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ESSENTIALLY HERMITIAN MATRICES AND
INCLUSION RELATIONS OF C-NUMERICAL RANGES
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(Communicated by N.-C. Wong)

Abstract. Let M denote the set of all 1 x n complex matrices and MY denote the set of 1 x n
matrices with trace 0. For any C € Mg, there exists a maximal v(C) >0 such that

v(C)Wp(A) C ||ID|[rWc(A)

whenever D € MY and A € M,,. Here W¢(A) denotes the C-numerical range of A and ||D||r
denotes the Frobenius norm of D. Moreover v(C) = 0 if and only if C is essentially hermitian.

To prove the above result, we have obtained a new characterisation of essentially hermitian
matrices.

1. Introduction

Let M,, denote the set of all n x n complex matrices over C and MY denote the
set of n x n matrices with trace 0. Let C € M,,, the C-numerical range of A and the
C-numerical radius of A for A € M,, are defined respectively by

We(A) = {tr (CU*AU) : U is unitary}

and
re(A) =max{|a| : a € We(A)}.

When C = Ej;, the matrix with a 1 at the (1,1)-entry and O elsewhere, they become
the classical numerical range W(A) and the classical numerical radius r(A).

While W (A) is always convex for all A, it is not true for general W¢(A) [1]. There
are only three known cases that W (A) is convex for all A: C is essentially hermitian
(i.e. a linear combination of the scalar matrix and a hermitian matrix) [8, 10]; C is of
rank one or C € M, [9]; C is a block-shift matrix (i.e. C is unitarily similar to ¢°C
for any 6 € R) [7].

First introduced in [4], a survey on C-numerical range could be found in [6]. Some
properties of W¢(A) are listed below:

(i) We(A) =Wa(C).
(ii) We(aA +bI) = aWe(A) +btrC.
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(iii) Wc(A) has empty interior only if both A and C are essentially hermitian or one
of A and C is a scalar matrix.

(iv) If C is not a scalar matrix and trC # 0 then r¢ is anorm on M,,. If trC =0 then
rc isnotanormas r¢(I) =0.

Althrough W¢(A) fails to be convex in general, [3] confirms that W¢(A) is always
star-shaped. A key in [3] is the following set:

S(C):={DeC”":Wp(A) CWc(A) forall A € M, }.

A study of the set S(C) could be found in [2]. Indeed [2] uses S(C) to construct an
alternative proof of Property (iii).
If trC =0 then r¢ fails to be a norm on M,,. However, if C # 0 then r¢ is a norm
on MY. Let 0# D € MY, then rp is another norm on MY. Thus there exists a v > 0
such that
\% rD(A) < rc(A)

forall A € Mg . If C is not essentially hermitian then we have a much stronger property,
which is related to Property (iii). We will prove in this article that

THEOREM 1.1. If C € MY is not essentially hermitian, then there exists v > 0
such that
vWn(A) € [[D][rWe(A)

forall A€ MY, where v depends on C only and ||D||F is the Frobenius norm of D.

By Property (iii) alone, we can deduce a similar result, except that v > 0 may
depend on A and D also. The set S(C) is again a key to prove Theorem 1.1. Before
we prove Theorem 1.1, we obtain a characterisation of essentially hermitian matrices
in the next section.

2. A characterisation of essentially hermitian matrices
We have the following characterisation of essentially hermitian matrices.

THEOREM 2.1. Let A € M,,. Suppose
. L _ _ 1
(P): for any orthonormal vectors x,y satisfying x*Ax = y*Ay = ;. trA,
we have |x*Ay| = |y*Ax
then A is essentially hermitian.

>

To prove the statement, it suffices to consider the case when trA =0,i.e. A € MS.
We need to use the following trivial fact about essentially hermitian matrix:

LEMMA 2.2. Let A = (a;;¢'%) € MY with zero diagonal, where a;; > 0 and
< Gij <zm If

(1) ain #0;
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(2) ajj=aj forall i,j;
(3) 6;j+ 0ji = 012 + 021 +2m7 for some integers m, whenever a;; 7 0.

then A = €0121020/2H \yhere H is an essentially hermitian matrix.

Note that a matrix is always unitarily similar to a matrix of equal diagonal entries
[5, Theorem 1.3.4]. We prove Theorem 2.1 in four steps.

Case n=2.

IfAe Mg satisfies (P), then A is unitarily similar to a matrix of the form
0 ae' — i(012+621)/2 . 0 ael2=0)/2
ac® 0 ael(021—612)/2 0 :

Case n=23.

