — (P! P, P*GP), P cF"™" invertible,

preserve the structure of .7 with respectto G, i.e., if, for example, .7 is G-Hermitian,
then P~'2#P is P*GP-Hermitian as well. Clearly, each complex Hermitian or real
symmetric invertible matrix G is congruent to X ,, for some 7, v and each real skew-
symmetric invertible matrix G is congruent to J, for some n. Thus, we may always
restrict ourselves to the case that either G = X7, or G = J,,. In the latter case, we
refer to J,-Hamiltonian or J, -skew-Hamiltonian matrices simply as Hamiltonian or
skew-Hamiltonian matrices, respectively.

G-(skew-)Hermitian, G-(skew-)symmetric, and G-(skew-)Hamiltonian matrices
have been intensively studied in the literature. In particular, canonical forms for such
matrices have been derived in many places. We review these well-known canonical
forms in the following.

THEOREM 2.2. (Canonical form for G-Hermitian matrices, [8, 17, 25])
Let G € C"™" be Hermitian and invertible and let 7# € C"*" be G-Hermitian. Then
there exists an invertible matrix X € C"*" such that

X\ X =, X'GX=G.5G,,

where
'%pc:%,l@"'@%,mﬁ GC:GC71@...®GC,’1’167
%:%’,1@"'@%,m” Gr:Gnl@"'@Gr,mra

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (A ,,X i) of nonreal eigenvalues of I :

(A; 0 0 Rg,
%J: [jéj( J) , Gc,j:R2§_,- — |: §J:|7

0 /éj(ij) Re; 0

where ImA; >0 and j €N for j=1,...,mc;

2) blocks associated with real eigenvalues:
Hrj= (), Grj=sjRy;,

where o; € R, s; € {—1,1},and n; €N for j=1,...,m,.
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A has the (not necessarily pairwise distinct) nonreal eigenvalues Ay, ...,Am., A1, ...;hm,
and (not necessarily pairwise distinct) real eigenvalues oy, ...,y .

r

REMARK 2.3. Besides the eigenvalues, the signs sy,...,s;,, associated with the

r

real eigenvalues are additional invariants of G-Hermitian matrices. The collection of
these signs is called the sign characteristic of ¢, sometimes also called Krein sig-
nature, [14]. For details on the sign characteristics, we refer to [8] and the references
therein.

The real version of Theorem 2.2 is as follows:

THEOREM 2.4. (Canonical form for real G-symmetric matrices, [8, 16, 17, 26])
Let G € R™" be symmetric and invertible and let 7€ € R™" be G-symmetric. Then
there exists an invertible matrix X € R"™" such that

X 'wx=ntoiH X'GX=G.&G,,
where

=B B, Ge=Ge1®-BGCGem,,
=51 DHm, Gr=G1D - BGCGprp,,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (/1.,»,1 j) of nonreal eigenvalues of A :
’%ﬂ@j:j@(aﬁbj)? GC7j:R2§j7
where bj =ImA; >0, aj=ReAj, and §; €N for j=1,...,m;

2) blocks associated with real eigenvalues:
Hj= (@), Grj=sjRy;,

where o; € R, s; € {—1,1},and n; €N for j=1,...,m,.
S has the (not necessarily pairwise distinct) nonreal eigenvalues Ay, ..., Ap,., /1_1 , ...,/Tm
and (not necessarily pairwise distinct) real eigenvalues oy, ...,y .

r

c

The corresponding canonical form for G-skew-Hermitian matrices immediately
follows from Theorem 2.2, because a matrix % is G-skew-Hermitian if and only if
0 =1.% is G-Hermitian. In the real case, however, the trick of multiplying by the
imaginary unit z is not an option and a canonical form has to be derived separately. We
also need additional notation. We use the notation

(=1)° 0 0 (=1)°
Ey = y In=EnRy = '

0o (! it
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THEOREM 2.5. (Canonical form for G-skew-symmetric matrices, [16, 18, 26])
Let G € R™" be symmetric and invertible and let # € R"" be G-skew symmetric.
Then there exists an invertible matrix X € R™" such that

X' ax=reotm0HeH X' GX=GoGdGoGC,

where
e%/c:e%/c,l@"'@%,mc; Gc:Gc,l@"'@Gc,mca
%:%,1@"'@%,mra Gr:Gr,lEB"'EBGr,mra
%:c}gz,l@"'@fxfz,mn Gz:Gz,l@"'@Gt,m”

S = %71 @D mytm,, Gr= G119 DGrmptm,,

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples ()Lj,)fj,—/lj,—/lij) of nonreal, non purely
imaginary eigenvalues of & :

fi'(ajvbj) :| |: 0 R2§:|
Hej= g s Gej =Ry, = e
=[P ) G=Re= a6

where aj=ReA; >0, bj=ImA; >0, and §; €N for j=1,...,m.;

2) blocks associated with pairs (j, —0o.;) of real nonzero eigenvalues of K :

[ () 0 [0 Ry
%”_[ 0~ nla)] TR Ry 0

where oj >0 and n; €N for j=1,...,m;;

3) blocks associated with pairs (1Bj, —1;) of purely imaginary nonzero eigenvalues

of X 0 7B Ry; 0
Hj= [_fpj(ﬁj) 0 }’ G"":sj[ 0 Rpj]’

where B; >0, s; € {—1,1},and p; €N for j=1,....m,;
4) blocks associated with the eigenvalue A =0 of A :
Hej= I 0), Gpj=tl,

where {; € N is odd, tj € {—1,1} for j=1,...,m,, and

e /%(m . /(;(0)}, G”:[RZ Rog,},

where {; € N is even for j=m,+1,...,m,+m,.

A has the (not necessarily pairwise distinct) eigenvalues £y, ..., Ay, +A,..., :I:Imc ,
toy,..., 0, £ifi,..., 2B, and the additional eigenvalue 0, provided that m, +
m, > 0.
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If G is skew-Hermitian, then the canonical form for G-Hermitian (G -skew-Her-
mitian) matrices follows directly from Theorem 2.2, because :G is Hermitian and a
matrix 7 is G-Hermitian (G-skew-Hermitian) if and only if % is :G-Hermitian
(1G-skew-Hermitian). The real case, once again, has to be treated separately.

THEOREM 2.6. (Canonical form for G-Hamiltonian matrices, [16, 18, 26])
Let G € R¥"2" be skew-symmetric and invertible and let 7€ € R*"?" be G-Hamiltonian.
Then there exists an invertible matrix X € R¥**2" sych that

X 'HX=HeoMeAHDH, X'GX=G.5G oG oG,

where
%:%,1@'”@%,"’107 Gc:GC,l@"'@Gc,mca
,%ﬂr:%?l@---@jﬁ’m” GrZGnl@"'@Gnmw
%:%71®"'@%,m,7 Gt:Gl,l®"'@Gl,m,a

% = %,1 @ - "@%,mo-&-mw Gz = Gz,l @ - "@Gz,mo+rne7

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples ()Lj,)fj,—/lj,—/l_j) of nonreal, non purely
imaginary eigenvalues of 7 :

jg.(a,',bj) 0 ] [ 0 R2§»:|
I = j , Gei= I,
/ [ 0 —jéj(aj,bj) ’j —R2§j 0

where aj=ReA; >0, bj=ImA; >0,and §; €N for j=1,...,m.;

2) blocks associated with pairs (o, —o.;) of real, nonzero eigenvalues of € :

i = [j"’o(aj) —f:,(a,-)]  Oni = {—gm jo} |

where a; >0 and n; €N for j=1,....m;;

3) blocks associated with pairs (18;,—1;) of purely imaginary, nonzero eigenval-
ues of H:

= [—fgwj) jp}b(ﬁj)} T [—2,3,» jo] ’

where B; >0, s; € {—1,1},and p; €N for j=1,....m,;
4) blocks associated with the eigenvalue A =0 of I :

w=[750_0 o) ou=] 0 5]

where {; € N is odd for j=1,...,m,, and
%J = EQ/Q@)? GZJ = tjrgj’

where {; € N is evenand tj € {—1,1} for j=m,+1,...,m,+me.
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A has the (not necessarily pairwise distinct) eigenvalues £A..., Ay, +A4, e :l:ImC ,
tou,...,£0y,, £1P1,..., LBy, , and the additional eigenvalue 0, provided that m, +
m, > 0.

THEOREM 2.7. (Canonical form for G-skew-Hamiltonian matrices, [5, 18, 26])
Let G € R*?" pe skew-symmetric and invertible and let # € R be G-skew-
Hamiltonian. Then there exists an invertible matrix X € R sych that

X'\ #x=x04, X'GX=G.&G,

where
%:%,1@'”@%,mca Gc:Gc,l@"'@Gc,mca
%:%,1@"'@%,mra Gr:Gr,l@"'EBGr,mra

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (/1]',)[ j) of nonreal eigenvalues of J :

C,J] 0 /&,(“hbj) ’ aJ _R2§_,- 0 ’

where aj=ReA; €R, bj=ImA; >0,and ; €N for j=1,...,m.;

2) blocks associated with real eigenvalues o of X :

#o= [0 ) 00=] W)

where o € R and n; €N for j=1,...,m,.

K has the (not necessarily pairwise distinct) nonreal eigenvalues a; £1by,...,a;,, £
by, , and the (not necessarily pairwise distinct) real eigenvalues o1, .., 04y, (possibly
including zero).

In the following we need some results concerning the existence of structured
square roots of structured matrices. This question has been deeply investigated in the
literature mostly in the context of polar decompositions, and necessary and sufficient
conditions for the existence of square roots have been developed, see [1, 2, 5]. We do
not quote the results in full generality, but only consider the following special cases.

THEOREM 2.8. Let G € F"*" be Hermitian and nonsingular and let 7 € F"™"
be G-Hermitian, nonsingular, and such that o(5€) NR_ = 0. Then there exists a
square root ./ € F"" of H that satisfies 6() C C,. This square root is unique
and is a real polynomial in F (i.e., a polynomial in € whose coefficients are real).
In particular, . is G-Hermitian.
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Proof. Comparing the canonical forms of G-Hermitian and G-symmetric ma-
trices, it is easily seen that any pair (G,s#) € C"*" x C"*", where G is a nonsin-
gular Hermitian matrix and 7 is G-Hermitian, can be transformed into a real pair
(G,, #,) = (P*GP,P~'#P) by some complex nonsingular transformation matrix P €
C™ . (This corresponds to the well-known fact that a matrix % is G-Hermitian for
some Hermitian G if and only if 7 is similar to a real matrix, see [8].) Therefore,
it is sufficient to consider the real case. Then by the discussion in Chapter 6.4 in [12],
we obtain that a square root . of S with o(¥) C C; exists, is unique, and can
be expressed as a polynomial (with real coefficients) in 57 . Clearly, this polynomial
stays invariant under the transformation with the transformation matrix P in the com-
plex case. It is then straightforward to check that a real polynomial in 7 is again
G-Hermitian. O

In the case of a skew-symmetric real bilinear form, we have a similar result. The
proof follows exactly the same line as the proof of the preceding theorem.

THEOREM 2.9. Let G € R**?" pe skew-symmetric and nonsingular andlet # €
R2"%21 pe G -skew-Hamiltonian, nonsingular, and such that (¢ )NR_ = 0. Then
there exists a square root . € R¥ " of % that satisfies 6(.) C C. This square
root is unique and is a real polynomial in ¢ . In particular, . is G -skew-Hamiltonian.

One might ask whether G-Hamiltonian matrices have G-Hamiltonian or G-skew-
Hamiltonian square roots, but this is never the case because squares of such matri-
ces must always be G-skew-Hamiltonian. On the other hand, each real G-skew-
Hamiltonian matrix .#  will have a G-Hamiltonian square root [5], but this square
root cannot be a polynomial in %, because such a polynomial would be G-skew-
Hamiltonian again.

3. Canonical form for G, G Hermitian
In this section, we investigate the matrix triple (A,G,G) for the case that both

G, G are Hermitian and nonsingular. We first consider the simpler case that A is square
and nonsingular.

