
Operators
and

Matrices
Volume 3, Number 3 (2009), 373–396

BANACH SPACES OF FUNCTIONS TAKING VALUES IN A C∗–ALGEBRA

ORAPIN WOOTIJIRUTTIKAL † , S.-C. ONG, P. CHAISURIYA AND J. RAKBUD

(Communicated by D. Farenick)

Abstract. Let A be a C∗ -algebra with identity 1 ; and let s(A ) denote the set of all states on
A . The state space s(A ) (with the weak ∗ topology) is used to construct classes of Banach
spaces of functions defined on a fixed set S taking values in A . The inter-relationship between
spaces are considered. Special classes of operators on these spaces are also considered. When
A is taken to be C and S to be N , all spaces are just the classical spaces.

1. Introduction

Many well-known and beautiful theorems in analysis involve Banach spaces of
functions taking values in the real or complex field. In fact, from our more naive and
simplistic point of view, the entire theory of operators and operator algebras is built on
the sequence (function) space �2 and the Lebesgue function space L2 (and operator
algebras are themselves Banach spaces of functions taking values in a Banach space).
Many of these theorems have been extended to Banach spaces of functions taking values
in a fixed Banach space, with the norm on the Banach space replacing the absolute
value function on the real or complex field [3]. Since a C∗ -algebra has richer structure
and resembles the complex field in more ways than a general Banach space, when the
complex field is replaced by a C∗ -algebra, there are more natural ways to study function
spaces taking values in a C∗ -algebra. In this paper we use the state space on a fixed
C∗ -algebra to study Banach spaces of functions that take values in the C∗ -algebra.

Let S be a fixed set; and let A be a C∗ -algebra with identity 1 and state space
s(A ) (with the weak∗ topology, whenever a topology is invoked). We consider spaces
of functions from S to A that are finite under various norms determined by s(A ) . The
main purpose of this paper is to extend results on classical Banach sequence spaces to
these spaces. When the C∗ -algebra is taken to be the complex field C , since the state
space of C contains only one element, namely the identity map, all the norms are the
same as the classical ones determined by the absolute value function and all spaces are
just the classical spaces.

We begin by gathering some fairly well known results about elements in A and
s(A ) that will be used in later sections of the paper in section 2. The commonalities of
spaces to be studied are gathered together to prove a theorem in section 3 which, in turn,
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is used to prove that certain collections of functions on S×S act as bounded operators
on the space, and these functions form a closed subspace of the space of all bounded
operators. We extract the essence of the proofs of the existence and completeness of
norms into theorems in section 4. These general results are then applied to show all
spaces being considered are Banach spaces in sections 5 and 6. For some of these
spaces X , we also have a description of the elements of the space B(X ,A ) , of
bounded linear maps from the space X into A ; an analogue of the dual space.

2. Definitions and Preliminaries

Let A be a unital C∗ -algebra over the complex field C with state space s(A )
(the set of all positive linear functionals of norm 1 on A , i.e., taking the value 1 at the
identity, with the weak∗ topology). Then ‖a‖ = sup

ϕ∈s(A )
|ϕ(a)| = max

ϕ∈s(A )
|ϕ(a)| for all

self-adjoint elements a ∈ A (in fact, it is true for all normal elements, [4], Theorem
4.3.4 (iv), p. 258). By convention |x| = √

x∗x for every x ∈ A .
For a positive linear functional ϕ on A , the following inequality is just the trian-

gle inequality for the semi-norm ‖a‖ϕ = [ϕ (a∗a)]
1
2 (a∈A ) induced by the semi-inner

product defined by 〈a,b〉ϕ = ϕ (b∗a) for all a,b ∈ A ([4] p. 256).

LEMMA 2.1. (Minkowski’s inequality) Let a,b ∈ A ; and ϕ ∈ s(A ) . Then[
ϕ
(
|a+b|2

)] 1
2 �
[
ϕ
(
|a|2
)] 1

2
+
[
ϕ
(
|b|2
)] 1

2
i.e.;

‖a+b‖ϕ �‖a‖ϕ +‖b‖ϕ .

LEMMA 2.2. Let x,y ∈ A and ϕ ∈ s(A ) . Then

ϕ
(
|xy|2

)
� ‖x‖2ϕ

(
|y|2
)

i.e.; ‖xy‖ϕ � ‖x‖‖y‖ϕ .

For any x ∈ A , define the state norm of x by ‖x‖s = sup
ϕ∈s(A )

|ϕ(x)|. It is not hard

to see that ‖·‖s is indeed a norm on A . The following proposition, which may be well
known to the experts, establishes the equivalence of the state norm and the norm. This
is useful in later sections.

PROPOSITION 2.3. For any x ∈ A , ‖x‖s � ‖x‖ � 2‖x‖s .

Proof. Since s(A ) ⊆ (A #
)
1 (the closed unit ball of A # ),

‖x‖s = sup
ϕ∈s(A )

|ϕ(x)| � sup
f∈(A #)1

= ‖x‖ .

Decompose x ∈ A as the sum of its real and imaginary parts x = ℜx + iℑx . Since
|ϕ(ℜx)| � |ϕ(x)| and similarly for the imaginary part, and since the state norm of a
self-adjoint element is equal to its norm ([4] p. 258),

‖x‖ � ‖ℜx‖+‖ℑx‖ = ‖ℜx‖s +‖ℑx‖s � 2‖x‖s .
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3. Bounded “Matrices”

Throughout this paper S denotes a fixed nonempty set, and F denotes the col-
lection of all finite subsets of S directed by set inclusion: F 	 G ⇔ F ⊇ G for
F,G ∈ F . For a set Λ , ΛS denotes the collection of all functions from S to Λ . Let
X be a Banach space; and let x ∈ XS so that {x(s) : s ∈ S} is a collection of vectors
in X . The (unordered) sum ∑

s∈S

x(s) is said to be convergent with sum x ∈ X if the net{
∑
s∈F

x(s)

}
F∈F

converges to x , written

∑
s∈S

x(s) = lim
F∈F

(
∑
s∈F

x(s)

)
= x,

otherwise, ∑
s∈S

x(s) is said to diverge or to be divergent. By convention, the sum over

the empty set is 0. A convergent sequence is always bounded, but a convergent net
may not be; e.g., the positive reals directed by the reverse ordering converges to 0 (in
the usual topology), but it is not bounded. However, for a convergent sum, the net of
“partial sums” is always bounded.

PROPOSITION 3.1. For x ∈ XS , if ∑
s∈S

x(s) = x converges in X , then there is an

M such that

∥∥∥∥∥∑s∈F
x(s)

∥∥∥∥∥ � M for all F ∈ F , i.e., the net

{
∑
s∈F

x(s)

}
F∈F

of “partial

sums” is bounded.