LEMMA 2.3. Let A satisfy (P) and trA = 0. If A is singular, then every eigenvec-
tor corresponding to 0 is a normal eigenvector.

Proof. Let v be a unit eigenvector of A corresponding to 0. Construct an unitary matrix

U = [v,va,...,v,] such that v as the first column and that U*AU has zero diagonal.

Av =0 implies vijv =0 and, as A satisfies (P), v*Av; =0 forall j. Thus v'A=0. O
Let A e Mg satisfy (P). Without loss of generality,

0 alzeielz a13ei913
A= | ape® 0 a236’623

a136i931 a236i932 0

for some ajp > 0,a13,a23 2 0,—w < 6;; < 7.

Suppose A is singular. By Lemma 2.3, A is unitarily similar to 06 A; where A
is a 2 x 2 matrix satisfying (P). A; is essential hermitian, and sois A.

Suppose A is nonsingular. In this case,

(1) ayn,ay3,az3 are all nonzero and
(i1) 612 — 013 — 0y + 623+ 631 — O3, is not a odd multiple of 7.

Let x = (0,cost,e!(%3=027)/2ging)* |y = (1,0,0)*. x*Ax = y*Ay =0 and x*y = 0.
By (P), |x*Ay|? = [y*Ax|? and thus

|a12e'® cost 4 ayze!(0311023/2=052/247/2) i |2

= \alzeielz cost + a13ei(913*932/2+923/2*7T/2) Sint|2.
Expand both sides and cancel like terms, we get

cos(0a1 — 031 — 023/2 +032/2 — 1 /2) = cos(O12 — 013+ 632 /2 — 023 /2 + 7/2).
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Hence
Oh1 — 031 — 023/2+ 052/2 — /2= 012 — 013+ 032/2 — 023/2 + /2 + 2kn

or

6a1 — 031 — 023/2+ 032/2 — /2 =2k — (612 — 013+ 032 /2 — 023/2+ /2)
for some integers k. The first equality reduces to

012 — 013 — 6031 + 003 + 031 — O3 = (2k+ 1)7
contradicting (ii). Hence the second equality holds and it is equivalent to
013+ 031 = 012 + Oy + 2kt

Similarly
03+ 030 = 012+ Oy +2mm

for some integers m. By Lemma 2.2, A is essentially hermitian.

Case n=4.

Let 0 #A € Mg satisfy (P). Then A is unitarily similar to a matrix A’ with zero
diagonals and the (1,2)- and the (2, 1)-entries are nonzero. If the (1,2)- and the (2,1)-
entries of A’ are the only nonzero entries, then we are done. Otherwise, it is unitarily
similar to a matrix A” with zero diagonals, the (1,2)- and (2,1)- entries are nonzero
and that at least one of (1,3)-, (1,4)-, (2,3)-, (2,4)- entries is nonzero. We assume
that A = A”.

Write A = (a;je'%) € MY with zero diagonal, where a;j =aj; >0 and —7 < ;; <
.

Suppose a3 # 0. Consider the submatrix A(1,2,3) which satisfies (P) and thus it
is essentially hermitian. By Lemma 2.2, 0, + 6,1 = 013 + 631 + 2km for some integers
k. Similarly for the (1,4)-, (2,3)- and (2,4)-entries.

Suppose a3zq # 0. Note that at least one of a;3,as3,a14,a24 is nonzero. Say,
a3 # 0. By considering the submatrices A(1,2,3) and A(1,3,4), we have 0),+ 6] =
013 + 031 + 2km = O34 + 043 + 2mm for some integers k,m.

By Lemma 2.2, A is essentially hermitian.

Case n>4.

Let A € MY satisfy (P). Without loss of generality, assume that the diagonal entries
of A are zero and that the (1,2)-entry is nonzero. Write A = (a;;¢'%) € MY with zero
diagonal, where a;; = aj; > 0 and —7 < 0;; < 7.

If a;; # 0, then consider a 4 x 4-submatrix A(a), where 1,2,i,j € or. A(a) is
essentially hermitian and thus 6, + 6,1 = 6;; + 0;; + 2km for some integers k.

By Lemma 2.2, A is essentially hermitian.
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3. Inclusion Relation of Numerical Ranges

We start with some old results.

LEMMA 3.1. [2, Theorem 3.1.1] Let C € M, and D € M, then S(C) & S(D) C
S(C®D) and S(C)®S(D) C S(C® D), where the operations on sets are element-wise.