THEOREM 3.1. Let A € C™*" be nonsingular and let G,G € C"™" be Hermitian
and nonsingular. Then there exist nonsingular matrices X,Y € C"" such that

X*AY =A.®A,, X'GX=G.8G,, Y'Gr=G6.4G6, (3.1)

and for the G-Hermitian matrix 7 = G 'A*G 1A € C™" and for the G-Hermitian
matrix 7 = G 1AG1A* € C"™", we have that

Y\RY = Aw A, XX = A (3.2)

The diagonal blocks in these decompositions have the following forms:
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1) blocks associated with pairs ([,sz, ﬁ?) of nonreal eigenvalues of A and A :

A e e P |

0 7, ()
R |
o [4%] e [0 %)
2 [/glwl) O g |#c ) 0 ]
0 /l(ﬂl 0 jmt(“mc)
2 (u 0 * 2 U, 0 *
%:[jb(“ )/gi(ul) o7 )fgmxum)] ’

where uj € C, argu; € (0,m/2), and §; €N for j=1,...,me;
2) blocks associated with real eigenvalues o of € and H:

Ar = jrll(ﬁl) DD /nn1r(ﬁmr)7
ro= Sanl EB U @ serrImr7
ro= §1Rnl EB T @ §errImr7
= 518 /7721 (Bl) D---D smrfmr/n%nr (ﬁmr)a
A= 5181 ( 2 (B)) @ @, S, (IR, (By)"
where B; >0, s;,5; € {+1,—1}, and nj €N for j=1,....m,. Thus, oj =
B,z >0 l'ij'ij and o = —BJ»2<O lij?éfj.
Moreover, the form (3.1) is unique up to the simultaneous permutation of blocks in the
right hand side of (3.1).

D Q

Proof. The proof will be performed in two steps.
Step 1) We first show that we may assume without loss of generality that .7 either
has only one pair of conjugate complex nonreal eigenvalues (A,4) or only one real
eigenvalue o.

Indeed, in view of Theorem 2.2, there exists a nonsingular matrix ¥ € C"*" such
that

Yﬁle%ZY:e%@e%?L Y*GAY:GA]€962,
where 4, Gy € CP*P, #,G, € Clrp)x(n=p) O'(ﬁ?i) OG(%%) =0, and J4 either
has only one eigenvalue that is real or only two eigenvalues that are conjugate complex.
Using
G AN = G 'A

and the fact that G—1A is nonsingular, we find that JZ and 7 are similar. Thus, there
exists a nonsingular matrix X € C"*" such that
4 0

X\ X = A o= {O%], X*GX = {Gl G”],
2

G, G2
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~

Here, G has been partitioned conformably with .7 . By assumption, o(/4) = 6(*)
and thus 6(.%/*) N 6(75) = 0. Then using that 7 is G-Hermitian, i.e.,

7% 0] [Gi Gz . " G G| [74 0
1 =X"H"GX =X"GHX = -
[ 0 %*] [GE G2] [GTQ G2] [O%ﬂz ’

we obtain G = 0, because the Sylvester equation ,%%*Glg — Glzji% = 0 only has the
trivial solution, given that the spectra of the coefficient matrices %%* and 3% do not
intersect. Next, we will show that X*AY decomposes in the same way as ¢ e
and G. To this end, we partition

_ A App
X*AY) ! =
( ) [A21 Azz]

conformably with G and G. Then
HA =614 G = (GTIAGTY = (AT =AT

4 0 | [AnAn| _ [AnAn Ay 0 ]
0 J0 ] [An A Ay An | | 0 5
Using once again the fact that a Sylvester equation only has the trivial solution if the
spectra of the coefficient matrices do not intersect, we finally obtain that

* Ay 0
(x*Ay)~! [o Azz]

implies

and thus X*AY is block diagonal as well. Repeating this argument several times, we
see that it remains to study triples (A,G,G) for which A has the restricted spectrum
as initially stated.
Step 2) By Step 1), we may assume without loss of generality that A either has only
one pair of conjugate complex nonreal eigenvalues (A,A) or only one real eigenvalue
a. We discuss these two cases separately.

Case 1: o(H ) {A,A} for some A € C, ImA > 0.
By Theorem 2.8, .77 has a unique G -Hermitian square root S € C"™" satisfying o(S) C
C. . Then by Theorem 2.2, there exists a nonsingular matrix Y € C™" such that

7157 — | 0 (e () 0
S =Y lgy = /&1(.“) BB Em NG
L 0 g (W) L 0 e, ()]
= N* 5Y = O Ré 0 Rém
Gori=T"GF = {Ral 1} o0 [Rgm 0}7_
S | FEW) 0 JEw) 0
%F::Y_le%Y: & | PP En |,
0 72 ()] 0 Iz (),

where u=+v/A € C, argu € (0, Z).and &; €N for j=1,...,m. Here, the third iden-
tity immediately follows from ff §2. Since 7 and ff are similar and since 7
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has only a pair of conjugate complex nonreal eigenvalues, we obtain from Theorem 2.2
that the canonical forms of the pairs (#,G) and (#,G) coincide. In particular, this
implies the existence of a nonsingular matrix X € C"*" such that

e [ SE) J2 () 0
Ay =X\X = |74 @] IR
0 72(u) 0 72 (k)
- 0 R 0 R
—YrOX — 4 Sm
G =X*GX = [Rél 0'] IR [Rém 5 }

Finally, setting X = G~'X~* and ¥ = A~'GXS., we obtain
X*AY = X 'G'AA"'GXSer = Ser
X*GX =X"'G7'GGTIX " = (X*GX) ' =G =G
Y*GY = S X*GA*GA™'GX Sex
= S X*GXX '\ XSer
= 8/, Ger(He) ' Scx = GerSex (M) " Sex = G

as desired, where we have used that S.; is G--Hermitian and that S%F = . Itis now
easy to check that X ~'.#X and Y'Y have the claimed forms.

Case 2: o(#) = {a} for some o € R\ {0}.
Observe that sign(a).7# has the only positive eigenvalue |oc|. Thus, we can apply
Theorems 2.8 and 2.2 which yield the existence of a square root S € C"*" of sign(a)%@
and a nonsingular matrix ¥ € C"*” such that

Sa=Y'SY = () @-®  IyB),
_YGY = §1Rn, ©-®  SmRy,,
e =Y 'Y = sign(a) 77 (B)@---@sign(a) 7, (B),

where B = /||, nj € N and §; € {+1,—1} for j=1,...,m. Again using that JZ
gnd A are similar, we obtain from Theorem 2.2 the existence of a nonsingular matrix
X € C"" such that

Ao =R = sign(@) £ (B)&-@sign(@) F2 (B),
G =X"GX = S1Ry, D---D SmRy,,

for some sy,...,s, € {+1,—1}. Setting X = G 'X* and ¥ = A~'GXS.., we ob-
tain as in Case I that X*AY = S¢r, X*GX = G, and Y*GY = GerSer () 1Ser =
sign(ot)Ger.

We mention in passing that it is possible to link the sign characteristic (8, ...,8)
to the sign characteristic (sq,...,Su), but we refrain from doing so, because the explicit
knowledge of the parameters S, ..., S5, is irrelevant for the development of the canoni-
cal form for the triple (A,G,G). It is now straightforward to check that X ~!.#X and
Y'Y have the claimed forms. Concerning uniqueness, we note that the form (3.1)
is uniquely determined by the canonical form of J as a G-Hermitian matrix, and the
restrictions argu; € (0,7/2) and B > 0. [

In the general situation that A is non square, we have the following result.
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THEOREM 3.2. Let A € C™" and let G € C™™ and G € C™" be Hermitian
and nonsingular. Then there exist nonsingular matrices X € C™™ and Y € C"*" such
that

X'AY = A, ®A, 1 DA DA 3 DAL,
X*GX = G @G 1 G2 ®G 3B G u, 3-3)
Y*GY = G6,.86.186.,86.386.,4.

Moreover, for the G-Hermitian matrix 7 = G 'A*G~'A € C™" and for the G-
symmetric matrix 7€ = G"'AG™'A* € C"™" we have that

Y'Yy = c%%qz@%,l 69%%,2@3?2,3 @3?2,47
XX = Ay ® A D S ® Hoz ® A

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and A :
Anz, Gz, Gy, have the forms as in (3.1) and 5¢,,, ¢, have the forms as in (3.2);

1) one block corresponding to ng Jordan blocks of size 1 x 1 of S and mq Jordan
blocks of size 1 x 1 of F associated with the eigenvalue zero:

AZ,I = ﬁmoXno; GZ,l = Z?‘E(),V()a GZ,l = Zﬁ07f/07 %,1 = ﬁnoa %,l = ﬁmoa

where myg,ng, Ty, Vo, T, Vo € NU{O} and 1y + Vo = myg, g+ Vo =ng;

2) blocks corresponding to a pair of j x j Jordan blocks of A and A associated
with the eigenvalue zero:

Ay = éla/z@ ® §/4(0) ®@ é‘é/%w),

! 2 Ye

G,p = @le @ '@1R4 @D---® @IRM’
1= 1= =

R N Y2 Ye

Go,= @DR ©& ©ORy @O DRy,
=1 i=1 =1

N N ) ) 2 Ye )
Hea = ,691%2 0) & 691/4 0) & G%fzz(o),
= 1= 1=

oy = é /22(0>T@é§l/f(0)T@m@é 22007,

where v1,...,y, € NU{0}; thus, /£, and ., both have each 2y; Jordan
blocks of size j x j, where exactly y; blocks have sign +1 and y; blocks have
sign —1, for j=1,....¢;
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3) blocks corresponding to a j x j Jordan block of # and a (j+1)x (j+1)
Jordan block of 7 associated with the eigenvalue zero:

moT m [,
I
@ i=1 L0 ]5; i1 10350
mp (l) my .
GZ’3 = @Sl R; D 69152 R3 b
~ mp A(i) myp .
Gz,3 = _@1S1 R @ @SQ D
2 m i) Al l ,\l
s = 691s§>s5)jl(0) & _ealsz ) 7(0) @
= 1=
M G) A M2 (i) A
Moy = gsg)sg)fz(O)TGB @lsg)sy/ﬂoy

where my,...,mg—1 € NU{0}, andfor j=1,...£—

my_q

i EBS@ 1% 1f/ 1

S D @ Sgl_lfgl_lf/f(o)Ta

1, we have that sg-i) =1and

6{+l —1} if j is odd, ands e {+1, —l} ands ®=1 if j is even; thus

%”3 has m; Jordan blocks of size j x j with signs s lf] is odd and signs 8;

lf ] is even, and €3 has m i Jordan blocks of size
lf] is odd and signs s lf_] isevenfori=1,.

(@

(]+1) (j+ 1) with signs
mjand j=1,...,0—1;

4) blocks corresponding to a (j+ 1) x (j+ 1) Jordan blocks of # and a j x j
Jordan block of 7€ associated with the eigenvalue zero:

ny ny

A = @1[011]1x2 ® ,@1[012]2x3 -
= =
ni . ny (l)

G4 = EB ) eals2 R, &--
i=1 =

A np ny .

G4 = 'Ry e @R e

4

=1
ny R .
&5 A0 © G5 A0 -
i) ,\L 2 i) Al
His =@ 11077 @ ) r(0)"

where ni,...,ng—1 € NU{0}, andforjzl b=

ng—1

@ l@1 01, l](e 1)xt

ng—1

D @S[ lRfla

"[1

@ @ s Ry,

ny—
©® Galskilféilfé(o%
i=

OO T
® @Gj Sp218021 Ae-1(0)7

1, we have that sg-i) =1and

) e {+1,—1} if j is even, ands e {+1, —l} ands =1 ifj is odd; thus,
%”4 has nj Jordan blocks of size (]—I— 1) x (j+1) with signs s lf] is odd and

signs s lf] is even, and J 4 has nj Jordan blocks of size jx j with signs 8;

(@

if j zsoddandszgnss lf] isevenfori=1,....mjand j=1,...,0—1;
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For the eigenvalue zero, the matrices S and H have 2yj+mj+n; | respectively
2y; +mj_1 +nj Jordan blocks of size jx j for j=1,...,L, where my =ny =0 and
where { is the maximum of the index of A and the index of F. (Here, index refers to
the maximal size of a Jordan block associated with the eigenvalue zero.)

