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Abstract. Canonical forms for matrix triples (A,G,Ĝ) , where A is arbitrary rectangular and
G , Ĝ are either real symmetric or skew symmetric, or complex Hermitian or skew Hermitian,
are derived. These forms generalize classical singular value decompositions. In [1] a similar
canonical form has been obtained for the complex case. In this paper, we provide an alternative
proof for the complex case which is based on the construction of a staircase-like form with the
help of a structured QR -like decomposition. This approach allows generalization to the real
case.

1. Introduction

Let F denote either the complex field C or the real field R . Consider a triple
of matrices (A,G,Ĝ) with A ∈ Fm×n , G ∈ Fm×m , and Ĝ ∈ Fn×n , where G and Ĝ
are nonsingular and either Hermitian or skew-Hermitian (in the complex case) or sym-
metric or skew-symmetric (in the real case). In this paper we derive canonical forms
(ACF,GCF,ĜCF) under the transformation

(ACF,GCF,ĜCF) := (X∗AY,X∗GX ,Y ∗ĜY ), (1.1)

with nonsingular matrices X ∈ F
m×m and Y ∈ F

n×n . (Here A∗ denotes the conjugate
transpose of a matrix A if F = C or the transpose if F = R .)

The canonical form for the complex case is already known and has appeared in
[1], although uniqueness of the canonical form had not been considered there. The real
case, however, has only been investigated in [27] so far for the special case that

G =
[

0 Im
−Im 0

]
and Ĝ = In
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and in [28] where a numerical method was derived for this case.
In this paper, we give an alternative proof of the canonical form in the complex

case which is based on the construction of a staircase-like form with the help of a
structured QR-like decomposition. These stair-case decompositions have analogues in
the real case which allow a generalization of the results for the complex case to cover
the real case as well.

The difficulties encountered in the treatment of the real case in full generality stem
from the fact that one has to distinguish the cases that G and Ĝ are either both symmet-
ric, or both skew-symmetric, or that one is symmetric and the other skew-symmetric.
In the complex case, in contrast, there is no need to distinguish between Hermitian and
skew-Hermitian matrices G and Ĝ , because multiplication with the imaginary unit ı
easily converts an Hermitian matrix into a skew-Hermitian matrix and vice versa. A
corresponding transformation can be performed on the canonical form so that all cases
are covered by presenting the canonical form for the case that G and Ĝ are both Her-
mitian.

A third case besides the real case and the complex case with Hermitian and skew-
Hermitian G and Ĝ is obtained if one assumes that G and Ĝ are complex symmetric
or complex skew-symmetric and if one replaces the conjugate transpose in (1.1) by the
transpose. This case has been investigated in [19]. So together with this paper the
complete set of canonical forms for real and complex matrix triples of the form (1.1) is
available.

The study of the described canonical forms is motivated by the goal of unifying the
solution procedures for eigenvalue problems associated with structured matrices from
Lie and Jordan algebras related to indefinite inner products, [3, 8, 21, 22]. Consider for
example a signature matrix

Σπ1,ν1 =
[

Iπ1 0
0 −Iν1

]
, π1 +ν1 = m.

A matrix H ∈ Cm×m is called Σπ1,ν1 -Hermitian if (Σπ1,ν1H )∗ = Σπ1,ν1H , i.e., if
Σπ1,ν1H is Hermitian. The matrix Σπ1,ν1H then possesses a factorization Σπ1,ν1H =
AΣπ2,ν2A

∗, where Σπ2,ν2 is another signature matrix and A ∈ Rm×n with n = π2 +ν2 .
This means that H has a factorization

H = Σπ1,ν1AΣπ2,ν2A
∗.

If, for the triple (A,Σπ1,ν1 ,Σπ2,ν2) , we can determine a suitable canonical form

(ACF,GCF,ĜCF) = (X∗AY,X∗Σπ1,ν1X ,Y ∗Σπ2,ν2Y ),

then this will allow us to determine the eigenstructure of H , because

X−1H X = (X∗Σπ1,ν1X)−1(X∗AY )(Y ∗Σπ2,ν2Y )−1(Y ∗A∗X) = G−1
CF ACFĜ

−1
CF A∗CF.

Simultaneously the eigenstructure for the Σπ2,ν2 -Hermitian matrix Ĥ =Σπ2,ν2A
∗Σπ1,ν1A,

is obtained, because Y−1Σπ2,ν2A
∗Σπ1,ν1AY = Ĝ−1

CF A∗CFG
−1
CF A.
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In general, the canonical form (1.1) of the matrix triple (A,G,Ĝ) will allow us to
simultaneously determine the eigenstructures of the two structured matrices

H = G−1AĜ−1A∗, Ĥ = Ĝ−1A∗G−1A. (1.2)

Structured matrices with such product representations cover all the structured matrices
from the Lie and Jordan algebras (see [3]), associated with the sesquilinear forms

〈x,y〉G = x∗Gy, 〈x,y〉Ĝ = x∗Ĝy. (1.3)

Furthermore, the form (1.1) can be interpreted as a generalization of the singular
value decomposition (SVD) [9] of a matrix A ∈ Cm×n , i.e., the decomposition

ACF := U∗AV =

⎡⎢⎢⎢⎣
σ1 0

. . .

σr

0 0

⎤⎥⎥⎥⎦ , σ1 � · · ·� σr > 0

with unitary matrices U,V . Indeed, the SVD can be considered as a canonical form for
the matrix triple (A, Im, In) under the transformation

(A, Im, In) �→ (ACF, Im, In) = (X∗AY,X∗ImX ,Y ∗InY ). (1.4)

Here, the equation for the first components of the two matrix triples in (1.4) is the actual
singular value decomposition, while the equations for the second and third components
just force the transformation matrices to be unitary. The canonical form then displays
the eigenstructure of the In -selfadjoint matrix A∗A and the Im -selfadjoint matrix AA∗ ,
because the nonzero singular values σ1, . . . ,σr are just the square roots of the nonzero
eigenvalues of A∗A and AA∗ .

When generalizing the concept of the singular value decomposition to analogous
factorizations for linear maps L : Cn→Cm , where the spaces Cn and Cm are equipped
with indefinite inner products given by invertible Hermitian matrices G ∈ Cm×m and
Ĝ ∈ Cn×n , one may consider to apply a transformation A �→ X∗AY to a matrix rep-
resentation of L , where X and Y are matrices that are unitary with respect to the
sesquilinear forms (1.3), i.e., where X∗GX = G , Y ∗ĜY = Ĝ . However, if one allows
general changes of bases in the spaces Cn and Cm , i.e., changes that affect the in-
definite inner products as well, then this corresponds exactly to the transformation as
in (1.1) and the canonical forms will appear to be less complicated.

Generalizations of the singular value decomposition in the sense of this paper have
been studied earlier in the literature, probably starting with [10, 11]. The generalized
singular value decomposition defined there corresponds to (1.1) for the case that for
all three matrices ACF , HCF := G−1

CF ACFĜ−1
CF A∗CF , and ĤCF := Ĝ−1

CF A∗CFG
−1
CF ACF a diagonal

representation can be chosen. The general complex case (allowing also non-diagonal
representations) was then discussed in [1].

In [15], the canonical forms of the matrices X [∗]X and XX [∗] were investigated,
where X [∗] = H−1XH denotes the adjoint of a matrix X ∈ C

n×n with respect to the
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indefinite inner product induced by the nonsingular Hermitian matrix H ∈ Cn×n . This
question is motivated from the theory of polar decompositions in indefinite inner prod-
uct spaces. It is said that a matrix X ∈Cn×n allows an H -polar decomposition, if there
exists an H -selfadjoint matrix B , i.e., a matrix satisfying B∗H = HB , and an H -unitary
matrix U , i.e., a matrix satisfying U∗HU = H , such that X = UB . It was shown in
[20] that X allows an H -polar decomposition if and only if the two matrices X [∗]X
and XX [∗] have the same canonical forms as H -selfadjoint matrices. Setting A = X ,
G = H−1 , and Ĝ = H , we find that

X [∗]X = Ĝ−1A∗G−1A = Ĥ and XX [∗] = AĜ−1A∗G−1 = GH G−1,

and thus, the canonical forms of X [∗]X and XX [∗] can be read off from the canonical
form for the matrix triple (A,G,Ĝ) = (X ,H−1,H) . Consequently, many of the results
from [15] can be recovered from the results in this paper. Recently, the relation of
the spectra of X [∗]X and XX [∗] has been investigated in terms of infinite dimensional
indefinite inner product spaces (also known as Krein spaces) in [23].

A canonical form closely related to the one obtained under the transformation (1.1)
is the canonical form for pairs of matrices (B,C) , B ∈Cm×n,C ∈Cn×m under transfor-
mations of the form

(B,C) �→ (X−1BY,Y−1CX). (1.5)

This form corresponds to the canonical representation of the quiver 1 →← 2, see [4, 13]
and the discussion in [24]. In particular, this canonical form reveals the Jordan struc-
tures of the products BC and CB . In our framework, this corresponds to a canoni-
cal form of the pair of matrices (G−1A,Ĝ−1A∗) rather than for the triple (A,G,Ĝ) .
When focussing on matrix triples, our approach is more general, because the canonical
form for the pair (G−1A,Ĝ−1A∗) can be easily read off from the canonical form for
(A,G,Ĝ) , but not vice versa. Moreover, the canonical form for (A,G,Ĝ) allows the
construction of structured canonical forms for the structured matrices and matrix pen-
cils mentioned in the previous paragraphs. The approach via (1.5), on the other hand,
focusses on different aspects and allows to consider pairs (B,C) , where the ranks of
B and C are distinct. This case is not covered by the canonical forms obtained in this
paper or in [19] as the considered pairs of matrices always have the same rank.

The paper is organized as follows. In Section 2 we review the definitions of matri-
ces having structures with respect to indefinite inner products and provide some auxil-
iary results. In Section 3 we then derive the canonical forms for the complex case and
for the real case when G and Ĝ are both real symmetric. In Section 4 we study the case
that one of G,Ĝ is real symmetric and the other is real skew-symmetric. In Section 5
we present the canonical forms for the case that both G,Ĝ are real skew-symmetric.

Throughout the paper we use F to denote the field of real or complex matrices,
i.e., F = R or F = C . R− (R+ ) is the set of real negative (positive) numbers, and C−
(C+ ) is the open left (right) half complex plane. The n× n identity and n× n zero
matrices are denoted by In and On , respectively. The m×n zero matrix is denoted by
Om×n and e j is the j th column of the identity matrix or, equivalently, the j th standard
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basis vector of Fn . Moreover, we introduce

Σπ ,ν,δ =

⎡⎣ Iπ 0 0
0 −Iν 0
0 0 Oδ

⎤⎦ , Σπ ,ν = Σπ ,ν,0 =
[

Iπ 0
0 −Iν

]
, Jn =

[
0 In
−In 0

]
.

The transpose and conjugate transpose of a matrix A are denoted by AT and A∗ , re-
spectively. We use A1⊕ . . .⊕Ak to denote a block diagonal matrix with diagonal blocks
A1, . . . ,Ak . If A = [ai j]∈ Fn×m and B∈ F�×k , then A⊗B = [ai jB]∈ Fn�×mk denotes the
Kronecker product of A and B . For a real symmetric or complex Hermitian matrix A
we call (π ,ν,δ ) the Sylvester inertia index with π , ν , δ being the number of positive,
negative, and zero eigenvalues of A , respectively. For a square matrix A , σ(A) denotes
the spectrum of A . We use

Rn =

⎡⎣ 0 1
. .

.

1 0

⎤⎦ , Jn(λ ) =

⎡⎢⎢⎣
λ 1 0
λ

. . .

. . . 1
0 λ

⎤⎥⎥⎦
to denote the n×n reverse identity or the n×n upper triangular Jordan block associated
with the eigenvalue λ , respectively, and

Jn(a,b) = In⊗
[

a b
−b a

]
+Jn(0)⊗ I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b 1 0 0
−b a 0 1

a b
. . .

−b a
. . . 1 0

0 1
a b

0 −b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for blocks associated with complex conjugate eigenvalues in the real Jordan form of a
real matrix.

2. Matrices structured with respect to sesquilinear forms

Our general theory will cover and generalize results for the following classes of
matrices.

DEFINITION 2.1. Let G ∈ Fn×n be invertible and let H ,K ∈ Fn×n be such that

(GH )∗ = GH and (GK )∗ =−GK .

1) If F = C and G is Hermitian or skew-Hermitian, then H is called G-Hermitian
and K is called G-skew-Hermitian.
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2) If F = R and G is symmetric, then H is called G-symmetric and K is called
G-skew-symmetric.

3) If F = R and G is skew-symmetric, then H is called G-Hamiltonian and K is
called G-skew-Hamiltonian.

G-Hermitian and G-symmetric matrices are often called G-selfadjoint matrices
as they are selfadjoint with respect to the indefinite inner product induced by G . In
this paper, we prefer the notions G-Hermitian and G-symmetric in order to clearly
distinguish between the complex and the real case. Observe that transformations of the
form

(H ,G) �→ (P−1H P,P∗GP), P ∈ F
n×n invertible,

preserve the structure of H with respect to G , i.e., if, for example, H is G-Hermitian,
then P−1H P is P∗GP-Hermitian as well. Clearly, each complex Hermitian or real
symmetric invertible matrix G is congruent to Σπ ,ν for some π ,ν and each real skew-
symmetric invertible matrix G is congruent to Jn for some n . Thus, we may always
restrict ourselves to the case that either G = Σπ ,ν or G = Jn . In the latter case, we
refer to Jn -Hamiltonian or Jn -skew-Hamiltonian matrices simply as Hamiltonian or
skew-Hamiltonian matrices, respectively.

G-(skew-)Hermitian, G-(skew-)symmetric, and G-(skew-)Hamiltonian matrices
have been intensively studied in the literature. In particular, canonical forms for such
matrices have been derived in many places. We review these well-known canonical
forms in the following.

THEOREM 2.2. (Canonical form for G-Hermitian matrices, [8, 17, 25])
Let G ∈ Cn×n be Hermitian and invertible and let H ∈ Cn×n be G-Hermitian. Then
there exists an invertible matrix X ∈ Cn×n such that

X−1H X = Hc⊕Hr, X∗GX = Gc⊕Gr,

where
Hc = Hc,1⊕·· ·⊕Hc,mc , Gc = Gc,1⊕·· ·⊕Gc,mc ,
Hr = Hr,1⊕·· ·⊕Hr,mr , Gr = Gr,1⊕·· ·⊕Gr,mr ,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (λ j,λ j) of nonreal eigenvalues of H :

Hc, j =

[
Jξ j

(λ j) 0

0 Jξ j
(λ j)

]
, Gc, j = R2ξ j

=
[

0 Rξ j

Rξ j
0

]
,

where Imλ j > 0 and ξ j ∈ N for j = 1, . . . ,mc ;

2) blocks associated with real eigenvalues:

Hr, j = Jη j (α j), Gr, j = s jRη j ,

where α j ∈ R , s j ∈ {−1,1} , and η j ∈ N for j = 1, . . . ,mr .
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H has the (not necessarily pairwise distinct) nonreal eigenvalues λ1, ...,λmc ,λ 1, ...,λmc

and (not necessarily pairwise distinct) real eigenvalues α1, . . . ,αmr .

REMARK 2.3. Besides the eigenvalues, the signs s1, . . . ,smr associated with the
real eigenvalues are additional invariants of G-Hermitian matrices. The collection of
these signs is called the sign characteristic of H , sometimes also called Krein sig-
nature, [14]. For details on the sign characteristics, we refer to [8] and the references
therein.

The real version of Theorem 2.2 is as follows:

THEOREM 2.4. (Canonical form for real G-symmetric matrices, [8, 16, 17, 26])
Let G ∈ Rn×n be symmetric and invertible and let H ∈ Rn×n be G-symmetric. Then
there exists an invertible matrix X ∈ Rn×n such that

X−1H X = Hc⊕Hr, XT GX = Gc⊕Gr,

where
Hc = Hc,1⊕·· ·⊕Hc,mc , Gc = Gc,1⊕·· ·⊕Gc,mc ,
Hr = Hr,1⊕·· ·⊕Hr,mr , Gr = Gr,1⊕·· ·⊕Gr,mr ,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (λ j,λ j) of nonreal eigenvalues of H :

Hc, j = Jξ j
(a j,b j), Gc, j = R2ξ j

,

where b j = Imλ j > 0 , a j = Reλ j , and ξ j ∈ N for j = 1, . . . ,mc ;

2) blocks associated with real eigenvalues:

Hr, j = Jη j (α j), Gr, j = s jRη j ,

where α j ∈ R , s j ∈ {−1,1} , and η j ∈ N for j = 1, . . . ,mr .

H has the (not necessarily pairwise distinct) nonreal eigenvalues λ1, ...,λmc ,λ 1, ...,λmc

and (not necessarily pairwise distinct) real eigenvalues α1, . . . ,αmr .

The corresponding canonical form for G-skew-Hermitian matrices immediately
follows from Theorem 2.2, because a matrix K is G-skew-Hermitian if and only if
H = ıK is G-Hermitian. In the real case, however, the trick of multiplying by the
imaginary unit ı is not an option and a canonical form has to be derived separately. We
also need additional notation. We use the notation

Ξn =

⎡⎣ (−1)0 0
. . .

0 (−1)n−1

⎤⎦ , Γn = ΞnRn =

⎡⎣ 0 (−1)0

. .
.