Proof. Since this is true in any topological vector space, we give a proof for this
more general setting. Assume X is a topological vector space. Let U be an open
set containing 0. Then there is an open, balanced and absorbing set V containing
0 such that V + V ⊆ U . By the convergence of the sum, there is an F0 ∈ F such
that for all F ∈ F with F ⊇ F0 , x−∑

s∈F

x(s) ∈ V . Since V is absorbing, for each

G ⊆ F0 there is an εG > 0 such that λ

[
x−∑

s∈G

x(s)

]
∈ V for all λ ∈ [0,2εG) . Let

ε = min{εG : G ⊆ F0} . Then if λ ∈ [0,2ε) and H ⊆ F0 we have λ

[
x−∑

s∈H

x(s)

]
∈V .

Let t = max
{ 1
ε ,1
}

, and let H ∈ F . Since V is balanced and absorbing, we have

∑
s∈H

x(s) = ∑
H∪F0

x(s)− ∑
s∈F0\H

x(s)

=

[
∑

H∪F0

x(s)− x

]
− 1
ε

(
ε

[
∑

s∈F0\H
x(s)− x

])
∈ [−V ]− 1

ε
[−V ]
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⊆ tV + tV = t [V +V ] ⊆ tU .

For b ∈ X and s ∈ S define es(b) ∈ XS (analogue of the standard basis elements
in �p space) by

[es(b)](t) =

{
b if t = s

0 if t 
= s
for all t ∈ S .

For x ∈ XS and F ⊆ S , denote by xF the function

xF(s) =

{
x(s) if s ∈ F

0 if s 
∈ F
.

From this point on, X will denote a Banach space of functions from S to A that
satisfies the following conditions:

(i) es(b) ∈ X ∀ b ∈ A , ∀ s ∈ S ;

(ii) there exists a c > 0 such that ‖x(s)‖A � c‖x‖X ∀ s ∈ S, ∀ x ∈ X ;

(iii) there exists a ξ > 0 such that ∀ b ∈ A , ∀ s ∈ S, ‖es(b)‖X � ξ ‖b‖A ;

(iv) sup
F∈F

‖xF‖X = ‖x‖X ∀ x ∈ X .

THEOREM 3.2. If a ∈ A S and if ∑
s∈S

a(s)x(s) converges in A for all x ∈ X ,

then Ta(x) = ∑
s∈S

a(s)x(s) defines a bounded linear transformation from X to A .

Proof. Let F ∈ F . Define TF : X → A by TF(x) = ∑
s∈F

a(s)x(s) ∀ x ∈ X .

Then TF is readily seen to be linear, and

‖TF(x)‖A =

∥∥∥∥∥∑s∈F
a(s)x(s)

∥∥∥∥∥
A

� ∑
s∈F

‖a(s)‖A ‖x(s)‖A � ∑
s∈F

‖a(s)‖A · c‖x‖X ,

which implies that TF is bounded for each F ∈ F . Fix x ∈ X ; since ∑
s∈S

a(s)x(s)

converges, and TF(x) F∈F−→ ∑
s∈S

a(s)x(s), there exists, by Proposition 3.1, a constant Mx

such that

‖TF(x)‖A =

∥∥∥∥∥∑s∈F
a(s)x(s)

∥∥∥∥∥
A

� Mx for all F ∈ F .

From the uniform boundedness principle, we infer the existence of a constant M such
that ‖TF‖ � M for all F ∈ F . For every x ∈ X , we obtain

‖Ta(x)‖A =

∥∥∥∥∥∑s∈S

a(s)x(s)

∥∥∥∥∥
A

=

∥∥∥∥∥ lim
F∈F

∑
s∈F

a(s)x(s)

∥∥∥∥∥
A

= lim
F∈F

∥∥∥∥∥∑s∈F

a(s)x(s)

∥∥∥∥∥
A
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= lim
F∈F

‖TF(x)‖A � limsup
F∈F

‖TF‖‖x‖X � M ‖x‖X .

Therefore Ta is a bounded linear transformation from X to A .
Let B (X ) be the set of all bounded linear operators on X . It is well-known that

B (X ) with the operator norm is a Banach algebra.
Let A be a function from S× S to A . We say that A defines a linear operator,

TA , on X , if for each x ∈ X

(i) (TAx)(s) :=∑
t∈S

A(s,t)x(t) converges in A ∀ s ∈ S,

(ii) TAx ∈ X .

THEOREM 3.3. Let A∈ A S×S. Suppose that A defines a linear operator, TA , on
X . Then TA is bounded.

Proof. For a fixed s ∈ S,

(TAx){s} (u) = δs(u)∑
t∈S

A(u,t)x(t) ∀ x ∈ X ∀ u ∈ S

where δs(u)=

{
1 ; u = s

0 ; u 
= s
. Then by condition (iii) on X and the preceding theorem,

there is a constant Ms such that for all x ∈ X ,

∥∥∥(TAx){s}
∥∥∥

X
� ξ

∥∥∥∥∥∑t∈S

A(s,t)x(t)

∥∥∥∥∥
A

� ξMs ‖x‖X .

Let F ∈ F . The map TA,F : x �→ (TAx)F is a bounded linear operator on X , because

∥∥TA,F(x)
∥∥

X
=‖(TAx)F‖X =

∥∥∥∥∥∑s∈F
(TAx){s}

∥∥∥∥∥
X

� ∑
s∈F

∥∥∥(TAx){s}
∥∥∥

X

�ξ

(
∑
s∈F

Ms

)
‖x‖X .

Fix x ∈ X ; since
∥∥TA,F(x)

∥∥
X

= ‖(TAx)F‖X � ‖TAx‖X for all F ∈ F by the con-
dition (iv) on X , it follows from this and the uniform boundedness principle that
there is a constant M such that

∥∥TA,F

∥∥ � M for all F ∈ F . Thus ‖(TAx)F‖X =∥∥TA,F(x)
∥∥

X
�
∥∥TA,F

∥∥‖x‖� M‖x‖X ∀ F ∈F . By condition (iv) again, ‖TAx‖X =
sup
F∈F

‖(TAx)F‖X � M‖x‖X . Therefore TA is bounded with ‖TA‖ � M .

Let M (X ) be the set of all A in the space of functions from S× S to A such
that A defines a linear operator on X . Then M (X ) can be regarded as a subspace
of B (X ) , by the preceding theorem. For simplicity of notation write Ax = TAx for
A ∈ M (X ) , x ∈ X .
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THEOREM 3.4. Let X and M (X ) be as defined above. Then M (X ) with

the operator norm is a Banach space. If X has the property that ‖x−xF‖ F∈F−→ 0 for
all x ∈ X , then M (X ) is a Banach algebra.

Proof. For A ∈ M (X ) and (s,t) ∈ S× S, we claim that ‖A(s, t)‖ � cξ ‖A‖ ;
where c and ξ are as in the definition of X . Indeed, by conditions (ii) and (iii) on
X ,

‖A(s,t)‖A = ‖A(s,t) ·1‖A = ‖{A [et(1)]}(s)‖A

� c‖A [et(1)]‖X � c‖A‖‖et(1)‖X

� c‖A‖ξ ‖1‖A = cξ ‖A‖ .

