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Abstract. Let M denote the set of all n× n complex matrices and M0
n denote the set of n× n

matrices with trace 0 . For any C ∈ M0
n , there exists a maximal ν(C) � 0 such that

ν(C)WD(A) ⊆ ‖D‖FWC(A)

whenever D ∈ M0
n and A ∈ Mn . Here WC(A) denotes the C -numerical range of A and ‖D‖F

denotes the Frobenius norm of D . Moreover ν(C) = 0 if and only if C is essentially hermitian.
To prove the above result, we have obtained a new characterisation of essentially hermitian

matrices.

1. Introduction

Let Mn denote the set of all n× n complex matrices over C and M0
n denote the

set of n× n matrices with trace 0. Let C ∈ Mn , the C -numerical range of A and the
C -numerical radius of A for A ∈ Mn are defined respectively by

WC(A) = {tr(CU∗AU) : U is unitary}
and

rC(A) = max{|a| : a ∈WC(A)}.
When C = E11 , the matrix with a 1 at the (1,1)-entry and 0 elsewhere, they become
the classical numerical range W (A) and the classical numerical radius r(A) .

While W (A) is always convex for all A , it is not true for general WC(A) [1]. There
are only three known cases that WC(A) is convex for all A : C is essentially hermitian
(i.e. a linear combination of the scalar matrix and a hermitian matrix) [8, 10]; C is of
rank one or C ∈ M2 [9]; C is a block-shift matrix (i.e. C is unitarily similar to eiθC
for any θ ∈ R) [7].

First introduced in [4], a survey on C -numerical range could be found in [6]. Some
properties of WC(A) are listed below:

(i) WC(A) = WA(C) .

(ii) WC(aA+bI) = aWC(A)+b trC .
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(iii) WC(A) has empty interior only if both A and C are essentially hermitian or one
of A and C is a scalar matrix.

(iv) If C is not a scalar matrix and trC �= 0 then rC is a norm on Mn . If trC = 0 then
rC is not a norm as rC(I) = 0.

Althrough WC(A) fails to be convex in general, [3] confirms that WC(A) is always
star-shaped. A key in [3] is the following set:

S(C) := {D ∈ Cn×n : WD(A) ⊆WC(A) for all A ∈ Mn}.
A study of the set S(C) could be found in [2]. Indeed [2] uses S(C) to construct an
alternative proof of Property (iii).

If trC = 0 then rC fails to be a norm on Mn . However, if C �= 0 then rC is a norm
on M0

n . Let 0 �= D ∈ M0
n , then rD is another norm on M0

n . Thus there exists a ν > 0
such that

ν rD(A) � rC(A)

for all A∈M0
n . If C is not essentially hermitian then we have a much stronger property,

which is related to Property (iii). We will prove in this article that

THEOREM 1.1. If C ∈ M0
n is not essentially hermitian, then there exists ν > 0

such that
νWD(A) ⊆ ‖D‖FWC(A)

for all A ∈ M0
n , where ν depends on C only and ‖D‖F is the Frobenius norm of D.

By Property (iii) alone, we can deduce a similar result, except that ν > 0 may
depend on A and D also. The set S(C) is again a key to prove Theorem 1.1. Before
we prove Theorem 1.1, we obtain a characterisation of essentially hermitian matrices
in the next section.

2. A characterisation of essentially hermitian matrices

We have the following characterisation of essentially hermitian matrices.

THEOREM 2.1. Let A ∈ Mn . Suppose
(P): for any orthonormal vectors x,y satisfying x∗Ax = y∗Ay = 1

n trA,
we have |x∗Ay| = |y∗Ax| ,

then A is essentially hermitian.

To prove the statement, it suffices to consider the case when trA = 0, i.e. A ∈M0
n .

We need to use the following trivial fact about essentially hermitian matrix:

LEMMA 2.2. Let A = (ai jeiθi j) ∈ M0
n with zero diagonal, where ai j � 0 and

−π < θi j � π . If

(1) a12 �= 0 ;
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(2) ai j = a ji for all i, j ;

(3) θi j +θ ji = θ12 +θ21 +2mπ for some integers m, whenever ai j �= 0 .

then A = ei(θ12+θ21)/2H where H is an essentially hermitian matrix.

