ESSENTIALLY HERMITIAN MATRICES AND INCLUSION RELATIONS OF *C*-NUMERICAL RANGES

WAI-SHUN CHEUNG

(Communicated by N.-C. Wong)

Abstract. Let **M** denote the set of all $n \times n$ complex matrices and \mathbf{M}_n^0 denote the set of $n \times n$ matrices with trace 0. For any $C \in \mathbf{M}_n^0$, there exists a maximal $v(C) \ge 0$ such that

 $v(C)W_D(A) \subseteq ||D||_F W_C(A)$

whenever $D \in \mathbf{M}_n^0$ and $A \in \mathbf{M}_n$. Here $W_C(A)$ denotes the *C*-numerical range of *A* and $\|D\|_F$ denotes the Frobenius norm of *D*. Moreover v(C) = 0 if and only if *C* is essentially hermitian. To prove the above result, we have obtained a new characterisation of essentially hermitian matrices.

1. Introduction

Let \mathbf{M}_n denote the set of all $n \times n$ complex matrices over \mathbb{C} and \mathbf{M}_n^0 denote the set of $n \times n$ matrices with trace 0. Let $C \in \mathbf{M}_n$, the *C*-numerical range of *A* and the *C*-numerical radius of *A* for $A \in \mathbf{M}_n$ are defined respectively by

$$W_C(A) = \{ \operatorname{tr}(CU^*AU) : U \text{ is unitary} \}$$

and

$$r_C(A) = \max\{|a| : a \in W_C(A)\}.$$

When $C = E_{11}$, the matrix with a 1 at the (1,1)-entry and 0 elsewhere, they become the classical numerical range W(A) and the classical numerical radius r(A).

While W(A) is always convex for all A, it is not true for general $W_C(A)$ [1]. There are only three known cases that $W_C(A)$ is convex for all $A \colon C$ is essentially hermitian (i.e. a linear combination of the scalar matrix and a hermitian matrix) [8, 10]; C is of rank one or $C \in \mathbf{M}_2$ [9]; C is a block-shift matrix (i.e. C is unitarily similar to $e^{i\theta}C$ for any $\theta \in \mathbf{R}$) [7].

First introduced in [4], a survey on *C*-numerical range could be found in [6]. Some properties of $W_C(A)$ are listed below:

- (i) $W_C(A) = W_A(C)$.
- (ii) $W_C(aA+bI) = aW_C(A) + b \operatorname{tr} C$.

Mathematics subject classification (2000): 15A57, 47A12. *Keywords and phrases:* essentially hermitian matrix, numerical range.

- (iii) $W_C(A)$ has empty interior only if both A and C are essentially hermitian or one of A and C is a scalar matrix.
- (iv) If *C* is not a scalar matrix and $\operatorname{tr} C \neq 0$ then r_C is a norm on \mathbf{M}_n . If $\operatorname{tr} C = 0$ then r_C is not a norm as $r_C(I) = 0$.

Althrough $W_C(A)$ fails to be convex in general, [3] confirms that $W_C(A)$ is always star-shaped. A key in [3] is the following set:

$$S(C) := \{ D \in \mathbf{C}^{n \times n} : W_D(A) \subseteq W_C(A) \text{ for all } A \in \mathbf{M}_n \}.$$

A study of the set S(C) could be found in [2]. Indeed [2] uses S(C) to construct an alternative proof of Property (iii).

If tr C = 0 then r_C fails to be a norm on \mathbf{M}_n . However, if $C \neq 0$ then r_C is a norm on \mathbf{M}_n^0 . Let $0 \neq D \in \mathbf{M}_n^0$, then r_D is another norm on \mathbf{M}_n^0 . Thus there exists a v > 0 such that

$$v r_D(A) \leq r_C(A)$$

for all $A \in \mathbf{M}_n^0$. If *C* is not essentially hermitian then we have a much stronger property, which is related to Property (iii). We will prove in this article that

THEOREM 1.1. If $C \in M_n^0$ is not essentially hermitian, then there exists v > 0 such that

$$vW_D(A) \subseteq ||D||_F W_C(A)$$

for all $A \in \mathbf{M}_n^0$, where ν depends on C only and $\|D\|_F$ is the Frobenius norm of D.

By Property (iii) alone, we can deduce a similar result, except that v > 0 may depend on A and D also. The set S(C) is again a key to prove Theorem 1.1. Before we prove Theorem 1.1, we obtain a characterisation of essentially hermitian matrices in the next section.

2. A characterisation of essentially hermitian matrices

We have the following characterisation of essentially hermitian matrices.

THEOREM 2.1. Let $A \in \mathbf{M}_n$. Suppose (P): for any orthonormal vectors x, y satisfying $x^*Ax = y^*Ay = \frac{1}{n} \operatorname{tr} A$, we have $|x^*Ay| = |y^*Ax|$, then A is essentially hermitian.