Furthermore, the form (3.3) is unique up to simultaneous block permutation of the
blocks in the block diagonal of the right hand side of (3.3).

Proof. Due to its very technical nature, the proof is omitted here and presented in
the Appendix. 0

Since the canonical form of Theorem 3.2 is quite complicated, we present some
examples to illustrate this form.

EXAMPLE 3.3. Let A, G, G be given by

A= G= G=
[0 1[0/00[000T [0 1[00] 0 [00T (1)(1)8888 8 8
00/0/00[000 10/00/01]00 0o0l=ilool0o o o
00[1]00/000 0o0o1j0]oo0 0oolofo1lo o o
00[0/00/000 |, 00/10{0]00{, oololiolo o o
oololo1/oo0 0 0[0 0[+1]00 oolofoof0 0 —1
oofoloolo10 oojoo[o]o1 oololoolo -1 0
LO00J00[00 L] LO0JOOFOILOL 160l gloo|-1 0 0 |

Then the canonical form consists of one block of type 2) with j = 2, one block of

type 3) with j =1 and sign sAgl) = —1, and two blocks of type 4), one with j =1 and

sign sgl) = +1 and one with j =2 and sign sAgl) = —1. Observe that the signs only
occur in the blocks of G or G, respectively, that have odd size. The signs attached
to the corresponding even sized blocks are always +1. Thus, for example, the signs
corresponding to blocks of type 4) will always be found in G if j is odd and they can

be read off G if j is even.

EXAMPLE 3.4. It is important to note that rectangular matrices with a total num-
ber of zero rows or columns are allowed in the canonical form. For example consider
the two non-equivalent triples

0
1|
() _

The first example is just one block of type 4) with sign s, * = —1. Indeed, forming the
products

A=[01],G=[-1],G

O =

and A, =[01],G,=[-1], G

S = = O
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0—

4 =GAG A= [0 0

. =66 i = o],

as predicted, JA has only one Jordan block of size 2 associated with the eigenvalue

A =0 and the sign s = —1, while 7] has one Jordan block of size 1 associated with
A =0 and the sign s = —1. The situation is different in the second case. Here, we
obtain

00

5 =G, A5G, A = {0 .

},%=@%@%=UL

ie., 3% has two Jordan blocks of size 1, one associated with A = 0 and sign s; = 1
and a second one associated with A = 1 and sign s, = —1, while .74 has one Jordan
block of size 1 associated with A = 1 and sign s = —1. Here, the triple (AQ,Gz,GQ)
is in canonical form consisting of one block of type 1) and size 0 x 1 and of one block
of type 0):

A 110
A =[0[1], G =[-1], G = Hj}
We have the following real versions of Theorem 3.1 and Theorem 3.2.

THEOREM 3.5. Let A € R™" be nonsingular and let G,G € R"™" be symmetric
and nonsingular. Then there exist nonsingular matrices X,Y € R"™" such that

XTAy =A.®4A,, X'GX=G.3G,, Y'6y =G6.6,. (3.4)

Moreover, for the G-symmetric matrix H =G TATG A and for the G-symmetric
matrix A = G 'AG'AT | we have that

Y VY =, XT'\HX = HeA (3.5)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (,ujz», ,LT?) of nonreal eigenvalues of ' and H :

Ac = j@l(al’bl)@"'@/émr(amf’me)’
Ge = Ry &8 Ry,
éc - R2§1 EB o EB Rzémz‘ ’

A = jgl (a1,b1) ®---@ /gmc(ammbmc)v
He = Ji(ar,b)' @@ 72 (am,bn)T,

where aj,b; >0, uj=aj+1bj, and §; €N for j=1,... ,mc;
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2) blocks associated with real eigenvalues o of J and H:

Ar /nl(ﬁl) DD /nn1r(ﬁmr)7

Gl’ = Sanl @"'@ Sernmr,

Gr = §1Rnl SSRRRRS §ernmr7

HG = Slflfr%(ﬁl) S D Smrfm,fr%mr(ﬁmr)a
N T N T

Hy = 151 (Fq, (B)) @ @, 5w, (775, (Bny))"

where B; >0, s;,8; € {+1,—1}, and nj €N for j=1,....m,. Thus, oj =
B%>0ifsj:§j andOﬂjZ—B%<Olij75§j.

Furthermore, the form (3.4) is unique up to the simultaneous permutation of blocks in
the right hand side of (3.4).

Proof. The proof follows exactly the same lines as the proof of Theorem 3.1. (The
key point here is that the square roots that are constructed analogously to the proof of
Theorem 3.1 are real, see Theorem 2.8.) 0O

THEOREM 3.6. Let A € R™" and let G € R™™ and G € R™" be symmetric
and nonsingular. Then there exist nonsingular matrices X € R™ ™ and Y € R"*" such
that

XTAY = Ay @A, 1 DALDA DA,
XTGX = an S2) Gz,l 2] Gz,2 > Gz,3 2] Gz,47 (3-6)
YTGY = an S éz,l S3) GZ,Z S5 GZ,3 S5 éz,4~

Moreover, for the G-symmetric matrix H =G ATG'A € C™" and for the G-
symmetric matrix 7€ = G-'AG™'AT € C"™™ we have that

Y LRY = Ao g ® Hon @ A5 D A,
XX = Ay ® A © Hop ® Hoy D Ao

Here, the blocks Az, Gy, (A;nz,%%,z, and Ft,; have the forms as in (3.4) and (3.5), while
Azkr Gk, éz7k, fék, and F, . have the forms as in Theorem 3.2 for k =1,...,4.

Moreover, the form (3.6) is unique up to the simultaneous permutation of blocks in
the right hand side of (3.6).

Proof. The proof follows exactly the same lines as the proof of Theorem 3.2. [

In the particular case that one of the Hermitian matrices is positive definite (say
G), we obtain the following special case of Theorem 3.2 and Theorem 3.6 that can be
interpreted as a generalization of both the Schur form for a Hermitian matrix as well as
a generalization of the standard singular value decomposition.
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COROLLARY 3.7. Let A € F™" let G € F™™ be Hermitian and positive def-
inite, and let G € F"*" be Hermitian and nonsingular. Then there exist nonsingular
matrices X € ™™ and Y € F"" such that

B 0
X*AY = B Opgng ® [ O, Iy |
L0 B,
1 0
XGX = | o | ®ly® oy = I,
0 1
6
Y*GY = @Zﬁ07\70 o) [[Sl 161] ,
L 0 Sm,
where ng = fig+ Vo and Bj >0, §; € {—1,1} for j=1,...,m,. Moreover,
518 0 ]
Yy '67'A*G Ay = D Oy ® [8161]7
[ 0 SnB,
5187 0 ]
x ' 'AGa*x = D Omosny -
[ 0SB,

Proof. Because G is positive definite, due to the inertia index relation, in the
canonical form of Theorem 3.2, G., as well as AC,GC must be void. Furthermore,
M =...=Nm =1and sy =...=s,, = 1. Concerning the blocks A_;, G, Gak, the
blocks for k = 1 may exist, but G, has to be the identity matrix I, ; the blocks for
k =2 and k =3 must be void, and the blocks for k =4 may only exist when j=1.In
this case G4 has to be I, and applying an appropriate permutation, we can achieve
the forms

A 0 1
AZ,4 - [ﬁnl Inl ] ) GZ.,4 - Inla GZ.,4 - |:In 61 :| .
1

The proof for the real case is analogous. 0O

REMARK 3.8. It should be noted that when G = I,,;, then X is unitary and Corol-
lary 3.7 gives the Schur form of the Hermitian matrix AG~'A*. Also, it simultaneously
displays the Jordan form of G~'A*A. One should observe here the difference in the
eigenstructures of AG~!A* and G~'A*A corresponding to the eigenvalue A = 0. (In-
deed, it is well known that two matrix products AB and BA have identical nonzero
eigenvalues including identical algebraic, geometric, and partial multiplicities, but the
Jordan structure for the eigenvalue A = 0 may be different for both matrices, see [6].)
If G=1, and G = I,, then also Y is unitary and Corollary 3.7 becomes the standard
singular value decomposition.
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4. Canonical form for G symmetric and G skew-symmetric

In this section we determine the canonical form for the case that G is symmetric
and G is skew-symmetric. We only consider the real case, because the corresponding
complex case (i.e., G being Hermitian and G being skew-Hermitian) can be easily de-
rived from the canonical form in Theorem 3.2 by simply multiplying G with —1. For
the real case, the situation is different and the canonical form becomes more compli-
cated. Again, we start with the result for the case that A is square and nonsingular.

THEOREM 4.1. Let A € R?*?" be nonsingular, let G € R*™*?" be symmetric and
nonsingular, and let G € R¥™?" be skew-symmetric and nonsingular. Then there exist
nonsingular matrices X,Y € R¥*?" such that

XTAY =A. @A, @A, X'GX=G.6G, &G, Y GYy=6.6G6G,. “.1)

Moreover, for the G-Hamiltonian matrix H =G 'ATG'A and for the G-skew-
symmetric matrix 7€ = G-'AG™'AT, we have that

Y\R#Y = s e H, XTI\AHX =0 A, (4.2)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with quadruples ((a;41b;)?,—(a;41b;)?) of nonreal and non
purely imaginary eigenvalues of A and H :

A, = |:j§1(al,bl) 0 } o [j;mt(amc,bmc) 0 ]’

0 /él (a1,b1) 0 /émr (ame»bm,)
G. = [Ril R(z)él] o {Rz(;mc Rzé'"‘} ,
G = [—1(3)251 Ré&] v [_Rgém R%W} ’
2 - 2
- [‘fé(()ahln}él (a?,bl)z} DB [ e (gmmbmc}ém (a,Sc,meY] 7
2 T 2 T
S0 = [f&l (61171912]51 (gl’bﬁz] @...@{/ém (a(;nc,bm{/ém (fmc’bmc)z} ’

where a; >bj >0 and & €N for j=1,...,m.;
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2) blocks associated with pairs of real eigenvalues (Otjz, Oclz») of A and H :

A, = {/m(al) 0 ]@---@ [/nmr(amr) 0 ]7

0 sulon) 0 P (o)
o [oh] e (25
G, = [_2,m R(ﬂ TRy [—Ignm, R’(’)'"'],
A= [ e e [T ]
A= P ] o ] T’

where a; >0 and n; €N for j=1,....m;;

3) blocks associated with pairs of purely imaginary eigenvalues (zﬁf, —lB,»z) of A

and A :
A = {fplo(ﬁojp?(ﬁl)} B {/pmbwm,{f pm,O(B,]’
ar affd] we 58]
G, = [2legl] ® @ Sm’[—zgpmlRf)m'}’
= [ NS /méﬁl)? @"'@[—/pm(,)wm,)f] pm’éﬁ’"’T’
H= |, f%(ﬁoz] & @ szml?ﬁ’nl)z—/pn:)(ﬁm,ﬁ

where B; >0, s; € {+1,—1},and p; €N for j=1,...,m

Furthermore, the form (4.1) is unique up to the simultaneous permutation of blocks in
the right hand side of (4.1).