To see that M (X ) is a Banach space, we show that M (X ) is closed in B (X ) . To
that end, let {An} be a sequence in M (X ) such that An → T in B (X ) . Then {An}
is a Cauchy sequence in M (X ) . For each fixed (s,t) ∈ S×S,

‖An(s, t)−Am(s,t)‖A = ‖(An−Am)(s,t)‖A � cξ ‖An−Am‖→ 0

as n,m → ∞. We see that the sequence {An(s,t)}∞n=1 is a Cauchy sequence in A .
Since A is complete, there is an element ast ∈ A such that An(s,t) → ast as n → ∞.
Define A(s, t) = ast . Let x be an arbitrary vector in X . For each s ∈ S and F ∈ F ,
we have [An (xF)](s) = ∑

t∈F

An(s,t)x(t) and hence

(T (xF))(s) = lim
n→∞

(An (xF))(s) = lim
n→∞∑

t∈F
An(s,t)x(t)

= ∑
t∈F

(
lim
n→∞

[An(s,t)x(t)]
)

= ∑
t∈F

A(s,t)x(t).

Thus [T (xF)](s) = ∑
t∈F

A(s,t)x(t) for all s ∈ S. Fix s ∈ S, let ε > 0 be given. Since

An → T, there exists N ∈ N such that for all n � N,

‖An−T‖ <
ε

4c‖x‖X +1
.

Since AN ∈ M (X ) , [AN(x)] (s) =∑
t∈S

AN(s,t)x(t) converges in A . That is

[AN (xF)](s) = ∑
t∈F

AN(s,t)x(t) F∈F−→ ∑
t∈S

AN(s, t)x(t) = [AN(x)](s).

So there is an F0 ∈ F such that for all F ∈ F , with F ⊇ F0,

‖[AN(xF)](s)− [AN(x)](s)‖A <
ε
4
.

For F ∈ F with F ⊇ F0,∥∥∥∥∥[T (x)](s)−∑
t∈F

A(s,t)x(t)

∥∥∥∥∥
A

= ‖[T (x)](s)− [T (xF)] (s)‖A
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�‖[T (x)](s)− [AN(x)](s)‖A + ‖[AN(x)](s)− [AN(xF)] (s)‖A

+ ‖[AN(xF)] (s)− [T (xF)](s)‖A

=‖[T (x)−AN(x)](s)‖A + ‖[AN(x)](s)− [AN(xF)](s)‖A

+ ‖[AN(xF)−T (xF)](s)‖A

�c‖(T −AN)(x)‖X +
ε
4

+ c‖(AN −T )(xF)‖X

�c‖(T −AN)‖‖x‖X +
ε
4

+ c‖AN −T‖‖x‖X

�c

[
ε

4c‖x‖X +1

]
‖x‖X +

ε
4

+ c

[
ε

4c‖x‖X +1

]
‖x‖X < ε.

Hence lim
F∈F

(
∑
t∈F

A(s,t)x(t)

)
= [T (x)] (s), i.e., ∑

t∈S

A(s,t)x(t) = [T (x)](s). Since this

is true for all s ∈ S, we have that A ∈ M (X ) and Ax = Tx for all vector x ∈ X .
This implies T = A ∈ M (X ) .

To see that M (X ) is a Banach algebra when X has the “finite approximation
property”, we need only show that it is closed under multiplication. Let A,B∈M (X ) .
For each u ∈ S , since eu(1) ∈ X , and hence y(t) = B(t,u) = B[eu(1)](t), t ∈ S
defines a function in X , thus B(·,u) ∈ X for every u ∈ S . It follows that, for each

fixed s,u ∈ S , the sum ∑
t∈S

A(s,t)B(t,u) = lim
G∈F

[
∑
t∈G

A(s, t)B(t,u)

]
converges. Set T =

TATB . Let x ∈ X and F ∈ F . Then, for each s ∈ S ,

(TxF)(s) =[(TATB)(xF)](s) =∑
t∈S

A(s,t)(TBxF)(t)

=∑
t∈S

A(s,t)

[
∑
u∈S

B(t,u)xF(u)

]

=∑
t∈S

A(s,t)

[
∑
u∈F

B(t,u)xF(u)

]

= lim
G∈F

(
∑
t∈G

A(s,t)

[
∑
u∈F

B(t,u)xF(u)

])

= lim
G∈F

(
∑
u∈F

[
∑
t∈G

A(s,t)B(t,u)

]
xF(u)

)

= ∑
u∈F

([
lim
G∈F

(
∑
t∈G

A(s,t)B(t,u)

)]
xF(u)

)
= ∑

u∈F
(AB)(s,u)xF(u) = ([AB]xF)(s)

Since s ∈ S is arbitrary, TxF = (AB)xF for all F ∈ F . Let s0 ∈ S be fixed.
We claim that lim

F∈F
[(AB)xF ](s0) = (Tx)(s0) . Let ε > 0. Since T is bounded, and
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xF → x , there is an F0 ∈ F such that for all F ∈ F satisfying F ⊇ F0 we have

‖(AB)xF −Tx‖X = ‖TxF −Tx‖X <
ε

c+1
. Thus

‖[(AB)xF ](s0)− (Tx)(s0)‖A =‖[(AB)xF −Tx] (s0)‖A

�c‖(AB)xF −Tx‖X < c

(
ε

c+1

)
< ε.

Therefore

(Tx)(s0) = lim
F∈F

[([(AB)xF ]) (s0)] = lim
F∈F

[
∑
t∈F

(AB)(s0,t)xF(t)

]

= lim
F∈F

[
∑
t∈F

(AB)(s0,t)x(t)

]
= (AB)x(s0)

This shows that for each s0 ∈ S , [(AB)x](s0) exists and is equal to (Tx)(s0) . Since
Tx ∈ X , (AB)x ∈ X . Thus AB ∈ M (X ) and T = T(AB) from the arbitrariness of
x∈X . The submultiplicativity of the norm follows from the observation: by definition
‖AB‖ = ‖TAB‖ = ‖TATB‖ � ‖TA‖‖TB‖ = ‖A‖‖B‖ . The proof is complete.

4. The �p
∗(S,A ) and �p

∗u(S,A ) spaces

We begin this section with some general results that will be used for all spaces to
be considered.

PROPOSITION 4.1. Let B be a Banach space of functions from S to C; and let
η ∈ A S . Then ϕ ◦η ∈ B ∀ ϕ ∈ s(A ) iff sup

ϕ∈s(A )
‖ϕ ◦η‖ < ∞.

Proof. [⇐] This is clear by definition.
[⇒] Fix η ∈A S such that ϕ ◦η ∈ B ∀ ϕ ∈ s(A ). Let A # be the dual space

of A and f ∈ A #. By Corollary 4.3.7 of [4] (p. 260), f =
4

∑
ν=1

ανϕν , where αν ∈ C

and ϕν ∈ s(A ); ν = 1,2,3,4. Since each ϕν ◦η ∈B, f ◦η =
4

∑
ν=1

αν (ϕν ◦η) ∈ B.