To prove the statement, it suffices to consider the case when tr A = 0, i.e. $A \in \mathbf{M}_n^0$. We need to use the following trivial fact about essentially hermitian matrix:

LEMMA 2.2. Let $A = (a_{ij}e^{i\theta_{ij}}) \in \mathbf{M}_n^0$ with zero diagonal, where $a_{ij} \ge 0$ and $-\pi < \theta_{ij} \le \pi$. If

(1) $a_{12} \neq 0$;

- (2) $a_{ij} = a_{ji}$ for all *i*, *j*;
- (3) $\theta_{ii} + \theta_{ii} = \theta_{12} + \theta_{21} + 2m\pi$ for some integers m, whenever $a_{ii} \neq 0$.

then $A = e^{i(\theta_{12} + \theta_{21})/2}H$ where H is an essentially hermitian matrix.

Note that a matrix is always unitarily similar to a matrix of equal diagonal entries [5, Theorem 1.3.4]. We prove Theorem 2.1 in four steps.

Case n = 2.

If $A \in \mathbf{M}_2^0$ satisfies (P), then A is unitarily similar to a matrix of the form

$$\begin{pmatrix} 0 & ae^{i\theta_{12}} \\ ae^{i\theta_{21}} & 0 \end{pmatrix} = e^{i(\theta_{12}+\theta_{21})/2} \begin{pmatrix} 0 & ae^{i(\theta_{12}-\theta_{21})/2} \\ ae^{i(\theta_{21}-\theta_{12})/2} & 0 \end{pmatrix}.$$

Case n = 3.

LEMMA 2.3. Let A satisfy (P) and tr A = 0. If A is singular, then every eigenvector corresponding to 0 is a normal eigenvector.

Proof. Let v be a unit eigenvector of A corresponding to 0. Construct an unitary matrix $U = [v, v_2, \dots, v_n]$ such that v as the first column and that U^*AU has zero diagonal. Av = 0 implies $v_j^*Av = 0$ and, as A satisfies (P), $v^*Av_j = 0$ for all j. Thus $v^*A = 0$. Let $A \in \mathbf{M}_3^0$ satisfy (P). Without loss of generality,

$$A = \begin{pmatrix} 0 & a_{12}e^{i\theta_{12}} & a_{13}e^{i\theta_{13}} \\ a_{12}e^{i\theta_{21}} & 0 & a_{23}e^{i\theta_{23}} \\ a_{13}e^{i\theta_{31}} & a_{23}e^{i\theta_{32}} & 0 \end{pmatrix}$$

for some $a_{12} > 0, a_{13}, a_{23} \ge 0, -\pi < \theta_{ii} \le \pi$.

Suppose A is singular. By Lemma 2.3, A is unitarily similar to $0 \oplus A_1$ where A_1 is a 2×2 matrix satisfying (P). A_1 is essential hermitian, and so is A.

Suppose A is nonsingular. In this case,

- (i) a_{12}, a_{13}, a_{23} are all nonzero and
- (ii) $\theta_{12} \theta_{13} \theta_{21} + \theta_{23} + \theta_{31} \theta_{32}$ is not a odd multiple of π .

Let $x = (0, \cos t, e^{i(\theta_{23} - \theta_{32} + \pi)/2} \sin t)^*$, $y = (1, 0, 0)^*$. $x^*Ax = y^*Ay = 0$ and $x^*y = 0$. By (P), $|x^*Ay|^2 = |y^*Ax|^2$ and thus

$$|a_{12}e^{i\theta_{21}}\cos t + a_{13}e^{i(\theta_{31}+\theta_{23}/2-\theta_{32}/2+\pi/2)}\sin t|^2$$

= $|a_{12}e^{i\theta_{12}}\cos t + a_{13}e^{i(\theta_{13}-\theta_{32}/2+\theta_{23}/2-\pi/2)}\sin t|^2$.

Expand both sides and cancel like terms, we get

 $\cos(\theta_{21} - \theta_{31} - \theta_{23}/2 + \theta_{32}/2 - \pi/2) = \cos(\theta_{12} - \theta_{13} + \theta_{32}/2 - \theta_{23}/2 + \pi/2).$

Hence

$$\theta_{21} - \theta_{31} - \theta_{23}/2 + \theta_{32}/2 - \pi/2 = \theta_{12} - \theta_{13} + \theta_{32}/2 - \theta_{23}/2 + \pi/2 + 2k\pi$$

or

$$\theta_{21} - \theta_{31} - \theta_{23}/2 + \theta_{32}/2 - \pi/2 = 2k\pi - (\theta_{12} - \theta_{13} + \theta_{32}/2 - \theta_{23}/2 + \pi/2)$$

for some integers k. The first equality reduces to

$$\theta_{12} - \theta_{13} - \theta_{21} + \theta_{23} + \theta_{31} - \theta_{32} = (2k+1)\pi$$

contradicting (ii). Hence the second equality holds and it is equivalent to

$$\theta_{13} + \theta_{31} = \theta_{12} + \theta_{21} + 2k\pi.$$

Similarly

$$\theta_{23}+\theta_{32}=\theta_{12}+\theta_{21}+2m\pi$$

for some integers m. By Lemma 2.2, A is essentially hermitian.