(−1)n−1 0

⎤⎦ .
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THEOREM 2.5. (Canonical form for G-skew-symmetric matrices, [16, 18, 26])
Let G ∈ Rn×n be symmetric and invertible and let K ∈ Rn×n be G-skew symmetric.
Then there exists an invertible matrix X ∈Rn×n such that

X−1K X = Kc⊕Kr⊕Kı⊕Kz, XTGX = Gc⊕Gr⊕Gı⊕Gz,

where
Kc = Kc,1⊕·· ·⊕Kc,mc , Gc = Gc,1⊕·· ·⊕Gc,mc ,
Kr = Kr,1⊕·· ·⊕Kr,mr , Gr = Gr,1⊕·· ·⊕Gr,mr ,
Kı = Kı,1⊕·· ·⊕Kı,mı , Gı = Gı,1⊕·· ·⊕Gı,mı ,
Kz = Kz,1⊕·· ·⊕Kz,mo+me , Gz = Gz,1⊕·· ·⊕Gz,mo+me ,

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples (λ j,λ j,−λ j,−λ j) of nonreal, non purely
imaginary eigenvalues of K :

Kc, j =
[

Jξ j
(a j,b j) 0
0 −Jξ j

(a j,b j)

]
, Gc, j = R4ξ j

=
[

0 R2ξ j

R2ξ j
0

]
,

where a j = Reλ j > 0 , b j = Imλ j > 0 , and ξ j ∈ N for j = 1, . . . ,mc ;

2) blocks associated with pairs (α j,−α j) of real nonzero eigenvalues of K :

Kr, j =
[

Jη j (α j) 0
0 −Jη j(α j)

]
, Gr, j = R2η j =

[
0 Rη j

Rη j 0

]
,

where α j > 0 and η j ∈N for j = 1, . . . ,mr ;

3) blocks associated with pairs (ıβ j,−ıβ j) of purely imaginary nonzero eigenvalues
of K :

Kı, j =
[

0 Jρ j (β j)
−Jρ j(β j) 0

]
, Gı, j = s j

[
Rρ j 0
0 Rρ j

]
,

where β j > 0 , s j ∈ {−1,1} , and ρ j ∈ N for j = 1, . . . ,mı ;

4) blocks associated with the eigenvalue λ = 0 of K :

Kz, j = Jζ j
(0), Gz, j = t jΓζ j

,

where ζ j ∈N is odd, t j ∈ {−1,1} for j = 1, . . . ,mo , and

Kz, j =
[

Jζ j
(0) 0

0 −Jζ j
(0)

]
, Gz, j =

[
0 Rζ j

Rζ j
0

]
,

where ζ j ∈N is even for j = mo +1, . . . ,mo +me .

K has the (not necessarily pairwise distinct) eigenvalues ±λ1, ...,±λmc ,±λ 1, ...,±λmc ,
±α1, . . . ,±αmr , ±ıβ1, . . . ,±ıβmı , and the additional eigenvalue 0 , provided that mo +
me > 0 .
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If G is skew-Hermitian, then the canonical form for G-Hermitian (G-skew-Her-
mitian) matrices follows directly from Theorem 2.2, because ıG is Hermitian and a
matrix H is G-Hermitian (G-skew-Hermitian) if and only if H is ıG-Hermitian
( ıG-skew-Hermitian). The real case, once again, has to be treated separately.

THEOREM 2.6. (Canonical form for G-Hamiltonian matrices, [16, 18, 26])
Let G∈R2n×2n be skew-symmetric and invertible and let H ∈R2n×2n be G-Hamiltonian.
Then there exists an invertible matrix X ∈R2n×2n such that

X−1H X = Hc⊕Hr⊕Hı⊕Hz, XTGX = Gc⊕Gr⊕Gı⊕Gz,

where
Hc = Hc,1⊕·· ·⊕Hc,mc , Gc = Gc,1⊕·· ·⊕Gc,mc ,
Hr = Hr,1⊕·· ·⊕Hr,mr , Gr = Gr,1⊕·· ·⊕Gr,mr ,
Hı = Hı,1⊕·· ·⊕Hı,mı , Gı = Gı,1⊕·· ·⊕Gı,mı ,
Hz = Hz,1⊕·· ·⊕Hz,mo+me , Gz = Gz,1⊕·· ·⊕Gz,mo+me ,

and where the diagonal blocks have the following forms:

1) blocks associated with quadruples (λ j,λ j,−λ j,−λ j) of nonreal, non purely
imaginary eigenvalues of H :

Hc, j =
[

Jξ j
(a j,b j) 0
0 −Jξ j

(a j,b j)

]
, Gc, j =

[
0 R2ξ j

−R2ξ j
0

]
,

where a j = Reλ j > 0 , b j = Imλ j > 0 , and ξ j ∈ N for j = 1, . . . ,mc ;

2) blocks associated with pairs (α j,−α j) of real, nonzero eigenvalues of H :

Hr, j =
[

Jη j (α j) 0
0 −Jη j (α j)

]
, Gr, j =

[
0 Rη j

−Rη j 0

]
,

where α j > 0 and η j ∈N for j = 1, . . . ,mr ;

3) blocks associated with pairs (ıβ j,−ıβ j) of purely imaginary, nonzero eigenval-
ues of H :

Hı, j =
[

0 Jρ j (β j)
−Jρ j(β j) 0

]
, Gı, j = s j

[
0 Rρ j

−Rρ j 0

]
,

where β j > 0 , s j ∈ {−1,1} , and ρ j ∈ N for j = 1, . . . ,mı ;

4) blocks associated with the eigenvalue λ = 0 of H :

Hz, j =
[

Jζ j
(0) 0

0 −Jζ j
(0)

]
, Gz, j =

[
0 Rζ j

−Rζ j
0

]
,

where ζ j ∈N is odd for j = 1, . . . ,mo , and

Hz, j = Ξζ j
Jζ j

(0), Gz, j = t jΓζ j
,

where ζ j ∈N is even and t j ∈ {−1,1} for j = mo +1, . . . ,mo +me .
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H has the (not necessarily pairwise distinct) eigenvalues ±λ1...,±λmc ,±λ 1, ...,±λmc ,
±α1, . . . ,±αmr , ±ıβ1, . . . ,±ıβmı , and the additional eigenvalue 0 , provided that mo +
me > 0 .

THEOREM 2.7. (Canonical form for G-skew-Hamiltonian matrices, [5, 18, 26])
Let G ∈ R

2n×2n be skew-symmetric and invertible and let K ∈ R
2n×2n be G-skew-

Hamiltonian. Then there exists an invertible matrix X ∈ R2n×2n such that

X−1K X = Kc⊕Kr, XT GX = Gc⊕Gr,

where
Kc = Kc,1⊕·· ·⊕Kc,mc , Gc = Gc,1⊕·· ·⊕Gc,mc ,
Kr = Kr,1⊕·· ·⊕Kr,mr , Gr = Gr,1⊕·· ·⊕Gr,mr ,

and where the diagonal blocks have the following forms:

1) blocks associated with pairs (λ j,λ j) of nonreal eigenvalues of K :

Kc, j =
[

Jξ j
(a j,b j) 0
0 Jξ j

(a j,b j)

]
, Gc, j =

[
0 R2ξ j

−R2ξ j
0

]
,

where a j = Reλ j ∈R , b j = Imλ j > 0 , and ξ j ∈ N for j = 1, . . . ,mc ;

2) blocks associated with real eigenvalues α j of K :

Kr, j =
[

Jη j (α j) 0
0 Jη j (α j)

]
, Gr, j =

[
0 Rη j

−Rη j 0

]
,

where α j ∈ R and η j ∈ N for j = 1, . . . ,mr .

K has the (not necessarily pairwise distinct) nonreal eigenvalues a1± ıb1, . . . ,amc ±
ıbmc , and the (not necessarily pairwise distinct) real eigenvalues α1, . . . ,αmr (possibly
including zero).

In the following we need some results concerning the existence of structured
square roots of structured matrices. This question has been deeply investigated in the
literature mostly in the context of polar decompositions, and necessary and sufficient
conditions for the existence of square roots have been developed, see [1, 2, 5]. We do
not quote the results in full generality, but only consider the following special cases.

THEOREM 2.8. Let G ∈ Fn×n be Hermitian and nonsingular and let H ∈ Fn×n

be G-Hermitian, nonsingular, and such that σ(H )∩R− = /0 . Then there exists a
square root S ∈ Fn×n of H that satisfies σ(S ) ⊆ C+ . This square root is unique
and is a real polynomial in H (i.e., a polynomial in H whose coefficients are real).
In particular, S is G-Hermitian.
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Proof. Comparing the canonical forms of G-Hermitian and G-symmetric ma-
trices, it is easily seen that any pair (G,H ) ∈ Cn×n×Cn×n , where G is a nonsin-
gular Hermitian matrix and H is G-Hermitian, can be transformed into a real pair
(Gr,Hr) = (P∗GP,P−1H P) by some complex nonsingular transformation matrix P ∈
Cn×n . (This corresponds to the well-known fact that a matrix H is G-Hermitian for
some Hermitian G if and only if H is similar to a real matrix, see [8].) Therefore,
it is sufficient to consider the real case. Then by the discussion in Chapter 6.4 in [12],
we obtain that a square root S of H with σ(S ) ⊆ C+ exists, is unique, and can
be expressed as a polynomial (with real coefficients) in H . Clearly, this polynomial
stays invariant under the transformation with the transformation matrix P in the com-
plex case. It is then straightforward to check that a real polynomial in H is again
G-Hermitian.

In the case of a skew-symmetric real bilinear form, we have a similar result. The
proof follows exactly the same line as the proof of the preceding theorem.

THEOREM 2.9. Let G∈R2n×2n be skew-symmetric and nonsingular and let K ∈
R2n×2n be G-skew-Hamiltonian, nonsingular, and such that σ(K )∩R− = /0 . Then
there exists a square root S ∈ R2n×2n of K that satisfies σ(S ) ⊆ C+ . This square
root is unique and is a real polynomial in K . In particular, S is G-skew-Hamiltonian.

One might ask whether G-Hamiltonian matrices have G-Hamiltonian or G-skew-
Hamiltonian square roots, but this is never the case because squares of such matri-
ces must always be G-skew-Hamiltonian. On the other hand, each real G-skew-
Hamiltonian matrix K will have a G-Hamiltonian square root [5], but this square
root cannot be a polynomial in K , because such a polynomial would be G-skew-
Hamiltonian again.

3. Canonical form for G,Ĝ Hermitian

In this section, we investigate the matrix triple (A,G,Ĝ) for the case that both
G,Ĝ are Hermitian and nonsingular. We first consider the simpler case that A is square
and nonsingular.

THEOREM 3.1. Let A ∈ Cn×n be nonsingular and let G,Ĝ ∈ Cn×n be Hermitian
and nonsingular. Then there exist nonsingular matrices X ,Y ∈ Cn×n such that

X∗AY = Ac⊕Ar, X∗GX = Gc⊕Gr, Y ∗ĜY = Ĝc⊕ Ĝr, (3.1)

and for the Ĝ-Hermitian matrix Ĥ = Ĝ−1A∗G−1A ∈ Cn×n and for the G-Hermitian
matrix H = G−1AĜ−1A∗ ∈ C

n×n , we have that

Y−1Ĥ Y = Ĥc⊕ Ĥr, X−1H X = Hc⊕Hr. (3.2)

The diagonal blocks in these decompositions have the following forms:
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1) blocks associated with pairs (μ2
j ,μ

2
j) of nonreal eigenvalues of Ĥ and H :

Ac =
[
Jξ1

(μ1) 0
0 Jξ1

(μ1)

]
⊕·· ·⊕

[
Jξmc

(μmc) 0
0 Jξmc

(μmc
)

]
,

Gc =
[

0 Rξ1

Rξ1
0

]
⊕·· ·⊕

[
0 Rξmc

Rξmc
0

]
,

Ĝc =
[

0 Rξ1

Rξ1
0

]
⊕·· ·⊕

[
0 Rξmc

Rξmc
0

]
,

Ĥc =

[
J 2

ξ1
(μ1) 0
0 J 2

ξ1
(μ1)

]
⊕·· ·⊕

[
J 2

ξmc
(μmc) 0

0 J 2
ξmc

(μmc
)

]
,

Hc =

[
J 2

ξ1
(μ1) 0
0 J 2

ξ1
(μ1)

]∗
⊕· · ·⊕

[
J 2

ξmc
(μmc) 0

0 J 2
ξmc

(μmc
)

]∗
,

where μ j ∈C , argμ j ∈ (0,π/2) , and ξ j ∈ N for j = 1, . . . ,mc ;

2) blocks associated with real eigenvalues α j of H and Ĥ :

Ar = Jη1(β1) ⊕·· ·⊕ Jηmr
(βmr),

Gr = s1Rη1 ⊕·· ·⊕ smrRηmr
,

Ĝr = ŝ1Rη1 ⊕·· ·⊕ ŝmrRηmr
,

Ĥr = s1ŝ1J
2
η1

(β1) ⊕·· ·⊕ smr ŝmrJ
2
ηmr

(βmr),
Hr = s1ŝ1

(
J 2

η1
(β1)

)∗⊕· · ·⊕smr ŝmr

(
J 2

ηmr
(βmr)

)∗
,

where β j > 0 , s j, ŝ j ∈ {+1,−1} , and η j ∈ N for j = 1, . . . ,mr . Thus, α j =
β 2

j > 0 if s j = ŝ j and α j =−β 2
j < 0 if s j = ŝ j .

Moreover, the form (3.1) is unique up to the simultaneous permutation of blocks in the
right hand side of (3.1).

Proof. The proof will be performed in two steps.
Step 1) We first show that we may assume without loss of generality that Ĥ either
has only one pair of conjugate complex nonreal eigenvalues (λ ,λ ) or only one real
eigenvalue α .

Indeed, in view of Theorem 2.2, there exists a nonsingular matrix Y ∈ C
n×n such

that
Y−1Ĥ Y = Ĥ1⊕ Ĥ2, Y ∗ĜY = Ĝ1⊕ Ĝ2,

where Ĥ1,Ĝ1 ∈ Cp×p , Ĥ2,Ĝ2 ∈ C(n−p)×(n−p) , σ(Ĥ1)∩σ(Ĥ2) = /0 , and Ĥ1 either
has only one eigenvalue that is real or only two eigenvalues that are conjugate complex.
Using

G−1AĤ = H G−1A

and the fact that G−1A is nonsingular, we find that H and Ĥ are similar. Thus, there
exists a nonsingular matrix X ∈Cm×m such that

X−1H X = Ĥ1⊕ Ĥ2 =
[
Ĥ1 0
0 Ĥ2

]
, X∗GX =

[
G1 G12

G∗12 G2

]
,
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Here, G has been partitioned conformablywith H . By assumption, σ(Ĥ1) = σ(Ĥ ∗
1 )

and thus σ(Ĥ ∗
1 )∩σ(Ĥ2) = /0 . Then using that H is G-Hermitian, i.e.,[

Ĥ ∗
1 0
0 Ĥ ∗

2

][
G1 G12

G∗12 G2

]
= X∗H ∗GX = X∗GH X =

[
G1 G12

G∗12 G2

][
Ĥ1 0
0 Ĥ2

]
,

we obtain G12 = 0, because the Sylvester equation Ĥ ∗
1 G12−G12Ĥ2 = 0 only has the

trivial solution, given that the spectra of the coefficient matrices Ĥ ∗
1 and Ĥ2 do not

intersect. Next, we will show that X∗AY decomposes in the same way as H ,Ĥ ,G ,
and Ĝ . To this end, we partition

(X∗AY )−1 =
[

A11 A12

A21 A22

]
conformably with G and Ĝ . Then

Ĥ A−1 = Ĝ−1A∗G−1 = (G−1AĜ−1)∗ = (H A−∗)∗ = A−1H ∗

implies [
Ĥ1 0
0 Ĥ2

][
A11 A12

A21 A22

]
=

[
A11 A12

A21 A22

][
Ĥ ∗

1 0
0 Ĥ ∗

2

]
Using once again the fact that a Sylvester equation only has the trivial solution if the
spectra of the coefficient matrices do not intersect, we finally obtain that

(X∗AY )−1 =
[

A11 0
0 A22

]
and thus X∗AY is block diagonal as well. Repeating this argument several times, we
see that it remains to study triples (A,G,Ĝ) for which Ĥ has the restricted spectrum
as initially stated.
Step 2) By Step 1), we may assume without loss of generality that Ĥ either has only
one pair of conjugate complex nonreal eigenvalues (λ ,λ ) or only one real eigenvalue
α . We discuss these two cases separately.

Case 1: σ(Ĥ ) = {λ ,λ} for some λ ∈ C , Imλ > 0.
By Theorem 2.8, Ĥ has a unique Ĝ-Hermitian square root S∈Cn×n satisfying σ(S)⊆
C+ . Then by Theorem 2.2, there exists a nonsingular matrix Ỹ ∈ Cn×n such that

SCF := Ỹ−1SỸ =
[
Jξ1

(μ) 0
0 Jξ1

(μ)

]
⊕·· ·⊕

[
Jξm(μ) 0

0 Jξm(μ)

]
,

GCF := Ỹ ∗ĜỸ =
[

0 Rξ1

Rξ1
0

]
⊕·· ·⊕

[
0 Rξm

Rξm
0

]
,

HCF := Ỹ−1Ĥ Ỹ =

[
J 2

ξ1
(μ) 0

0 J 2
ξ1

(μ)

]
⊕·· ·⊕

[
J 2

ξm
(μ) 0

0 J 2
ξm

(μ)

]
,

where μ =
√
λ ∈C , argμ ∈ (0, π2 ) , and ξ j ∈N for j = 1, . . . ,m . Here, the third iden-

tity immediately follows from Ĥ = S2 . Since H and Ĥ are similar and since Ĥ
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has only a pair of conjugate complex nonreal eigenvalues, we obtain from Theorem 2.2
that the canonical forms of the pairs (H ,G) and (Ĥ ,Ĝ) coincide. In particular, this
implies the existence of a nonsingular matrix X̃ ∈ Cn×n such that

HCF = X̃−1H X̃ =

[
J 2

ξ1
(μ) 0

0 J 2
ξ1

(μ)

]
⊕·· ·⊕

[
J 2

ξm
(μ) 0

0 J 2
ξm

(μ)

]
,

GCF = X̃∗GX̃ =
[

0 Rξ1

Rξ1
0

]
⊕·· ·⊕

[
0 Rξm

Rξm 0

]
.

Finally, setting X = G−1X̃−∗ and Y = A−1GX̃SCF , we obtain

X∗AY = X̃−1G−1AA−1GX̃SCF = SCF

X∗GX = X̃−1G−1GG−1X̃−∗ = (X̃∗GX̃)−1 = G−1
CF = GCF

Y ∗ĜY = S∗CFX̃
∗GA−∗ĜA−1GX̃SCF

= S∗CFX̃
∗GX̃X̃−1H −1X̃SCF

= S∗CFGCF(HCF)−1SCF = GCFSCF(HCF)−1SCF = GCF

as desired, where we have used that SCF is GCF -Hermitian and that S2
CF = HCF . It is now

easy to check that X−1H X and Y−1Ĥ Y have the claimed forms.
Case 2: σ(Ĥ ) = {α} for some α ∈ R\ {0} .

