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ON BOUNDS FOR DISCRETE SEMIGROUPS
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Abstract. The main result of this note is extension on the infinite dimension of the following
known result for finite matrices: while the spectral radius ρ(T ) gives only asymptotic decay
estimates, the solution X of the discrete Lyapunov equation X −T ∗XT = BB∗ yields rigorous
bounds. We also present a new upper bound for the norm of the solution X in the matrix case
which depends on the structure of the right hand side. The new bound shows that the structure
of B can greatly influence ‖X‖ .

1. Introduction

In this note we consider the exponential decay of the powers Tk of a Hilbert space
operator T . There are two main measures of the decay of this sequence: (i) the spectral
radius ρ(T ) and the solution X of the discrete Lyapunov equation1

X −T ∗XT = BB∗.

While the spectral radius gives only asymptotic decay estimates, the Lyapunov
equation yields rigorous bounds as was shown e.g. in Godunov [3] for finite matrices.
Our aim is to further elaborate on the results presented by Godunov, to extend them to
the infinite dimensional case and give a new upper bound for the norm of the solution X
in the matrix case which depends on the structure of the right hand side of the discrete
Lyapunov equation. The last result was inspired by the ideas used in [6].

Here we will observe some additional interesting structure yet without rigorous
explanation. We hope that our observations will incite further theoretical investigation
in this field.

2. The Main Result

In the following H will denote a real or complex Hilbert space.2 The techniques
of our proofs are close to those used in [3], with slight adaptations they will be seen to
hold in the infinite dimensional case as well.3. We give full proofs for the sake of the
completeness.

Mathematics subject classification (2000): 11D04, 11D61, 15A24, 15A90.
Keywords and phrases: Exponential decay, discrete Lyapunov equation, upper bounds.

1Sometimes also called the Stein equation.
2Whenever not specified otherwise, we follow the notation and the terminology of [5].
3For some general facts on the matrix Stein equation see also e.g. [2] and [4, Sec. IV.2] for the unique

solvability of the operator Stein equation
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THEOREM 2.1. Let T ∈ B(H ) and B ∈ B(H1,H ) hold. The relation

∞

∑
n=0

‖B∗Tkψ‖2 < ∞ for all ψ . (1)

is equivalent to the existence of the strong limit

∞

∑
n=0

T ∗kBB∗Tk (2)

which then satisfies the equation

X −T ∗XT = BB∗. (3)

Conversely, if (3) holds with a non-negative4 selfadjoint X ∈B(H ) then (2) converges
strongly to a solution of (3). This is the smallest of all non-negative selfadjoint solutions
of (3).

Proof. Any strongly convergent sum (2) obviously solves (3). Also obviously the
strong convergence of (2) is equivalent to (1). Conversely, (3) implies

X = BB∗+T ∗XT = · · · =
n−1

∑
k=0

T ∗kBB∗Tk +T ∗nXTn (4)

for any n = 0,1,2, . . . . Since all terms on the right hand side of (4) are non-negative, the
series in (2) converges strongly to some X0 which then solves (3). By the same reason
T ∗nXTn converges strongly to some non-negative selfadjoint Z so X0 is minimal as
stated. �

For the sake of convenience we denote the right-hand side of (3) in factored form,
although X only depends on T and BB∗ .

THEOREM 2.2. Let (3) holds and let, in addition,

γ = γ(T,B) = sup
B∗ψ �=0

(Xψ ,ψ)
‖B∗ψ‖2 < ∞. (5)

Then γ � 1 and (3) has the minimal solution X from (2) which satisfies

∞

∑
k=n

T ∗kBB∗Tk �
(

1− 1
γ

)n

X . (6)

In particular, the series (2) converges in norm. If γ = 1 then B∗T = 0 .