Case n = 4.

Let $0 \neq A \in \mathbf{M}_4^0$ satisfy (P). Then A is unitarily similar to a matrix A' with zero diagonals and the (1,2)- and the (2,1)-entries are nonzero. If the (1,2)- and the (2,1)-entries of A' are the only nonzero entries, then we are done. Otherwise, it is unitarily similar to a matrix A'' with zero diagonals, the (1,2)- and (2,1)- entries are nonzero and that at least one of (1,3)-, (1,4)-, (2,3)-, (2,4)- entries is nonzero. We assume that A = A''.

Write $A = (a_{ij}e^{i\theta_{ij}}) \in \mathbf{M}_n^0$ with zero diagonal, where $a_{ij} = a_{ji} \ge 0$ and $-\pi < \theta_{ij} \le \pi$.

Suppose $a_{13} \neq 0$. Consider the submatrix A(1,2,3) which satisfies (P) and thus it is essentially hermitian. By Lemma 2.2, $\theta_{12} + \theta_{21} = \theta_{13} + \theta_{31} + 2k\pi$ for some integers k. Similarly for the (1,4)-, (2,3)- and (2,4)-entries.

Suppose $a_{34} \neq 0$. Note that at least one of $a_{13}, a_{23}, a_{14}, a_{24}$ is nonzero. Say, $a_{13} \neq 0$. By considering the submatrices A(1,2,3) and A(1,3,4), we have $\theta_{12} + \theta_{21} = \theta_{13} + \theta_{31} + 2k\pi = \theta_{34} + \theta_{43} + 2m\pi$ for some integers k, m.

By Lemma 2.2, A is essentially hermitian.

Case n > 4.

Let $A \in \mathbf{M}_n^0$ satisfy (P). Without loss of generality, assume that the diagonal entries of A are zero and that the (1,2)-entry is nonzero. Write $A = (a_{ij}e^{i\theta_{ij}}) \in \mathbf{M}_n^0$ with zero diagonal, where $a_{ij} = a_{ji} \ge 0$ and $-\pi < \theta_{ij} \le \pi$.

If $a_{ij} \neq 0$, then consider a 4×4-submatrix $A(\alpha)$, where 1,2, $i, j \in \alpha$. $A(\alpha)$ is essentially hermitian and thus $\theta_{12} + \theta_{21} = \theta_{ij} + \theta_{ji} + 2k\pi$ for some integers k.

By Lemma 2.2, A is essentially hermitian.

3. Inclusion Relation of Numerical Ranges

We start with some old results.

LEMMA 3.1. [2, Theorem 3.1.1] Let $C \in \mathbf{M}_n$ and $D \in \mathbf{M}_p$ then $S(C) \oplus S(D) \subseteq S(C \oplus D)$ and $S(C) \otimes S(D) \subseteq S(C \otimes D)$, where the operations on sets are element-wise.

LEMMA 3.2. [9] Let $C \in \mathbf{M}_2$, then $W_C(A)$ is convex for all $A \in \mathbf{M}_2$, equivalently $S(C) = \operatorname{conv}(\mathbf{U}(C))$, i.e. the convex hull of the unitarily orbit of A.

LEMMA 3.3. [3] Suppose $D = (b_{ij}) \in S(C)$. Let k be such that $1 \leq k \leq n$, $\varepsilon \in [0,1]$, and $D' = (d'_{ij})$ be defined by

$$d'_{ij} = \begin{cases} \varepsilon d_{ij}, & \text{if exactly one of } i, j \text{ equals } k, \\ d_{ij}, & \text{otherwise.} \end{cases}$$

(In other words, D' is obtained from D by multiplying ε to the entries on the k-th row and on the k-th column, except for the (k,k) th entry, of D.) Then $D' \in S(C)$.