Observe that sign(α)Ĥ has the only positive eigenvalue |α| . Thus, we can apply
Theorems 2.8 and 2.2 which yield the existence of a square root S∈C

n×n of sign(α)Ĥ
and a nonsingular matrix Ỹ ∈Cn×n such that

SCF := Ỹ−1SỸ = Jη1(β ) ⊕·· ·⊕ Jηm(β ),
Ỹ ∗ĜỸ = ŝ1Rη1 ⊕·· ·⊕ ŝmRηm ,

HCF := Ỹ−1Ĥ Ỹ = sign(α)J 2
η1

(β )⊕·· ·⊕sign(α)J 2
ηm

(β ),

where β =
√|α| , η j ∈ N and ŝ j ∈ {+1,−1} for j = 1, . . . ,m . Again using that H

and Ĥ are similar, we obtain from Theorem 2.2 the existence of a nonsingular matrix
X̃ ∈Cn×n such that

HCF = X̃−1H X̃ = sign(α)J 2
η1

(β )⊕·· ·⊕sign(α)J 2
ηm

(β ),
GCF := X̃∗GX̃ = s1Rη1 ⊕·· ·⊕ smRηm

for some s1, . . . ,sm ∈ {+1,−1} . Setting X = G−1X̃−∗ and Y = A−1GX̃SCF , we ob-
tain as in Case 1 that X∗AY = SCF , X∗GX = GCF , and Y ∗ĜY = GCFSCF(HCF)−1SCF =
sign(α)GCF.

We mention in passing that it is possible to link the sign characteristic (ŝ1, . . . , ŝm)
to the sign characteristic (s1, . . . ,sm) , but we refrain from doing so, because the explicit
knowledge of the parameters ŝ1, . . . , ŝm is irrelevant for the development of the canoni-
cal form for the triple (A,G,Ĝ) . It is now straightforward to check that X−1H X and
Y−1Ĥ Y have the claimed forms. Concerning uniqueness, we note that the form (3.1)
is uniquely determined by the canonical form of Ĥ as a Ĝ-Hermitian matrix, and the
restrictions argμ j ∈ (0,π/2) and β > 0.

In the general situation that A is non square, we have the following result.
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THEOREM 3.2. Let A ∈ Cm×n and let G ∈ Cm×m and Ĝ ∈ Cn×n be Hermitian
and nonsingular. Then there exist nonsingular matrices X ∈Cm×m and Y ∈Cn×n such
that

X∗AY = Anz⊕Az,1⊕Az,2⊕Az,3⊕Az,4,

X∗GX = Gnz⊕Gz,1⊕Gz,2⊕Gz,3⊕Gz,4, (3.3)

Y ∗ĜY = Ĝnz⊕ Ĝz,1⊕ Ĝz,2⊕ Ĝz,3⊕ Ĝz,4.

Moreover, for the Ĝ-Hermitian matrix Ĥ = Ĝ−1A∗G−1A ∈ Cn×n and for the G-
symmetric matrix H = G−1AĜ−1A∗ ∈ Cm×m we have that

Y−1Ĥ Y = Ĥnz⊕ Ĥz,1⊕ Ĥz,2⊕ Ĥz,3⊕ Ĥz,4,

X−1H X = Hnz⊕Hz,1⊕Hz,2⊕Hz,3⊕Hz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H :
Anz,Gnz,Ĝnz have the forms as in (3.1) and Ĥnz,Hnz have the forms as in (3.2);

1) one block corresponding to n0 Jordan blocks of size 1×1 of Ĥ and m0 Jordan
blocks of size 1×1 of H associated with the eigenvalue zero:

Az,1 = Om0×n0 , Gz,1 = Σπ0,ν0 , Ĝz,1 = Σπ̂0,ν̂0
, Ĥz,1 = On0 , Hz,1 = Om0 ,

where m0,n0,π0,ν0, π̂0, ν̂0 ∈ N∪{0} and π0 +ν0 = m0 , π̂0 + ν̂0 = n0 ;

2) blocks corresponding to a pair of j× j Jordan blocks of Ĥ and H associated
with the eigenvalue zero:

Az,2 =
γ1⊕

i=1
J2(0) ⊕

γ2⊕
i=1

J4(0) ⊕·· ·⊕
γ�⊕

i=1
J2�(0) ,

Gz,2 =
γ1⊕

i=1
R2 ⊕

γ2⊕
i=1

R4 ⊕·· ·⊕
γ�⊕

i=1
R2� ,

Ĝz,2 =
γ1⊕

i=1
R2 ⊕

γ2⊕
i=1

R4 ⊕·· ·⊕
γ�⊕

i=1
R2� ,

Ĥz,2 =
γ1⊕

i=1
J 2

2 (0) ⊕
γ2⊕

i=1
J 2

4 (0) ⊕·· ·⊕
γ�⊕

i=1
J 2

2�(0) ,

Hz,2 =
γ1⊕

i=1
J 2

2 (0)T⊕
γ2⊕
i=1

J 2
4 (0)T⊕·· ·⊕

γ�⊕
i=1

J 2
2�(0)T ,

where γ1, . . . ,γ� ∈ N∪ {0} ; thus, Ĥz,2 and Hz,2 both have each 2γ j Jordan
blocks of size j× j , where exactly γ j blocks have sign +1 and γ j blocks have
sign −1 , for j = 1, . . . , �;
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3) blocks corresponding to a j× j Jordan block of Ĥ and a ( j + 1)× ( j + 1)
Jordan block of H associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1

[
I1
0

]
2×1

⊕
m2⊕
i=1

[
I2
0

]
3×2

⊕·· ·⊕
m�−1⊕
i=1

[
I�−1
0

]
�×(�−1)

,

Gz,3 =
m1⊕
i=1

s(i)1 R2 ⊕
m2⊕
i=1

s(i)2 R3 ⊕·· ·⊕
m�−1⊕
i=1

s(i)�−1R� ,

Ĝz,3 =
m1⊕
i=1

ŝ(i)1 R1 ⊕
m2⊕
i=1

ŝ(i)2 R2 ⊕·· ·⊕
m�−1⊕
i=1

ŝ(i)�−1R�−1 ,

Ĥz,3 =
m1⊕
i=1

s(i)1 ŝ(i)1 J1(0) ⊕
m2⊕
i=1

s(i)2 ŝ(i)2 J2(0) ⊕·· ·⊕
m�−1⊕
i=1

s(i)�−1ŝ
(i)
�−1J�−1(0) ,

Hz,3 =
m1⊕
i=1

s(i)1 ŝ(i)1 J2(0)T⊕
m2⊕
i=1

s(i)2 ŝ(i)2 J3(0)T⊕·· ·⊕
m�−1⊕
i=1

s(i)�−1ŝ
(i)
�−1J�(0)T ,

where m1, . . . ,m�−1 ∈N∪{0} , and for j = 1, . . . , �−1 , we have that s(i)j = 1 and

ŝ(i)j ∈ {+1,−1} if j is odd, and s(i)j ∈ {+1,−1} and ŝ(i)j = 1 if j is even; thus

Ĥz,3 has mj Jordan blocks of size j× j with signs ŝ(i)j if j is odd and signs s(i)j
if j is even, and Hz,3 has mj Jordan blocks of size ( j +1)× ( j +1) with signs

ŝ(i)j if j is odd and signs s(i)j if j is even for i = 1, . . . ,mj and j = 1, . . . , �−1 ;

4) blocks corresponding to a ( j + 1)× ( j + 1) Jordan blocks of Ĥ and a j× j
Jordan block of H associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 I1

]
1×2 ⊕

n2⊕
i=1

[
0 I2

]
2×3 ⊕·· ·⊕

n�−1⊕
i=1

[
0 I�−1

]
(�−1)×�

,

Gz,4 =
n1⊕
i=1

s(i)1 R1 ⊕
n2⊕
i=1

s(i)2 R2 ⊕·· ·⊕
n�−1⊕
i=1

s(i)�−1R�−1 ,

Ĝz,4 =
n1⊕
i=1

ŝ(i)1 R2 ⊕
n2⊕
i=1

ŝ(i)2 R3 ⊕·· ·⊕
n�−1⊕
i=1

ŝ(i)�−1R� ,

Ĥz,4 =
n1⊕
i=1

s(i)1 ŝ(i)1 J2(0)⊕
n2⊕
i=1

s(i)2 ŝ(i)2 J3(0) ⊕·· ·⊕
n�−1⊕
i=1

s(i)�−1ŝ
(i)
�−1J�(0),

Hz,4 =
n1⊕
i=1

s(i)1 ŝ(i)1 J1(0)T⊕
n2⊕
i=1

s(i)2 ŝ(i)2 J2(0)T ⊕·· ·⊕
n�−1⊕
i=1

s(i)�−1ŝ
(i)
�−1J�−1(0)T ,

where n1, . . . ,n�−1 ∈N∪{0} , and for j = 1, . . . , �−1 , we have that s(i)j = 1 and

ŝ(i)j ∈ {+1,−1} if j is even, and s(i)j ∈ {+1,−1} and ŝ(i)j = 1 if j is odd; thus,

Ĥz,4 has n j Jordan blocks of size ( j+1)× ( j+1) with signs s(i)j if j is odd and

signs ŝ(i)j if j is even, and Hz,4 has n j Jordan blocks of size j× j with signs s(i)j

if j is odd and signs ŝ(i)j if j is even for i = 1, . . . ,mj and j = 1, . . . , �−1 ;
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For the eigenvalue zero, the matrices Ĥ and H have 2γ j + mj + n j−1 respectively
2γ j +mj−1 + n j Jordan blocks of size j× j for j = 1, . . . , � , where m� = n� = 0 and
where � is the maximum of the index of Ĥ and the index of H . (Here, index refers to
the maximal size of a Jordan block associated with the eigenvalue zero.)

Furthermore, the form (3.3) is unique up to simultaneous block permutation of the
blocks in the block diagonal of the right hand side of (3.3).

Proof. Due to its very technical nature, the proof is omitted here and presented in
the Appendix.

Since the canonical form of Theorem 3.2 is quite complicated, we present some
examples to illustrate this form.

EXAMPLE 3.3. Let A , G , Ĝ be given by

A = G = Ĝ =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 +1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the canonical form consists of one block of type 2) with j = 2, one block of

type 3) with j = 1 and sign ŝ(1)
1 =−1, and two blocks of type 4), one with j = 1 and

sign s(1)
1 = +1 and one with j = 2 and sign ŝ(1)

2 = −1. Observe that the signs only
occur in the blocks of G or Ĝ , respectively, that have odd size. The signs attached
to the corresponding even sized blocks are always +1. Thus, for example, the signs
corresponding to blocks of type 4) will always be found in G if j is odd and they can
be read off Ĝ if j is even.

EXAMPLE 3.4. It is important to note that rectangular matrices with a total num-
ber of zero rows or columns are allowed in the canonical form. For example consider
the two non-equivalent triples

A1 =
[
0 1

]
, G1 =

[−1
]
, Ĝ1 =

[
0 1
1 0

]
and A2 =

[
0 1

]
, G2 =

[−1
]
, Ĝ2 =

[
1 0
0 −1

]
.

The first example is just one block of type 4) with sign s(1)
1 =−1. Indeed, forming the

products
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Ĥ1 = Ĝ−1
1 A∗1G

−1
1 A =

[
0 −1
0 0

]
, H1 = G−1

1 AĜ−1
1 A∗1 =

[
0
]
,

as predicted, Ĥ1 has only one Jordan block of size 2 associated with the eigenvalue
λ = 0 and the sign s =−1, while H1 has one Jordan block of size 1 associated with
λ = 0 and the sign s = −1. The situation is different in the second case. Here, we
obtain

Ĥ2 = Ĝ−1
2 A∗2G

−1
2 A =

[
0 0
0 1

]
, H2 = G−1

2 AĜ−1
2 A∗2 =

[
1
]
,

i.e., Ĥ2 has two Jordan blocks of size 1, one associated with λ = 0 and sign s1 = 1
and a second one associated with λ = 1 and sign s2 = −1, while H2 has one Jordan
block of size 1 associated with λ = 1 and sign s = −1. Here, the triple (A2,G2,Ĝ2)
is in canonical form consisting of one block of type 1) and size 0×1 and of one block
of type 0):

A2 =
[
0 1

]
, G2 =

[−1
]
, Ĝ2 =

[
1 0
0−1

]
.

We have the following real versions of Theorem 3.1 and Theorem 3.2.

THEOREM 3.5. Let A ∈ Rn×n be nonsingular and let G,Ĝ ∈ Rn×n be symmetric
and nonsingular. Then there exist nonsingular matrices X ,Y ∈ Rn×n such that

XT AY = Ac⊕Ar, XTGX = Gc⊕Gr, YT ĜY = Ĝc⊕ Ĝr. (3.4)

Moreover, for the Ĝ-symmetric matrix Ĥ = Ĝ−1ATG−1A and for the G-symmetric
matrix H = G−1AĜ−1AT , we have that

Y−1Ĥ Y = Ĥc⊕ Ĥr, X−1H X = Hc⊕Hr. (3.5)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (μ2
j ,μ

2
j) of nonreal eigenvalues of Ĥ and H :

Ac = Jξ1
(a1,b1) ⊕·· ·⊕Jξmc

(amc ,bmc),

Gc = R2ξ1
⊕·· ·⊕ R2ξmc

,

Ĝc = R2ξ1
⊕·· ·⊕ R2ξmc

,

Ĥc = J 2
ξ1

(a1,b1) ⊕·· ·⊕J 2
ξmc

(amc ,bmc),

Hc = J 2
ξ1

(a1,b1)T⊕·· ·⊕J 2
ξmc

(amc ,bmc)
T ,

where a j,b j > 0 , μ j = a j + ıb j , and ξ j ∈ N for j = 1, . . . ,mc ;
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2) blocks associated with real eigenvalues α j of H and Ĥ :

Ar = Jη1(β1) ⊕·· ·⊕ Jηmr
(βmr),

Gr = s1Rη1 ⊕·· ·⊕ smrRηmr
,

Ĝr = ŝ1Rη1 ⊕·· ·⊕ ŝmrRηmr
,

Ĥr = s1 ŝ1J
2
η1

(β1) ⊕·· ·⊕ smr ŝmrJ
2
ηmr

(βmr),
Hr = s1 ŝ1

(
J 2

η1
(β1)

)T⊕·· ·⊕smr ŝmr

(
J 2

ηmr
(βmr)

)T
,

where β j > 0 , s j, ŝ j ∈ {+1,−1} , and η j ∈ N for j = 1, . . . ,mr . Thus, α j =
β 2

j > 0 if s j = ŝ j and α j =−β 2
j < 0 if s j = ŝ j .

Furthermore, the form (3.4) is unique up to the simultaneous permutation of blocks in
the right hand side of (3.4).

Proof. The proof follows exactly the same lines as the proof of Theorem 3.1. (The
key point here is that the square roots that are constructed analogously to the proof of
Theorem 3.1 are real, see Theorem 2.8.)

THEOREM 3.6. Let A ∈ Rm×n and let G ∈ Rm×m and Ĝ ∈ Rn×n be symmetric
and nonsingular. Then there exist nonsingular matrices X ∈Rm×m and Y ∈Rn×n such
that

XT AY = Anz⊕Az,1⊕Az,2⊕Az,3⊕Az,4,

XT GX = Gnz⊕Gz,1⊕Gz,2⊕Gz,3⊕Gz,4, (3.6)

YT ĜY = Ĝnz⊕ Ĝz,1⊕ Ĝz,2⊕ Ĝz,3⊕ Ĝz,4.

Moreover, for the Ĝ-symmetric matrix Ĥ = Ĝ−1AT G−1A ∈ C
n×n and for the G-

symmetric matrix H = G−1AĜ−1AT ∈ Cm×m we have that

Y−1Ĥ Y = Ĥnz⊕ Ĥz,1⊕ Ĥz,2⊕ Ĥz,3⊕ Ĥz,4,

X−1H X = Hnz⊕Hz,1⊕Hz,2⊕Hz,3⊕Hz,4.

Here, the blocks Anz,Gnz,Ĝnz,Ĥnz, and Hnz have the forms as in (3.4) and (3.5), while
Az,k , Gz,k , Ĝz,k , Ĥz,k , and Hz,k have the forms as in Theorem 3.2 for k = 1, . . . ,4 .

Moreover, the form (3.6) is unique up to the simultaneous permutation of blocks in
the right hand side of (3.6).

Proof. The proof follows exactly the same lines as the proof of Theorem 3.2.
In the particular case that one of the Hermitian matrices is positive definite (say

G), we obtain the following special case of Theorem 3.2 and Theorem 3.6 that can be
interpreted as a generalization of both the Schur form for a Hermitian matrix as well as
a generalization of the standard singular value decomposition.
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COROLLARY 3.7. Let A ∈ Fm×n , let G ∈ Fm×m be Hermitian and positive def-
inite, and let Ĝ ∈ Fn×n be Hermitian and nonsingular. Then there exist nonsingular
matrices X ∈ Fm×m and Y ∈ Fn×n such that

X∗AY =

⎡⎢⎣β1 0
. . .

0 βmr

⎤⎥⎦⊕Om0×n0⊕
[
On1 In1

]
,

X∗GX =

⎡⎢⎣ 1 0
. . .

0 1

⎤⎥⎦⊕ Im0⊕ In1 = Im,

Y ∗ĜY =

⎡⎢⎣ ŝ1 0
. . .

0 ŝmr

⎤⎥⎦⊕Σπ̂0,ν̂0
⊕

[
0 In1

In1 0

]
,

where n0 = π̂0 + ν̂0 and β j > 0 , ŝ j ∈ {−1,1} for j = 1, . . . ,mr . Moreover,

Y−1Ĝ−1A∗G−1AY =

⎡⎢⎣ ŝ1β 2
1 0

. . .

0 ŝmrβ 2
mr

⎤⎥⎦⊕On0⊕
[

0 In1

0 0

]
,

X−1G−1AĜ−1A∗X =

⎡⎢⎣ ŝ1β 2
1 0

. . .