4The order relation is understood in the sense of quadratic forms.
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Proof. The relation γ � 1 is obvious. We have

X −
n−1

∑
k=0

T ∗kBB∗Tk = T ∗nXTn =
∞

∑
k=n

T ∗kBB∗Tk (7)

and (cf.[3])

T ∗k−1XTk−1 −T ∗kXTk = T ∗k−1BB∗Tk−1 � T ∗k−1XTk−1

γ
. (8)

Thus,

T ∗kXTk �
(

1− 1
γ

)
T ∗k−1XTk−1 � · · · �

(
1− 1

γ

)k

X . (9)

This, together with (7) gives (6) the norm convergence of which is now obvious. The
last assertion is obvious, too. �

Clearly, for the minimal solution X above we have

N (B∗) = N (BB∗) ⊇ N (X)

and X has a non-trivial null space if and only if T maps some non-vanishing vector
from N (B∗) into N (B∗) . Moreover,

N (X) = ∩∞
k=0N (B∗Tk) (10)

As was mentioned in [3] for finite matrices the quantity γ is the greatest root of
the equation det(X −λBB∗) = 0.

COROLLARY 2.1. If BB∗ is positive definite then H1 can be chosen so that γ
from (5) is finite and equals ‖B−1XB−∗‖ (in this case H1 can be chosen so that both
B and B∗ are bijective). Moreover,

ρ(T ) �
√

1− 1
‖B−1XB−∗‖ < 1 (11)

and X is positive definite. Conversely, if ρ(T ) < 1 then (2) converges in norm for any
B and X is the unique solution of (3).

Proof. (6) implies

‖(B∗TB−∗)n‖2 �
(

1− 1
γ

)n

‖B−1XB−∗‖ (12)

and this implies (11). The uniqueness follows from

Z = T ∗ZT ⇒ Z = T ∗nZTn
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for arbitrary n whereas the positive definiteness of X follows from that of BB∗ . The
last assertion follows if we rewrite (9) as

‖Tkψ‖2
X �

(
1− 1

γ

)k

‖ψ‖X

where ‖ψ‖X = ‖X1/2ψ‖ is a norm equivalent to the original one. �

The second part of the above Corollary can also be derived by renormalising the
Hilbert space such that in the new norm ‖T‖ < 1 holds.

PROPOSITION 2.1. Let ρ(T ) < 1 , let B∗B ∈ B(H1) be positive definite and let

B∗T = τB∗ (13)

for some τ ∈ B(H1) . Then γ from (5) is finite. Conversely, if the dimension of H1 is
finite then γ < ∞ implies (13).

Proof. (13) implies
B∗Tn = τnB∗ (14)

and by (9)

‖τn‖2 � ‖B‖2‖(B∗B)−1‖
(

1− 1
‖X0‖

)k

‖X0‖

where
T ∗X0T −X0 = −I.

Thus, ρ(τ) < 1 and

X =
∞

∑
k=0

T ∗kBB∗Tk = B
∞

∑
k=0

τ∗kτkB∗

= B(I− τ∗τ)−1B∗

and
γ � ‖(1− τ∗τ)−1‖. (15)

The proof of the converse is straightforward. �

With finite matrices it is always possible to choose B with full column rank, or,
equivalently, B∗B positive definite.

COROLLARY 2.2. Let ρ(T ) < 1 and let

X −T ∗XT = BB∗, Y −TYT ∗ = CC∗.

Then
Tr(C∗XC) = Tr(B∗YB).
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Furthermore, for B = I ,
(Xψ ,ψ) = TrYψ

and

‖X‖ = sup
ψ �=0

TrYψ
‖ψ‖ ,

where
Yψ −TYψT ∗ = BψB∗

ψ Bψφ = (ψ ,φ)ψ .

For the proof we just mention

Tr (C∗XC) = Tr (CC∗X) = Tr (YX)−Tr (TYT ∗X)
= Tr (XY )−Tr (T ∗XTY ) = Tr (BB∗Y ) = Tr (B∗YB)

(other statements are straightforward).

3. Solution bounds

We consider the discrete algebraic Lyapunov equation (DALE):

X −T∗XT = BB∗ (16)

where T ∈ Rn×n , B ∈ Rn×r and ρ(T ) < 1, where ρ(T ) denotes the spectral radius of
the matrix T .