Note that a matrix is always unitarily similar to a matrix of equal diagonal entries
[5, Theorem 1.3.4]. We prove Theorem 2.1 in four steps.

Case n = 2.

If A ∈ M0
2 satisfies (P), then A is unitarily similar to a matrix of the form(

0 aeiθ12

aeiθ21 0

)
= ei(θ12+θ21)/2

(
0 aei(θ12−θ21)/2

aei(θ21−θ12)/2 0

)
.

Case n = 3.

LEMMA 2.3. Let A satisfy (P) and trA = 0 . If A is singular, then every eigenvec-
tor corresponding to 0 is a normal eigenvector.

Proof. Let v be a unit eigenvector of A corresponding to 0. Construct an unitary matrix
U = [v,v2, . . . ,vn] such that v as the first column and that U∗AU has zero diagonal.
Av = 0 implies v∗jAv = 0 and, as A satisfies (P), v∗Avj = 0 for all j . Thus v∗A = 0. �

Let A ∈ M0
3 satisfy (P). Without loss of generality,

A =

⎛
⎝ 0 a12eiθ12 a13eiθ13

a12eiθ21 0 a23eiθ23

a13eiθ31 a23eiθ32 0

⎞
⎠

for some a12 > 0,a13,a23 � 0,−π < θi j � π .
Suppose A is singular. By Lemma 2.3, A is unitarily similar to 0⊕A1 where A1

is a 2×2 matrix satisfying (P). A1 is essential hermitian, and so is A .
Suppose A is nonsingular. In this case,

(i) a12,a13,a23 are all nonzero and

(ii) θ12−θ13−θ21 +θ23 +θ31−θ32 is not a odd multiple of π .

Let x = (0,cost,ei(θ23−θ32+π)/2 sin t)∗ , y = (1,0,0)∗ . x∗Ax = y∗Ay = 0 and x∗y = 0.
By (P), |x∗Ay|2 = |y∗Ax|2 and thus

|a12e
iθ21 cost +a13e

i(θ31+θ23/2−θ32/2+π/2) sin t|2
= |a12e

iθ12 cost +a13e
i(θ13−θ32/2+θ23/2−π/2) sin t|2.

Expand both sides and cancel like terms, we get

cos(θ21 −θ31−θ23/2+θ32/2−π/2)= cos(θ12−θ13 +θ32/2−θ23/2+π/2).
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Hence

θ21 −θ31−θ23/2+θ32/2−π/2 = θ12−θ13 +θ32/2−θ23/2+π/2+2kπ

or

θ21 −θ31−θ23/2+θ32/2−π/2 = 2kπ− (θ12−θ13 +θ32/2−θ23/2+π/2)

for some integers k . The first equality reduces to

θ12−θ13−θ21 +θ23 +θ31−θ32 = (2k+1)π

contradicting (ii). Hence the second equality holds and it is equivalent to

θ13 +θ31 = θ12 +θ21 +2kπ .

Similarly
θ23 +θ32 = θ12 +θ21 +2mπ

for some integers m . By Lemma 2.2, A is essentially hermitian.

Case n = 4.

Let 0 �= A ∈ M0
4 satisfy (P). Then A is unitarily similar to a matrix A′ with zero

diagonals and the (1,2)- and the (2,1)-entries are nonzero. If the (1,2)- and the (2,1)-
entries of A′ are the only nonzero entries, then we are done. Otherwise, it is unitarily
similar to a matrix A′′ with zero diagonals, the (1,2)- and (2,1)- entries are nonzero
and that at least one of (1,3)-, (1,4)-, (2,3)-, (2,4)- entries is nonzero. We assume
that A = A′′ .

Write A = (ai jeiθi j )∈M0
n with zero diagonal, where ai j = a ji � 0 and −π < θi j �

π .
Suppose a13 �= 0. Consider the submatrix A(1,2,3) which satisfies (P) and thus it

is essentially hermitian. By Lemma 2.2, θ12 +θ21 = θ13 +θ31 +2kπ for some integers
k . Similarly for the (1,4)-, (2,3)- and (2,4)-entries.

Suppose a34 �= 0. Note that at least one of a13,a23,a14,a24 is nonzero. Say,
a13 �= 0. By considering the submatrices A(1,2,3) and A(1,3,4) , we have θ12 +θ21 =
θ13 +θ31 +2kπ = θ34 +θ43 +2mπ for some integers k,m .