0 ŝmrβ 2
mr

⎤⎥⎦⊕Om0+n1 .

Proof. Because G is positive definite, due to the inertia index relation, in the
canonical form of Theorem 3.2, Gc , as well as Ac,Ĝc must be void. Furthermore,
η1 = . . . = ηmr = 1 and s1 = . . . = smr = 1. Concerning the blocks Az,k , Gz,k , Ĝz,k , the
blocks for k = 1 may exist, but Gz,1 has to be the identity matrix Im0 ; the blocks for
k = 2 and k = 3 must be void, and the blocks for k = 4 may only exist when j = 1. In
this case Gz,4 has to be In1 and applying an appropriate permutation, we can achieve
the forms

Az,4 =
[
On1 In1

]
, Gz,4 = In1 , Ĝz,4 =

[
0 In1

In1 0

]
.

The proof for the real case is analogous.

REMARK 3.8. It should be noted that when G = Im , then X is unitary and Corol-
lary 3.7 gives the Schur form of the Hermitian matrix AĜ−1A∗ . Also, it simultaneously
displays the Jordan form of Ĝ−1A∗A . One should observe here the difference in the
eigenstructures of AĜ−1A∗ and Ĝ−1A∗A corresponding to the eigenvalue λ = 0. (In-
deed, it is well known that two matrix products AB and BA have identical nonzero
eigenvalues including identical algebraic, geometric, and partial multiplicities, but the
Jordan structure for the eigenvalue λ = 0 may be different for both matrices, see [6].)
If G = Im and Ĝ = In , then also Y is unitary and Corollary 3.7 becomes the standard
singular value decomposition.
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4. Canonical form for G symmetric and Ĝ skew-symmetric

In this section we determine the canonical form for the case that G is symmetric
and Ĝ is skew-symmetric. We only consider the real case, because the corresponding
complex case (i.e., G being Hermitian and Ĝ being skew-Hermitian) can be easily de-
rived from the canonical form in Theorem 3.2 by simply multiplying Ĝ with −ı . For
the real case, the situation is different and the canonical form becomes more compli-
cated. Again, we start with the result for the case that A is square and nonsingular.

THEOREM 4.1. Let A∈R2n×2n be nonsingular, let G∈R2n×2n be symmetric and
nonsingular, and let Ĝ ∈ R

2n×2n be skew-symmetric and nonsingular. Then there exist
nonsingular matrices X ,Y ∈R2n×2n such that

XT AY = Ac⊕Ar⊕Aı, XT GX = Gc⊕Gr⊕Gı, YT ĜY = Ĝc⊕ Ĝr⊕ Ĝı. (4.1)

Moreover, for the Ĝ-Hamiltonian matrix Ĥ = Ĝ−1ATG−1A and for the G-skew-
symmetric matrix H = G−1AĜ−1AT , we have that

Y−1Ĥ Y = Ĥc⊕ Ĥr⊕ Ĥı, X−1H X = Hc⊕Hr⊕Hı. (4.2)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with quadruples ((a j± ıb j)2,−(a j± ıb j)2) of nonreal and non
purely imaginary eigenvalues of Ĥ and H :

Ac =
[
Jξ1

(a1,b1) 0
0 Jξ1

(a1,b1)

]
⊕·· ·⊕

[
Jξmc

(amc ,bmc) 0
0 Jξmc

(amc ,bmc)

]
,

Gc =
[

0 R2ξ1

R2ξ1
0

]
⊕·· ·⊕

[
0 R2ξmc

R2ξmc
0

]
,

Ĝc =
[

0 R2ξ1−R2ξ1
0

]
⊕·· ·⊕

[
0 R2ξmc−R2ξmc

0

]
,

Ĥc =
[−Jξ1

(a1,b1)2 0
0 Jξ1

(a1,b1)2

]
⊕·· ·⊕

[−Jξmc
(amc ,bmc)

2 0
0 Jξmc

(amc ,bmc)
2

]
,

Hc =
[
Jξ1

(a1,b1)2 0
0 −Jξ1

(a1,b1)2

]T

⊕·· ·⊕
[
Jξmc

(amc ,bmc)
2 0

0 −Jξmc
(amc ,bmc)

2

]T

,

where a j > b j > 0 and ξ j ∈N for j = 1, . . . ,mc ;
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2) blocks associated with pairs of real eigenvalues (α2
j ,−α2

j ) of H and Ĥ :

Ar =
[
Jη1(α1) 0

0 Jη1(α1)

]
⊕·· ·⊕

[
Jηmr

(αmr ) 0
0 Jηmr

(αmr )

]
,

Gr =
[

0 Rη1

Rη1 0

]
⊕·· ·⊕

[
0 Rηmr

Rηmr
0

]
,

Ĝr =
[

0 Rη1

−Rη1 0

]
⊕·· ·⊕

[
0 Rηmr−Rηmr

0

]
,

Ĥr =
[−Jη1(α1)2 0

0 Jη1(α1)2

]
⊕·· ·⊕

[−Jηmr
(αmr )

2 0
0 Jηmr

(αmr )
2

]
,

Hr =
[
Jη1(α1)2 0

0 −Jη1(α1)2

]T

⊕·· ·⊕
[
Jηmr

(αmr)
2 0

0 −Jηmr
(αmr )

2

]T

,

where α j > 0 and η j ∈N for j = 1, . . . ,mr ;

3) blocks associated with pairs of purely imaginary eigenvalues (ıβ 2
j ,−ıβ 2

j ) of H

and Ĥ :

Aı =
[
Jρ1(β1) 0

0 Jρ1(β1)

]
⊕·· ·⊕

[
Jρmı

(βmı) 0
0 Jρmı

(βmı)

]
,

Gı = s1

[
Rρ1 0
0 Rρ1

]
⊕·· ·⊕ smı

[
Rρmı

0
0 Rρmı

]
,

Ĝı = s1

[
0 Rρ1

−Rρ1 0

]
⊕·· ·⊕ smı

[
0 Rρmı−Rρmı

0

]
,

Ĥı =
[

0 Jρ1(β1)2

−Jρ1(β1)2 0

]T

⊕·· ·⊕
[

0 Jρmı
(βmı)

2

−Jρmı
(βmı)

2 0

]T

,

Hı =
[

0 −Jρ1(β1)2

Jρ1(β1)2 0

]
⊕·· ·⊕

[
0 −Jρmı

(βmı)
2

Jρmı
(βmı)

2 0

]
,

where β j > 0 , s j ∈ {+1,−1} , and ρ j ∈ N for j = 1, . . . ,mı ;

Furthermore, the form (4.1) is unique up to the simultaneous permutation of blocks in
the right hand side of (4.1).

Proof. Analogous to the proof of Theorem 3.1, it can be shown that without loss
of generality we may assume that σ(Ĥ ) = {λ ,λ ,−λ ,−λ}, where λ ∈ C\ {0} . We
then distinguish the three different cases λ 2 > 0, λ 2 < 0, and λ 2 ∈R . The proof then
proceeds similar to the proof of Theorem 3.1, but instead of constructing a square root
of Ĥ , a square root of a related Ĝ-skew-Hamiltonian matrix S̃ will be considered.
The proof for the cases λ 2 > 0 and λ 2 ∈R follows exactly the same lines as the proof
of Theorem 5.1 in [19] and will not be reproduced here. The proof for the remaining
case differs slightly and will therefore be presented here in full detail.
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Thus, assume without loss of generality that σ(Ĥ ) = {ıλ ,−ıλ} , where λ > 0.
By Theorem 2.6, there exists a nonsingular matrix W ∈ R2n×2n such that

W−1Ĥ W =
[

0 Jρ1(λ )
−Jρ1(λ ) 0

]
⊕·· ·⊕

[
0 Jρm(λ )

−Jρm(λ ) 0

]
,

WT ĜW = ŝ1

[
0 Rρ1

−Rρ1 0

]
⊕·· ·⊕ ŝm

[
0 Rρm

−Rρm 0

]
,

where ρ j ∈ N and ŝ j ∈ {+1,−1} for j = 1, . . . ,m . Next, we define the matrix S̃ to be
such that

W−1S̃W =
[

Jρ1(λ ) 0
0 Jρ1(λ )

]
⊕·· ·⊕

[
Jρm(λ ) 0

0 Jρm(λ )

]
.

Then S̃ is Ĝ-skew-Hamiltonian and satisfies σ(S̃)⊆R+ . Thus, applying Theorem 2.9,
we obtain that S̃ has unique square root S∈Cn×n that satisfies σ(S)⊆R+ and that is a
polynomial in S̃ . Consequently, with S̃ also its square root S is Ĝ-skew-Hamiltonian.
Let β =

√
λ . Then Theorem 2.7 implies the existence of a nonsingular matrix Ỹ ∈

R2n×2n such that

SCF := Ỹ−1SỸ =
[

Jρ1(β ) 0
0 Jρ1(β )

]
⊕·· ·⊕

[
Jρm(β ) 0

0 Jρm(β )

]
,

Ỹ T ĜỸ =
[

0 Rρ1

−Rρ1 0

]
⊕·· ·⊕

[
0 Rρm

−Rρm 0

]
.

(Note that the Jordan structure of S follows from the fact that S is a polynomial in S̃ .)
Moreover, using G−1AĤ = H G−1A and the fact that G−1A is nonsingular, we find
that Ĥ and H are similar. Thus, by Theorem 2.5, we find that there is a nonsingular
matrix X̃1 such that

X̃−1
1 H X̃1 =

[
0 Jρ1(λ )

−Jρ1(λ ) 0

]
⊕·· ·⊕

[
0 Jρm(λ )

−Jρm(λ ) 0

]
,

X̃T
1 GX̃1 = s̃1

[
Rρ1 0
0 Rρ1

]
⊕·· ·⊕ s̃m

[
Rρm 0
0 Rρm

]
,

where s̃1, . . . , s̃m ∈ {+1,−1} . On the other hand, since β 2 = λ , the matrix

HCF :=
[

0 −J 2
ρ1

(β )
J 2

ρ1
(β ) 0

]
⊕·· ·⊕

[
0 −J 2

ρm
(β )

J 2
ρm

(β ) 0

]
is similar to X̃−1

1 H X̃1 . It is also obvious that HCF is XT
1 GX̃1 -skew symmetric. Again,

by Theorem 2.5 there exists a nonsingular matrix X̃2 such that with setting X̃ = X̃1X̃2

we have that

HCF := X̃−1H X̃ =
[

0 −J 2
ρ1

(β )
J 2

ρ1
(β ) 0

]
⊕·· ·⊕

[
0 −J 2

ρm
(β )

J 2
ρm

(β ) 0

]
,

GCF := X̃TGX̃ = s1

[
Rρ1 0
0 Rρ1

]
⊕·· ·⊕ sm

[
Rρm 0
0 Rρm

]
,
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for some s1, . . . ,sm ∈ {+1,−1} . (It is actually possible to show that s̃ j = s j for j =
1, . . . ,m , but we refrain from doing so as it is not necessary for the proof.) Observe that
SCF is GCF -symmetric and satisfies

SCF(HCF)−1SCF =
[

0 Iρ1

−Iρ1 0

]
⊕·· ·⊕

[
0 Iρm

−Iρm 0

]
.

Using this identity and setting X = G−1X̃−T and Y = A−1GX̃SCF , we obtain

XT AY = X̃−1G−1AA−1GX̃SCF = SCF,

XT GX = X̃−1G−1GG−1X̃−T = (X̃TGX̃)−1 = (GCF)−1 = GCF,

YT ĜY = ST
CFX̃

T GA−T ĜA−1GX̃SCF

= ST
CFX̃

T GX̃X̃−1H −1X̃SCF

= ST
CFGCF(HCF)−1SCF = GCFSCF(HCF)−1SCF

= s1

[
0 Rρ1

−Rρ1 0

]
⊕·· ·⊕ sm

[
0 Rρm

−Rρm 0

]
.

It is now straightforward to check that Y−1H Y and X−1Ĥ X have the claimed forms.
Concerning uniqueness, we note that the form (4.1) is already uniquely determined
by the Jordan structure, the sign characteristic of H , and by the restrictions on the
parameters.

For the general non square case we have the following result.

THEOREM 4.2. Let A ∈R
m×2n , let G ∈R

m×m be symmetric nonsingular, and let
Ĝ∈R2n×2n be skew-symmetric and nonsingular. Then there exist nonsingular matrices
X ∈Rm×m and Y ∈R2n×2n such that

XTAY = Anz⊕Az,1⊕Az,2⊕Az,3⊕Az,4⊕Az,5⊕Az,6,

XTGX = Gnz⊕Gz,1⊕Gz,2⊕Gz,3⊕Gz,4⊕Gz,5⊕Gz,6, (4.3)

YT ĜY = Ĝnz⊕ Ĝz,1⊕ Ĝz,2⊕ Ĝz,3⊕ Ĝz,4⊕ Ĝz,5⊕ Ĝz,6.

Moreover, for the Ĝ-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A ∈ R2n×2n and for the G-
skew-symmetric matrix H = G−1AĜ−1AT ∈ Rm×m we have that

Y−1Ĥ Y = Ĥnz⊕ Ĥz,1⊕ Ĥz,2⊕ Ĥz,3⊕ Ĥz,4⊕ Ĥz,5⊕ Ĥz,6,

X−1H X = Hnz⊕Hz,1⊕Hz,2⊕Hz,3⊕Hz,4⊕Hz,5⊕Hz,6.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of Ĥ and H :
Anz,Gnz,Ĝnz have the forms as in (4.1) and Ĥnz,Hnz have the forms as in (4.2);

1) one block corresponding to 2n0 Jordan blocks of size 1×1 of Ĥ and m0 Jordan
blocks of size 1×1 of H associated with the eigenvalue zero:

Az,1 = Om0×2n0 , Gz,1 = Σπ0,ν0 , Ĝz,1 = Jn0 , Ĥz,1 = O2n0 , Hz,1 = Om0 ,

where m0,n0,π0,ν0 ∈ N∪{0} and m0 = π0 +ν0 ;
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2) blocks corresponding to a pair of j× j Jordan blocks of H and Ĥ associated
with the eigenvalue zero:

Az,2 =
γ1⊕
i=1

J2(0) ⊕
γ2⊕

i=1
J4(0) ⊕·· ·⊕

γ2�+1⊕
i=1

J4�+2(0) ,

Gz,2 =
γ1⊕

i=1
R2 ⊕

γ2⊕
i=1

R4 ⊕·· ·⊕
γ2�+1⊕
i=1

R4�+2 ,

Ĝz,2 =
γ1⊕
i=1

[
0 1
−1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕·· ·⊕

γ2�+1⊕
i=1

[
0 R2�+1

−R2�+1 0

]
,

Ĥz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕

i=1
(−Σ2,2)J 2

4 (0)⊕·· ·⊕
γ2�+1⊕
i=1

(−Σ2�+1,2�+1)J 2
4�+2(0),

Hz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕

i=1
Σ3,1J

2
4 (0)T ⊕·· ·⊕

γ2�+1⊕
i=1

Σ2�+2,�J
2
4�+2(0)T ,

where γ1, . . . ,γ� ∈ N∪ {0} ; thus, Ĥz,2 and Hz,2 both have each 2γ j Jordan
blocks of size j× j for j = 1, . . . ,2�+1 ;
moreover, if j is odd, then exactly γ j Jordan blocks of Hz,2 of size j× j have
sign s = +1 and exactly γ j blocks have sign s = −1 (even-sized Jordan blocks
associated with zero of G-skew-symmetric matrices do not have signs), and if
j is even, then exactly γ j Jordan blocks of Ĥz,2 of size j× j have sign s = +1
and exactly γ j blocks have sign s =−1 (odd-sized Jordan blocks associated with
zero of Ĝ-Hamiltonian matrices do not have signs);

3) blocks corresponding to a 2 j×2 j Jordan block of Ĥ and a (2 j+1)× (2 j+1)
Jordan block of H associated with the eigenvalue zero:

Az,3 =
m2⊕
i=1

[
I2
0

]
3×2

⊕·· ·⊕
m2�⊕
i=1

[
I2�

0

]
(2�+1)×2�

,

Gz,3 =
m2⊕
i=1

s(2)
i R3 ⊕·· ·⊕

m2�⊕
i=1

s(2�)
i R2�+1 ,

Ĝz,3 =
m2⊕
i=1

[
0 R1

−R1 0

]
⊕·· ·⊕

m2�⊕
i=1

[
0 R�

−R�0

]
,

Ĥz,3 =
m2⊕
i=1

(−s(2)
i Σ1,1)J2(0)⊕·· ·⊕

m2�⊕
i=1

(−s(2�)
i Σ�,�)J2�(0) ,

Hz,3 =
m2⊕
i=1

s(2�)
i Σ2,1J3(0)T ⊕·· ·⊕

m2�⊕
i=1

s(2�)
i Σ�+1,�J2�+1(0)T ,

where m2,m4, . . . ,m2� ∈N∪{0} ; thus, Ĥz,3 has m2 j Jordan blocks of size 2 j×
2 j with signs s(2 j)

i , and Hz,3 has m2 j Jordan blocks of size (2 j +1)× (2 j+1)
with signs s(2 j)

i for i = 1, . . . ,m2 j and j = 1, . . . , �;
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4) blocks corresponding to two (2 j− 1)× (2 j− 1) Jordan blocks of Ĥ and two
2 j×2 j Jordan blocks of H associated with the eigenvalue zero:

Az,4 =
m1⊕
i=1

⎡⎢⎢⎣
0 I1
0 0
I1 0
0 0

⎤⎥⎥⎦
4×2

⊕·· ·⊕
m2�−1⊕
i=1

⎡⎢⎢⎣
0 I2�−1

0 0
I2�−1 0

0 0

⎤⎥⎥⎦
4�×(4�−2)

,

Gz,4 =
m1⊕
i=1

R4 ⊕·· ·⊕
m2�−1⊕
i=1

R4� ,

Ĝz,4 =
m1⊕
i=1

[
0 R1

−R1 0

]
⊕·· ·⊕

m2�−1⊕
i=1

[
0 R2�−1

−R2�−1 0

]
,

Ĥz,4 =
m1⊕
i=1

[−J1(0) 0
0 J1(0)

]
⊕·· ·⊕

m2�−1⊕
i=1

[−J2�−1(0) 0
0 J2�−1(0)