Proof. Analogous to the proof of Theorem 3.1, it can be shown that without loss
of generality we may assume that (%) = {A,A,—A,—A}, where A € C\ {0}. We
then distinguish the three different cases A2 > 0, 22 < 0,and A% ¢ R. The proof then
proceeds similar to the proof of Theorem 3.1, but instead of constructing a square root
of A, a square root of a related G-skew-Hamiltonian matrix S will be considered.
The proof for the cases A2 > 0 and A? € R follows exactly the same lines as the proof
of Theorem 5.1 in [19] and will not be reproduced here. The proof for the remaining
case differs slightly and will therefore be presented here in full detail.
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Thus, assume without loss of generality that o(.#) = {1A,—1A}, where A > 0.
By Theorem 2.6, there exists a nonsingular matrix W € R?**2" such that

wstw = [0 TP ee 2 ]

Hp(A) 0 Hou(4)
T A _ S 0 RP e 0 RPm
WIGW = § [_Rm 01] S D Sm {—Rpm o |

where p; € N and §; € {+1,—1} for j=1,...,m. Next, we define the matrix S to be
such that

wrsw =[50 ]e e 5 sl

Then S is G-skew-Hamiltonian and satisfies () C R, . Thus, applying Theorem 2.9,
we obtain that S has unique square root S € C"*" that satisfies 6(S) C R and thatis a
polynomial in S. Consequently, with S also its square root S is G-skew-Hamiltonian.
Let 8 = \/A. Then Theorem 2.7 implies the existence of a nonsingular matrix Y €
R2%2" such that

SCF::?IS?:V%(ﬁ) O(B)]@_..@[/pmw) 0 }

i 0 Zon(B)
ST AT 0 R 0 R
T _ P1 Pm
o L] e LY

(Note that the Jordan structure of S follows from the fact that S is a polynomial in S.)
Moreover, using G~ 'A# = G~ A and the fact that G~'A is nonsingular, we find
that 7 and S are similar. Thus, by Theorem 2.5, we find that there is a nonsingular
matrix )?1 such that

f;%a:[ 0 fpl(l)}@...@[_ 0 Fp,(2)

_jpl(l) 0 /pm(),) 0 ’
ST A~ ~ |Rp, O ~ |R 0
XlTGXl: Sl[ 6)1 RP1:| G Sm[ 8’" RP }7

where 51,...,5, € {+1,—1}. On the other hand, since 2 = A, the matrix

oy = [/5?(3)—15@} ot [ﬁm(m—f,gm(ﬁq

is similar to fl_ Lrx 1. It is also obvious that J7; is XIT GX 1 -skew symmetric. Again,

by Theorem 2.5 there exists a nonsingular matrix X> such that with setting X =XX>
we have that

S = RVHF = [ﬁ?(m—fgl (ﬁ)}@,.@{j;(ﬁ)—fgm(ﬁ)} |

ST R 0 R 0
Gy :=XTGX = 51{ b1 ] DD sm{ Prm ],
“ 0 RPI 0 Rpm
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for some si,...,sm € {+1,—1}. (It is actually possible to show that 5; = s; for j =
1,...,m, but we refrain from doing so as it is not necessary for the proof.) Observe that
Scr 18 Ger-symmetric and satisfies

~ 0 1, 0 1
Ser(H2:)7LS, :[ p'}@---@[ ”]
CF( (F) CF _Ipl 0 _Ipm 0

Using this identity and setting X = G X TandY=A"1GX Scr, We obtain
XTAY = X 'G 'AA'GXSe = S,
XT6X =X 167'667'X T = (XTGX) ' = (Gr) ™! = G,
YTGY = STXTGATGA™'GXSer
= STXTGXX '\~ X S,
= SLGer () ' Sex = GeeSex( H) ™ S

— 0 RPI 0 Rpm
= 51 |:—Rp1 0 :|@ D S |:_Rpm 0 :|

It is now straightforward to check that Y1 Y and X ~1#X have the claimed forms.
Concerning uniqueness, we note that the form (4.1) is already uniquely determined
by the Jordan structure, the sign characteristic of .7, and by the restrictions on the
parameters. [

For the general non square case we have the following result.

THEOREM 4.2. Let A € R™?" let G € R™™ be symmetric nonsingular, and let
G € R pe skew-symmetric and nonsingular. Then there exist nonsingular matrices
X eR™™ and Y € R*™" such that

XTAY = Anz EBAz,l @Az,2 @Az,3 69Az,4 ®Az,5 ®Az,6»
X'GX = G ®G,1 ®G 2D G380 G,4® G, 5D G, (4.3)
YTGY = an S2) Gz.,l S éz,2 S2) Gz.,3 S éz,4 S éz,i S2) Gz.,6~

Moreover, for the G-Hamiltonian matrix 7 = G'ATG™'A € R**?" and for the G-
skew-symmetric matrix 7 = G 'AGT'AT € R™™ we have that

Y'Y = S @ Aoy ® Aoy @ A3 @ Aoy ® Hs ® Ao,
XT\HX = A ® ) D Ao D A3 D s ® Hs® Hig.
The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of S and A :
Az, Gz, Gy, have the forms as in (4.1) and F¢,;, 5¢;,; have the forms as in (4.2);

1) one block corresponding to 2nqy Jordan blocks of size 1 x 1 of A and mg Jordan
blocks of size 1 x 1 of F associated with the eigenvalue zero:

Az,l = ﬁm0x2n07 Gz,l = 27170,V07 Gz,l :Jn07 %,1 = ﬁ2n07 '%,l = ﬁmoa

where mg,ng, o, Vo € NU{0} and mg = mo+ vo;
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2) blocks corresponding to a pair of j x j Jordan blocks of € and S associated
with the eigenvalue zero:

Y2041

ha= & A0 A0 e @ Jun0

N 2 Y2041
Go,= @GR o DRy &P @D Rari2,
i=1 i=1 i=1
A J! 01 21 0R, Y2041 0 Ry
Gz,z—lﬁel[_lo}@ @[_Rzo} ea @ |
~ 1 2 2 Y2041 )
Hp= D ® @(—22,2)/4 O)@e---a EB (—220412041) ip42(0),
N 2 By T Y21+1 T
Ho= @ D 69123,1/% 0" ®---e EB Zes2.0 Lir2(0)7,
= 1=

where v1,...,y, € NU{0}; thus, £, and ., both have each 2y; Jordan
blocks of size jx jfor j=1,....,20+1;

moreover, if j is odd, then exactly y; Jordan blocks of F, > of size j x j have
sign s = +1 and exactly y; blocks have sign s = —1 (even-sized Jordan blocks
associated with zero of G-skew-symmetric matrices do not have signs), and if
J is even, then exactly y; Jordan blocks of %%.2 of size j X j have sign s = +1
and exactly y; blocks have sign s = —1 (odd-sized Jordan blocks associated with
zero of G-Hamiltonian matrices do not have signs);

3) blocks corresponding to a 2j x 2j Jordan block of%Z anda 2j+1)x (2j+1)
Jordan block of 7 associated with the eigenvalue zero:

my [ my [

Ay = eam ® @ ea[(ﬂ :
i=1 3x2 i=1 (2/+1)><2/,'
nyp (2) mpy (

G.3 = _EBSi R3 DD EBls, "Raei1

. m [ (0 R, me [ O R,

Gos = J%J @ @[],

N my mpy 2[
Ay = B(~sP511) £ (0) & & @ (=" #2(0),

i=1

Az = @55, A0 &0 dsPs 0)”
3= D521 750) © @GBIS,- 110 720+1(0)",

where my,my,...,my € NU{0}; thus, A, 3 has myj Jordan blocks of size 2 j x
2j with signs s( ) and S, 3 has my; Jordan blocks of size (2j+1) x (2j+1)
w1thszgnss forz—l myjand j=1,....¢;
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4) blocks corresponding to two (2j— 1) X
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(2j — 1) Jordan blocks of H# and two

2j x 2j Jordan blocks of 7 associated with the eigenvalue zero:

0 0 Iy
00 M-t 0 0
o 91 1,0 G @ ,iel by 10 ’
00 4x2 0 0 40x(40-2)
my myp_
Gy = G9IR4 ®-® EB Ry,
N m [0 Ry myp_ 0 Ror_y
G P Y
72,4 ﬁ‘}l[ Rlo] [SSRERENY) E}l “Ryy O ]
~ mp fl( ) ] myp—1 _/26—1(0) 0 ]
I 4 = B---P )
o lejl[ 0 _7i(0) i=1 0 Z21(0
T , T
7= #2(0) 0 ] A [—/25(0) 0 ]
O, = B---P )
o liBl [ 0 _7(0) liel 0 _72(0)

where my,m3,...,my—1 € NU{0}; thus, 3?2,4 has 2my;_ Jordan blocks of the
size (2j—1)x (2j—1) and 4 has 2my;_y Jordan blocks of size 2j x 2j
for j=1,...,4; (no sign-characteristic is involved, because neither even-sized
Jordan blocks associated with zero of G -skew-symmetric matrices nor odd-sized
Jordan blocks associated with zero of G-Hamiltonian matrices have signs);

5) blocks corresponding to a 2j x 2j Jordan block 0f<%2 anda 2j—1)x (2j—1)

Jordan block of 7 associated with the eigenvalue zero:

n ny_|
As = Qj[o 11]1X2 DD El? [0125—1](2(,71)><2€’
ny (1) na0—1 ( )
G5 = i Ri e @ D 5w R
~ m[oOR w0 R
Gz.,S = e _RIO] N EBI |:_R€O]
. o) et 2@ 1)
Ay = B2 A0 80 @ (=572 £ul0),
P
_ A r e (- 0)7
Hs = _@lsi 210,0)" & & @ PV paa (0),
i

;-1 € NU{0}; thus, %%5 has nyj_1 Jordan blocks of size
2j X 2j with signs sgzrl), and s has naj_y Jordan blocks of size (2j—1) x
(2j — 1) with signs sl@]fl) fori=1,...

where ny,ns...

spjo1and j=1,....¢;
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6) blocks corresponding to two (2j+ 1) x (2j+ 1) Jordan blocks of # and two
2j x 2j Jordan blocks of 7 associated with the eigenvalue zero:

. ml000kL w00 0y
A6 = zSBl [0 L0 O:|4><6 G [0 L0 0 :|4€><(4€+2)7
n nyy
G.o = DR, & @ DRy,
1= 1=
\ m 0 R [ 0 Ry
G.o = ,iel [—R3 03] N EzB[ R2(+1 2([)“] 7
2 21=70) 0 ] nat [ fzfﬂ 0 }
He = 7
o6 1@1[ 0 _7(0) © 6:91 /2/:+1(0)
n =0 o 1 " [ I2(0) 0 ]
e = ,
6 ,@1[ 0 fz(o)} Gl EP 0 _#(0)

where ny,ng,ng,...,ny € NU{0}; thus, ¢ has 2ny; Jordan blocks of size
(2j+1)x(2j+1) and s has 2ny; Jordan blocks of size 2j x 2j for j =

.,4; (no sign-characteristic is involved, because neither even-sized Jordan
blocks associated with zero of G -skew-symmetric matrices nor odd-sized Jordan
blocks associated with zero of G-Hamiltonian matrices have signs);

For the eigenvalue zero, the matrices A and A have 2¥2j+maj+naj_1, respectively
2Y2j +2moj_1 + 2ny; Jordan blocks of size 2j x 2j for j=1,....4, and 2y»j1 +
2myjy +2n2], respectively 2y 1 +myj+naj1 Jordan blocks of size (2j+1) % (2j+

1) for j= ., L. Here mypy1 =nypy1 =0, where 20+ 1 is the smallest odd number
that is larger or equal to the maximum of the index of ' and the index of 7. (Here,
index refers to the maximal size of a Jordan block associated with the eigenvalue zero.)

Furthermore, the form (4.3) is unique up to the simultaneous permutation of blocks
in the right hand side of (4.3).

Proof. The proof can be found in the Appendix. [
For the special case that G is positive definite, the condensed form simplifies
considerably.

COROLLARY 4.3. Let A € R™?" let G € R™ ™ be symmetric and positive defi-
nite, and let G € R*?" be skew-symmetric and nonsingular. Then there exist nonsin-
gular matrices X € R™" and Y € R*?" such that

0 O
XTAy = [%1 BJ &...0 [ﬁo' B } ® Omgxany @ [ Oy Iny |+

XTGX =h®.. 0L® Ly ®L, =1y,
YIGY =1 @...0d1 ©Jyy Sy,

with B; >0 for j=1,...,m
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Moreover,

A g T 1 g | O =B 0 —By, 0—1I,
Y G 'A'G AY—|: 0 B...6 3,’ 0 @ﬁzn()@ 00 |
0 B,
—B2 0

my

X 'G7'AGT'ATX = = ] D Omotny -

Proof. Because G is positive definite, due to the inertia index relation, in the
canonical form of Theorem 4.2, G., G,, as well as AC,GC,A,,G, must be void. Fur-
thermore, p; = ... = pp, =1 and sy = ... = s, = 1. Concerning the blocks A_,
Gk, (A}Z’k, the blocks for k = 1 may exist, but G, has to be the identity matrix I, ;
the blocks for k =2,3,4,6 must be void, and the blocks for £ =5 may only exist when
Jj = 1. Inthis case G5 has to be I,, and applying an appropriate permutation, we can
achieve the forms A, 4 = [ﬁnl I, ] , Gza=1, ,and CA}Z,4 =Jy. 0O

The result of Corollary 4.3 first appeared in [27], where an independent proof is
given.