By Lemma 2.2, A is essentially hermitian.

Case n > 4.

Let A∈M0
n satisfy (P). Without loss of generality, assume that the diagonal entries

of A are zero and that the (1,2)-entry is nonzero. Write A = (ai jeiθi j) ∈ M0
n with zero

diagonal, where ai j = a ji � 0 and −π < θi j � π .
If ai j �= 0, then consider a 4× 4-submatrix A(α) , where 1,2, i, j ∈ α . A(α) is

essentially hermitian and thus θ12 +θ21 = θi j +θ ji +2kπ for some integers k .
By Lemma 2.2, A is essentially hermitian.
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3. Inclusion Relation of Numerical Ranges

We start with some old results.

LEMMA 3.1. [2, Theorem 3.1.1] Let C ∈ Mn and D ∈ Mp then S(C)⊕ S(D) ⊆
S(C⊕D) and S(C)⊗S(D)⊆ S(C⊗D) , where the operations on sets are element-wise.

LEMMA 3.2. [9] Let C ∈ M2 , then WC(A) is convex for all A ∈M2 , equivalently
S(C) = conv(U(C)) , i.e. the convex hull of the unitarily orbit of A.

LEMMA 3.3. [3] Suppose D = (bi j) ∈ S(C) . Let k be such that 1 � k � n, ε ∈
[0,1] , and D′ =

(
d′

i j

)
be defined by

d′
i j =

{
εdi j, if exactly one of i, j equals k,
di j, otherwise.

(In other words, D′ is obtained from D by multiplying ε to the entries on the k -th row
and on the k -th column, except for the (k,k) th entry, of D.) Then D′ ∈ S(C) .

Apply Lemmas 3.1, 3.2 and 3.3, we have

LEMMA 3.4. Let C = (ci j) ∈ M0
n with zero diagonal, then

conv

(
U

((
0 c12

c21 0

)))
⊕0n−2 ⊆ S(C).

If C is a block-shift matrix, then WC(A) is a circular disc for any C [7]. In par-
ticular, it is true for A = E12 , the matrix with a 1 at the (1,2)-entry and 0 elsewhere.
Indeed, we have the following result.

LEMMA 3.5. [2, Corollary 3.2.6] If D∈M0
n then S(D)⊆ β (n)‖D‖FS(E12) where

β (n) =

{
2(n−1)

√
2n

n if n is even,
2(n−1)

√
2n−1

n if n is odd.

Let’s restate Theorem 1.1.

THEOREM 3.6. Suppose C ∈ M0
n is not essentially hermitian. Then there exists

ν > 0 such that for any D ∈ M0
n ,

νS(D) ⊆ ‖D‖FS(C),

equivalently νWD(A) ⊆ ‖D‖FWC(A) for any A ∈ Mn .
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Proof. By Theorem 2.1, there exists unit vectors x and y such that x∗Cx = y∗Cy = 0
and x∗y = 0 but |x∗Cy| �= |y∗Cx| . Therefore we can assume that C = (ci j) where cii = 0
for all i and |c12| �= |c21| .

By Lemma 3.4, conv

(
U

((
0 c12

c21 0

)))
⊕0n−2 ⊆ S(C) . Since |c12| �= |c21| , there

exists τ > 0 such that

(
0 τ
0 0

)
⊕0n−2 = τE12 ∈ S(C) .

By Lemma 3.5, we have for any D∈M0
n , τ

β (n)D∈‖D‖FτS(E12)⊆‖D‖FS(C) . �
For any C ∈ M0

n , define

ν(C) := max{ν � 0 : νS(D) ⊆ ‖D‖FS(C) for all D ∈ M0
n}.

COROLLARY 3.7. Let C ∈ M0
n . Then ν(C) � 0 and that ν(C) = 0 if and only if

C is essentially hermitian.

Proof. By Theorem 3.6, if C is not essentially hermitian then ν(C) > 0. If C �= 0 is
essentially hermitian, then W (C) and W (iC) are two line segments intersect at 0 only,
hence νiC ∈ ‖iC‖FS(C) only if ν = 0, and thus ν(C) = 0. �
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