Therefore Tη( f ) = f ◦η maps A # to B. We show that Tη is bounded by showing
that the graph of Tη is closed in A #⊕B. Let fn → f in A # and Tη ( fn) → y in B.
We must show that Tη( f ) = y. From fn → f , we get that, for each s∈ S, ( fn ◦η)(s)→
( f ◦η)(s) as n → ∞. From Tη ( fn) → y, we see that, for each s ∈ S, ( fn ◦η)(s) →
y(s) as n → ∞. So ( f ◦η)(s) = y(s) for all s. Therefore Tη( f ) = y. This shows
that the graph of Tη is closed. Since A # and B are Banach spaces, by closed graph
theorem, Tη is a bounded linear mapping from A # to B. Then sup

ϕ∈s(A )
‖ϕ ◦η‖ =

sup
ϕ∈s(A )

∥∥Tη (ϕ)
∥∥� sup

ϕ∈s(A )

∥∥Tη∥∥‖ϕ‖ =
∥∥Tη∥∥< ∞.
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THEOREM 4.2. Let X be a Banach space, and let ‖·‖ : XS → [0,∞] be a function
satisfying the following conditions:

1. ‖x‖ = 0 ⇔ x = 0 ∀ x ∈ XS ;

2. ‖x+y‖� ‖x‖+‖y‖ ∀ x,y ∈ XS ;

3. ‖αx‖ = |α|‖x‖ (0 ·∞= 0) ∀ x ∈ XS ∀ α ∈ C;

4. ∃ c > 0 such that ‖x(s)‖X � c‖x‖ ∀ x ∈ XS ∀ s ∈ S;

5. ∃ ξ > 0 such that ‖es(a)‖ � ξ ‖a‖X ∀ a ∈ X ∀ s ∈ S;

6. sup
F∈F

‖xF‖ = ‖x‖ ∀ x ∈ XS.

Then Y =
{
x ∈ XS : ‖x‖ < ∞

}
is a Banach space with norm ‖·‖ .

Proof. Let {xn}∞n=1 be a Cauchy sequence in Y. Then for each s ∈ S,

‖xn(s)−xm(s)‖X = ‖(xn−xm)(s)‖X � c‖xn−xm‖→ 0 as n,m → ∞.

Hence {xn(s)}∞n=1 is a Cauchy sequence in X . Since X is complete, there exists x(s)∈
X such that xn(s) → x(s) as n → ∞. For a fixed F ∈ F ,

‖(xn)F −xF‖ =‖(xn−x)F‖ =

∥∥∥∥∥∑s∈F
es ((xn−x)(s))

∥∥∥∥∥
=

∥∥∥∥∥∑s∈F
es (xn(s)−x(s))

∥∥∥∥∥� ξ ∑
s∈F

‖xn(s)−x(s)‖→ 0

as n → ∞ . Let ε > 0. Since {xn} is a Cauchy sequence, there exists an N ∈ N such
that for all n,m � N, ‖xn−xm‖ < ε

2 . Then, for n,m � N, F ∈ F

‖(xn)F − (xm)F‖ = ‖(xn−xm)F‖ � ‖xn−xm‖ <
ε
2
.

Holding n and F fixed and letting m → ∞ in the left most and right most expressions
above, we obtain

‖(xn−x)F‖ = ‖(xn)F −xF‖ � ε
2

∀ n � N ∀ F ∈ F .

Thus ‖xn−x‖= sup
F∈F

‖(xn −x)F‖ = sup
F∈F

‖(xn)F −xF‖� ε
2

∀ n � N. So xN −x ∈Y

and hence x = xN − (xN −x) ∈ Y . In addition, we also have xn → x as n → ∞.
For a ∈ A S, define a∗ by a∗(s) = [a(s)]∗ ∀ s ∈ S. For x,y ∈ A S, define

xy ∈ A S by (xy)(s) = x(s)y(s) ∀ s ∈ S. For ϕ ∈ s(A ), x ∈ A S define ϕ̃(x) ∈ CS by
(ϕ̃(x))(s) = ϕ(x(s)) for s ∈ S.
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THEOREM 4.3. Let y ∈ A S, and p ∈ [2,∞) .

(a) The function ‖·‖ : A S → [0,∞] defined, for each y ∈ A S , by

‖y‖ = sup
ϕ∈s(A )

(
∑
s∈S

[ϕ (y(s)∗y(s))]
p
2

) 1
p

= sup
ϕ∈s(A )

[
∑
s∈S

‖y(s)‖p
ϕ

] 1
p

satisfies all six conditions in Theorem 4.2 (with c = ξ = 1 ).

(b) The condition ∑
s∈S

[ϕ (y(s)∗y(s))]
p
2 <∞ ∀ ϕ ∈ s(A ) is necessary and sufficient

for sup
ϕ∈s(A )

∑
s∈S

[ϕ (y(s)∗y(s))]
p
2 < ∞ .

Proof. Part (a) has six subparts. Since they all have straightforward verifications,
we prove only condition (6). Let x ∈ A S . If ‖x‖ = ∞ , for each M > 0, there is a ϕ ∈
s(A ) such that ∑

s∈S

‖x(s)‖p
ϕ > Mp . Thus there is a G∈F such that ∑

s∈G

‖x(s)‖p
ϕ > Mp .

That is ‖xG‖p > Mp . Therefore sup
F∈F

‖xF‖ = ∞ . It is easy to check that ‖xF‖ � ‖x‖
for each F ∈ F . Thus sup

F∈F
‖xF‖ � ‖x‖ .

If ‖x‖ < ∞ , then for each ε > 0, there is a ϕ ∈ s(A ) such that

∑
s∈S

‖x(s)‖p
ϕ > ‖x‖p− ε

2
.

Thus there is a G ∈ F such that ∑
s∈G

‖x(s)‖p
ϕ > ‖x‖p − ε . That is ‖xG‖p > ‖x‖p − ε .

Since ε is arbitrary, sup
G∈F

‖xG‖ � ‖x‖ .

(b) [⇒] Fix x ∈ A S. Define ηx(s) = x(s)∗x(s) , s ∈ S . Then ηx maps
S to A and (ϕ ◦ηx) (s) = ϕ (x(s)∗x(s)) ∀ ϕ ∈ s(A ). By assumption ϕ ◦ ηx ∈
�

p
2 (S,C) ∀ ϕ ∈ s(A ) . Then by Theorem 4.1,

sup
ϕ∈s(A )

(
∑
s∈S

[ϕ (x(s)∗x(s))]
p
2

) 2
p

= sup
ϕ∈s(A )

‖ϕ ◦ηx‖ <∞.

Hence sup
ϕ∈s(A )

(
∑
s∈S

[ϕ (x(s)∗x(s))]
p
2

) 1
p

< ∞. The converse is obvious.