]
,

Hz,4 =
m1⊕
i=1

[−J2(0) 0
0 J2(0)

]T

⊕·· ·⊕
m2�−1⊕
i=1

[−J2�(0) 0
0 J2�(0)

]T

,

where m1,m3, . . . ,m2�−1 ∈N∪{0} ; thus, Ĥz,4 has 2m2 j−1 Jordan blocks of the
size (2 j− 1)× (2 j− 1) and Hz,4 has 2m2 j−1 Jordan blocks of size 2 j× 2 j
for j = 1, . . . , �; (no sign-characteristic is involved, because neither even-sized
Jordan blocks associated with zero of G-skew-symmetric matrices nor odd-sized
Jordan blocks associated with zero of Ĝ-Hamiltonian matrices have signs);

5) blocks corresponding to a 2 j×2 j Jordan block of Ĥ and a (2 j−1)× (2 j−1)
Jordan block of H associated with the eigenvalue zero:

Az,5 =
n1⊕
i=1

[
0 I1

]
1×2 ⊕·· ·⊕

n2�−1⊕
i=1

[
0 I2�−1

]
(2�−1)×2�

,

Gz,5 =
n1⊕
i=1

s(1)
i R1 ⊕·· ·⊕

n2�−1⊕
i=1

s(2�−1)
i R2�−1 ,

Ĝz,5 =
n1⊕
i=1

[
0 R1

−R1 0

]
⊕·· ·⊕

n2�−1⊕
i=1

[
0 R�

−R� 0

]
,

Ĥz,5 =
n1⊕
i=1

(−s(1)
i Σ1,1)J2(0)⊕·· ·⊕

n2�−1⊕
i=1

(−s(2�−1)
i Σ�,�)J2�(0) ,

Hz,5 =
n1⊕
i=1

s(1)
i Σ1,0J1(0)T ⊕·· ·⊕

n2�−1⊕
i=1

s(2�−1)
i Σ�,�−1J2�−1(0)T ,

where n1,n3 . . . ,n2�−1 ∈ N∪ {0} ; thus, Ĥz,5 has n2 j−1 Jordan blocks of size

2 j×2 j with signs s(2 j−1)
i , and Hz,5 has n2 j−1 Jordan blocks of size (2 j−1)×

(2 j−1) with signs s(2 j−1)
i for i = 1, . . . ,n2 j−1 and j = 1, . . . , �;
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6) blocks corresponding to two (2 j + 1)× (2 j + 1) Jordan blocks of Ĥ and two
2 j×2 j Jordan blocks of H associated with the eigenvalue zero:

Az,6 =
n2⊕
i=1

[
0 0 0 I2
0 I2 0 0

]
4×6

⊕·· ·⊕
n2�⊕
i=1

[
0 0 0 I2�

0 I2� 0 0

]
4�×(4�+2)

,

Gz,6 =
n2⊕
i=1

R4 ⊕·· ·⊕
n2�⊕
i=1

R4� ,

Ĝz,6 =
n2⊕
i=1

[
0 R3

−R3 0

]
⊕·· ·⊕

n2�⊕
i=1

[
0 R2�+1

−R2�+1 0

]
,

Ĥz,6 =
n2⊕
i=1

[−J3(0) 0
0 J3(0)

]
⊕·· ·⊕

n2�⊕
i=1

[−J2�+1(0) 0
0 J2�+1(0)

]
,

Hz,6 =
n2⊕
i=1

[−J2(0) 0
0 J2(0)

]T

⊕·· ·⊕
n2�⊕
i=1

[−J2�(0) 0
0 J2�(0)

]T

,

where n2,n4,n6, . . . ,n2� ∈ N∪{0} ; thus, Ĥz,6 has 2n2 j Jordan blocks of size
(2 j + 1)× (2 j + 1) and Hz,6 has 2n2 j Jordan blocks of size 2 j× 2 j for j =
1, . . . , �; (no sign-characteristic is involved, because neither even-sized Jordan
blocks associated with zero of G-skew-symmetric matrices nor odd-sized Jordan
blocks associated with zero of Ĝ-Hamiltonian matrices have signs);

For the eigenvalue zero, the matrices Ĥ and H have 2γ2 j +m2 j +n2 j−1 , respectively
2γ2 j + 2m2 j−1 + 2n2 j Jordan blocks of size 2 j× 2 j for j = 1, . . . , � , and 2γ2 j+1 +
2m2 j+1+2n2 j , respectively 2γ2 j+1+m2 j +n2 j+1 Jordan blocks of size (2 j+1)×(2 j+
1) for j = 0, . . . , � . Here m2�+1 = n2�+1 = 0 , where 2�+1 is the smallest odd number
that is larger or equal to the maximum of the index of Ĥ and the index of H . (Here,
index refers to the maximal size of a Jordan block associated with the eigenvalue zero.)

Furthermore, the form (4.3) is unique up to the simultaneous permutation of blocks
in the right hand side of (4.3).

Proof. The proof can be found in the Appendix.
For the special case that G is positive definite, the condensed form simplifies

considerably.

COROLLARY 4.3. Let A ∈Rm×2n , let G ∈Rm×m be symmetric and positive defi-
nite, and let Ĝ ∈ R2n×2n be skew-symmetric and nonsingular. Then there exist nonsin-
gular matrices X ∈ Rm×m and Y ∈ R2n×2n such that

XT AY =
[
β1 0
0 β1

]
⊕ . . .⊕

[
βmı 0
0 βmı

]
⊕Om0×2n0⊕

[
On1 In1

]
,

XTGX = I2⊕ . . .⊕ I2⊕ Im0⊕ In1 = Im
YT ĜY = J1⊕ . . .⊕ J1⊕ Jn0⊕ Jn1,

with β j > 0 for j = 1, . . . ,mı .
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Moreover,

Y−1Ĝ−1AT G−1AY =
[

0 −β 2
1

β 2
1 0

]
⊕ . . .⊕

[
0 −β 2

mi

β 2
mı

0

]
⊕O2n0⊕

[
0−In1

0 0

]
,

X−1G−1AĜ−1AT X = =
[

0 β 2
1

−β 2
1 0

]
⊕ . . .⊕

[
0 β 2

mi−β 2
mı

0

]
⊕Om0+n1 .

Proof. Because G is positive definite, due to the inertia index relation, in the
canonical form of Theorem 4.2, Gc , Gr , as well as Ac,Ĝc,Ar,Ĝr must be void. Fur-
thermore, ρ1 = . . . = ρmı = 1 and s1 = . . . = smı = 1. Concerning the blocks Az,k ,
Gz,k , Ĝz,k , the blocks for k = 1 may exist, but Gz,1 has to be the identity matrix Im0 ;
the blocks for k = 2,3,4,6 must be void, and the blocks for k = 5 may only exist when
j = 1. In this case Gz,5 has to be In1 and applying an appropriate permutation, we can
achieve the forms Az,4 =

[
On1 In1

]
, Gz,4 = In1 , and Ĝz,4 = Jn1 .

The result of Corollary 4.3 first appeared in [27], where an independent proof is
given.

5. Canonical form for skew-symmetric G and Ĝ

When G∈Fm×m and Ĝ∈Fn×n are both skew-Hermitian, then in the complex case
the canonical form for the triple (A,G,Ĝ) , where A ∈ Fm×n can easily be derived from
the Hermitian case in Section 3, by simply considering the related triple (A, ıG, ıĜ) .
The real case, however, is different.

THEOREM 5.1. Let A ∈ R2n×2n be nonsingular and let G,Ĝ ∈ R2n×2n be skew-
symmetric and nonsingular. Then there exist nonsingular matrices X ,Y ∈R2n×2n such
that

XT AY = Ac⊕Ar, XTGX = Gc⊕Gr, YT ĜY = Ĝc⊕ Ĝr. (5.1)

Moreover, for the Ĝ-skew-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A and for the G-skew-
Hamiltonian matrix H = G−1AĜ−1AT , we have that

Y−1Ĥ Y = Ĥc⊕ Ĥr, X−1H X = Hc⊕Hr. (5.2)

The diagonal blocks in these decompositions have the following forms:

1) blocks associated with pairs (μ2
i ,μ2

i ) of nonreal eigenvalues of Ĥ and H :

Ac =
[
Jξ1

(a1,b1) 0
0 Jξ1

(a1,b1)

]
⊕·· ·⊕

[
Jξmc

(amc ,bmc) 0
0 Jξmc

(amc ,bmc)

]
,
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Gc =
[

0 R2ξ1−R2ξ1
0

]
⊕·· ·⊕

[
0 R2ξmc−R2ξmc

0

]
,

Ĝc =
[

0 −R2ξ1

R2ξ1
0

]
⊕·· ·⊕

[
0 −R2ξmc

R2ξmc
0

]
,

Ĥc =

[
J 2

ξ1
(a1,b1) 0
0 J 2

ξ1
(a1,b1)

]
⊕·· ·⊕

[
J 2

ξmc
(amc ,bmc) 0

0 J 2
ξmc

(amc ,bmc)

]
,

Hc =

[
J 2

ξ1
(a1,b1) 0
0 J 2

ξ1
(a1,b1)

]T

⊕·· ·⊕
[
J 2

ξmc
(amc ,bmc) 0

0 J 2
ξmc

(amc ,bmc)

]T

,

where ai ∈ R , bi > 0 , μi = ai + ıbi , and ξi ∈N for i = 1, . . . ,mc ;

2) blocks associated with real eigenvalues α j = δ jβ 2
j of H and Ĥ :

Ar =
[
Jη1(β1) 0

0 Jη1(β1)

]
⊕·· ·⊕

[
Jηmr

(βmr) 0
0 Jηmr

(βmr)

]
,

Gr =
[

0 Rη1

−Rη1 0

]
⊕·· ·⊕

[
0 Rηmr−Rηmr

0

]
,

Ĝr = δ1

[
0−Rη1

Rη1 0

]
⊕·· ·⊕ δmr

[
0 −Rηmr

Rηmr
0

]
,

Ĥr = δ1

[
J 2

η1
(β1) 0

0 J 2
η1

(β1)

]
⊕·· ·⊕ δmr

[
J 2

ηmr
(βmr) 0

0 J 2
ηmr

(βmr)

]
,

Hr = δ1

[
J 2

η1
(β1) 0

0 J 2
η1

(β1)

]T

⊕·· ·⊕δmr

[
J 2

ηmr
(βmr) 0

0 J 2
ηmr

(βmr)

]T

,

where β j > 0 , δ j ∈ {+1,−1} , and η j ∈ N for j = 1, . . . ,mr . (Here, δ j is not a
sign in the sense of “sign characteristic”, but only depends on α j = δ jβ 2

j being
either positive or negative.)

Furthermore, the form (5.1) is unique up to the simultaneous permutation of blocks in
the right hand side of (5.1).

Proof. Once again, we can restrict ourselves to the case that either σ(Ĥ ) =
{μ2,μ2} for some μ ∈ C \R or σ(Ĥ ) = {α} , where α ∈ R \ {0} . The remain-
der of the proof then follows exactly the same lines as the proof of Theorem 3.1 by
constructing a skew-Hamiltonian square root S of Ĥ that is a polynomial in Ĥ in
the cases σ(Ĥ ) = {μ2,μ2} or σ(Ĥ ) = {α} and α > 0, or by constructing a skew-
Hamiltonian square root S of −Ĥ otherwise.

We mention that the choice of the transformation matrices X ,Y in Theorem 5.1
so that XTGcX = −YT ĜcY rather than XT GcX = YT ĜcY is just a matter of taste and
avoids the occurrence of distracting minus signs in the forms for Hc and Ĥc .

For the general non square case we have the following result.
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THEOREM 5.2. Let A ∈ R2m×2n and let G ∈ R2m×2m , Ĝ ∈ R2n×2n be skew-
symmetric and nonsingular. Then there exists nonsingular matrices X ∈ R2m×2m and
Y ∈ R2n×2n such that

XT AY = Anz⊕Az,1⊕Az,2⊕Az,3⊕Az,4,

XT GX = Gnz⊕Gz,1⊕Gz,2⊕Gz,3⊕Gz,4, (5.3)

YT ĜY = Ĝnz⊕ Ĝz,1⊕ Ĝz,2⊕ Ĝz,3⊕ Ĝz,4.

Moreover, for the Ĝ-skew-Hamiltonian matrix Ĥ = Ĝ−1AT G−1A ∈ R
2n×2n and for

the G-skew-Hamiltonian matrix H = G−1AĜ−1AT ∈ R2m×2m we have that

Y−1Ĥ Y = Ĥnz⊕ Ĥz,1⊕ Ĥz,2⊕ Ĥz,3⊕ Ĥz,4,

X−1H X = Hnz⊕Hz,1⊕Hz,2⊕Hz,3⊕Hz,4.

The diagonal blocks in these decompositions have the following forms:

0) blocks associated with nonzero eigenvalues of H and Ĥ :
Anz,Gnz,G̃nz have the forms as in (5.1) and Hnz,Ĥnz have the forms as in (5.2);

1) one block corresponding to 2n0 Jordan blocks of size 1× 1 of H and 2m0

Jordan blocks of size 1×1 of Ĥ associated with the eigenvalue zero:

Az,1 = 02m0×2n0 , Gz,1 = Jm0 , Ĝz,1 = Jn0 , Ĥz,1 = 02n0 , Hz,1 = 02m0 ;

2) blocks corresponding to a pair of j× j Jordan blocks of Ĥ and H associated
with the eigenvalue zero:

Az,2 =
γ1⊕
i=1

J2(0) ⊕
γ2⊕

i=1
J4(0) ⊕·· ·⊕

γ�⊕
i=1

J2�(0) ,

Gz,2 =
γ1⊕

i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕·· ·⊕

γ�⊕
i=1

[
0 R�

−R�0

]
,

Ĝz,2 =
γ1⊕

i=1

[
0 R1

−R1 0

]
⊕

γ2⊕
i=1

[
0 R2

−R2 0

]
⊕·· ·⊕

γ�⊕
i=1

[
0 R�

−R�0

]
,

Ĥz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Γ̂4J
2
4 (0) ⊕·· ·⊕

γ�⊕
i=1

Γ̂2�J
2
2�(0) ,

Hz,2 =
γ1⊕
i=1

02 ⊕
γ2⊕
i=1

Γ4J
2
4 (0)T ⊕·· ·⊕

γ�⊕
i=1

Γ2�J
2
2�(0)T ,

where γ1, . . . ,γ� ∈ N∪{0} , and Γ̂2 j = (−I j−1)⊕ I1⊕ (−I j) and Γ2 j = (−I j)⊕
I1⊕ (−I j−1) for j = 2, . . . , �; thus, Ĥz,2 and Hz,2 both have each 2γ j Jordan
blocks of size j× j for j = 1, . . . , �;

3) blocks corresponding to two j× j Jordan blocks of Ĥ and two ( j+1)×( j+1)
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Jordan blocks of H associated with the eigenvalue zero:

Az,3 =
m1⊕
i=1

⎡⎢⎢⎣
0 I1
0 0
I1 0
0 0

⎤⎥⎥⎦
4×2

⊕·· ·⊕
m�⊕
i=1

⎡⎢⎢⎣
0 I�−1

0 0
I�−1 0
0 0

⎤⎥⎥⎦
2�×(2�−2)

,

Gz,3 =
m1⊕
i=1

[
0 R2

−R2 0

]
⊕·· ·⊕

m�−1⊕
i=1

[
0 R�

−R� 0

]
,

Ĝz,3 =
m1⊕
i=1

[
0 R1

−R1 0

]
⊕·· ·⊕

m�−1⊕
i=1

[
0 R�−1

−R�−1 0

]
,

Ĥz,3 =
m1⊕
i=1

[
J1(0) 0

0 J1(0)

]
⊕·· ·⊕

m�−1⊕
i=1

[
J�−1(0) 0

0 J�−1(0)

]
,

Hz,3 =
m1⊕
i=1

[
J2(0) 0

0 J2(0)

]T

⊕·· ·⊕ m�−1⊕
i=1

[
J�(0) 0

0 J�(0)

]T

,

where m1, . . . ,m�−1 ∈ N∪{0} ; thus, Ĥz,3 has 2mj Jordan blocks of size j× j
and Hz,3 has 2mj Jordan blocks of size ( j +1)× ( j +1) for j = 1, . . . , �−1 ;

4) blocks corresponding to two ( j+1)×( j+1) Jordan blocks of Ĥ and two j× j
Jordan blocks of H associated with the eigenvalue zero:

Az,4 =
n1⊕
i=1

[
0 0 0 I1
0 I1 0 0

]
2×4
⊕·· ·⊕

n�−1⊕
i=1

[
0 0 0 I�−1

0 I�−1 0 0

]
(2�−2)×2�

,

Gz,4 =
n1⊕
i=1

[
0 R1

−R1 0

]
⊕·· ·⊕

n�−1⊕
i=1

[
0 R�−1

−R�−1 0

]
,

Ĝz,4 =
n1⊕
i=1

[
0 R2

−R2 0

]
⊕·· ·⊕

n�−1⊕
i=1

[
0 R�

−R� 0

]
,

Ĥz,4 =
n1⊕
i=1

[
J2(0) 0

0 J2(0)

]
⊕·· ·⊕

n�−1⊕
i=1

[
J�(0) 0

0 J�(0)

]
,

Hz,4 =
n1⊕
i=1

[
J1(0) 0

0 J1(0)

]T

⊕·· ·⊕
n�−1⊕
i=1

[
J�−1(0) 0

0 J�−1(0)

]T

,

where n1, . . . ,n�−1 ∈N∪{0} ; thus, Ĥz,4 has 2n j Jordan blocks of size ( j+1)×
( j +1) and Hz,4 has 2n j Jordan blocks of size j× j for j = 1, . . . , �−1 ;

Then for the eigenvalue zero, the matrices Ĥ and H have 2γ j +2mj +2n j−1 respec-
tively 2γ j + 2mj−1 + 2n j Jordan blocks of size j× j for j = 1, . . . , � . Here � is the
maximum of the indices of H and Ĥ . (Here index refers to the maximal size of a
Jordan block associated with the eigenvalue zero.)

Furthermore, the form (5.3) is unique up to simultaneous block permutation of the
blocks in the diagonal blocks of the right hand side of (5.3).

