ESSENTIALLY HERMITIAN MATRICES AND INCLUSION RELATIONS OF C-NUMERICAL RANGES

WAI-Shun CHEUNG
(Communicated by N.-C. Wong)

Abstract. Let \mathbf{M} denote the set of all $n \times n$ complex matrices and \mathbf{M}_{n}^{0} denote the set of $n \times n$ matrices with trace 0 . For any $C \in \mathbf{M}_{n}^{0}$, there exists a maximal $v(C) \geqslant 0$ such that

$$
v(C) W_{D}(A) \subseteq\|D\|_{F} W_{C}(A)
$$

whenever $D \in \mathbf{M}_{n}^{0}$ and $A \in \mathbf{M}_{n}$. Here $W_{C}(A)$ denotes the C-numerical range of A and $\|D\|_{F}$ denotes the Frobenius norm of D. Moreover $v(C)=0$ if and only if C is essentially hermitian.

To prove the above result, we have obtained a new characterisation of essentially hermitian matrices.

1. Introduction

Let \mathbf{M}_{n} denote the set of all $n \times n$ complex matrices over \mathbb{C} and \mathbf{M}_{n}^{0} denote the set of $n \times n$ matrices with trace 0 . Let $C \in \mathbf{M}_{n}$, the C-numerical range of A and the C-numerical radius of A for $A \in \mathbf{M}_{n}$ are defined respectively by

$$
W_{C}(A)=\left\{\operatorname{tr}\left(C U^{*} A U\right): U \text { is unitary }\right\}
$$

and

$$
r_{C}(A)=\max \left\{|a|: a \in W_{C}(A)\right\}
$$

When $C=E_{11}$, the matrix with a 1 at the $(1,1)$-entry and 0 elsewhere, they become the classical numerical range $W(A)$ and the classical numerical radius $r(A)$.

While $W(A)$ is always convex for all A, it is not true for general $W_{C}(A)$ [1]. There are only three known cases that $W_{C}(A)$ is convex for all $A: C$ is essentially hermitian (i.e. a linear combination of the scalar matrix and a hermitian matrix) [8, 10]; C is of rank one or $C \in \mathbf{M}_{2}$ [9]; C is a block-shift matrix (i.e. C is unitarily similar to $e^{i \theta} C$ for any $\theta \in \mathbf{R}$) [7].

First introduced in [4], a survey on C-numerical range could be found in [6]. Some properties of $W_{C}(A)$ are listed below:
(i) $W_{C}(A)=W_{A}(C)$.
(ii) $W_{C}(a A+b I)=a W_{C}(A)+b \operatorname{tr} C$.

Keywords and phrases: essentially hermitian matrix, numerical range.
(iii) $W_{C}(A)$ has empty interior only if both A and C are essentially hermitian or one of A and C is a scalar matrix.
(iv) If C is not a scalar matrix and $\operatorname{tr} C \neq 0$ then r_{C} is a norm on \mathbf{M}_{n}. If $\operatorname{tr} C=0$ then r_{C} is not a norm as $r_{C}(I)=0$.

Althrough $W_{C}(A)$ fails to be convex in general, [3] confirms that $W_{C}(A)$ is always star-shaped. A key in [3] is the following set:

$$
S(C):=\left\{D \in \mathbf{C}^{n \times n}: W_{D}(A) \subseteq W_{C}(A) \text { for all } A \in \mathbf{M}_{n}\right\}
$$

A study of the set $S(C)$ could be found in [2]. Indeed [2] uses $S(C)$ to construct an alternative proof of Property (iii).