Due to our assumption it follows that a function

f (X) = T ∗XT +BB∗

has the solution X of (16) as the fixed point. Since X is positive semi-definite we can
write

X = LXL∗
X .

Thus, if we set L0 = B then the following simple loop

f or i = 1 : k

L(:, i) = [T ′ ∗L(:, i−1),B]; (17)

end

will converge (since T is a contraction by the assumption) to LX , that is

LX = lim
k→∞

Lk .

This further means that X ≈ Xk = LkL∗
k .

In the following we will present two bounds, one for the norm of the solution ‖X‖
and the other which will bound the error in our simple approximation, that is the bound
for ‖X −Xk‖ .
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We will assume that matrix T from (16) has the following simple Jordan structure

T ∗ = SJS−1; S ∈ C
m×m , J = J1⊕ . . .⊕ Jk0 , (18)

where Ji⊕Jk stands for a direct sum of Ji and Jk and each Ji , i = 1, . . . ,k0 corresponds
to subspaces associated with the eigenvalue λi , with the following structure

Ji = [λi] for i = 1, . . . ,n0 ,

Ji =
[
λi 1
0 λi

]
, or Ji = λiI2 +N , for i = n0 +1, . . . ,k0 ,

where I2 is 2×2 identity matrix and

N =
[
0 1
0 0

]
is nilpotent of order 2. Let the matrix

B̂ = S−1B =

⎡⎢⎢⎢⎣
b11 b12 . . . b1s

b21 b22 . . . b2s
...

...
...

...
bk01 bk02 . . . bk0s

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
b̂1

b̂2
...

b̂k0

⎤⎥⎥⎥⎦ (19)

be partitioned according to the Jordan structure of the matrix T , that is for i = 1, . . . ,n0 ,
b̂i denotes the i-th 1× s , and for i = n0 + 1, . . . ,k0 , the i-th 2× s , submatrix of the
matrix B̂ , respectively.

The following theorem contains bound for the norm of the solution of (16).

THEOREM 3.1. Let X be the solution of (16). Then the following bound holds:

‖X‖ � ‖S‖2

(
n0

∑
p=1

‖b̂p‖
1−|λp| +

k0−n0

∑
p=1

‖b̂n0+(2p−1)‖+‖b̂n0+2p‖
1−|λn0+p| +

k0−n0

∑
p=1

‖b̂n0+2p‖
(1−|λn0+p|)2

)2

.

(20)

Proof. The solution X of (16) can be written as:

X =
∞

∑
j=0

(T ∗) jBB∗T j .

Using (18) and the above equality we can write

‖X‖ �
∞

∑
j=0

‖(T ∗) jB‖2 � ‖S‖2
∞

∑
j=0

‖J jB̂‖2 ,

where B̂ = S−1B and

J = λ1⊕ . . .⊕λn0 +
(
λn0+1I2 +N

)⊕ . . .⊕ (λk0I2 +N
)
.
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Note that 2k0−n0 = m .
We will proceed with bounding the term ‖J jB̂‖ . For that purpose we will write B̂

in the form which corresponds to the structure of J . Thus let

B̂ =
[
b̂1, . . . , b̂n0 ,Qb(1)T , . . . ,Qb(k0−n0)T

]T
where Qb(p) is given by where

Qb(p) =

[
b̂n0+(2p−1)

b̂n0+2p

]
.

Now it is easy to show that

‖X‖ � ‖S‖2
∞

∑
j=0

(
n0

∑
p=1

‖(λp) j b̂p‖+
k0−n0

∑
p=1

‖(λn0+pI2 +N
) j

Qb(p)‖
)2

� ‖S‖2
∞

∑
j=0

(
n0

∑
p=1

|λp| j‖b̂p‖+
k0−n0

∑
p=1

|λn0+p| j‖Qb(p)‖+ j|λn0+p| j−1‖NQb(p)‖
)2

Now the bound (20) follows simply by summation of infinite series from the above
inequality. �

Let Lk be obtained after k steps of (17). The approximate solution of (16) then
can be written as

X̃ = LkL
∗
k =

k

∑
j=0

(T ∗) jBB∗T j . (21)

Now from the Theorem 3.1 it is easy to derive the upper bound for ‖X̃ −X‖ .