5. Canonical form for skew-symmetric G and G

When G € "™ and G € F"™" are both skew-Hermitian, then in the complex case
the canonical form for the triple (A,G,G), where A € F”*" can easily be derived from
the Hermitian case in Section 3, by simply considering the related triple (A,:G,iG).
The real case, however, is different.

THEOREM 5.1. Let A € R¥*?" pe nonsingular and let G,G € R¥"*" pe skew-
symmetric and nonsingular. Then there exist nonsingular matrices X,Y € R¥*" such
that

XTAy =A.®4A,, X'GX=G.3G,, Y'éy =G6.0G,. (5.1)

Moreover, for the G -skew-Hamiltonian matrix H =G61ATG A and for the G -skew-
Hamiltonian matrix 7 = G~ 'AG™'AT, we have that

Y'Y=, X \HX=HH. (5.2)
The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (uf, ,lilz) of nonreal eigenvalues of A and A :

T S R e e
¢ 0 /él(alabl) 0 fimc(ammbmf) ’
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0 R 0 R
G(, — { 2§I:| @@ |: 2énlr:|’
—Rye, O —Ro,. O
A . 0 —Rzél O —Rzémc
G = [Rza 0 } e [R2ém o ]

0 fé(al,bl)

j@l al,bl 0
0 Z2(ab)

where a; €R, b; >0, W, =a;+1b;, and & €N fori=1,...,m,

0 /5 (@my s bm,)

5 _ l/& (a1,b)) 0 ]
! [ F2 (am.bn) 0 1 !
) )

He = l RS

2) blocks associated with real eigenvalues oj = 6 jﬁlz of A and H :

_ 0 Rm 0 anr
o= &, ] .

A 0—Ry, 0 an,
Gr - |:Rm :l m, |:anr :|

"= [fnb(ﬁliﬁm()(ﬁo] s V""’bwmiﬁm,oﬁm,)} |

R M NSO

where B; >0, j € {+1,—1},and n; €N for j=1,...,m,. (Here, §; is not a
sign in the sense of “sign characteristic”, but only depends on oj = & jﬁlz being
either positive or negative.)

Furthermore, the form (5.1) is unique up to the simultaneous permutation of blocks in
the right hand side of (5.1).

Proof Once again, we can restrict ourselves to the case that either G(%Z) =
{u?, i} for some u € C\R or 6(s#) = {a}, where o € R\ {0}. The remain-
der of the proof then follows exactly the same lines as the proof of Theorem 3.1 by
constructing a skew- Hamiltonian square root S of # that is a polynomial in JZ in
the cases () = {u2, i1’} or 0'(%”) {a} and a > 0, or by constructing a skew-
Hamiltonian square root S of —.# otherwise. [

‘We mention that the choice of the transformation matrices X,Y in Theorem 5.1
so that XTG.X = —YTG.Y rather than X7 G.X = YT G.Y is just a matter of taste and
avoids the occurrence of distracting minus signs in the forms for J#. and j‘?i

For the general non square case we have the following result.
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THEOREM 5.2. Letr A € R¥™<20 gnd ler G € R¥"2m G € R pe skew-
symmetric and nonsingular. Then there exists nonsingular matrices X € R*™" and
Y € R 2" sych that

XTAY = A, ©A 1 DAL DA 3 DA,
XTGX = an®Gz,l @Gz,2®Gz,3®Gz,47 (5-3)
YTGY = an S2) éz,l S2) GZ,Z S éz,B S éz,4~

Moreover, for the G-skew-Hamiltonian matrix H =G ATG 1A e R qnd for
the G-skew-Hamiltonian matrix 7 = G 'AG™'AT € R¥™¥ we have that

YL#Y = S A ® Hop @ 3D A,
XX = 0,0 A0 © Hp ® Hs® Aoy

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H° and H:
Az, Gz, Gy have the forms as in (5.1) and 56, 7¢,; have the forms as in (5.2);

1) one block corresponding to 2ng Jordan blocks of size 1 x 1 of 2 and 2my
Jordan blocks of size 1 x 1 of F associated with the eigenvalue zero:

AZ.,I = 02m0><2n0a GZ,l :Jm07 GZ,l :Jnoa %,1 = O2n07 %,1 = 02m0;

2) blocks corresponding to a pair of j x j Jordan blocks of A and A associated
with the eigenvalue zero:

ho= 50 0 &0 oo &0,

Gzzzéla[_o Rl]@ é[ORz} D é[OR€]7

P L SRV i1 [~R20 i=1 [~R0
N[ OR n[0R, vl oRy
GZ72 _tgal |:_R10:|69 ii‘al|:_R20:| Gl téal |:_R/:0 7

7 123 . Yo .
Ha= B0 & QL) & Ol /3(0),
i= i= =
" 12 2 T e 2 T
Ha= B0 @QLAO) &0 L 50,

where vi,...,v, € NU{0}, and 3; = (—=I;_) @ I, ® (—1;) and Iz; = (—I;) ®
L& (—1j—1) for j=2,...,0; thus, H;> and F, both have each 2y; Jordan
blocks of size jx jfor j=1,...,¢;

3) blocks corresponding to two j X j Jordan blocks of%Z andtwo (j+1)x (j+1)
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Jordan blocks of 7 associated with the eigenvalue zero:

0 0 I
Ay = gél 2 8 @"'@é 121 8 ’
. :000 o mfl 00 2x(at-)
a3 = =1 —R2 02} G i=1 [_RZ O[ ’
GZ"3 - in:l _—(;?1 If)l} Gl r:lééll [_Igl R%_l} ,
Ch Eél {/6(0) /?(0)}@“.@%1 [/[61(0) /:1(0)] ’
m T N !
N TN

where my,...,my_| € NU{0}; thus, 73 has 2m; Jordan blocks of size j x j
and €3 has 2m; Jordan blocks of size (j+1)x (j+1) for j=1,....0—1;

4) blocks corresponding to two (j+ 1) x (j+ 1) Jordan blocks of # andtwo j x j
Jordan blocks of 7 associated with the eigenvalue zero:

At = iazlal [8101 8101:|2><4 EB.“@z‘éjll [81/301 81601}(25—2)“5,
et = :1 [—(;?1 If)l] G ':éj: [_Ig—l R[O_l] ’
dom B0 ee B[R]

Hes = :1{ zo(o) /f(o)] Gl i'i Vfo(o) /Z)(O)]’
Hes = é {/B(O) /?(O)Y@m@ Téjll {/[61(0) /k()l(o)r

where ny,...,ng_ € NU{0}; thus, 3?2,4 has 2n; Jordan blocks of size (j+1) x
(j+1) and F€ 4 has 2n; Jordan blocks of size jx j for j=1,....0—1;

Then for the eigenvalue zero, the matrices A and H have 2yj+2mj+2n;j_1 respec-
tively 2y;+2mj_1 +2n; Jordan blocks of size j x j for j=1,...,£. Here { is the
maximum of the indices of ¢ and J. (Here index refers to the maximal size of a
Jordan block associated with the eigenvalue zero.)

Furthermore, the form (5.3) is unique up to simultaneous block permutation of the
blocks in the diagonal blocks of the right hand side of (5.3).

Proof. The proof is presented in the Appendix. O
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6. Conclusion

We have presented canonical forms for matrix triples (A,G,G), where G,G are
nonsingular and either complex and Hermitian or skew Hermitian or real and sym-
metric or skew symmetric. These results generalize the canonical forms for matrices
that are Hermitian, skew Hermitian or real symmetric, skew symmetric with respect to
indefinite scalar products as they are studied in detail in [7, 8, 16, 17, 18].

7. Appendix: Proofs of the main theorems

7.1. Preliminary factorizations

In the following sections, we aim to compute the canonical forms via some type
of staircase algorithm. A key factorization needed in the steps of this algorithm is
presented in the following lemma.

PROPOSITION 7.1. Let B€ F™" m > n, and let 7,v > 0 be integers such that
T+ v = m. Suppose that rank B = n and that the inertia index of the Hermitian matrix
B*X; yB is (1o, V0,80). Then my+ vo+ 8o = n and there exists an invertible matrix
X € F"™™ such that

0| m+wn 150
X*B=|0] & s X2 X =20 @ Zn0.v0 ,
BO n 150

where By € F"*" is nonsingular, 1y =T —m9— 8 = 0, and vi = v — vy — & > 0.

Proof. By assumption, there exists a nonsingular matrix ¥ € F"*" such that
Y*B* 27 vBY =g v 5

Let By € F"™*™ be the matrix formed by the leading 7y columns of BY and partition
it as

B, = |:B11:| , B e ann07 By € FV*™o,
By
Then from B2z yBi = I, we have that
BiBi1 — B3 By = In,. (7.1)

Since B}, B11 and Bj By, are positive semidefinite, it follows that rank By = rank (I, +
B%,By1) = mp and therefore m > my by Sylvester’s Law of Inertia. Hence, there exists
a unitary matrix U; € F™*" such that

i T,
U1311=[01},
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where Ty € F0*™ s invertible. Since B} Bi1 = T,T;, we obtain that (7.1) is equivalent
to
Iy — (BT ) By T ) =1, 7T,

Then the matrix Iy — (B2 7, ') (B21 7T, ')* is positive definite, because it easily follows
from [6] that it has the same eigenvalues as I, — (Bngl_l)*(Bngl_l) with a possible
exception for the eigenvalue A = 1. Thus, we have the factorization

I = (BuTy ) (Bu Ty ) =TTy, (7.2)
for some invertible T; € FV*V . Let

Xlz[UIO

onll 0 B 0

} 0 —(BuTy)'T,"
“By 0 T

With (7.1) and (7.2) it is easily verified that

17'50 ”0
Xl*Bl = 0 T—Tp, Xf‘Z,LVXl:Z,w.
0]v

Then, since X7 , = I, the last relation implies that
Xlzn,vxl* = Xlzmvzmvzmvxl* = Xlzn,vxl*zn,vxlzmvxl*

and thus X7 X127 yX[" = I, or, equivalently, X; 27 X[ = 2. Also recall that By
consists of the first 7y columns of BY . Thus, partitioning

I, By}

XlBY:{O 3

where B is (m — m) x (n — ), we obtain from

vy =Y B 2z yBY = (X{BY)"2r (X[ BY)
[ 0[O ][k Bu
B, B || 0 Z2-mpv | [ O B |’

B, =0, B ann-o?vB = Z‘O,V()750 = |: OVO ﬁ&)] '

that

Letting B, € F("~7)*% be the matrix consisting of the leading vy columns of B, we
obtain that B3, n, vBy = —Iy,. By a procedure analogous to the one used for B;
above, we can determine a nonsingular matrix X, € [Fm=m0)x(m=") guch that

0 T — Ty
* *
XQB2 = Ivo Vo ) X2 Z7'5771:0,VX2 = Zrcfn'o,w

0 V—Vy
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which also shows that vy < v. With X3 = X (I, ©X>), we then have

I, 0 0
0 0 B
0 Iy, B3 |’
0 0 Bs3

which also implies X327 v X3 = 27 v and thus (X3BY)*2; (X;BY) = 2, 5, Then
it easily follows that

X;BY = X3ZnvXs =2y,

Bi3|" B
By =0 and 0= [B;z] Zn—my,v—vo [ lj = Bj3B13 — B3;B33. (7.3)

Let P; be the permutation matrix that interchanges the middle two block-rows of X3 BY
by pre-multiplication and set X; = X3P;". Then

Iz, 0 0
« 011, O 20 0
X, BY = 0 . XiZp Xy = 0%0 .
4 0 O B3 45my a4 |: 0 27 mv- v0:|
0 0 Bj3;

Now, both B3 and Bsz have full column rank, because otherwise, by (7.3) it is not
difficult to show that B3 and B33 would have a common null space. But this is not
possible, because then X;BY , as well as B, would have rank less than n, contradicting
the assumption. Since B3 € ]F(’r m)*% and Byz € F(V=Y0)%%  we have that 7 > my +
8 and v = v+ &y . Observe that (7.3) implies that the positive definite factors in the
polar decompositions of Bj3z and B33 coincide, i.e., we have