Proof. The proof is presented in the Appendix.
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6. Conclusion

We have presented canonical forms for matrix triples (A,G,Ĝ) , where G,Ĝ are
nonsingular and either complex and Hermitian or skew Hermitian or real and sym-
metric or skew symmetric. These results generalize the canonical forms for matrices
that are Hermitian, skew Hermitian or real symmetric, skew symmetric with respect to
indefinite scalar products as they are studied in detail in [7, 8, 16, 17, 18].

7. Appendix: Proofs of the main theorems

7.1. Preliminary factorizations

In the following sections, we aim to compute the canonical forms via some type
of staircase algorithm. A key factorization needed in the steps of this algorithm is
presented in the following lemma.

PROPOSITION 7.1. Let B ∈ Fm×n , m � n, and let π ,ν � 0 be integers such that
π+ν = m. Suppose that rankB = n and that the inertia index of the Hermitian matrix
B∗Σπ ,νB is (π0,ν0,δ0) . Then π0 + ν0 + δ0 = n and there exists an invertible matrix
X ∈ Fm×m such that

X∗B =

⎡⎣ 0
0
B0

⎤⎦ π1 +ν1

δ0

n
, X∗Σπ ,νX = Σπ1,ν1 ⊕

⎡⎣ Iδ0

Σπ0,ν0

Iδ0

⎤⎦ ,

where B0 ∈ Fn×n is nonsingular, π1 = π−π0− δ0 � 0 , and ν1 = ν−ν0− δ0 � 0 .

Proof. By assumption, there exists a nonsingular matrix Y ∈ Fn×n such that

Y ∗B∗Σπ ,νBY = Σπ0,ν0,δ0
.

Let B1 ∈ Fm×π0 be the matrix formed by the leading π0 columns of BY and partition
it as

B1 =
[

B11

B21

]
, B11 ∈ F

π×π0 , B21 ∈ F
ν×π0 .

Then from B∗1Σπ ,νB1 = Iπ0 we have that

B∗11B11−B∗21B21 = Iπ0 . (7.1)

Since B∗11B11 and B∗21B21 are positive semidefinite, it follows that rankB11 = rank(Iπ0 +
B∗21B21) = π0 and therefore π � π0 by Sylvester’s Law of Inertia. Hence, there exists
a unitary matrix U1 ∈ F

π×π such that

U∗1 B11 =
[

T1

0

]
,



STRUCTURED DECOMPOSITIONS FOR MATRIX TRIPLES 335

where T1 ∈Fπ0×π0 is invertible. Since B∗11B11 = T ∗1 T1 , we obtain that (7.1) is equivalent
to

Iπ0− (B21T
−1
1 )∗(B21T

−1
1 ) = T−∗1 T−1

1 .

Then the matrix Iν − (B21T
−1
1 )(B21T

−1
1 )∗ is positive definite, because it easily follows

from [6] that it has the same eigenvalues as Iπ0 − (B21T
−1
1 )∗(B21T

−1
1 ) with a possible

exception for the eigenvalue λ = 1. Thus, we have the factorization

Iν − (B21T
−1
1 )(B21T

−1
1 )∗ = T̃1T̃

∗
1 , (7.2)

for some invertible T̃1 ∈ Fν×ν . Let

X1 =
[
U1 0
0 Iν

]⎡⎣ T1 0 −(B21T
−1
1 )∗T̃−∗1

0 Iπ−π0 0
−B21 0 T̃−∗1

⎤⎦ .

With (7.1) and (7.2) it is easily verified that

X∗1 B1 =

⎡⎣ Iπ0

0
0

⎤⎦ π0

π−π0

ν
, X∗1Σπ ,νX1 = Σπ ,ν .

Then, since Σ2
π ,ν = Im , the last relation implies that

X1Σπ ,νX
∗
1 = X1Σπ ,νΣπ ,νΣπ ,νX

∗
1 = X1Σπ ,νX

∗
1Σπ ,νX1Σπ ,νX

∗
1

and thus Σπ ,νX1Σπ ,νX∗1 = Im or, equivalently, X1Σπ ,νX∗1 = Σπ ,ν . Also recall that B1

consists of the first π0 columns of BY . Thus, partitioning

X∗1 BY =
[

Iπ0 B12

0 B̃

]
,

where B̃ is (m−π0)× (n−π0) , we obtain from

Σπ0,ν0,δ0
= Y ∗B∗Σπ ,νBY = (X∗1 BY )∗Σπ ,ν(X∗1 BY )

=
[

Iπ0 0
B∗12 B̃∗

][
Iπ0 0
0 Σπ−π0,ν

][
Iπ0 B12

0 B̃

]
,

that

B12 = 0, B̃∗Σπ−π0,ν B̃ = Σ0,ν0,δ0
=

[−Iν0 0
0 Oδ0

]
.

Letting B2 ∈ F(m−π0)×ν0 be the matrix consisting of the leading ν0 columns of B̃ , we
obtain that B∗2Σπ−π0,νB2 = −Iν0 . By a procedure analogous to the one used for B1

above, we can determine a nonsingular matrix X2 ∈ F(m−π0)×(m−π0) such that

X∗2 B2 =

⎡⎣ 0
Iν0

0

⎤⎦ π−π0

ν0

ν −ν0

, X∗2Σπ−π0,νX2 = Σπ−π0,ν ,
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which also shows that ν0 � ν . With X3 = X1(Iπ0⊕X2) , we then have

X∗3 BY =

⎡⎢⎢⎣
Iπ0 0 0
0 0 B13

0 Iν0 B23

0 0 B33

⎤⎥⎥⎦ , X∗3Σπ ,νX3 = Σπ ,ν ,

which also implies X3Σπ ,νX∗3 = Σπ ,ν and thus (X∗3 BY )∗Σπ ,ν(X∗3 BY ) = Σπ0,ν0,δ0
. Then

it easily follows that

B23 = 0 and 0 =
[

B13

B33

]∗
Σπ−π0,ν−ν0

[
B13

B33

]
= B∗13B13−B∗33B33. (7.3)

Let P1 be the permutation matrix that interchanges the middle two block-rows of X∗3 BY
by pre-multiplication and set X4 = X3P∗1 . Then

X∗4 BY =

⎡⎢⎢⎣
Iπ0 0 0
0 Iν0 0
0 0 B13

0 0 B33

⎤⎥⎥⎦ , X∗4Σπ ,νX4 =
[
Σπ0,ν0 0

0 Σπ−π0,ν−ν0

]
.

Now, both B13 and B33 have full column rank, because otherwise, by (7.3) it is not
difficult to show that B13 and B33 would have a common null space. But this is not
possible, because then X∗4 BY , as well as B , would have rank less than n , contradicting
the assumption. Since B13 ∈ F(π−π0)×δ0 and B33 ∈ F(ν−ν0)×δ0 , we have that π � π0 +
δ0 and ν � ν0 + δ0 . Observe that (7.3) implies that the positive definite factors in the
polar decompositions of B13 and B33 coincide, i.e., we have

B13 = Ũ3W and B33 = Ũ4W

for some Ũ3 ∈ F(π−π0)×δ0 , Ũ4 ∈ F(ν−ν0)×δ0 , where Ũ3,Ũ4 have orthonormal columns
and W = (B∗13B13)1/2 = (B∗33B33)1/2 ∈ Fδ0×δ0 is nonsingular. Extending Ũ3 and Ũ4 to
unitary matrices U3 ∈ F(π−π0)×(π−π0) , U4 ∈ F(ν−ν0)×(ν−ν0) , we obtain that.

U3B13 =
[
W
0

]
, U4B33 =

[
W
0

]
,

Setting X5 = X4(Iπ0+ν0 ⊕U∗3 ⊕U∗4 ), we obtain that

X∗5 BY =

⎡⎢⎢⎢⎢⎣
Iπ0+ν0 0

0 W
0 0
0 W
0 0

⎤⎥⎥⎥⎥⎦ , X∗5Σπ ,νX5 = Σπ0,ν0 ⊕Σπ−π0,ν−ν0 .

Let P2 be the permutation matrix that interchanges the 3rd and 4th block row of X∗5 BY
by pre-multiplication, and let X6 = X5P∗2 . Then

X∗6 BY =

⎡⎢⎢⎣
Iπ0+ν0 0

0 W
0 W
0 0

⎤⎥⎥⎦ , X∗6Σπ ,νX6 = Σπ0,ν0 ⊕Σδ0,δ0
⊕Σπ1,ν1 ,
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where π1 = π−π0− δ0 and ν1 = ν−ν0− δ0 . Then setting

Z =
√

2
2

[
Iδ0

Iδ0

Iδ0
−Iδ0

]
,

and X7 = X6(Iπ0+ν0⊕Z⊕ Iπ1+ν1) , it is easily verified that

Z∗
[
W
W

]
=

[√
2W
0

]
, Z∗Σδ0,δ0

Z =
[

0 Iδ0

Iδ0
0

]
,

and thus, we have

X∗7 BY =

⎡⎢⎢⎣
Iπ0+ν0 0

0
√

2W
0 0
0 0

⎤⎥⎥⎦ , X∗7Σπ ,νX7 = Σπ0,ν0 ⊕
[

0 Iδ0

Iδ0
0

]
⊕Σπ1,ν1 .

Let P3 be the permutation matrix that changes the order the block rows of X∗7 BY to the
order 4,3,1,2 by pre-multiplication and set X = X7P∗3 . Then

X∗BY =

⎡⎢⎢⎣
0 0
0 0

Iπ0+ν0 0
0
√

2W

⎤⎥⎥⎦ , X∗Σπ ,νX = Σπ1,ν1 ⊕
⎡⎣ 0 0 Iδ0

0 Σπ0,ν0 0
Iδ0

0 0

⎤⎦ .

The desired factorization then follows by multiplying with Y−1 from the right and
setting B0 = (Iπ0+ν0⊕

√
2W )Y−1 .

PROPOSITION 7.2. Let B ∈ R2m×n and suppose that rankB = n, rankBT JmB =
2n0 (note that the rank of a real skew-symmetric matrix is even), and let δ0 = n−2n0

denote the dimension of the null space of BT JmB. Then there exists an invertible matrix
X ∈R2m×2m such that

XTB =

⎡⎣ 0
0
B0

⎤⎦ 2n1

δ0

n
, XT JmX = Jn1⊕

⎡⎣ 0 0 Iδ0

0 Jn0 0
−Iδ0

0 0

⎤⎦ .

where B0 ∈Cn×n is nonsingular and n1 = m−n0− δ0 .

Proof. The proof follows the same lines as in the complex case (or more precisely,
as in the case of a complex skew-symmetric bilinear form induced by Jm ), see [19] for
details.

7.2. Proof of Theorem 3.2

We present a constructive and recursive proof in several steps. The proof uses the
same strategy as in the case of G and Ĝ being complex symmetric, see [19]. Although
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this requires a lot of repetition of the ideas published in [19], we decided to give the full
proof of Theorem 3.2 and ideas of proof for the other main theorems, because of two
reasons. First, we want this paper to be self-contained, and secondly, the case of com-
plex sesquilinear forms or real bilinear forms is more involved than the case of complex
bilinear forms. For example, any complex symmetric matrix is congruent to the iden-
tity matrix, but the same is not true for complex Hermitian matrices under congruence
or real symmetric matrices under real congruence. This fact results in the existence of
the so-called sign characteristic of real eigenvalues of G-Hermitian matrices. It is this
point that makes the development of the canonical forms more challenging in the case
that G and Ĝ are complex Hermitian or real symmetric or skew-symmetric.

Step 1) Reduction to a stair-case-like form

Let (π ,ν,0) and (π̂ , ν̂,0) be the Sylvester inertia indices of G and Ĝ , respec-
tively. By applying appropriate congruence transformations to G and Ĝ , we may as-
sume that G = Σπ ,ν and Ĝ = Σπ̂ ,ν̂ . Let

A = B1C
∗
1

be a full rank factorization of A , i.e., B1 ∈ Cm×r , C1 ∈ Cn×r , rankB1 = rankC1 = r .
Applying Proposition 7.1 to B1 and C1 , respectively, we can determine nonsingular
matrices X1 ∈ C

m×m and Y1 ∈C
n×n such that

X∗1 B1 =

⎡⎣ 0
0

B1,0

⎤⎦ π0 +ν0

δ1

r

, X∗1Σπ ,νX1 = Σπ0,ν0 ⊕
⎡⎣ 0 0 Iδ1

0 Σp1,q1 0
Iδ1

0 0

⎤⎦ ,

Y ∗1 C1 =

⎡⎣ 0
0

C1,0

⎤⎦ π̂0 + ν̂0

δ̂1

r

, Y ∗1 Σπ̂ ,ν̂Y1 = Σπ̂0,ν̂0
⊕

⎡⎣ 0 0 Iδ̂1

0 Σ p̂1,q̂1 0
Iδ̂1

0 0

⎤⎦ ,

where B1,0,C1,0 ∈ C
r×r are both invertible, p1,q1,δ1, p̂1, q̂1, δ̂1 � 0, and

p1 +q1 + δ1 = p̂1 + q̂1 + δ̂1 = r.

Partition

B1,0C
∗
1,0 =

[ p̂1 + q̂1 δ̂1

p1 +q1 A3,3 A3,4

δ1 A4,3 A4,4

]
,

then

X∗1 AY1 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 A3,3 A3,4

0 0 A4,3 A4,4

⎤⎥⎥⎦ , X∗1Σπ ,νX1 =

⎡⎢⎢⎣
Σπ0,ν0 0 0 0

0 0 0 Iδ1

0 0 Σp1,q1 0
0 Iδ1

0 0

⎤⎥⎥⎦ ,

Y ∗1 Σπ̂ ,ν̂Y1 =

⎡⎢⎢⎣
Σπ̂0,ν̂0

0 0 0
0 0 0 Iδ̂1

0 0 Σ p̂1,q̂1 0
0 Iδ̂1

0 0

⎤⎥⎥⎦ .
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Applying the same procedure to the triple (A3,3,Σp1,q1 ,Σ p̂1,q̂1) , we can construct non-
singular matrices X̃2,Ỹ2 such that

X̃∗2 A3,3Ỹ2 =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 A5,5 A5,6

0 0 A6,5 A6,6

⎤⎥⎥⎦ , X̃∗2Σp1,q1 X̃2 =

⎡⎢⎢⎣
Σπ1,ν1 0 0 0

0 0 0 Iδ2

0 0 Σp2,q2 0
0 Iδ2

0 0

⎤⎥⎥⎦ ,

Ỹ ∗2 Σ p̂1,q̂1Ỹ2 =

⎡⎢⎢⎣
Σπ̂1,ν̂1

0 0 0
0 0 0 Iδ̂2

0 0 Σ p̂2,q̂2 0
0 Iδ̂2

0 0

⎤⎥⎥⎦ ,

where p2,q2,δ2, p̂2, q̂2, δ̂2 � 0, A6,6 ∈ Fδ2×δ̂2 , A5,6 ∈ F(p2+q2)×δ̂2 , A6,5 ∈ Fδ2×( p̂2+q̂2) ,
A5,5 ∈ F(p2+q2)×( p̂2+q̂2) , p2 +q2 +δ2 = p̂2 + q̂2 + δ̂2 = rankA3,3 , and where the matrix[

A5,5 A5,6

A6,5 A6,6

]
∈ F

(p2+q2+δ2)×(p2+q2+δ2)

is nonsingular. Letting

X2 = X1(Iπ0+ν0+δ1
⊕ X̃2⊕ Iδ1

), Y2 = Y1(Iπ̂0+ν̂0+δ̂1
⊕ Ỹ2⊕ Iδ̂1

),

we then have

X∗2 AY2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 A3,7

0 0 0 0 0 0 A4,7

0 0 0 0 A5,5 A5,6 A5,7

0 0 0 0 A6,5 A6,6 A6,7

0 0 A7,3 A7,4 A7,5 A7,6 A7,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X∗2Σπ ,νX2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σπ0,ν0 0 0 0 0 0 0
0 0 0 0 0 0 Iδ1

0 0 Σπ1,ν1 0 0 0 0
0 0 0 0 0 Iδ2

0
0 0 0 0 Σp2,q2 0 0
0 0 0 Iδ2

0 0 0
0 Iδ1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Y ∗2 Σπ̂ ,ν̂Y2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σπ̂0,ν̂0
0 0 0 0 0 0

0 0 0 0 0 0 Iδ̂1

0 0 Σπ̂1,ν̂1
0 0 0 0

0 0 0 0 0 Iδ̂2
0

0 0 0 0 Σ p̂2,q̂2 0 0
0 0 0 Iδ̂2

0 0 0
0 Iδ̂1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where the matrix X∗2 AY2 has been partitioned conformably with X∗2Σπ ,νX2 (row-wise)
and Y ∗2 Σπ̂ ,ν̂Y2 (column-wise). The submatrix of X∗2 AY2 that is obtained by deleting the
leading two block rows and block columns is then nonsingular, because it is equivalent
to B1,0C∗1,0 . Thus, [A3,7

A4,7
] has full row rank and [A7,3 A7,4] has full column rank.

We can repeat the procedure for the triple (A5,5,Σp2,q2 ,Σ p̂2,q̂2) which finally yields
nonsingular matrices X3 and Y3 such that (after renaming some blocks in A and using
the canonical notation corresponding to the notation in the previous step), we have

X∗3 AY3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A3,10
0 0 0 0 0 0 0 0 0 A4,10
0 0 0 0 0 0 0 0 A5,9 A5,10
0 0 0 0 0 0 0 0 A6,9 A6,10
0 0 0 0 0 0 A7,7 A7,8 A7,9 A7,10
0 0 0 0 0 0 A8,7 A8,8 A8,9 A8,10
0 0 0 0 A9,5 A9,6 A9,7 A9,8 A9,9 A9,10
0 0 A10,3 A10,4A10,5A10,6A10,7A10,8 A10,9A10,10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X∗3Σπ ,νX3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σπ0,ν0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iδ1

0 0 Σπ1,ν1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iδ2

0
0 0 0 0 Σπ2,ν2 0 0 0 0 0
0 0 0 0 0 0 0 Iδ3

0 0
0 0 0 0 0 0 Σp3,q3 0 0 0
0 0 0 0 0 Iδ3

0 0 0 0
0 0 0 Iδ2

0 0 0 0 0 0
0 Iδ1

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.4)

Y ∗3 Σπ̂ ,ν̂Y3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σπ̂0,ν̂0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Iδ̂1

0 0 Σπ̂1,ν̂1
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Iδ̂2
0

0 0 0 0 Σπ̂2,ν̂2
0 0 0 0 0

0 0 0 0 0 0 0 Iδ̂3
0 0

0 0 0 0 0 0 Σ p̂3,q̂3 0 0 0
0 0 0 0 0 Iδ̂3

0 0 0 0
0 0 0 Iδ̂2

0 0 0 0 0 0
0 Iδ̂1

0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where [A10,3 A10,4] and [A9,5 A9,6] have full column rank,[
A3,10

A4,10

]
and

[
A5,9

A6,9

]
have full row rank, and

[
A7,7 A7,8

A8,7 A8,8

]
is nonsingular.