If $\operatorname{tr} C=0$ then r_{C} fails to be a norm on \mathbf{M}_{n}. However, if $C \neq 0$ then r_{C} is a norm on \mathbf{M}_{n}^{0}. Let $0 \neq D \in \mathbf{M}_{n}^{0}$, then r_{D} is another norm on \mathbf{M}_{n}^{0}. Thus there exists a $v>0$ such that

$$
v r_{D}(A) \leqslant r_{C}(A)
$$

for all $A \in \mathbf{M}_{n}^{0}$. If C is not essentially hermitian then we have a much stronger property, which is related to Property (iii). We will prove in this article that

THEOREM 1.1. If $C \in M_{n}^{0}$ is not essentially hermitian, then there exists $v>0$ such that

$$
v W_{D}(A) \subseteq\|D\|_{F} W_{C}(A)
$$

for all $A \in \mathbf{M}_{n}^{0}$, where v depends on C only and $\|D\|_{F}$ is the Frobenius norm of D.
By Property (iii) alone, we can deduce a similar result, except that $v>0$ may depend on A and D also. The set $S(C)$ is again a key to prove Theorem 1.1. Before we prove Theorem 1.1, we obtain a characterisation of essentially hermitian matrices in the next section.

2. A characterisation of essentially hermitian matrices

We have the following characterisation of essentially hermitian matrices.

Theorem 2.1. Let $A \in \mathbf{M}_{n}$. Suppose

(P): for any orthonormal vectors x, y satisfying $x^{*} A x=y^{*} A y=\frac{1}{n} \operatorname{tr} A$, we have $\left|x^{*} A y\right|=\left|y^{*} A x\right|$,
then A is essentially hermitian.
To prove the statement, it suffices to consider the case when $\operatorname{tr} A=0$, i.e. $A \in \mathbf{M}_{n}^{0}$. We need to use the following trivial fact about essentially hermitian matrix:

LEMMA 2.2. Let $A=\left(a_{i j} e^{i \theta_{i j}}\right) \in \mathbf{M}_{n}^{0}$ with zero diagonal, where $a_{i j} \geqslant 0$ and $-\pi<\theta_{i j} \leqslant \pi$. If
(1) $a_{12} \neq 0$;
(2) $a_{i j}=a_{j i}$ for all i, j;
(3) $\theta_{i j}+\theta_{j i}=\theta_{12}+\theta_{21}+2 m \pi$ for some integers m, whenever $a_{i j} \neq 0$.
then $A=e^{i\left(\theta_{12}+\theta_{21}\right) / 2} H$ where H is an essentially hermitian matrix.
Note that a matrix is always unitarily similar to a matrix of equal diagonal entries [5, Theorem 1.3.4]. We prove Theorem 2.1 in four steps.

Case $n=2$.
If $A \in \mathbf{M}_{2}^{0}$ satisfies (P), then A is unitarily similar to a matrix of the form

$$
\left(\begin{array}{cc}
0 & a e^{i \theta_{12}} \\
a e^{i \theta_{21}} & 0
\end{array}\right)=e^{i\left(\theta_{12}+\theta_{21}\right) / 2}\left(\begin{array}{cc}
0 & a e^{i\left(\theta_{12}-\theta_{21}\right) / 2} \\
a e^{i\left(\theta_{21}-\theta_{12}\right) / 2} & 0
\end{array}\right)
$$

Case $n=3$.
Lemma 2.3. Let A satisfy (P) and $\operatorname{tr} A=0$. If A is singular, then every eigenvector corresponding to 0 is a normal eigenvector.

Proof. Let v be a unit eigenvector of A corresponding to 0 . Construct an unitary matrix $U=\left[v, v_{2}, \ldots, v_{n}\right]$ such that v as the first column and that $U^{*} A U$ has zero diagonal. $A v=0$ implies $v_{j}^{*} A v=0$ and, as A satisfies $(\mathrm{P}), v^{*} A v_{j}=0$ for all j. Thus $v^{*} A=0$.

Let $A \in \mathbf{M}_{3}^{0}$ satisfy (P). Without loss of generality,

$$
A=\left(\begin{array}{ccc}
0 & a_{12} e^{i \theta_{12}} & a_{13} e^{i \theta_{13}} \\
a_{12} e^{i \theta_{21}} & 0 & a_{23} e^{i \theta_{23}} \\
a_{13} e^{i \theta_{31}} & a_{23} e^{i \theta_{32}} & 0
\end{array}\right)
$$

for some $a_{12}>0, a_{13}, a_{23} \geqslant 0,-\pi<\theta_{i j} \leqslant \pi$.
Suppose A is singular. By Lemma 2.3, A is unitarily similar to $0 \oplus A_{1}$ where A_{1} is a 2×2 matrix satisfying (P). A_{1} is essential hermitian, and so is A.