With A and s(A ) as above, for p ∈ [2,∞), we consider the following spaces:

�p
∗ (S,A ) =

{
x ∈ A S : ∑

s∈S

[ϕ (x(s)∗x(s))]
p
2 < ∞ ∀ ϕ ∈ s(A )

}
;



C∗ -ALGEBRA VALUED FUNCTION SPACES 383

and

�p
∗u(S,A ) =

{
x ∈ A S :∑

s∈S

[ϕ (x(s)∗x(s))]
p
2

converges uniformly for ϕ ∈ s(A )

}
.

It is clear from the definitions that �p
∗u(S,A )⊆ �p

∗(S,A ), but the following exam-
ple shows that the converse is not true in general.

EXAMPLE 4.4. For p ∈ [2,∞), �p
∗u(S,A ) � �p

∗(S,A ) for any C∗ -algebra A (of
operators) with infinite family of operators having mutually orthogonal ranges and
S = N .

Proof. Let {x∗n} be a family of norm 1 contractions in A with mutually orthog-

onal ranges. Then the ranges of x∗nxn = yny∗n are orthogonal, and hence

∥∥∥∥∥ k

∑
n=1

x∗nxn

∥∥∥∥∥ =

max
1�n�k

‖x∗nxn‖ . Since ‖xn‖ϕ � ‖xn‖ � 1 for all n ∈ N , for each ϕ ∈ s(A ) ,

k

∑
n=1

‖xn‖p
ϕ �

k

∑
n=1

‖xn‖2
ϕ =

k

∑
n=1

ϕ(x∗nxn) = ϕ

(
k

∑
n=1

x∗nxn

)

�
∥∥∥∥∥ k

∑
n=1

x∗nxn

∥∥∥∥∥= max
1�n�k

‖xn‖2 � 1.

So x(n) = xn , n ∈ N , defines an element of �p
∗(N,A ) . On the other hand, for each

n ∈ N , there exists ϕn ∈ s(A ) such that ϕn(x∗nxn) = ‖xn‖2 = 1 ([4] Theorem 4.3.4, p,
258). Thus

∞

∑
j=n

[
ϕn
(
x∗j x j
)] p

2 � [ϕn (x∗nxn)]
p
2 = 1 >

1
2
.

That is x /∈ �p
∗u(N,A ) (the convergence is not uniform over s(A )).

An interesting question arises naturally here. Is there an infinite dimensional C∗ -
algebra A such that these two spaces are equal?

THEOREM 4.5. The function ‖·‖ defined in Theorem 4.3 is a norm on the space
�p
∗(S,A )

[
resp. �p

∗u(S,A )
]
, and �p

∗(S,A )
[
resp. �p

∗u(S,A )
]

is a Banach algebra un-
der this norm and the point-wise product.

Proof. That ‖·‖ is indeed a norm follows directly from Theorem 4.3. From the
definition, we see that �p

∗(S,A ) =
{
y ∈ A S : ‖y‖ < ∞

}
, and hence it is a Banach
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space by Theorem 4.2. To see that �p
∗(S,A ) is closed under point-wise multiplication

and the submultiplicativity of ‖·‖ , let x, y ∈ �p
∗(S,A ) and ϕ ∈ s(A ). We have(

∑
s∈S

‖x(s)y(s)‖p
ϕ

) 1
p

�
(
∑
s∈S

‖x(s)‖p ‖y(s)‖p
ϕ

) 1
p

�‖x‖
(
∑
s∈S

‖y(s)‖p
ϕ

) 1
p

� ‖x‖‖y‖ .

Thus xy ∈ �p
∗(S,A ) . Since ϕ ∈ s(A ) was arbitrary, ‖xy‖ � ‖x‖‖y‖ .

For the space �p
∗u(S,A ) , it suffices to show that �p

∗u(S,A ) is a closed subspace of
�p
∗(S,A ) for its completeness, and that it is closed under point-wise product. For the

former, let {xn} be a sequence in �p
∗u(S,A ) such that xn → x in �p

∗(S,A ). Let ε > 0
be given. Then there exists a positive integer N such that ‖xn−x‖< ε

2 for all n � N.
Since xN ∈ �p

∗u(S,A ), there exists F0 ∈ F such that for all G ∈ F with G ⊆ S \F0

and for all ϕ ∈ s(A ), ∑
s∈G

‖xN(s)‖p
ϕ <
(ε

2

)p
. Let H ∈F be such that H ⊆ S\F0 and

let ϕ ∈ s(A ). We obtain(
∑
s∈H

‖x(s)‖p
ϕ

) 1
p

�
(
∑
s∈H

[
‖x(s)−xN(s)‖ϕ +‖xN(s)‖ϕ

]p
) 1

p

�
(
∑
s∈H

‖x(s)−xN(s)‖p
ϕ

) 1
p

+

(
∑
s∈H

‖xN(s)‖p
ϕ

) 1
p

�‖x−xN‖+
ε
2

<
ε
2

+
ε
2

= ε,

which implies that x∈ �
p
∗u(S,A ). For the closure of �

p
∗u(S,A ) under point-wise prod-

uct, we show that �p
∗u(S,A ) is in fact a left ideal in �p

∗(S,A ) . Let x ∈ �p
∗(S,A ), y ∈

�p
∗u(S,A ) ; and let ε > 0. There is an F0 ∈ F such that for all G ∈ F with G ⊆ S \F0

and all ϕ ∈ s(A ) , ∑
s∈G

‖y(s)‖p
ϕ <

[
ε

‖x‖+1

]p

. Thus for such a G , we also have

∑
s∈G

‖x(s)y(s)‖p
ϕ �∑

s∈G

‖x(s)‖p ‖y(s)‖p
ϕ � ‖x‖p ∑

s∈G

‖y(s)‖p
ϕ

�‖x‖p
[

ε
‖x‖+1

]p

< ε p.

Thus xy ∈ �p
∗u(S,A ) . Since the norm on �p

∗u(S,A ) is the same as that of �p
∗(S,A ) ,

and submultiplicativity is already proved above, the proof is thus complete.
Recall that, for x ∈ A S, and F ∈ F xF(s) = x(s) if s ∈ F and x(s) = 0

otherwise.

PROPOSITION 4.6. For each x ∈ �p
∗u(S,A ), ‖x−xF‖ → 0 . This is false in

�p
∗(N,A ) for A as in Example 4.4.
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Proof. Let ε > 0 be given. Since x∈ �p
∗u(S,A ), there exists F0 ∈F such that for

all G∈F with G⊆ S\F0 ∀ ϕ ∈ s(A ), ∑
s∈G

‖x(s)‖p
ϕ <
(ε

2

)p
. Hence ∑

s∈S\F0

‖x(s)‖p
ϕ <(ε

2

)p
, i.e.,

∥∥x−xF0

∥∥p �
(ε

2

)p
. Thus for all F ∈ F with F ⊇ F0 ,

‖x−xF‖p �
∥∥x−xF0

∥∥p �
(ε

2

)p
.

This means xF → x.
Let xn be as defined in Example 4.4, and x(n) = xn (n ∈ N) . Then x ∈ �p

∗(N,A ) .
Let F ∈ F (N) . Choose m ∈ N \F and ϕ ∈ s(A ) such that ϕ(x∗mxm) = 1. Then
‖x−xF‖ � ‖x(m)‖ϕ = 1.