Continuing recursively, the process clearly has to stagnate after finitely many steps.
Using the canonical notation corresponding to the notation in the first two steps of the
process, we find that stagnation occurs after the � th step either when A2�+1,2�+1 is
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nonsingular or when p� = q� = p̂� = q̂� = 0. In both cases we obviously have that
p� +q� = p̂� + q̂� , and we end up with a nonsingular matrix[

A2�+1,2�+1 A2�+1,2�+2

A2�+2,2�+1 A2�+2,2�+2

]
∈ F

(p�+q�+δ�)×( p̂�+q̂�+δ̂�),

full row rank matrices[
A2k+1,3�+2−k

A2k+2,3�+2−k

]
∈ F

(πk+νk+δk+1)×δ̂k , k = 1, . . . , �−1,

and full column rank matrices [A3�+2−k,2k+1 A3�+2−k,2k+2] ∈ Fδk×(π̂k+ν̂k+δ̂k+1) for k =
1, . . . , �−1. Also, we have

δ� = δ̂�, (7.5)

because p� +q� +δ� = p̂� + q̂� + δ̂� . Finally, we obtain that due to the full rank proper-
ties, we have that

δk−1 � π̂k−1 + ν̂k−1 + δ̂k, δ̂k−1 � πk−1 +νk−1 + δk (7.6)

for k = 2, . . . , �. On the other hand from the reduction process we have

pk +qk + δk = p̂k + q̂k + δ̂k, (7.7)

for k = 1,2, . . . , � , and

pk−1 +qk−1 = πk−1 +νk−1 +2δk + pk +qk,

p̂k−1 + q̂k−1 = π̂k−1 + ν̂k−1 +2δ̂k + p̂k + q̂k,

for k = 2, . . . , l . The latter two equations can be rewritten as

pk−1 +qk−1 + δk−1 = πk−1 +νk−1 + δk + δk−1 +(pk +qk + δk),

p̂k−1 + q̂k−1 + δ̂k−1 = π̂k−1 + ν̂k−1 + δ̂k + δ̂k−1 +(p̂k + q̂k + δ̂k).

By using (7.7) we then obtain

πk−1 +νk−1 + δk + δk−1 = π̂k−1 + ν̂k−1 + δ̂k + δ̂k−1,

or, equivalently,

δ̂k−1−πk−1−νk−1− δk = δk−1− π̂k−1− ν̂k−1− δ̂k � 0 (7.8)

for k = 2, . . . , � , where the nonnegativity follows from (7.6).

Step 2) Further reduction of the staircase form

We now isolate the nonsingular block A2�+1,2�+1 from the other blocks and com-
press the remaining part of X∗� AY� to a more condensed form. We set π� = p�,ν� =
q�, π̂� = p̂�, ν̂� = q̂� and

mk :=
{
πk +νk if k is even
π̂k + ν̂k if k is odd

, nk :=
{
πk +νk if k is odd
π̂k + ν̂k if k is even
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for k = 0, . . . , � . Moreover, (using (7.5) and (7.8)), we define γ� := δ� = δ̂� and

γk := δ̂k−πk−νk− δk+1 = δk− π̂k− ν̂k− δ̂k+1, k = 1, . . . , �−1.

For the sake of readability of the paper, we will not carry out the proof for the general
case, but we will illustrate the procedure for the special case that � = 3, where we have
the matrices as in (7.4). The general case proceeds in a completely analogous way.

If not void, then A7,7 in X∗3 AY3 in (7.4) is nonsingular, and hence, we can annihi-
late A7,8 by post-multiplying X∗3 AY3 with the matrix

Z1 := In0⊕ Iδ̂1
⊕ Im1⊕ Iδ̂2

⊕ In2⊕ Iδ̂3
⊕

[
I −A−1

7,7A7,8

0 I

]
⊕ Iδ̂2

⊕ Iδ̂1
.

Correspondingly updating Y ∗3 Σπ̂ ,ν̂Y3 this leads to a fill-in in the (7,8) and (8,7) block
positions in Z∗1Y

∗
3 Σπ̂,ν̂Y3Z1 given by −Σ p̂3,q̂3A

−1
7,7A7,8 and −A∗7,8A

−∗
7,7Σ p̂3,q̂3 , respec-

tively. We can annihilate these two fill-ins by using the (8,6) block entry Iδ̂3
as a

pivot, i.e., by applying a congruence transformation to Z∗1Y
∗
3 Σπ̂ ,ν̂Y3Z1 with

Z2 = In0⊕ Iδ̂1
⊕ Im1⊕ Iδ̂2

⊕ In2⊕
[

I A∗7,8A
−∗
7,7Σ p̂3,q̂3

0 I

]
⊕ Iδ̂3

⊕ Iδ̂2
⊕ Iδ̂1

.

It is then easy to check that Z∗2Z∗1Y
∗
3 Σπ̂ ,ν̂Y3Z1Z2 = Y ∗3 Σπ̂ ,ν̂Y3 and that the correspond-

ingly updated matrix X∗3 AY3Z1Z2 has no further fill-ins. Finally, we update Y3 ←
Y3Z1Z2 .

Similarly, we can annihilate A8,7 by working on the rows of X∗3 AY3 and applying
congruence transformations to X∗3Σp1,q1X3 . Then, we can proceed and annihilate the
blocks A7,9 , A9,7 , A7,10 , and A10,7 in X∗3 AY3 . Since originally the matrix[

A7,7 A7,8

A8,7 A8,8

]
is nonsingular, we find that after the above reductions the updated block A8,8 is nonsin-
gular (or even void). With A8,8 as the pivot, we can then annihilate A8,9 , A9,8 , A8,10 ,
A10,8 and recover X∗3Σπ ,νX3 and Y ∗3 Σπ̂ ,ν̂Y3 . Observe that this does not change the zero
blocks in X∗3 AY3 . Finally post-multiplying X∗3 AY3 with the matrix

Z3 = In0⊕ Iδ̂1
⊕ Im1⊕ Iδ̂2

⊕ In2⊕A∗8,8⊕ Ip̂3+q̂3⊕A−1
8,8⊕ Iδ̂2

⊕ Iδ̂1
,

we then obtain

X∗3 AY3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A3,10
0 0 0 0 0 0 0 0 0 A4,10
0 0 0 0 0 0 0 0 A5,9 A5,10
0 0 0 0 0 0 0 0 A6,9 A6,10
0 0 0 0 0 0 A7,7 0 0 0
0 0 0 0 0 0 0 Iδ3

0 0
0 0 0 0 A9,5 A9,6 0 0 A9,9 A9,10
0 0 A10,3 A10,4A10,5A10,6 0 0 A10,9A10,10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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while X∗3Σπ ,νX3 and Y ∗3 Σπ̂ ,ν̂Y3 are as in (7.4). (Indeed, observe that the congruence
transformation with Z3 leaves Y ∗3 Σπ̂ ,ν̂Y3 invariant.) Since the original block [A9,5 A9,6]
has full column rank, it easily follows that the corresponding updated entry[

A9,5 A9,6
]← [

A9,5 A9,6A∗8,8

]
has full column rank as well. Then there exists a nonsingular matrix W1 such that

[
A9,5 A9,6

]←W ∗1
[
A9,5 A9,6

]
=

⎡⎣ In2 0
0 Iδ̂3

0 0

⎤⎦ . (7.9)

Transforming then X∗3 AY3 and X∗3Σπ ,νX3 with a multiplication from the left and con-
gruence transformation, respectively, with a block diagonal matrix having W−1

1 in the
(4,4)-block position and W ∗1 in the (9,9)-block position, we obtain the desired update
in the block [A9,5 A9,6] while X∗3Σπ ,νX3 and the zero pattern of X∗3 AY3 are invariant
under that transformation. We then continue by taking this updated block [A9,5 A9,6] as
a pivot to annihilate [A10,5 A10,6] . Again, this can be done without changing X∗3Σπ ,νX3 .

Similarly, due to a full row rank argument, there exists a nonsingular matrix W2

such that [
A5,9

A6,9

]
:=

[
A5,9

A6,9

]
W2 =

[
Im2 0 0
0 Iδ3

0

]
. (7.10)

and applying appropriate transformation matrices, the corresponding change in X∗3 AY3

can be made without changing Y ∗3 Σπ̂ ,ν̂Y3 . Then, A5,10 and A6,10 can be annihilated.
Also, we use the pivots [A5,9

A6,9
] and

[
A9,5 A9,6

]
, respectively, to annihilate the lead-

ing m2 +δ3 columns of A9,9 and A10,9 , and the leading n2 + δ̂3 rows of A9,9 and A9,10 .
So these three blocks become

A9,9←
⎡⎣ 0 0 0

0 0 0
0 0 Ã9,9

⎤⎦ , A9,10←
⎡⎣ 0

0
Ã9,10

⎤⎦ , A10,9←
[
0 0 Ã10,9

]
,

where Ã9,9 ∈ Fγ2×γ2 , Ã9,10 ∈ Fγ2×δ̂1 , Ã10,9 ∈ Fδ1×γ2 . Since originally the submatrix⎡⎢⎢⎢⎢⎣
0 0 0 0 A5,9

0 0 0 0 A6,9

0 0 A7,7 A7,8 A7,9

0 0 A8,7 A8,8 A8,9

A9,5 A9,6 A9,7 A9,8 A9,9

⎤⎥⎥⎥⎥⎦
was nonsingular, we have that Ã9,9 is nonsingular. We then use Ã9,9 as pivot block to
annihilate Ã9,10 and Ã10,9 , and transform Ã9,9 to Iγ2 .

In a similar way we can perform the reductions[
A3,10

A4,10

]
←

[
In1 0 0
0 Iδ2

0

]
,

[
A10,3 A10,4

]←
⎡⎣ Im1 0

0 Iδ̂2

0 0

⎤⎦ ,
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and use them as pivots to reduce A10,10 to

A10,10 :=

⎡⎣ 0 0 0
0 0 0
0 0 Ã10,10

⎤⎦ ,

where Ã10,10 ∈ Fγ1×γ1 , and finally transform Ã10,10 to Iγ1 . After all this, the matrix
X∗3 AY3 has the form

X∗3 AY3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 In1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Iδ2

0
0 0 0 0 0 0 0 0 Im2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Iγ3 0 0 0 0
0 0 0 0 0 0 A7,7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Iγ3 0 0 0 0 0 0
0 0 0 0 In2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Iγ3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Iγ2 0 0 0
0 0 Im1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Iδ̂2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Iγ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

while X∗3Σπ ,νX3 and Y ∗3 Σπ̂ ,ν̂Y3 are still as in (7.4). We partition

Iδ1
= Im1 ⊕ Im2⊕ Iγ3⊕ Iγ2⊕ Iγ1 , Iδ2

= In2⊕ Iγ3⊕ Iγ2 ,

Iδ̂1
= In1⊕ In2⊕ Iγ3⊕ Iγ2⊕ Iγ1 , Iδ̂2

= Im2⊕ Iγ3⊕ Iγ2 ,

and replace Iδ1
, Iδ2

, Iδ̂1
, and Iδ̂2

in the matrix triple with these partitions. We then get
X∗3 AY3 , X∗3Σπ ,νX3 , and Y ∗3 Σπ̂ ,ν̂Y3 partitioned in 22 block rows and columns. Let PR be
the block permutation that re-arranges the block columns of X∗3 AY3 in the order

13,1,6,22,5,10,17,21,4,9,12,14,16,20,2,7,18,3,8,11,15,19.

Let PL be another block permutation such that P∗L re-arranges the block rows of X∗3 AY3

in the same order. Set
X̃ := X3PL, Ỹ := Y3PR.

Then we obtain that

X̃∗AỸ = Ans⊕A0⊕(A1⊕A2⊕A3)⊕(A1,2⊕A2,3),

X̃∗Σπ ,ν X̃ = Gns ⊕ G0 ⊕ (G1 ⊕ G2 ⊕ G3)⊕ (G1,2 ⊕ G2,3),

Ỹ ∗Σπ̂ ,ν̂Ỹ = Ĝns ⊕ Ĝ0 ⊕ (Ĝ1 ⊕ Ĝ2 ⊕ Ĝ3)⊕ (Ĝ1,2 ⊕ Ĝ2,3),

where
Ans = A2�+1,2�+1, Gns = Σπ�,ν�

, Ĝns = Σπ̂�,ν̂�
, � = 3, (7.11)
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A0 = 0m0×n0 , G0 = Σπ0,ν0 , Ĝ0 = Σπ̂0,ν̂0
, (7.12)

A1⊕A2⊕A3 =
[

0 0
0 Iγ1

]
⊕

⎡⎢⎢⎣
0 0 0 0
0 0 0 Iγ2
0 0 Iγ2 0
0 Iγ2 0 0

⎤⎥⎥⎦⊕
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 Iγ3
0 0 0 0 Iγ3 0
0 0 0 Iγ3 0 0
0 0 Iγ3 0 0 0
0 Iγ3 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G1⊕G2⊕G3 = Ĝ1⊕ Ĝ2⊕ Ĝ3

=
[

0 Iγ1
Iγ1 0

]
⊕

⎡⎢⎢⎣
0 0 0 Iγ2
0 0 Iγ2 0
0 Iγ2 0 0
Iγ2 0 0 0

⎤⎥⎥⎦⊕
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 Iγ3
0 0 0 0 Iγ3 0
0 0 0 Iγ3 0 0
0 0 Iγ3 0 0 0
0 Iγ3 0 0 0 0
Iγ3 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

A1,2⊕A2,3 =

⎡⎣ 0 0 0
0 0 In1

0 Im1 0

⎤⎦ ⊕

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 In2

0 0 0 Im2 0
0 0 In2 0 0
0 Im2 0 0 0

⎤⎥⎥⎥⎥⎦ ,

G1,2 ⊕ G2,3 =

⎡⎣ 0 0 Im1

0 Σπ1,ν1 0
Im1 0 0

⎤⎦⊕
⎡⎢⎢⎢⎢⎣

0 0 0 0 Im2

0 0 0 In2 0
0 0Σπ2,ν2 0 0
0 In2 0 0 0

Im2 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

Ĝ1,2 ⊕ Ĝ2,3 =

⎡⎣ 0 0 In1

0Σπ̂1,ν̂1
0

In1 0 0

⎤⎦ ⊕
⎡⎢⎢⎢⎢⎣

0 0 0 0 In2

0 0 0 Im2 0
0 0Σπ̂2,ν̂2

0 0
0 Im2 0 0 0
In2 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

Step 3) Extraction of Jordan blocks from the staircase-like-form

Completely analogous to the case � = 3, we proceed in the case � = 3 and obtain
the staircase-like-form as

X̃∗AỸ = Ans⊕A0⊕
�⊕

j=1

A j⊕
�−1⊕
j=1

A j, j+1,

X̃∗Σπ ,ν X̃ = Gns ⊕ G0 ⊕
�⊕

j=1

G j ⊕
�−1⊕
j=1

G j, j+1,

Ỹ ∗Σπ̂ ,ν̂Ỹ = Ĝns ⊕ Ĝ0 ⊕
�⊕

j=1

Ĝ j ⊕
�−1⊕
j=1

Ĝ j, j+1,
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where Ans,Gns, Ĝns are as in (7.11), A0,G0, Ĝ0 are as in (7.12),

A j =
(
R2 jJ2 j(0)

)
⊗ Iγ j =

⎡⎢⎢⎣
0 0 0 0
0 0 0 Iγ j

0 0 . .
.

0
0 Iγ j 0 0

⎤⎥⎥⎦
(2 j)×(2 j) blocks

, (7.13)

G j = Ĝ j = R2 j⊗ Iγ j =

⎡⎣ 0 0 Iγ j

0 . .
.

0
Iγ j 0 0

⎤⎦
(2 j)×(2 j) blocks

, (7.14)

A j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
0 In j

. .
.
Imj

. .
.
. .

.

0 In j

0 Imj 0

⎤⎥⎥⎥⎥⎥⎥⎦
(2 j+1)×(2 j+1) blocks

, (7.15)

G j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Imj

In j

. .
.

Σπ j ,ν j

. .
.

In j

Imj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2 j+1)×(2 j+1) blocks

, (7.16)

Ĝ j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 In j

Imj

. .
.

Σπ̂ j ,ν̂ j

. .
.

Imj

In j 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2 j+1)×(2 j+1) blocks

. (7.17)

The blocks Ans , Gns , Ĝns , A0 , G0 , and Ĝ0 are already in the form as indicated in
Theorem 3.2. Next, let us investigate in detail the blocks of the form (7.13)–(7.14). Let
Pj be the permutation such that premultiplication with P∗j reorders the rows of A j in
the order

2 jγ j, (2 j−1)γ j, . . . , γ j,
2 jγ j−1, (2 j−1)γ j−1, . . . , γ j−1,

...
...

. . .
...

2 jγ j− γ j +1, (2 j−1)γ j− γ j +1, . . . , 1;
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and let P̃j be the permutation such that postmultiplication with P̃j reorders the columns
of A j in the order

γ j, . . . , (2 j−1)γ j, 2 jγ j,
γ j−1, . . . , (2 j−1)γ j−1, 2 jγ j−1,

... . .
. ...

...
1, . . . , (2 j−1)γ j− γ j +1, 2 jγ j− γ j +1.

Then it is easily verified that

P∗j A jP̃j =
γ j⊕

i=1

J2 j(0), P∗j G jPj = P̃∗j Ĝ jP̃j =
γ j⊕

i=1

R2 j.