COROLLARY 3.1. Let X̃ be k -th approximation of the solution X of DALE (16)
defined by (21). Then the following bound holds:

‖X − X̃‖ � ‖S‖2

(
n0

∑
p=1

|λp|k+1 ‖b̂p‖
1−|λp| +

k0−n0

∑
p=1

|λp|k+1 ‖b̂n0+(2p−1)‖+‖b̂n0+2p‖
1−|λn0+p|

+
k0−n0

∑
p=1

|λp|k ‖b̂n0+2p‖
(1−|λn0+p|)2

)2

. (22)

Proof. Using the same arguments as in the proof of the Theorem 3.1, bound (22)
follows from

‖X − X̃‖ = ‖
∞

∑
j=k+1

(T ∗) jBB∗T j‖ ,

and the facts that

∞

∑
j=k+1

|λp| j qp =
|λp|k+1 qp

1−|λp| ,
∞

∑
j=k+1

j|λp| j−1 qp =
|λp|k qp

(1−|λp|)2 �
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The next section illustrates the influence of the structure of the right hand side of
the discrete Lyapunov equation (16) on its solution. The all calculations are performed
on PC computer using standard Matlab package dlyap.m for solving discrete Lyapunov
equations.

3.1. Numerical illustration

As an illustration of the bound (20) we will compare it with the standard bound
for discrete Lyapunov equation which can be obtained using the following results.

As it has been described in [1, Section 8.3.6], the discrete Lyapunov equation (16)
is equivalent to the linear system:

Rx = b , where R = In2 −A∗⊗A∗ , (23)

and b is n2 vector which is obtained by stacking the columns of the matrix BB∗ on top
of one another. Now, form (23) follows the standard bound:

‖X‖ � ‖x‖ � ‖R−1‖‖b‖. (24)

Further, consider the (16), where T is the 6×6 matrix with the following Jordan
structure T ∗ = SJS−1

S =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.59753 −0.46706 0.55739 0.11502 −0.31063 −0.055246
−0.042629 −0.15136 −0.51721 0.77593 −0.31361 −0.0818
0.46846 0.040048 0.55230 0.47043 0.27916 −0.41902
−0.42022 0.85471 0.17322 0.22797 −0.090132 0.038395
0.24984 0.15879 1.8387 ·10−3 −0.30653 −0.73166 −0.53218
0.42742 0.039832 0.29456 0.13054 −0.42868 0.72731

⎤⎥⎥⎥⎥⎥⎥⎦
and J = J1⊕ J2⊕ J3 , where

J1 =
[
0.1 1
0 0.1

]
J2 =

[
0.99 1
0 0.99

]
J3 =

[
0.02 1
0 0.02

]
.

For the right-hand side in (16) we choose the matrix B , such that B̂ from (19) has the
form:

B̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
0.9998 0.0179

−0.0198 0.9998
0.0002 0.0004

−0.0028 −0.0008
−0.0042 −0.0015

0.0011 0.0031

⎤⎥⎥⎥⎥⎥⎥⎦
Since the spectrum of the matrix T is σ(T ) = {0.1,0.1,0.99,0.99,0.02,0.02} and

the row norms of the matrix B̂ are

‖B̂(:,1)‖ = 1.0000 ,‖B̂(:,2)‖ = 9.9999e−001 ,‖B̂(:,3)‖ = 4.1873e−004 ,

‖B̂(:,4)‖ = 2.8791e−003 ,‖B̂(:,5)‖ = 4.4761e−003 ,‖B̂(:,6)‖ = 3.2520e−003 ,
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the bound (20) gives:
‖X‖ � 11.879 .

It is important to emphasize that by ‖X‖ = 2.0793 the upper bound looks pes-
simistic, but this bound is much sharper then any other bound, such as (24), which will
ignore the influence of the right-hand side of the (16). In fact from (24) it follows that

‖X‖ � 251417.19 .
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