B3 = l~]3W and Bi33= l~]4W

for some Uz € F(T=)x% 17, € FV=Y0)*%  where U3,U4 have orthonormal columns
and W = (B};B13)"/? = (B3 B33)'/? ¢ Foxdo jg nonsingular. Extending U3 and Uy to
unitary matrices Us € F(m=—m)x(n=m0) {7, € F(V=Y0)x(V=Y0) 'we obtain that.

w w
U3Bl3=[0}, U4B33=[0},

Setting X5 = X4(Iry+v, ® U3 ®Uy), we obtain that

I7T0+VO 0
0o w
XS*BY = O O B XS*ZﬂVXS = 27'[07\/0 @ 27[_7'[07\/_\/0 .
0 w
0 O

Let P, be the permutation matrix that interchanges the 3rd and 4 th block row of X5 BY
by pre-multiplication, and let Xs = X5P5 . Then

Iﬂ0+V0 0
X6 BY — 0 W 5 X6 ZﬂﬁvXﬁ - 27'[07\/0 @ 250760 @ 27'[1,V1 )

0 O
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where m; = m— my — & and v; = v — vy — & . Then setting
S V2 [l I
2 150 —150 ’
and X7 = X¢(Iny+vy ®Z P I, +v, ), it is easily verified that
L) =[] rma= [

and thus, we have

I7FO+V0 0
* 0 2w % 07
X7 BY = 0 \/; ) X7 Z7'E,V)(7 = Z‘i'L'(),V() ¥ |:160 80:| EBZTL'I,V[ .
0 0

Let P; be the permutation matrix that changes the order the block rows of X7BY to the
order 4,3,1,2 by pre-multiplication and set X = X7P; . Then

8 8 0 0 I
X*BY == 5 X*Zn VX == an Vi EB O 27130.\/0 0
Irgvy - O ’ ’ Is 0 0

0 V2w %

The desired factorization then follows by multiplying with ¥~! from the right and
setting By = (Inyv, ® V2W)Y 1. O

PROPOSITION 7.2. Let B € R " and suppose that rank B = n, rank B’ J,,B =
2nq (note that the rank of a real skew-symmetric matrix is even), and let & = n — 2ng

denote the dimension of the null space of BT J,,B. Then there exists an invertible matrix
X € R such that

07 2m 0 0 I
XTB={0{8& , X'JuX=Jyy®| O Jy O
By | n =I5, 0 0

where By € C"" is nonsingular and ny = m —ng — 0y.

Proof. The proof follows the same lines as in the complex case (or more precisely,
as in the case of a complex skew-symmetric bilinear form induced by J,), see [19] for
details. O

7.2. Proof of Theorem 3.2

We present a constructive and recursive proof in several steps. The proof uses the
same strategy as in the case of G and G being complex symmetric, see [19]. Although
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this requires a lot of repetition of the ideas published in [19], we decided to give the full
proof of Theorem 3.2 and ideas of proof for the other main theorems, because of two
reasons. First, we want this paper to be self-contained, and secondly, the case of com-
plex sesquilinear forms or real bilinear forms is more involved than the case of complex
bilinear forms. For example, any complex symmetric matrix is congruent to the iden-
tity matrix, but the same is not true for complex Hermitian matrices under congruence
or real symmetric matrices under real congruence. This fact results in the existence of
the so-called sign characteristic of real eigenvalues of G-Hermitian matrices. It is this
point that makes the development of the canonical forms more challenging in the case
that G and G are complex Hermitian or real symmetric or skew-symmetric.

Step 1) Reduction to a stair-case-like form

Let (7,v,0) and (#,¥,0) be the Sylvester inertia indices of G and G, respec-
tively. By applying appropriate congruence transformations to G and G, we may as-
sume that G =X, and G =23 ;. Let

A=B\C}

be a full rank factorization of A, i.e., B € C"*", C, € C"*", rankB; = rankC| = r.
Applying Proposition 7.1 to B; and Cj, respectively, we can determine nonsingular
matrices X; € C"™*™ and Y; € C"™*" such that

0 T + Vo 0 0 181

XiBi=1] 0 |s s X{ZavX1=Zn vy @ | 025,40 |,
Bio) - I, 0 0
[0 ] A+ 0 0 IAI

YfCi= 10 & , YWZol1=24,®| 02540 |,
_CI,O_ r 181 0 0

where By ,Ci € C"™" are both invertible, pl,ql,5l,ﬁ1,@1,(§1 >0, and
prtaqi+8i=p+q+8=r

Partition
Pr+aq 8
A A
BiCF o =Pt { 33 374]7
L0%10 =4 Asz Ay
then
00 0 0 (T 0 0 0]
00 0 O 0 0 0 I
* — * — 1
XiAn 00A33A34 |’ Xi2meXy 0 024 01’
00A43As4 | 0 Iy, O O |
(22,900 0 07
VIS oy — 0O 0 O IAl
L4t = 0 0254 0
0 I 0
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Applying the same procedure to the triple (A33,2p,.41,2p,,4;)» WE can construct non-
singular matrices X2, Y2 such that

00 0 0 (Zowv 00 0]

= % _ |00 0 0 e | 0 0 0 I
XA =100 a5 s |0 Ema®2=1 o 03,0
00 Ags Ass | 0 I, 0 0]

S5 0 0 0]

5, T = 0 0 0 I

pank 0 024 0

| 0 Iy 0 0]

where p2,q2,8,52,42,0 > 0, Agg € Fox8, Ase € F(p2taz)xé2 Ag 5 € FOX(0rtd)
Ass € FP24@)x(h2+82) | py 4 gy + 8 = pr+ G+ & = rank A3 3, and where the matrix

|:A575 Asg

e FP2tart8)x(p2tar+d)
Ag 5 A@J

is nonsingular. Letting

Xy = Xi(nyivyrs, @ X281y5,), =Nl o 5 S2®15),
we then have
(000 0 0 0 0]
000 0 0 O O
00 0 0 0 0 Ay
XZ*AYZZ 00 0 0 0 0 A4y
00 0 0 As5As56Asy
00 0 O AgsAp6A67
|00A73A74A75A76A77
(S 0 0 0 0 0 0]
o o0 o0 o0 o0 o 151
0 0%, 0 0 00
XiZeXo=1] 0 0 0 0 0 Ip 0|,
0 0 0 02%,,00
0O 0 O 152 0O 00
| 0 Iy 0 0 0 0 0|
(S, 0 0 0 0 0 0]
o o0 o0 o0 o0 o 131
0 03,0 0 00
Y{‘Z,»L‘;Yz = 0 0 0 0 0 I O,
0 0 0 023,400
0O 0 O Iz 0 OO0
| 0 I3 0 0 0 00|
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where the matrix X;AY, has been partitioned conformably with X} X7 v X, (row-wise)
and Yy X5 ;Y (column-wise). The submatrix of X AY, that is obtalned by deleting the
leading two block rows and block columns is then nonsingular, because it is equivalent

to By oCy - Thus, [/A}i;] has full row rank and [A73 A7 4] has full column rank.

We can repeat the procedure for the triple (As5,%,, 4,,25,,4,) Which finally yields
nonsingular matrices X3 and Y3 such that (after renaming some blocks in A and using
the canonical notation corresponding to the notation in the previous step), we have

000 0 0 0 0 0 0 0
000 0 0 0 0 0 0 O
000 0 0 0 0 0 0 Az
000 0 0 0 0 0 0 Agp
. 000 0 0 0 0 0 AsgAs
BAG=1"6 00 0 0 0 0 0 Aso A0
0 0 O 0 0 0 A77A78 A79 A710
0 0 0 0 Ags A96A97A98 A99 A910
L 0 0A1034104410,5410,6410,7410,8A410,9410,10]
Tuw0 0 0 0 0 0 0 0 0]
000000 0 0 0 I
0 0Zz,0 0 0 0 0 0 0
000000 0 0 I O
\ 00 0 03,0 0 0 0 0
X2mvX3=109 0 00 0 0 0 I, 0 0| 4
00 00 0 0ZX,,0 0 0
000001 0 0 0 0
0003 00 0 0 0 0
L0, 00 00 0 0 0 0]
%60 0 0 0 0 0 0 0 O]
000000 0 0 0 I
0 0340 0 0 0 0 0 0
000000 0 01 O
. 0 00 03,0 0 0 0 0
B2%3=10 000 0 0 015 0 0|
0000 0 03,50 0 0
000001 00 0 0
0 0 0l 00 0 0 0 0
| 03 00 00 0 0 0 0|

where [Aj93 Ajo4] and [Ag s Ag ] have full column rank,

[A3’10] and [A5’9] have full row rank, and [
Ag9

A77 A . .
TTET8 g nonsingular.
Ag4.10 8

Ag7 Ag,

Continuing recursively, the process clearly has to stagnate after finitely many steps.
Using the canonical notation corresponding to the notation in the first two steps of the
process, we find that stagnation occurs after the (th step either when Ayp 1 2¢41 is
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nonsingular or when py = gy = py = g = 0. In both cases we obviously have that
pe~+qe = Pr+4r, and we end up with a nonsingular matrix

A2e12041 A2012042 |  plpetartn) < (perar+y)
Aop220+1 A2i42,20+42 ’

full row rank matrices

A2k+l,3é+27k c F(ﬂk+vk+5k+l)><8k7 k: 1,.”76_ 17
Adk23042—k

and full column rank matrices [A3p42_k2k+1 A3p42-k2k42) € T (Bt 9+811) for k —
1,...,£—1. Also, we have .
Oy = 0y, (7.5)

because py+qr+8 =pr+qv+ 3(, . Finally, we obtain that due to the full rank proper-
ties, we have that

Seot = Mot + Vo1 + 8 St = My + vier + & (7.6)
for k=2,...,£. On the other hand from the reduction process we have
Prt G+ & = pr+ i+ &, (7.7)
for k=1,2,...,¢,and

Pk—1+qr—1 = M1 + Vk—1 + 26 + px + a1,
Pr—1+ Q-1 = Fp—1 + V1 + 20k + Prc + G,

for k=2,...,1. The latter two equations can be rewritten as
Pk—1+ k-1 + 8—1 = M1+ Vi1 + O + Ok—1 + (pr +qx + &),
Dot + i1+ 8t = ey + Do+ S+ St + (P + G+ ).
By using (7.7) we then obtain
Th1+ Vi1 + 8+ 81 =1+ Uy + S+ S,
or, equivalently,
Sl =T Vi — B =& — P — U — & =0 (7.8)

for k=2,...,¢, where the nonnegativity follows from (7.6).

Step 2) Further reduction of the staircase form

We now isolate the nonsingular block Ay 1 2¢41 from the other blocks and com-
press the remaining part of XAY; to a more condensed form. We set 7, = py, v, =

qe, Ry = pe, Ve = gp and

I m+ v, ifkiseven - m+ v, ifkisodd
=Y A+ ifkisodd ° KT | A+, ifkiseven
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for k=0,...,¢. Moreover, (using (7.5) and (7.8)), we define y; := &y = 35 and
Vii= O — T — Ve — 81 = O — A — U — 1 k=1, 0~ 1.

For the sake of readability of the paper, we will not carry out the proof for the general
case, but we will illustrate the procedure for the special case that £ = 3, where we have
the matrices as in (7.4). The general case proceeds in a completely analogous way.

If not void, then A7 7 in X;AY3 in (7.4) is nonsingular, and hence, we can annihi-
late A7 g by post-multiplying X;AY3 with the matrix
1 —A;7 ;A778:| o

182@131.

Z ::Ino@lsl@Iml@l&@lnz@l&@|:O 7

Correspondingly updating Y3 X; ;Y3 this leads to a fill-in in the (7,8) and (8,7) block
positions in Zj¥;Z;,¥3Z; given by —Xj, 5,A71A7¢ and —A3 §A7 72 p5.45» TESPEC-
tively. We can annihilate these two fill-ins by using the (8,6) block entry I 5, asa
pivot, i.e., by applying a congruence transformation to Zj Y52z (¥3Z; with

1 A;,SAi;ZﬁL%

22: ”0@181@1"”1@182@1"2@{0 I

] @133 @132 @ISI.
It is then easy to check that Z3Z Yy’ X Y3717, = Y525 3Y3 and that the correspond-
ingly updated matrix X;AY3Z;Z, has no further fill-ins. Finally, we update Y3 «
Y37,7,.