LEMMA 3.2. [9] Let C € My, then Wc(A) is convex for all A € My, equivalently
S(C) = conv(U(C)), i.e. the convex hull of the unitarily orbit of A.

LEMMA 3.3. [3] Suppose D = (b;j) € S(C). Let k be such that 1 <k <n, € €
[0,1], and D' = <dl’,> be defined by

d — ed;j, if exactly one of i, j equals k,
7\ dij, otherwise.

(In other words, D' is obtained from D by multiplying € to the entries on the k-th row
and on the k-th column, except for the (k,k)th entry, of D.) Then D' € S(C).

Apply Lemmas 3.1, 3.2 and 3.3, we have

LEMMA 3.4. Let C = (c;j) € MO with zero diagonal, then

conv (U ((C(z)l 6(1)2) )) ®0,-2 C S(C).

If C is a block-shift matrix, then W¢(A) is a circular disc for any C [7]. In par-
ticular, it is true for A = E,, the matrix with a 1 at the (1,2)-entry and O elsewhere.
Indeed, we have the following result.

LEMMA 3.5. [2, Corollary 3.2.6] If D € MY then S(D) C B(n)||D||rS(E12) where

B(n) = M if nis even,
) An=l)v2n-1 if nis odd.

Let’s restate Theorem 1.1.

THEOREM 3.6. Suppose C € Mg is not essentially hermitian. Then there exists
v > 0 such that for any D € MY,

vS(D) C [ID|[FS(C),

equivalently vVIWp(A) C ||D||rWe(A) for any A € M,,.
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Proof. By Theorem 2.1, there exists unit vectors x and y such that x*Cx = y*Cy =0
and x*y = 0 but |x*Cy| # |y*Cx|. Therefore we can assume that C = (c;;) where ¢;; =0
forall i and |ci2| # |ca1]-
By Lemma 3.4, conv <U ((CO C(l)z) )) @0,_2 CS(C). Since |c12| # |ca1|, there
21

07
0 0) ®0,,=71E;p € S(C).

By Lemma 3.5, we have for any D € MY, s D € IDI[FTS(E12) C ||DI|FS(C). O
For any C € MY, define

exists T > 0 such that (

v(C) :=max{v >0: vS(D) C ||D||rS(C) for all D € MY}.

COROLLARY 3.7. Let C € MY. Then v(C) > 0 and that v(C) = 0 if and only if
C is essentially hermitian.

Proof. By Theorem 3.6, if C is not essentially hermitian then v(C) > 0. If C # 0 is
essentially hermitian, then W (C) and W (iC) are two line segments intersect at 0 only,
hence ViC € ||iC||rS(C) only if v =0, and thus v(C) =0. O

REFERENCES

[1] Y. H. AU-YEUNG AND N. K. TSING, A conjecture of Marcus on the generalized numerical range,
Linear and Multilinear Algebra, 14 (1983), 235-239.

[2] W. S. CHEUNG, Some Geometrical Aspects Of and Inclusion Relations For Generalized Numerical
Ranges, M. Phil Thesis, The University of Hong Kong, 1996.

[3] W.S. CHEUNG AND N. K. TSING, The C-numerical range of matrices is star-shaped, Linear and
Multilinear Algebra, 41, 3 (1996), 245-250.

[4] M. GOLDBERG AND E. G. STRAUS, Elementary inclusion relations for generalized numerical ranges,
Lin. Alg. Appl., 18 (1977), 1-18.

[5] R. HORN AND C. R. JOHNSON, Topics in Matrix Analysis, Cambridge University Press, Cambridge,
1991.

[6] C.-K. L1, C-numerical ranges and C-numerical radii, Linear and Multilinear Algebra, 37 (1994),
51-82.

[7]1 C.-K.L1 AND N. K. TSING, Matrices with circular symmetry on their unitary similarity orbits and
C -numerical ranges, Proc. Amer. Math. Soc., 111 (1991), 19-28.

[8] Y. T. POON, Another proof of a result of Westwick, Linear and Multilinear Algebra, 9 (1980), 35-37.

[91 N. K. TSING, The constrained bilinear form and the C-numerical range, Linear Algebra and Its
Applications, 56 (1984), 195-206.

[10] R. WESTWICK, A theorem on numerical ranges, Linear and Multilinear Algebra, 2 (1975), 311-315.

(Received November 1, 2008) Wai-Shun Cheung
Department of Mathematics

The University of Hong Kong

Hong Kong

e-mail: cheungwaishun@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com