Apply Lemmas 3.1, 3.2 and 3.3, we have

LEMMA 3.4. Let $C = (c_{ij}) \in \mathbf{M}_n^0$ with zero diagonal, then

$$\operatorname{conv}\left(\mathbf{U}\left(\begin{pmatrix}0&c_{12}\\c_{21}&0\end{pmatrix}\right)\right)\oplus\mathbf{0}_{n-2}\subseteq S(C).$$

If C is a block-shift matrix, then $W_C(A)$ is a circular disc for any C [7]. In particular, it is true for $A = E_{12}$, the matrix with a 1 at the (1,2)-entry and 0 elsewhere. Indeed, we have the following result.

LEMMA 3.5. [2, Corollary 3.2.6] If $D \in \mathbf{M}_n^0$ then $S(D) \subseteq \beta(n) ||D||_F S(E_{12})$ where $\beta(n) = \begin{cases} \frac{2(n-1)\sqrt{2n}}{n} & \text{if } n \text{ is even,} \\ \frac{2(n-1)\sqrt{2n-1}}{n} & \text{if } n \text{ is odd.} \end{cases}$

Let's restate Theorem 1.1.

THEOREM 3.6. Suppose $C \in \mathbf{M}_n^0$ is not essentially hermitian. Then there exists v > 0 such that for any $D \in \mathbf{M}_n^0$,

$$vS(D) \subseteq ||D||_FS(C)$$

equivalently $vW_D(A) \subseteq ||D||_F W_C(A)$ for any $A \in \mathbf{M}_n$.

Proof. By Theorem 2.1, there exists unit vectors x and y such that $x^*Cx = y^*Cy = 0$ and $x^*y = 0$ but $|x^*Cy| \neq |y^*Cx|$. Therefore we can assume that $C = (c_{ij})$ where $c_{ii} = 0$ for all i and $|c_{12}| \neq |c_{21}|$.

By Lemma 3.4,
$$\operatorname{conv}\left(\mathbf{U}\left(\begin{pmatrix}0 & c_{12}\\c_{21} & 0\end{pmatrix}\right)\right) \oplus \mathbf{0}_{n-2} \subseteq S(C)$$
. Since $|c_{12}| \neq |c_{21}|$, there exists $\tau > 0$ such that $\begin{pmatrix}0 & \tau\\0 & 0\end{pmatrix} \oplus \mathbf{0}_{n-2} = \tau E_{12} \in S(C)$.

By Lemma 3.5, we have for any $D \in \mathbf{M}_n^0$, $\frac{\tau}{\beta(n)} D \in ||D||_F \tau S(E_{12}) \subseteq ||D||_F S(C)$. For any $C \in \mathbf{M}_n^0$, define

$$\nu(C) := \max\{\nu \ge 0 : \nu S(D) \subseteq \|D\|_F S(C) \text{ for all } D \in \mathbf{M}_n^0\}.$$

COROLLARY 3.7. Let $C \in \mathbf{M}_n^0$. Then $v(C) \ge 0$ and that v(C) = 0 if and only if *C* is essentially hermitian.

Proof. By Theorem 3.6, if *C* is not essentially hermitian then v(C) > 0. If $C \neq 0$ is essentially hermitian, then W(C) and W(iC) are two line segments intersect at 0 only, hence $viC \in ||iC||_F S(C)$ only if v = 0, and thus v(C) = 0. \Box

REFERENCES

- Y. H. AU-YEUNG AND N. K. TSING, A conjecture of Marcus on the generalized numerical range, Linear and Multilinear Algebra, 14 (1983), 235–239.
- [2] W. S. CHEUNG, Some Geometrical Aspects Of and Inclusion Relations For Generalized Numerical Ranges, M. Phil Thesis, The University of Hong Kong, 1996.
- [3] W. S. CHEUNG AND N. K. TSING, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra, 41, 3 (1996), 245–250.
- [4] M. GOLDBERG AND E. G. STRAUS, Elementary inclusion relations for generalized numerical ranges, Lin. Alg. Appl., 18 (1977), 1–18.
- [5] R. HORN AND C. R. JOHNSON, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.
- [6] C.-K. LI, C-numerical ranges and C-numerical radii, Linear and Multilinear Algebra, 37 (1994), 51–82.
- [7] C.-K. LI AND N. K. TSING, Matrices with circular symmetry on their unitary similarity orbits and C-numerical ranges, Proc. Amer. Math. Soc., 111 (1991), 19–28.
- [8] Y. T. POON, Another proof of a result of Westwick, Linear and Multilinear Algebra, 9 (1980), 35–37.
- [9] N. K. TSING, *The constrained bilinear form and the C-numerical range*, Linear Algebra and Its Applications, 56 (1984), 195–206.
- [10] R. WESTWICK, A theorem on numerical ranges, Linear and Multilinear Algebra, 2 (1975), 311–315.

(Received November 1, 2008)

Wai-Shun Cheung Department of Mathematics The University of Hong Kong Hong Kong e-mail: cheungwaishun@gmail.com