Similarly, we can annihilate Ag 7 by working on the rows of X;AY; and applying
congruence transformations to X3, , X3. Then, we can proceed and annihilate the
blocks A79, Ag7, A7.10, and A1g7 in X;AY3. Since originally the matrix

is nonsingular, we find that after the above reductions the updated block Ag g is nonsin-
gular (or even void). With Agg as the pivot, we can then annihilate Agg, Agg, Ag 10,
Ajog and recover X327 X3 and Y52 ;¥3. Observe that this does not change the zero
blocks in X;AY3. Finally post-multiplying X;AY3 with the matrix

2y =l ®I5 © Iy ®I5 S Ly, O AT D lpyrgs DAgg @15 B,

we then obtain

0 0
0 0
0 Azjo
0 A0
59 As.10
6,9 46,10
0 0
Is,. O 0
0 Agg Ag 10
0 A10,9410,10]

0
0
0
0
i 0
X;AY; = 0
0

A7

[=NoNeoBoNoReoRoNe)
eNeoNeNoNoNoNoNe)

o

[eNeoNoNoNoNoNoNoNel

0 Ags Agg
A1034A104410,5410,6

eNeooNoNoloNeoRoN o]
eNeoNeoNeNoNoNeoRoNoNe]

0
0
0
0
0
0
7,
0
0
0
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while X5, X3 and Y5'X; ;Y3 are as in (7.4). (Indeed, observe that the congruence
transformation with Z3 leaves Y5 X Y3 invariant.) Since the original block [Ag 5 Ag g
has full column rank, it easily follows that the corresponding updated entry

[Ags Ags]| — [Ags AosAgs]
has full column rank as well. Then there exists a nonsingular matrix W; such that

L, 0
[Aos Ao ] — Wi [Aos Agg] = | O I3 |. (7.9)

00

Transforming then X3AY3 and X527 X3 with a multiplication from the left and con-
gruence transformation, respectively, with a block diagonal matrix having Wfl in the
(4,4)-block position and W;* in the (9,9)-block position, we obtain the desired update
in the block [Ags Agg] while X5, X3 and the zero pattern of X;AY3 are invariant
under that transformation. We then continue by taking this updated block [Ag 5 Ag 6] as
a pivot to annihilate [Ao5 A10,6]. Again, this can be done without changing X5 X, ,X3.

Similarly, due to a full row rank argument, there exists a nonsingular matrix W,

such that
Aso A5.9] [lm 0 0]
A "= o : 7.10
[%9] [A6,9 2710150 (7.10)

and applying appropriate transformation matrices, the corresponding change in X;AY3
can be made without changing Y5"X3 3Y3. Then, As 10 and Ag 10 can be annihilated.
Also, we use the pivots [ﬁzg} and [A975 A9.’6] , respectively, to annihilate the lead-

ing my + 83 columns of Ag g and Ajg 9, and the leading 1o+ 33 rows of Ag g and Ag 9.
So these three blocks become

00 O 0
Agg— |00 0 |, Agjoe— | O |, Ao« [00A9],
00Agg Ag 10

where 29,9 e Frxn2, X9710 € Frxor 21079 € F*” _ Since originally the submatrix

0 0 0 0 Asg
0 0 0 0 Ago
0 0 A77A78A79
0 0 Ag7AggAso

Ags Agg Ag7 Agg Agg

was nonsingular, we have that g9.’9 is nonsingular. We then use 2979 as pivot block to
annihilate Ag 19 and Ajg 9, and transform Agg to I, .
In a similar way we can perform the reductions

A3_1() Inl 00
; 0 Iz
|:A471() 0 152 0l I:A1073 A10,4] o |
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and use them as pivots to reduce Ajg 1o to

00 O
Ajp10:= |00 O )
00A0,10

where Ajg 10 € F"*" | and finally transform Ajq 19 to Iy, . After all this, the matrix
X;AY; has the form

(00
00
00
00
00
00

i 00

X543 = | 0 o

00

00

00

00 Iy,

000 Iy
000 0

~

[ NeNelloNeololle NN el =NeNe]

=
~
S
OOOOOOOOT‘%\OOOOO

eNeoNeoNoNoNoNoNe)
O OO O OO O oo o o0

[eNelleoNeNeNoNoNoNoeNe)
=~
I~

(=)

olocooolocococoococoocoo
coolcoolcocoococoT oo
coolcoolccoocoF oo o

S ocoolcoolcocoocoocoocoo

OOO;\%\OOOOOOOOOO

OOOO;%NOOOOOOOOO
OOOOOO;SNOOOOOOO

S O olo O

while X3 %, X3 and Y3 X5 ;Y3 are still as in (7.4). We partition

I, =In &I, ® 1y, O 1y, S Iy, Is) =L, © 1y, © Iy,
ISI :Inl@ln2®ly3 @Iyz@lyl7 182 :I’n2@1y3@ly27

and replace Is , Is,, I 5, and [ 5, in the matrix triple with these partitions. We then get
X5AY3, X325 vX3, and Y525 Y3 partitioned in 22 block rows and columns. Let P be
the block permutation that re-arranges the block columns of X;AY3 in the order

13,1,6,22,5,10,17,21,4,9,12,14,16,20,2,7,18,3,8,11, 15, 19.

Let P, be another block permutation such that P/ re-arranges the block rows of X;AY3
in the same order. Set _ _
X = X3PL7 Y = YgPR.

Then we obtain that
XAY = Ay ® Ay ® (D ® ) D (A 2@ 3),
XZaX =G @% D (9 2% 0%) @ (%2®%5),
V%0V =9 0% @ (D 2% 0%h) ® (G20%;),

where

P

JZ{n.\' :A25+1,2/j+1a gns = Z?‘Eg,V@a gns = Zﬁ27027 (= 37 (711)
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Ay = Omgxngs - %0 = Zrovs - 90 = Zr 09 (7.12)
000000
0000 0000 0I,
oo 0001, 00007,0
M@%@%_[o%}@ 00,0 %000£L,00]|
0, 0 0 00,000
06,0000
571695?2@54325%@54}@%
0000 O0I,
00 01, 0000I,0
_[0@1]@ 00,0 100000
Iy, 0 0,0 0 00,000/’
1,000 0L,0000
I,00000
00000
000 00 0 0 I
Ao®ahz= (00 L, | & |00 01, 0],
01y 0 001,00
06, 0 0 0
[0 0 0 0 Ly,
0 0 Iy 00 01,0
glﬁz@gz.g: 027;17\/10 @0 027-[27\/20 o,
Iny, 0 0 01, 0 00
1, 0 0 0 0|
[0 0 0 01
A 0 0 I 00 010
%,2@%,32 02,%17\710 ®| 0 027*-[27A20 0
Ly 0 0 0Ly 0 00
1, 0 0 0 0 |

Step 3) Extraction of Jordan blocks from the staircase-like-form

Completely analogous to the case ¢ = 3, we proceed in the case ¢ # 3 and obtain
the staircase-like-form as
o ¢ 1
XAY = dguode@doP I qm,

J=1 Jj=1

14

-1

)?*va?? = gn.\' 2 go S2) @gj D @gjaj""l’

Jj=1

14

j=1
-1

V'5:0Y = 6% 0 DY 0 DY,

Jj=1

j=1
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where 5, %5, %, are as in (7.11), <%, %, % are as in (7.12),

00 0 O
00 O 1,
= (Roy f25(0)) ©ly = | g o 0 .
OIYJ‘ 00 (25) % (2) blocks
00 I,
G =9 =Ryj@I;=| 0 ." 0 , (7.14)
L; 00 (2j)% (27) blocks
[0 0
0 Inj
A
Ajjr1 = L , (7.15)
0 Inj
-O Imj 0 (2j+1)x(2j+1) blocks
- 0 Iy
I,
b1 = Zr;v; : (7.16)
Iy
-Imf’ 0 (2j+1)%(2j+1) blocks
- 0 .
In,
Gt = 2.0 : (7.17)
L.
J
'I"J' 0 (2j+1)%(2j+1) blocks

The blocks A5, Gus, %ps, Ho, G, and G, are already in the form as indicated in
Theorem 3.2. Next, let us investigate in detail the blocks of the form (7.13)—(7.14). Let
P; be the permutation such that premultiplication with Pj’f reorders the rows of 7} in
the order
2.”/j7 (2]_1)’}/17 e Y
Zij_l7 (2]_1)’}/1_17 "'7Yj_l7

2jyi—vi+1, Qi-Dy—yi+1, ..., 1
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and let 131 be the permutation such that postmultiplication with 131 reorders the columns
of «7; in the order

Yis e 5=y, 2Jvj;
vi—1,..., Qj-Dy—1,  2jy—1,

L, .., Qj—-Dyj—vi+1,2jyj—y;i+1
Then it is easily verified that

Vi

¥
PjeliPj = £;(0), P;9P;=P/9;P;=(DRy;.
i=1 i=1

Finally, let us return to the blocks of the forms (7.15)—(7.17). Let Z; be the permutation
such that premultiplication with Z}f reorders the rows of .27; ;| in the order

(j+L)ymj+ jnj, Jjmj+(j—1)nj, cey 2mj+nj, mj,
(j+U)mj—1+jnj, jmj—1+(G—1nj, ...,2mj—1+nj, mj—1,

jmj—|—1—|—jnj, (j—l)mj—|—1—|—(j—l)nj,..., mj—|—1—|—nj, 1,
jmj+ jnj, (J=Vmj+(—Dnj ..., mj+n;,
jmj—l—jnj—l, (j—l)mj—l—(j—l)nj—l,..., mj—l—nj—l,

jmj—|—(j—1)nj—|—1,(j—l)mj—|—(j—2)nj—|—1,..., mj—i—l,

and let Z i+1 be the permutation such that postmultiplication with Z i+1 reorders the
columns of <7} ;1 in the order

mj—l—nj, 2mj+nj, ceey jmj—l—jnj,
mj—1+nj,2m;—1+nj, ..., jmj—1+jnj,

1—|—nj, mj—|—1—|—nj, R (j—l)mj—|—1—|—jnj,
nj, m;j+2nj, ..., (j—l)mj+jnj7 ij+(j+l)nj,
nj—l, mj+2nj—1,..., (j—l)mj—i—jnj—l, ij+(j+l)nj—l,

1, mj—l—nj—i-l, ...,(j—l)mj—l—(j—l)nj—i—l, ]mj—i-]nj—i—l
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Then it is easily verified that

mj

I
ZMJJrlZJJrl_ @[6] ) ) @ [ ],x,+1
i=1 (1+1) i=1

nj

n;j
Z:9; i Z; @Rj+l@ EB Rj1® Pr;, (7.18)
= V]Jrl =1
’n./
Zj19), 41 Zjn = Dr; ®@Rz+l® EB Rjt1,
i—1 i=9j+1

if j is even and

mj nj
* - I;
Zid;jnZin =D {6} eBI[0L]
i=1 (J+D)xj =1
m_,-

Z:9) 2 = @R,m @@R 6969 Rj, (7.19)

i=vj+1

n
Z;HgAjJHZHI_GBR & EB R;® @R,Hh

i= V]Jrl

if j is odd, where

Rygi1= (7.20)

The matrices in (7.18) and (7.19) are block diagonal (with rectangular diagonal blocks
in Z;ff;z%jh,'HZ‘ j+1) and it is straightforward to check that with appropriate transforma-
tion matrices it is possible to simultaneously transform, say, the kth block in all three
matrices without changing the other blocks. We use this observation to finally show
that the form (7.18) or (7.19) is equivalent to the corresponding form in Theorem 3.2.
It only remains to show that the odd-sized blocks R ; and R j+11n (7.18) and (7.19) can
be replaced by —R; and —R; |, respectively, without changing the other blocks. We
show this by an induction argument for the triple ([0 /;] R j,Rj+1) and j odd, the proof
in the other cases is similar. For j =1 there is nothing to show, so let j =3, i.e.,

0100 001 A 88?(1)

o=10010(, ¥9=(0-10|, ¥=
0001 100 0100
1000

Then & can be transformed to —R3 by the congruence transformation with the trans-
formation matrix diag(1,1,—1). Updating </ accordingly (i.e., by premultiplying </



STRUCTURED DECOMPOSITIONS FOR MATRIX TRIPLES 349

with the transformation matrix), we obtain

010 0 0 0 —1 A 88?(1)

=10010|, v=|0-10], 9=
000 —1 -10 0 0100
1000

The negative entry in <7 can then be reset to +1 by postmultiplication with the matrix
diag(—1,1,1,—1). Observe that the congruence transformation with this matrix leaves
¢ invariant. Next, consider the case j =5, i.e.,

0[1 00 001 001
o =|0[05L0|, 9=|0R;0|, 9=|0R40
oo o1 100 100

Applying the transformations of the previous step (embedded in slightly larger trans-
formation matrices), we obtain that

0|—1 00 00 1 001
=000 BLIO|, 9=|0-R;0|, 9=|0Rs0
0[0 01 1 00 100

Premultiplying <7 with diag(—1,1) and applying the corresponding congruence trans-
formation on ¢ yields

0|1 0o 0 0 —1 001
= |00hK0|, 9= 0 —R; 0|, 9=|0Rs0
0[0 0|1 -10 0 100

The remainder of the proof then follows by induction using alternately the arguments
asinthe cases j=3 and j=35.