Suppose A is nonsingular. In this case,
(i) a_{12}, a_{13}, a_{23} are all nonzero and
(ii) $\theta_{12}-\theta_{13}-\theta_{21}+\theta_{23}+\theta_{31}-\theta_{32}$ is not a odd multiple of π.

Let $x=\left(0, \cos t, e^{i\left(\theta_{23}-\theta_{32}+\pi\right) / 2} \sin t\right)^{*}, y=(1,0,0)^{*} . x^{*} A x=y^{*} A y=0$ and $x^{*} y=0$. By (P), $\left|x^{*} A y\right|^{2}=\left|y^{*} A x\right|^{2}$ and thus

$$
\begin{aligned}
& \left|a_{12} e^{i \theta_{21}} \cos t+a_{13} e^{i\left(\theta_{31}+\theta_{23} / 2-\theta_{32} / 2+\pi / 2\right)} \sin t\right|^{2} \\
= & \left|a_{12} e^{i \theta_{12}} \cos t+a_{13} e^{i\left(\theta_{13}-\theta_{32} / 2+\theta_{23} / 2-\pi / 2\right)} \sin t\right|^{2} .
\end{aligned}
$$

Expand both sides and cancel like terms, we get

$$
\cos \left(\theta_{21}-\theta_{31}-\theta_{23} / 2+\theta_{32} / 2-\pi / 2\right)=\cos \left(\theta_{12}-\theta_{13}+\theta_{32} / 2-\theta_{23} / 2+\pi / 2\right)
$$

Hence

$$
\theta_{21}-\theta_{31}-\theta_{23} / 2+\theta_{32} / 2-\pi / 2=\theta_{12}-\theta_{13}+\theta_{32} / 2-\theta_{23} / 2+\pi / 2+2 k \pi
$$

or

$$
\theta_{21}-\theta_{31}-\theta_{23} / 2+\theta_{32} / 2-\pi / 2=2 k \pi-\left(\theta_{12}-\theta_{13}+\theta_{32} / 2-\theta_{23} / 2+\pi / 2\right)
$$

for some integers k. The first equality reduces to

$$
\theta_{12}-\theta_{13}-\theta_{21}+\theta_{23}+\theta_{31}-\theta_{32}=(2 k+1) \pi
$$

contradicting (ii). Hence the second equality holds and it is equivalent to

$$
\theta_{13}+\theta_{31}=\theta_{12}+\theta_{21}+2 k \pi .
$$

Similarly

$$
\theta_{23}+\theta_{32}=\theta_{12}+\theta_{21}+2 m \pi
$$

for some integers m. By Lemma 2.2, A is essentially hermitian.
Case $n=4$.
Let $0 \neq A \in \mathbf{M}_{4}^{0}$ satisfy (P). Then A is unitarily similar to a matrix A^{\prime} with zero diagonals and the $(1,2)$ - and the $(2,1)$-entries are nonzero. If the $(1,2)$ - and the $(2,1)$ entries of A^{\prime} are the only nonzero entries, then we are done. Otherwise, it is unitarily similar to a matrix $A^{\prime \prime}$ with zero diagonals, the $(1,2)$ - and $(2,1)$ - entries are nonzero and that at least one of $(1,3)-,(1,4)-,(2,3)-,(2,4)$ - entries is nonzero. We assume that $A=A^{\prime \prime}$.

Write $A=\left(a_{i j} e^{i \theta_{i j}}\right) \in \mathbf{M}_{n}^{0}$ with zero diagonal, where $a_{i j}=a_{j i} \geqslant 0$ and $-\pi<\theta_{i j} \leqslant$ π.