COROLLARY 4.7. The set M
(
�p
∗(S,A )

) [
resp. M

(
�p
∗u(S,A )

)]
, of all A in the

space of functions from S×S to A such that A defines a bounded linear operator on
�p
∗(S,A )

[
resp. �p

∗u(S,A )
]
, with the operator norm is a Banach space [resp. Banach

algebra ] .

Proof. This follows directly from Theorem 3.4 and the preceding proposition.

The following example shows that for p ∈ [2,∞), �p
∗(S,A ) and �p

∗u(S,A ) may
not be “self-adjoint” in the sense that if x ∈ �p

∗(S,A ) or x ∈ �p
∗u(S,A ) then x∗ may

not be in the space.

EXAMPLE 4.8. Let A be a von Neumann algebra that contains an infinite family
of partial isometries with the same kernel and mutually orthogonal ranges. Then there
exists x = {xk} ∈ �p

∗u(N,A ) ⊆ �p
∗(N,A ) but x∗ =

{
x∗k
} 
∈ �p

∗(N,A ), and hence x∗ ={
x∗k
} 
∈ �p

∗u(N,A ).

Proof. Let {yk}k∈N be a sequence of partial isometries in A with the same kernel
and mutually orthogonal ranges, and x(k) = k−1/py∗k for k ∈ N . Then x(k)∗x(k) =
k−2/pyky∗k have mutually orthogonal ranges. Let ε > 0. Choose N such that N−2/p < ε.
Then for each ϕ ∈ s(A ), since x∗kxk � I for all k ∈ N , we have ϕ(x∗kxk) � ϕ(I) = 1.
Since p � 2, for each q � N ,

q

∑
k=N

[ϕ (x∗kxk)]
p
2 �

q

∑
k=N

ϕ (x∗kxk) = ϕ

(
q

∑
k=N

x∗kxk

)

�
∥∥∥∥∥ q

∑
k=N

x∗kxk

∥∥∥∥∥= max
N�k�q

‖x∗kxk‖ =
1

N2/p
< ε.

Hence x = {xk} is in �p
∗u(N,A ) [and hence in �p

∗(N,A )].
To see that x∗ =

{
x∗k
}

is not in �p
∗(N,A ), let ψ ∈ s(A ) be the vector state

defined by a unit vector in the orthogonal complement of the common kernel of yk ,
k ∈ N . Then xkx∗k = k−2/py∗kyk is a multiple of the projection onto the orthogonal
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complement of the common kernel, and hence ψ(xkx∗k) =
1

k2/p
for all k ∈ N . Thus

∞

∑
k=1

[ψ (xkx
∗
k)]

p/2 =
∞

∑
k=1

1
k

= ∞, i.e., x∗ =
{
x∗k
}

is not in �p
∗(N,A ) and hence it is not

in �p
∗u(A ).

5. Alternate descriptions of �2∗(S,A ) and �p
∗u(S,A )

In this section, we present alternate descriptions of �2∗(S,A ) and �p
∗u(S,A ) . De-

fine

�̃2∗(S,A ) =

{
x ∈ A S : sup

F∈F

∥∥∥∥∥∑s∈F
x(s)∗x(s)

∥∥∥∥∥
A

< ∞

}
;

‖x‖
�̃2∗

=

[
sup
F∈F

∥∥∥∥∥∑s∈F
x(s)∗x(s)

∥∥∥∥∥
A

] 1
2

x ∈ �̃2∗(S,A ).

PROPOSITION 5.1. �2∗(S,A ) = �̃2∗(S,A ).

Proof. (⊆) Suppose that x ∈ �2∗(S,A ). Let F ∈ F . Then∥∥∥∥∥∑s∈F

x(s)∗x(s)

∥∥∥∥∥
A

= sup
ϕ∈s(A )

[
ϕ

(
∑
s∈F

x(s)∗x(s)

)]

= sup
ϕ∈s(A )

[
∑
s∈F

ϕ (x(s)∗x(s))

]
� ‖x‖2

�2∗(S,A ) < ∞.

So sup
F∈F

∥∥∥∥∥∑s∈F
x(s)∗x(s)

∥∥∥∥∥
A

<∞ and hence x∈ �̃2∗(S,A ). Therefore �2∗(S,A )⊆ �̃2∗(S,A ).

(⊇) Suppose that x̃ ∈ �̃2∗(S,A ). Let ϕ ∈ s(A ). Then

∑
s∈F

ϕ (x̃(s)∗x̃(s)) = ϕ

(
∑
s∈F

x̃(s)∗x̃(s)

)
�
∥∥∥∥∥∑s∈F

x̃(s)∗x̃(s)

∥∥∥∥∥
A

� ‖x̃‖2

�̃2∗

for all F ∈ F . So ∑
s∈S

ϕ (x̃(s)∗x̃(s)) � ‖x̃‖2

�̃2∗
∀ ϕ ∈ s(A ) and hence x̃ ∈ �2∗(S,A ).

Therefore �̃2∗(S,A ) ⊆ �2∗(S,A ).
Note that, from the above argument, we also have

sup
F∈F

∥∥∥∥∥∑s∈F
x(s)∗x(s)

∥∥∥∥∥
A

= ‖x‖2
�̃2∗

= ‖x‖2
�2∗ = sup

ϕ∈s(A )

[
∑
s∈S

ϕ (x(s)∗x(s))

]
.
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PROPOSITION 5.2. For p ∈ [2,∞), let �p
∗c(S,A ) denote the space of functions

x ∈ A S such that the map ϕ �→ ϕ̃(x∗x) is weak∗ to norm continuous from s(A ) to
�

p
2 (S,C). Then �

p
∗c(S,A ) = �

p
∗u(S,A )

Proof. (⊆) Suppose that x ∈ �p
∗c(S,A ). Let ε > 0. Choose δ = ε2/p. Then for

each ϕ ∈ s(A ) there is a weak∗ neighborhood, Uϕ , of ϕ such that for all ψ ∈ Uϕ ,

‖ϕ̃(x∗x)− ψ̃(x∗x)‖ <
δ
2

.

Since
⋃

ϕ∈s(A )

Uϕ ⊇ s(A ), and s(A ) is weak∗ compact, there are ϕ1, . . . ,ϕn ∈ s(A )

such that Uϕ1

⋃
Uϕ2

⋃
. . .
⋃

Uϕn ⊇ s(A ). Since each ϕ̃ j(x∗x) ∈ �
p
2 (S,C), there is an

Fj ∈ F such that ∑
s∈S\Fj

[ϕ j (x(s)∗x(s))]
p
2 <

(
δ
2

) p
2

. Put F0 =
n⋃

j=1

Fj. Let ψ ∈ s(A ).