Step 4) Getting the canonical form for .# and 7

Up to this point, we have proved the existence of the canonical form for the triple
(A,G,G). The corresponding forms for .7 and .# then immediately follow by form-
ing the products G~'A*G~'A and G"'AG~'A*. These forms are already very close to
the actual canonical forms of Theorem 2.2, and further reducing them to that canonical
form leads to the statements on the eigenvalues and attached signs of A and A .

Step 5) Uniqueness of the form

We highlight that once uniqueness of the parameters y;,m;,n; has been proved,
then all other ' parameters are already umquely defined by the unique canonical forms
of # and J# as G-Hermitian, respectively G-Hermitian matrices. (Indeed, the signs

s o(0)
5j

and §;’ can be immediately reconstructed from the sign characteristics of the eigen-

V'alue 0 of 2 and J#.) The proof of uniqueness of y;,m;,n; follows the same lines
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as the proof for the corresponding case of complex symmetric G and G given in [19].
For the sake of making the paper self-contained, we reproduce this proof here.
Note that there exists a unique sequence of subspaces

Eig,(7¢,0) C Eigy_;(s¢,0) C --- CEig(s#,0) =ker. %

where Eig ;(#,0) consists of the zero vector and all eigenvectors of .7 associated
with zero that can be extended to a Jordan chain of length at least j. Define k; =
dim (Eig(#,0) NkerA) and

Kj = dim (Eigj(jf,O)ﬂkerA) —dim (Eing(jf,O)ﬂkerA), j=1,...0—1.

Then any eigenvector of .77 that is associated with a Jordan block of size j x j in the
canonical form and that is also in the kernel of A contributes to k;. Similarly, we define

&, = dim (Eig,(/#,0) NkerA*) and
&j = dim (Eig ;(4#,0) NkerA*) — dim (Eig ;1 (5,0) NkerA®), j=1,....0—1.
Then elementary counting yields
Kj=vYj+nj—1 and Kj=vy;+mj_y, j=1,...,L

If 7;, respectively 7; denotes the number of Jordan blocks of size j x j in the canonical
form of 37 and 7 , respectively, we also have that

T =2yj+mj+n; and f'j=2yj+mj,1+nj, j=1,...¢

Hence, we obtain

Tj—Kj—Kj=mj—mj_1;, and T,—K,—Kj=n;j—nj_1, j=1,...,¢,
from which we can successively compute mj,n;, j=¢—1,...,0 using my =n; =0.

We furthermore obtain that
1

1= 5 (1 —mj—nj-1)

for j=1,...,£. Thus, the numbers y;,m;,n; are uniquely determined by the invariant
numbers 7;,7,k;,K;, j=1,...,¢.

This concludes the proof of Theorem 3.2. O
7.3. Proof of Theorem 4.2

Applying appropriate congruence transformations to G and G otherwise, we may
assume that G =X, and G =J,. Let

AZBlew
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be a full rank factorization of A, i.e., B] € R™*", C; € R¥*" rankB; = rankC;| = r.
Repeatedly applying Proposition 7.1 to B and Proposition 7.2 to Cy, respectively, we
can determine a staircase-like form that can be further reduced to canonical form. The
proof follows the same lines as in the steps 1) and 2) of the proof of Theorem 3.2 and
yields the reduced staircase-like form

4 (-1
XTAY = a0 A0,
=1 =l
. ~ L (-1
XTZ?'L’,VX = gns 2 gO 2 @gj 2 @gj.j-‘rl;
=1 el
_ _ L (-1
Y'Y =9se%e@9e@®Y 0,
j=1 j=1

where

~

JZ{n.\' = A2K+l,2€+la gns = an,v@, gns = Jﬁg;

with 7y + vy = 27ty and Appyq 2041 € C2*2% being nonsingular,

% = ﬁmOXZnoa gO = ZTL'(),V(): gO = Jnoa

;[ 0 R;
= (R2J'/2j(0)>®lyj7 Yj=R®l; 9= [_Ri 0’] By,

and < 11, 9 j+1, and 9 ;11 are (2j+ 1) x (2j+ 1) block matrices, where, if j is
odd, the block rows have alternating sizes n;,2m; and the forms

_0 0 ] [0 I2m_,--
0 I Ry
Dy -
) 1 = = Zn, . (7.21)
0 I".f Inj '
_0 Izmj 0 i _I2mj 0 ]
- 0 h,
I2mj
G = Iy : (7.22)
_I2mj
__In_,- 0
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or, if j is even, then the block rows have alternating sizes 2nj,m; and the forms

0 0 0 In, ]
0 1271] . 1271]
jjr1 = L G jr1 = s , (7.23)
0 I2nj 1271] .
0 Im/ O J _Im] 0 i
[0 I2nj
. Im_,-
G+t = Iy : (7.24)
_Im_,-
__I2nj 0

The blocks <%, %, and % are already in the form as indicated in Theorem 3.2,
for the blocks s, %5, 9,5, We can apply Theorem 4.1, and for the blocks .27}, %,,
and 54 we can apply an analogous permutation as it has been done for the correspond-
ing blocks in the proof of Theorem 3.2. Moreover, if j is odd, then let Z; be the
permutation such that premultiplication with ZJ-T reorders the rows of <7} ;1 in the
order

2(j+l)mj—|—jnj, 2jmj—|—(j—l)nj, ceey 4mj+nj, 2mj,
2jmj+mj+ jnj, Z(j—l)mj+mi,'+(j—l)nj, sy 2mj+mj+nj, mj,
2(j—|—1)mj—1—|—jnj, 2jmj—1—|—(j—1)nj, R 4mj—1—|—nj, ij—l,

2jmj+mj;—1+ jnj, 2(j—l)mj—l—mj—l—l—(j—l)nj,...,2mj+mj—l+nj, mj—1,

ijj—i—mj—i—l—kjnj, Z(j— l)mj—|—mj—|—1—|—(j— l)nj,...,ij+mj+1+nj, mj—|—1,

2jmj+1+ jnj, 2(j—1)mj+l+(j—l)nj7 cooy 2mj+1+nj, 1,
2jmj+ jnj, 2(j—1)mj+(j—l)nj, ceey 2m;+nj,
2jmj+ jnj—1, 2(j—1)mj+(j—l)nj—l, ceoy 2mj+n;—1,
2jmi+(j—Dnj+1, 2(j—1mj+(G—-2)nj+1, ..., 2m;+1,

and let Z j+1 be the permutation such that postmultiplication with V4 ;+1 reorders the
columns of .¢7; ;1 in the order

mj+nj, 2mj—|—mj—|—2nj, R Z(j—l)mj—kmi,'—i—jnj,

2m;j+nj, 4mj+nj, . 2jmj+ jnj,
m;—1+n;j, 2mj+mj—l+2nj7...,2(j— l)mj+mj—l+jnj7
2mj—1—|—nj, 4mj—1—|—nj, ceey 2jmj—1—|—jnj,
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1—|—nj, ij—|—1+l’lj, cee 2(j—1)mj+1—|—jnj,
mj+1+n;j, 2mj+mj+1+l’lj,---,2(j— l)mj+mq,'+1—|—jnj,
nj, 2mj+2nj, ceey 2(j—1)mj—|—jnj7 2jmj+(j+l)nj7
nj—1, 2mj+2nj—1, .., 2(j—l)mj—|—jnj—l, 2jmj—|—(j—|—l)nj—l,
1, 2mj+n;+1, ...,2(j—l)mj—|—(j—l)nj+l, 2jmj+ jnj+ 1.

Then it is easily verified that

0 1;
mj nj
~ 00
, B )
Z; i1l = ;0 ® @ [OIJ]jX(jH)’
i=1 =
00 2(j+1)x2j
m; 7.25
29 a2z = 0 R,H EBR ® @ Rj, o
RS ~ | Rj+1
i1 i=vj+1
mj nj R
0 R; o
ZJJrlg j+lzj+1_ @ |:_Rj 0 :| @@ —R,_z_l 02 ’

where R ;j 1is as in (7.20). Then analogously as in the proof of Theorem 3.2, we can
transform R ;i to —R; without changing any of the other blocks. Thus, we finally obtain
blocks as in 4) and 5) in Theorem 4.2. Similarly, an analogous permutation extracts
blocks as in 3) and 6) in Theorem 4.2 for the case that j is even, i.e., if we consider the
blocks (7.23)—(7.24).

Concerning uniqueness, as in the proof of Theorem 3.2 it remains to show unique-
ness of the numbers /;, 2m;, and n;. This is done exactly in the same way as in the
proof of Theorem 3.2. Note that the paired blocks in 4) and 6) in Theorem 4.2 cannot be
decomposed into two smaller blocks of equal size, because of the fact that nonsingular
skew-symmetric matrices must have even size. O

7.4. Proof of Theorem 5.2

Applying appropriate congruence transformations to G and G otherwise, we may
assume that G = J,, and G = J,,. Again, we then compute a staircase-like form for A
by considering the full rank factorization

AZBlc'{

of A, ie., By € R (C; € R¥*" rankB; = rankC; = r, and repeatedly applying
Proposition 7.2 to B; and C;. Then continuing as in step 2) of the proof of Theorem 3.2
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yields the reduced staircase-like form

14 (-1
XTAY = @ &P AP ) jr1,
j=1 j=1
N N l /-1
X"X = 9s0%>PY o P,
j=1 j=1
14 /-1

V0.7 = Gade @Y DY,

j=1 j=1

where

~

s :A2K+1,2(,+17 gns = JTL’[: gn.\' =Jda, = J?'L’g;

with Ay 12041 € R?%*2M being nonsingular,

~

%:OZm()XZnQa g():]m(p g():]nm

N 0 R;
= (Ry 1) o1y, 9=9=| G ]

and <7 j+1, 9; jr1,and G ;41 are (2j+1) x (2j+ 1) block matrices, where the block

rows have alternating sizes 2n;,2m; and the forms

0 0 0
0 1271]
by .
) jr1 = L Y= In;
0 Iznj _I2nj
_O IQmj O ] __12111_,'
0 I2nj
.I2m_,-
Gjje1 = R ;
—Iij
__I2nj 0

. I2nj

I2mj

,(7.26)

(7.27)

The remainder of the proof then proceed as the proof of Theorem 4.2 by adapting
the permutation used on the blocks of the forms (7.26)—(7.27) similarly as in the proof

of Theorem 4.2 in order to allow to group together paired blocks.

Concerning uniqueness, as in the proof of Theorem 3.2 it remains to show unique-
ness of the numbers ¢;, 2m;, and 2n;. This is done exactly in the same way as in the

proof of Theorem 3.2. [
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