Suppose $a_{13} \neq 0$. Consider the submatrix $A(1,2,3)$ which satisfies (P) and thus it is essentially hermitian. By Lemma 2.2, $\theta_{12}+\theta_{21}=\theta_{13}+\theta_{31}+2 k \pi$ for some integers k. Similarly for the $(1,4)-,(2,3)$ - and $(2,4)$-entries.

Suppose $a_{34} \neq 0$. Note that at least one of $a_{13}, a_{23}, a_{14}, a_{24}$ is nonzero. Say, $a_{13} \neq 0$. By considering the submatrices $A(1,2,3)$ and $A(1,3,4)$, we have $\theta_{12}+\theta_{21}=$ $\theta_{13}+\theta_{31}+2 k \pi=\theta_{34}+\theta_{43}+2 m \pi$ for some integers k, m.

By Lemma 2.2, A is essentially hermitian.

Case $n>4$.
Let $A \in \mathbf{M}_{n}^{0}$ satisfy (P). Without loss of generality, assume that the diagonal entries of A are zero and that the $(1,2)$-entry is nonzero. Write $A=\left(a_{i j} e^{i \theta_{i j}}\right) \in \mathbf{M}_{n}^{0}$ with zero diagonal, where $a_{i j}=a_{j i} \geqslant 0$ and $-\pi<\theta_{i j} \leqslant \pi$.

If $a_{i j} \neq 0$, then consider a 4×4-submatrix $A(\alpha)$, where $1,2, i, j \in \alpha . A(\alpha)$ is essentially hermitian and thus $\theta_{12}+\theta_{21}=\theta_{i j}+\theta_{j i}+2 k \pi$ for some integers k.

By Lemma 2.2, A is essentially hermitian.

3. Inclusion Relation of Numerical Ranges

We start with some old results.

Lemma 3.1. [2, Theorem 3.1.1] Let $C \in \mathbf{M}_{n}$ and $D \in \mathbf{M}_{p}$ then $S(C) \oplus S(D) \subseteq$ $S(C \oplus D)$ and $S(C) \otimes S(D) \subseteq S(C \otimes D)$, where the operations on sets are element-wise.

Lemma 3.2. [9] Let $C \in \mathbf{M}_{2}$, then $W_{C}(A)$ is convex for all $A \in \mathbf{M}_{2}$, equivalently $S(C)=\operatorname{conv}(\mathbf{U}(C))$, i.e. the convex hull of the unitarily orbit of A.

Lemma 3.3. [3] Suppose $D=\left(b_{i j}\right) \in S(C)$. Let k be such that $1 \leqslant k \leqslant n, \varepsilon \in$ $[0,1]$, and $D^{\prime}=\left(d_{i j}^{\prime}\right)$ be defined by

$$
d_{i j}^{\prime}= \begin{cases}\varepsilon d_{i j}, & \text { if exactly one of } i, j \text { equals } k \\ d_{i j}, & \text { otherwise }\end{cases}
$$

(In other words, D^{\prime} is obtained from D by multiplying ε to the entries on the k-th row and on the k-th column, except for the (k, k) th entry, of D.) Then $D^{\prime} \in S(C)$.

Apply Lemmas 3.1, 3.2 and 3.3, we have

Lemma 3.4. Let $C=\left(c_{i j}\right) \in \mathbf{M}_{n}^{0}$ with zero diagonal, then

$$
\operatorname{conv}\left(\mathbf{U}\left(\left(\begin{array}{cc}
0 & c_{12} \\
c_{21} & 0
\end{array}\right)\right)\right) \oplus 0_{n-2} \subseteq S(C)
$$

If C is a block-shift matrix, then $W_{C}(A)$ is a circular disc for any C [7]. In particular, it is true for $A=E_{12}$, the matrix with a 1 at the $(1,2)$-entry and 0 elsewhere. Indeed, we have the following result.