Then ψ ∈ Uϕ j for some j = 1,2, . . . ,n and hence

(
∑

s∈S\F0

[ψ (x(s)∗x(s))]
p
2

) 2
p

=
∥∥∥[ψ̃(x∗x)]S\F0

∥∥∥
�p/2(S,C)

�
∥∥∥[ψ̃(x∗x)− ϕ̃ j(x∗x)]S\F0

∥∥∥
�p/2(S,C)

+
∥∥∥[ϕ̃ j(x∗x)]S\F0

∥∥∥
�p/2(S,C)

�
∥∥ψ̃(x∗x)− ϕ̃ j(x∗x)

∥∥
�p/2(S,C) +

∥∥∥[ϕ̃ j(x∗x)]S\Fj

∥∥∥
�p/2(S,C)

<
δ
2

+
δ
2

= δ .

Thus ∑
s∈S\F0

[ψ (x(s)∗x(s))]
p
2 < δ

p
2 = ε. This implies that x ∈ �p

∗u(S,A ).

(⊇) Suppose that x ∈ �p
∗u(S,A ). Let ε > 0 be given. Then there exists F0 ∈ F

such that for all G ⊆ S \F0, ∑
s∈G

‖x(s)‖p
ϕ <

(ε
8

) p
2 ∀ ϕ ∈ s(A ). Fix ϕ ∈ s(A ). Let

n = card F0 . Then the set

U =
{
ψ ∈ s(A ) : |ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p

2 <
1
np

(ε
4

) p
2
, s ∈ F0

}
is an open set in the weak∗ topology. Let F ∈ F . For ψ ∈ U , we have

∑
s∈F

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2

= ∑
s∈F∩F0

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2

+ ∑
s∈F\F0

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2
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� ∑
s∈F0

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2

+ ∑
s∈F\F0

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2

<

[
n · 1

np

(ε
4

) p
2
]

+

⎧⎨⎩
(
∑

s∈F\F0

‖x(s)‖p
ψ

) 2
p

+

(
∑

s∈F\F0

‖x(s)‖p
ϕ

) 2
p

⎫⎬⎭
p
2

<
(ε

4

) p
2
+
[ε
8

+
ε
8

] p
2

=
(ε

4

) p
2
+
(ε

4

) p
2

= 2
(ε

4

) p
2
.

Since this is true for any F ∈ F , we have

∑
s∈S

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2 � 2

(ε
4

) p
2
.

Thus

‖ψ̃ (x∗x)− ϕ̃ (x∗x)‖ =

[
∑
s∈S

|ψ (x(s)∗x(s))−ϕ (x(s)∗x(s))| p
2

] 2
p

�
[
2
(ε

4

) p
2
] 2

p

= 2
2
p · ε

4
� ε

2
< ε.

This proves the continuity of the map ϕ �→ ϕ̃(x∗x). Therefore for p∈ [2,∞), �p
∗c(S,A )=

�p
∗u(S,A ).

In fact, for p = 2, these are also equal to

�̃2∗u(S,A ) =

{
x ∈ A S : ∑

s∈S

x(s)∗x(s) converges in A

}
.

To see this, we will show that �2∗u(S,A ) = �̃2∗u(S,A ). To that end, suppose that x ∈
�2∗u(S,A ). Let ε > 0. There exists F0 ∈ F such that for all G ∈ F with G ⊆ S \F0

and for all ϕ ∈ s(A ) ϕ

(
∑
s∈G

x(s)∗x(s)

)
= ∑

s∈G

[ϕ (x(s)∗x(s))] <
ε
2
. Thus,

∥∥∥∥∥∑s∈G

x(s)∗x(s)

∥∥∥∥∥
A

= sup
ϕ∈s(A )

ϕ

(
∑
s∈G

x(s)∗x(s)

)
� ε

2
< ε,

the Cauchy criterion is satisfied, and hence ∑
s∈S

x(s)∗x(s) converges in A . That is

�2∗u(S,A ) ⊆ �̃2∗u(S,A ).
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On the other hand, suppose that x ∈ �̃2∗u(S,A ). Let ε > 0. Then there is F0 ∈ F

such that for all G ∈ F with G ⊆ S \F0,

∥∥∥∥∥∑s∈G

x(s)∗x(s)

∥∥∥∥∥
A

< ε. Thus for each ϕ ∈
s(A ),

∑
s∈G

ϕ (x(s)∗x(s)) =ϕ

(
∑
s∈G

x(s)∗x(s)

)
� sup

ϕ∈s(A )
ϕ

(
∑
s∈G

x(s)∗x(s)

)

=

∥∥∥∥∥∑s∈G

x(s)∗x(s)

∥∥∥∥∥
A

< ε.

Therefore x∈ �2∗u(S,A ) and hence �̃2∗u(S,A )⊆ �p
∗u(S,A ). Thus �2∗u(S,A )= �̃2∗u(S,A ).

Since �2∗(S,C) = �2∗u(S,C) = �2(S,C), the following are analogues of the duality
relationship: for each x ∈ CS , x ∈ �2(S,C) iff xy ∈ �1(S,C) for all y ∈ �2(S,C).

THEOREM 5.3. Let a ∈ A S. Then
(1)∑

s∈S

a(s)x(s) converges in A ∀ x ∈ �2∗(S,A ) ⇔ a∗ ∈ �2∗u(S,A );

(2)∑
s∈S

a(s)x(s) converges in A ∀ x ∈ �2∗u(S,A ) ⇔ a∗ ∈ �2∗(S,A ).

Proof. (1) (⇒) Suppose that ∑
s∈S

a(s)x(s) converges in A ∀ x ∈ �2∗(S,A ).

By Theorem 3.2, Ta(x) = ∑
s∈S

a(s)x(s) defines a bounded linear transformation from

�2∗(S,A ) to A . For a fixed F ∈ F , define

y(s) =

{
a(s)∗ if s ∈ F

0 if s 
∈ F.

Then y ∈ �2∗(S,A ) and

‖y‖2 = sup
ϕ∈s(A )

(
∑
s∈F

[ϕ (y(s)∗y(s))]

)
=

∥∥∥∥∥∑s∈F
y(s)∗y(s)

∥∥∥∥∥
A

=

∥∥∥∥∥∑s∈F
a(s)a(s)∗

∥∥∥∥∥
A

.

From ∥∥∥∥∥∑s∈F
a(s)a(s)∗

∥∥∥∥∥
A

=

∥∥∥∥∥∑s∈F
a(s)y(s)

∥∥∥∥∥
A

= ‖Ta (y)‖ � ‖Ta‖‖y‖

=‖Ta‖
∥∥∥∥∥∑s∈F

a(s)a(s)∗
∥∥∥∥∥

1
2

A

,
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we have

∥∥∥∥∥∑s∈F

a(s)a(s)∗
∥∥∥∥∥

1
2

A

� ‖Ta‖ . Since this is true for any F ∈ F ,

sup
F∈F

∥∥∥∥∥∑s∈F
a(s)a(s)∗

∥∥∥∥∥
A

� ‖Ta‖2 < ∞.

This means a∗ ∈ �2∗(S,A ). Put x = a∗ ∈ �2∗(S,A ) in the assumption, we get that

∑
s∈S

a(s)a(s)∗ converges in A . By the previous result, a∗ ∈ �̃2∗u(S,A ) = �2∗u(S,A ).