Finally, let us return to the blocks of the forms (7.15)–(7.17). Let Zj be the permutation
such that premultiplication with Z∗j reorders the rows of A j, j+1 in the order

( j +1)mj + jn j, jm j +( j−1)n j, . . . , 2mj +n j, mj,
( j +1)mj−1+ jn j, jm j−1+( j−1)n j, . . . , 2mj−1+n j, mj−1,

...
...

. . .
...

...
jm j +1+ jn j, ( j−1)mj +1+( j−1)n j, . . . , mj +1+n j, 1,

jm j + jn j, ( j−1)mj +( j−1)n j, . . . , mj +n j,
jm j + jn j−1, ( j−1)mj +( j−1)n j−1, . . . , mj +n j−1,

...
...

. . .
...

jm j +( j−1)n j +1, ( j−1)mj +( j−2)n j +1, . . . , mj +1,

and let Z̃ j+1 be the permutation such that postmultiplication with Z̃ j+1 reorders the
columns of A j, j+1 in the order

mj +n j, 2mj +n j, . . . , jm j + jn j,
mj−1+n j, 2mj−1+n j, . . . , jm j−1+ jn j,

...
...

. . .
...

1+n j, mj +1+n j, . . . , ( j−1)mj +1+ jn j,
n j, mj +2n j, . . . , ( j−1)mj + jn j, jm j +( j +1)n j,

n j−1, mj +2n j−1, . . . , ( j−1)mj + jn j−1, jm j +( j +1)n j−1,
...

...
. . .

...
...

1, mj +n j +1, . . . ,( j−1)mj +( j−1)n j +1, jm j + jn j +1.
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Then it is easily verified that

Z∗j A j, j+1Z̃ j+1 =
mj⊕
i=1

[
I j

0

]
( j+1)× j

⊕
n j⊕
i=1

[
0 I j

]
j×( j+1) ,

Z∗j G j, j+1Zj =
ν j⊕
i=1

R̃ j+1⊕
mj⊕

i=ν j+1

Rj+1⊕
n j⊕
i=1

Rj,

Z̃∗j+1Ĝ j, j+1Z̃ j+1 =
mj⊕
i=1

Rj ⊕
ν̂ j⊕
i=1

R̃ j+1⊕
n j⊕

i=ν̂ j+1

Rj+1,

(7.18)

if j is even and

Z∗j A j, j+1Z̃ j+1 =
mj⊕
i=1

[
I j

0

]
( j+1)× j

⊕
n j⊕
i=1

[
0 I j

]
j×( j+1) ,

Z∗j G j, j+1Zj =
mj⊕
i=1

Rj+1 ⊕
ν j⊕
i=1

R̃ j⊕
n j⊕

i=ν j+1

Rj,

Z̃∗j+1Ĝ j, j+1Z̃ j+1 =
ν̂ j⊕
i=1

R̃ j⊕
mj⊕

i=ν̂ j+1

Rj⊕
n j⊕
i=1

Rj+1,

(7.19)

if j is odd, where

R̃2q+1 =

⎡⎣ 0 0 Rq

0 −1 0
Rq 0 0

⎤⎦ . (7.20)

The matrices in (7.18) and (7.19) are block diagonal (with rectangular diagonal blocks
in Z∗j A j, j+1Z̃ j+1 ) and it is straightforward to check that with appropriate transforma-
tion matrices it is possible to simultaneously transform, say, the k th block in all three
matrices without changing the other blocks. We use this observation to finally show
that the form (7.18) or (7.19) is equivalent to the corresponding form in Theorem 3.2.
It only remains to show that the odd-sized blocks R̃ j and R̃ j+1 in (7.18) and (7.19) can
be replaced by −Rj and −Rj+1 , respectively, without changing the other blocks. We
show this by an induction argument for the triple ([0 I j], R̃ j,Rj+1) and j odd, the proof
in the other cases is similar. For j = 1 there is nothing to show, so let j = 3, i.e.,

A =

⎡⎣ 0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ , G =

⎡⎣ 0 0 1
0 −1 0
1 0 0

⎤⎦ , Ĝ =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

Then G can be transformed to −R3 by the congruence transformation with the trans-
formation matrix diag(1,1,−1) . Updating A accordingly (i.e., by premultiplying A
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with the transformation matrix), we obtain

A =

⎡⎣ 0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎦ , G =

⎡⎣ 0 0 −1
0 −1 0
−1 0 0

⎤⎦ , Ĝ =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

The negative entry in A can then be reset to +1 by postmultiplication with the matrix
diag(−1,1,1,−1) . Observe that the congruence transformation with this matrix leaves
Ĝ invariant. Next, consider the case j = 5, i.e.,

A =

⎡⎣ 0 1 0 0
0 0 I3 0
0 0 0 1

⎤⎦ , G =

⎡⎣ 0 0 1
0 R̃3 0
1 0 0

⎤⎦ , Ĝ =

⎡⎣0 0 1
0 R4 0
1 0 0

⎤⎦ .

Applying the transformations of the previous step (embedded in slightly larger trans-
formation matrices), we obtain that

A =

⎡⎣ 0 −1 0 0
0 0 I3 0
0 0 0 1

⎤⎦ , G =

⎡⎣ 0 0 1
0 −R3 0
1 0 0

⎤⎦ , Ĝ =

⎡⎣ 0 0 1
0 R4 0
1 0 0

⎤⎦ .

Premultiplying A with diag(−1, I4) and applying the corresponding congruence trans-
formation on G yields

A =

⎡⎣ 0 1 0 0
0 0 I3 0
0 0 0 1

⎤⎦ , G =

⎡⎣ 0 0 −1
0 −R3 0
−1 0 0

⎤⎦ , Ĝ =

⎡⎣ 0 0 1
0 R4 0
1 0 0

⎤⎦ .

The remainder of the proof then follows by induction using alternately the arguments
as in the cases j = 3 and j = 5.

Step 4) Getting the canonical form for H and Ĥ

Up to this point, we have proved the existence of the canonical form for the triple
(A,G,Ĝ) . The corresponding forms for Ĥ and H then immediately follow by form-
ing the products Ĝ−1A∗G−1A and G−1AĜ−1A∗ . These forms are already very close to
the actual canonical forms of Theorem 2.2, and further reducing them to that canonical
form leads to the statements on the eigenvalues and attached signs of Ĥ and H .

Step 5) Uniqueness of the form

We highlight that once uniqueness of the parameters γ j,mj,n j has been proved,
then all other parameters are already uniquely defined by the unique canonical forms
of H and Ĥ as G-Hermitian, respectively Ĝ-Hermitian matrices. (Indeed, the signs

s(i)j and ŝ(i)j can be immediately reconstructed from the sign characteristics of the eigen-

value 0 of H and Ĥ .) The proof of uniqueness of γ j,mj,n j follows the same lines
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as the proof for the corresponding case of complex symmetric G and Ĝ given in [19].
For the sake of making the paper self-contained, we reproduce this proof here.

Note that there exists a unique sequence of subspaces

Eig �(H ,0)⊆ Eig �−1(H ,0)⊆ ·· · ⊆ Eig1(H ,0) = kerH

where Eig j(H ,0) consists of the zero vector and all eigenvectors of H associated
with zero that can be extended to a Jordan chain of length at least j . Define κ� =
dim

(
Eig �(H ,0)∩kerA

)
and

κ j = dim
(
Eig j(H ,0)∩kerA

)−dim
(
Eig j+1(H ,0)∩kerA

)
, j = 1, . . . , �−1.

Then any eigenvector of H that is associated with a Jordan block of size j× j in the
canonical form and that is also in the kernel of A contributes to κ j . Similarly, we define
κ̂� = dim

(
Eig �(Ĥ ,0)∩kerA∗

)
and

κ̂ j = dim
(
Eig j(Ĥ ,0)∩kerA∗

)−dim
(
Eig j+1(Ĥ ,0)∩kerA∗

)
, j = 1, . . . , �−1.

Then elementary counting yields

κ j = γ j +n j−1 and κ̂ j = γ j +mj−1, j = 1, . . . , �.

If τ j , respectively τ̂ j denotes the number of Jordan blocks of size j× j in the canonical
form of H and Ĥ , respectively, we also have that

τ j = 2γ j +mj +n j−1 and τ̂ j = 2γ j +mj−1 +n j, j = 1, . . . , �.

Hence, we obtain

τ j−κ j− κ̂ j = mj−mj−1, and τ̂ j−κ j− κ̂ j = n j−n j−1, j = 1, . . . , �,

from which we can successively compute mj,n j , j = �− 1, . . . ,0 using m� = n� = 0.
We furthermore obtain that

γ j =
1
2
(τ j−mj−n j−1)

for j = 1, . . . , � . Thus, the numbers γ j,mj,n j are uniquely determined by the invariant
numbers τ j, τ̂ j,κ j, κ̂ j , j = 1, . . . , � .

This concludes the proof of Theorem 3.2.

7.3. Proof of Theorem 4.2

Applying appropriate congruence transformations to G and Ĝ otherwise, we may
assume that G = Σπ ,ν and Ĝ = Jn . Let

A = B1C
T
1
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be a full rank factorization of A , i.e., B1 ∈ Rm×r , C1 ∈ R2n×r , rankB1 = rankC1 = r .
Repeatedly applying Proposition 7.1 to B1 and Proposition 7.2 to C1 , respectively, we
can determine a staircase-like form that can be further reduced to canonical form. The
proof follows the same lines as in the steps 1) and 2) of the proof of Theorem 3.2 and
yields the reduced staircase-like form

X̃T AỸ = Ans⊕A0⊕
�⊕

j=1

A j⊕
�−1⊕
j=1

A j, j+1,

X̃TΣπ ,ν X̃ = Gns ⊕ G0 ⊕
�⊕

j=1

G j ⊕
�−1⊕
j=1

G j, j+1,

Ỹ T JnỸ = Ĝns ⊕ Ĝ0 ⊕
�⊕

j=1

Ĝ j ⊕
�−1⊕
j=1

Ĝ j, j+1,

where

Ans = A2�+1,2�+1, Gns = Σπ�,ν�
, Ĝns = Jπ̂�

,

with π� +ν� = 2π̂� and A2�+1,2�+1 ∈ C2π̂�×2π̂� being nonsingular,

A0 = Om0×2n0 , G0 = Σπ0,ν0 , Ĝ0 = Jn0 ,

A j =
(
R2 jJ2 j(0)

)
⊗ Iγ j , G j = R2 j⊗ Iγ j , Ĝ j =

[
0 Rj

−Rj 0

]
⊗ Iγ j ,

and A j, j+1 , Ĝ j, j+1 , and Ĝ j, j+1 are (2 j + 1)× (2 j+ 1) block matrices, where, if j is
odd, the block rows have alternating sizes n j,2mj and the forms

A j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 In j

. .
.
I2mj

. .
.
. .

.

0 In j

0 I2mj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,G j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 I2mj

In j

. .
.

Σπ j ,ν j

. .
.

In j

I2mj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7.21)

Ĝ j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 In j

I2mj
. .

.

Jmj
. .

.

−I2mj

−In j 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.22)
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or, if j is even, then the block rows have alternating sizes 2n j,mj and the forms

A j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 I2n j

. .
.
Imj

. .
.

. .
.

0 I2n j

0 Imj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,G j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 Imj

I2n j
. .

.

Σπ j ,ν j

. .
.

I2n j

Imj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7.23)

Ĝ j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I2n j

Imj

. .
.

Jn j
. .

.

−Imj

−I2n j 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (7.24)

The blocks A0 , G0 , and Ĝ0 are already in the form as indicated in Theorem 3.2,
for the blocks Ans , Gns , Ĝns , we can apply Theorem 4.1, and for the blocks A j , Ĝ j ,
and Ĝ j we can apply an analogous permutation as it has been done for the correspond-
ing blocks in the proof of Theorem 3.2. Moreover, if j is odd, then let Zj be the
permutation such that premultiplication with ZT

j reorders the rows of A j, j+1 in the
order

2( j +1)mj + jn j, 2 jm j +( j−1)n j, . . . , 4mj +n j, 2mj,
2 jm j +mj + jn j, 2( j−1)mj +mj +( j−1)n j, . . . , 2mj +mj +n j, mj,

2( j +1)mj−1+ jn j, 2 jm j−1+( j−1)n j, . . . , 4mj−1+n j, 2mj−1,
2 jm j +mj−1+ jn j, 2( j−1)mj +mj−1+( j−1)n j, . . . ,2mj +mj−1+n j, mj−1,

...
...

. . .
...

...
2 jm j +mj +1+ jn j, 2( j−1)mj +mj +1+( j−1)n j, . . . ,2mj +mj +1+n j, mj +1,

2 jm j +1+ jn j, 2( j−1)mj +1+( j−1)n j, . . . , 2mj +1+n j, 1,
2 jm j + jn j, 2( j−1)mj +( j−1)n j, . . . , 2mj +n j,

2 jm j + jn j−1, 2( j−1)mj +( j−1)n j−1, . . . , 2mj +n j−1,
...

...
. . .

...
2 jm j +( j−1)n j +1, 2( j−1)mj +( j−2)n j +1, . . . , 2mj +1,

and let Z̃ j+1 be the permutation such that postmultiplication with Z̃ j+1 reorders the
columns of A j, j+1 in the order

mj +n j, 2mj +mj +2n j, . . ., 2( j−1)mj +mj + jn j,
2mj +n j, 4mj +n j, . . ., 2 jm j + jn j,

mj−1+n j, 2mj +mj−1+2n j,. . . ,2( j−1)mj +mj−1+ jn j,
2mj−1+n j, 4mj−1+n j, . . . , 2 jm j−1+ jn j,

...
...

. . .
...
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1+n j, 2mj +1+n j, . . . , 2( j−1)mj +1+ jn j,
mj +1+n j, 2mj +mj +1+n j,. . . ,2( j−1)mj +mj +1+ jn j,

n j, 2mj +2n j, . . . , 2( j−1)mj + jn j, 2 jm j +( j +1)n j,
n j−1, 2mj +2n j−1, . . ., 2( j−1)mj + jn j−1, 2 jm j +( j +1)n j−1,

...
...

. . .
...

...
1, 2mj +n j +1, . . . ,2( j−1)mj +( j−1)n j +1, 2 jm j + jn j +1.

Then it is easily verified that

ZT
j A j, j+1Z̃ j+1 =

mj⊕
i=1

⎡⎢⎢⎣
0 I j

0 0
I j 0
0 0

⎤⎥⎥⎦
2( j+1)×2 j

⊕
n j⊕
i=1

[
0 I j

]
j×( j+1) ,

ZT
j G j, j+1Zj =

mj⊕
i=1

[
0 Rj+1

Rj+1 0

]
⊕

ν j⊕
i=1

R̃ j⊕
n j⊕

i=ν j+1

Rj,

Z̃T
j+1Ĝ j, j+1Z̃ j+1 =

mj⊕
i=1

[
0 Rj

−Rj 0

]
⊕

n j⊕
i=1

[
0 R j+1

2−R j+1
2

0

]
,

(7.25)

where R̃ j is as in (7.20). Then analogously as in the proof of Theorem 3.2, we can
transform R̃ j to −Rj without changing any of the other blocks. Thus, we finally obtain
blocks as in 4) and 5) in Theorem 4.2. Similarly, an analogous permutation extracts
blocks as in 3) and 6) in Theorem 4.2 for the case that j is even, i.e., if we consider the
blocks (7.23)–(7.24).

Concerning uniqueness, as in the proof of Theorem 3.2 it remains to show unique-
ness of the numbers � j , 2mj , and n j . This is done exactly in the same way as in the
proof of Theorem 3.2. Note that the paired blocks in 4) and 6) in Theorem 4.2 cannot be
decomposed into two smaller blocks of equal size, because of the fact that nonsingular
skew-symmetric matrices must have even size.

7.4. Proof of Theorem 5.2

Applying appropriate congruence transformations to G and Ĝ otherwise, we may
assume that G = Jm and Ĝ = Jn . Again, we then compute a staircase-like form for A
by considering the full rank factorization

A = B1C
T
1

of A , i.e., B1 ∈ R2m×r , C1 ∈ R2n×r , rankB1 = rankC1 = r , and repeatedly applying
Proposition 7.2 to B1 and C1 . Then continuing as in step 2) of the proof of Theorem 3.2
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yields the reduced staircase-like form

X̃T AỸ = Ans⊕A0⊕
�⊕

j=1

A j⊕
�−1⊕
j=1

A j, j+1,

X̃T JmX̃ = Gns ⊕ G0 ⊕
�⊕

j=1

G j ⊕
�−1⊕
j=1

G j, j+1,

Ỹ T JnỸ = Ĝns ⊕ Ĝ0 ⊕
�⊕

j=1

Ĝ j ⊕
�−1⊕
j=1

Ĝ j, j+1,

where

Ans = A2�+1,2�+1, Gns = Jπ�
, Ĝns = Jπ̂�

= Jπ�
,

with A2�+1,2�+1 ∈ R2π�×2π� being nonsingular,

A0 = 02m0×2n0 , G0 = Jm0 , Ĝ0 = Jn0 ,

A j =
(
R2 jJ2 j(0)

)
⊗ Iγ j , G j = Ĝ j =

[
0 Rj

−Rj 0

]
⊗ Iγ j ,

and A j, j+1 , Ĝ j, j+1 , and Ĝ j, j+1 are (2 j+1)×(2 j+1) block matrices, where the block
rows have alternating sizes 2n j,2mj and the forms

A j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 I2n j

. .
.
I2mj

. .
.

. .
.

0 I2n j

0 I2mj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I2mj

I2n j
. .

.

Jπ j
. .

.

−I2n j

−I2mj 0

⎤⎥⎥⎥⎥⎥⎥⎦, (7.26)

Ĝ j, j+1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I2n j

I2mj
. .

.

Jπ̂ j
. .

.

−I2mj

−I2n j 0

⎤⎥⎥⎥⎥⎥⎥⎦, (7.27)

The remainder of the proof then proceed as the proof of Theorem 4.2 by adapting
the permutation used on the blocks of the forms (7.26)–(7.27) similarly as in the proof
of Theorem 4.2 in order to allow to group together paired blocks.

Concerning uniqueness, as in the proof of Theorem 3.2 it remains to show unique-
ness of the numbers � j , 2mj , and 2n j . This is done exactly in the same way as in the
proof of Theorem 3.2.
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