Lemma 3.5. [2, Corollary 3.2.6] If $D \in \mathbf{M}_{n}^{0}$ then $S(D) \subseteq \beta(n)\|D\|_{F} S\left(E_{12}\right)$ where $\beta(n)= \begin{cases}\frac{2(n-1) \sqrt{2 n}}{n} & \text { if } n \text { is even, } \\ \frac{2(n-1) \sqrt{2 n-1}}{n} & \text { if } n \text { is odd. }\end{cases}$

Let's restate Theorem 1.1.

THEOREM 3.6. Suppose $C \in \mathbf{M}_{n}^{0}$ is not essentially hermitian. Then there exists $v>0$ such that for any $D \in \mathbf{M}_{n}^{0}$,

$$
v S(D) \subseteq\|D\|_{F} S(C)
$$

equivalently $v W_{D}(A) \subseteq\|D\|_{F} W_{C}(A)$ for any $A \in \mathbf{M}_{n}$.

Proof. By Theorem 2.1, there exists unit vectors x and y such that $x^{*} C x=y^{*} C y=0$ and $x^{*} y=0$ but $\left|x^{*} C y\right| \neq\left|y^{*} C x\right|$. Therefore we can assume that $C=\left(c_{i j}\right)$ where $c_{i i}=0$ for all i and $\left|c_{12}\right| \neq\left|c_{21}\right|$.

By Lemma 3.4, conv $\left(\mathbf{U}\left(\left(\begin{array}{cc}0 & c_{12} \\ c_{21} & 0\end{array}\right)\right)\right) \oplus 0_{n-2} \subseteq S(C)$. Since $\left|c_{12}\right| \neq\left|c_{21}\right|$, there exists $\tau>0$ such that $\left(\begin{array}{ll}0 & \tau \\ 0 & 0\end{array}\right) \oplus 0_{n-2}=\tau E_{12} \in S(C)$.

By Lemma 3.5, we have for any $D \in \mathbf{M}_{n}^{0}, \frac{\tau}{\beta(n)} D \in\|D\|_{F} \tau S\left(E_{12}\right) \subseteq\|D\|_{F} S(C)$.
For any $C \in \mathbf{M}_{n}^{0}$, define

$$
v(C):=\max \left\{v \geqslant 0: v S(D) \subseteq\|D\|_{F} S(C) \text { for all } D \in \mathbf{M}_{n}^{0}\right\}
$$

Corollary 3.7. Let $C \in \mathbf{M}_{n}^{0}$. Then $v(C) \geqslant 0$ and that $v(C)=0$ if and only if C is essentially hermitian.

Proof. By Theorem 3.6, if C is not essentially hermitian then $v(C)>0$. If $C \neq 0$ is essentially hermitian, then $W(C)$ and $W(i C)$ are two line segments intersect at 0 only, hence $v i C \in\|i C\|_{F} S(C)$ only if $v=0$, and thus $v(C)=0$.

REFERENCES

[1] Y. H. Au-Yeung and N. K. Tsing, A conjecture of Marcus on the generalized numerical range, Linear and Multilinear Algebra, 14 (1983), 235-239.
[2] W. S. Cheung, Some Geometrical Aspects Of and Inclusion Relations For Generalized Numerical Ranges, M. Phil Thesis, The University of Hong Kong, 1996.
[3] W. S. Cheung and N. K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra, 41, 3 (1996), 245-250.
[4] M. GOLDBERG AND E. G. STRAUS, Elementary inclusion relations for generalized numerical ranges, Lin. Alg. Appl., 18 (1977), 1-18.
[5] R. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[6] C.-K. Li, C-numerical ranges and C-numerical radii, Linear and Multilinear Algebra, 37 (1994), 51-82.
[7] C.-K. Li and N. K. Tsing, Matrices with circular symmetry on their unitary similarity orbits and C-numerical ranges, Proc. Amer. Math. Soc., 111 (1991), 19-28.
[8] Y. T. Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra, 9 (1980), 35-37.
[9] N. K. Tsing, The constrained bilinear form and the C-numerical range, Linear Algebra and Its Applications, 56 (1984), 195-206.
[10] R. Westwick, A theorem on numerical ranges, Linear and Multilinear Algebra, 2 (1975), 311-315.