(⇐) Let x ∈ �2∗(S,A ). Suppose that a∗ ∈ �2∗u(S,A ). Let ε > 0. There exists
F0 ∈ F such that for all ϕ ∈ s(A ) and all G ∈ F with G ⊆ S \F0,

∑
s∈G

[ϕ (a(s)a(s)∗)] <
ε2

16
(
‖x‖2 +1

) .

Fix ϕ ∈ s(A ). Let H ∈ F be such that H ⊆ S \F0. Then∣∣∣∣∣ϕ
(
∑
s∈H

a(s)x(s)

)∣∣∣∣∣=
∣∣∣∣∣∑s∈H

ϕ (a(s)x(s))

∣∣∣∣∣ � ∑
s∈H

|ϕ (a(s)x(s))|

� ∑
s∈H

(
[ϕ (a(s)a(s)∗)]

1
2 · [ϕ (x(s)∗x(s))]

1
2

)

�
[
∑
s∈H

ϕ (a(s)a(s)∗)

] 1
2

·
[
∑
s∈H

ϕ (x(s)∗x(s))

] 1
2

�
[
∑
s∈H

ϕ (a(s)a(s)∗)

] 1
2

· ‖x‖

<

⎡⎣ ε2

16
(
‖x‖2 +1

)
⎤⎦ 1

2

· ‖x‖ <
ε
4
.

Thus

∥∥∥∥∥∑s∈H
a(s)x(s)

∥∥∥∥∥
s

= sup
ϕ∈s(A )

∣∣∣∣∣ϕ
(
∑
s∈H

a(s)x(s)

)∣∣∣∣∣� ε
4
.

Therefore

∥∥∥∥∥∑s∈H
a(s)x(s)

∥∥∥∥∥
A

� ε
2 < ε. So ∑

s∈S

a(s)x(s) converges in A .

(2) Simple adaptations of the proof of the previous statement provides a proof for
this statement and we omit it.

These can also be restated as: a∗ ∈ �2∗u(S,A ) iff Ta ∈ B(�2∗(S,A ),A ) ; and a∗ ∈
�2∗(S,A ) iff Ta ∈ B(�2∗u(S,A ),A ) .

The following corollary is immediate from Theorem 3.2 and Theorem 5.3.
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COROLLARY 5.4. Let a ∈ A S. Then the following are equivalent:

1. Ta(x) = ∑
s∈S

a(s)x(s) converges ∀ x ∈ �2∗u(S,A );

2. Ta : �2∗u(S,A ) → A is bounded;

3. a∗ ∈ �2∗(S,A ).

So are the following:

4. Ta(x) = ∑
s∈S

a(s)x(s) converges ∀ x ∈ �2∗(S,A );

5. Ta : �2∗(S,A ) → A is bounded;

6. a∗ ∈ �2∗u(S,A ).

6. The �p(S,A ) spaces

In this section we consider another class of function spaces. We begin with the
following analogue of Theorem 4.3, whose proof, which is very similar, is omitted.

THEOREM 6.1. Let y ∈ A S, and p ∈ [1,∞) .

(a) The function ‖·‖ : A S → [0,∞] defined by

‖y‖ = sup
ϕ∈s(A )

[
∑
s∈S

|ϕ(y(s))|p
] 1

p

(y ∈ A S)

satisfies all six conditions in Theorem 4.2 with c = 2 and ξ = 1 .

(b) The condition ∑
s∈S

|ϕ (y(s))|p < ∞ ∀ ϕ ∈ s(A ) is necessary and sufficient for

sup
ϕ∈s(A )

∑
s∈S

|ϕ (y(s))|p <∞ .

For a finite p � 1, let

�p(S,A ) =

{
x ∈ A S : ∑

s∈S

|ϕ (x(s))|p < ∞ ∀ ϕ ∈ s(A )

}
, and

�p
u(S,A ) =

{
x ∈ A S : ∑

s∈S

|ϕ (x(s))|p converges uniformly for ϕ ∈ s(A )

}
.

We note first that �p
u(S,A ) ⊆ �p(S,A ) . From the fact that ϕ(a∗) = ϕ(a) for each

a∈ A and each ϕ ∈ s(A ) , we see that both spaces are self-adjoint in the sense that x∗
is in the space whenever x is.
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The following example shows that the inclusion �p
u(S,A ) ⊆ �p(S,A ) can be

proper.

EXAMPLE 6.2. Let A be a C∗ -algebra containing an infinite family {yk}k∈N

of contractions of norm 1 with orthogonal ranges. Then x(k) = yky∗k , k ∈ N defines a
function that is in �p(N,A ) , but not in �p

u(N,A ).

Proof. For each ϕ ∈ s(A ) and k ∈ N , since I � x(k) � 0, and ϕ (x(k)) =
|ϕ (x(k))| � ϕ(I) = 1,

N

∑
k=1

|ϕ (x(k))|p �
N

∑
k=1

|ϕ (x(k))| =
N

∑
k=1

ϕ (x(k)) = ϕ

(
N

∑
k=1

x(k)

)
� ϕ(I) = 1

for all N. Hence
∞

∑
k=1

|ϕ (x(k))|p � 1 ∀ ϕ ∈ s(A ), i.e., x ∈ �p(N,A ).

To see that x 
∈ �p
u(N,A ) , choose ε = 1; and for each l ∈ N , there is a ϕ ∈

s(A ) such that ϕl(x(l)) = ‖x(l)‖A = 1. Then
∞

∑
k=l

|ϕl (x(k))|p � 1 = ε. Hence x 
∈
�p
u(N,A ).

THEOREM 6.3. The set �p(S,A ) [resp. �p
u(S,A )] is a Banach space under the

usual (point-wise) scalar multiplication and addition, and the norm

‖x‖ := sup
ϕ∈s(A )

(
∑
s∈S

|ϕ (x(s))|p
) 1

p

.

Proof. That the function as defined is indeed a norm on �p(S,A ) follows directly
from Theorem 6.1. By Theorem 4.2, �p(S,A ) =

{
y ∈ A S : ‖y‖ < ∞

}
is a Banach

space. The completeness of �p
u(S,A ) follows from its closedness in �p(S,A ) , which

can be proved by an argument similar to that used in Theorem 4.5.
It is not hard to see that lim

F∈F
‖x−xF‖ = 0 for all x ∈ �p

u(S,A ) and �p(S,A )

does not have this property (see Example 6.2). The following corollary is an immediate
consequence of this result and Theorem 3.4.

COROLLARY 6.4. The set M (�p(S,A )) [resp. M (�p
u(S,A )], of all A in the

space of functions from S×S to A such that A defines a bounded linear operator on
�p(S,A ) [resp. �p

u(S,A )] with the operator norm is a Banach space [resp. Banach
algebra ] .

PROPOSITION 6.5. For p ∈ [2,∞), �p
∗(S,A ) ⊆ �p(S,A ).
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Proof. Let x∈ �p
∗(S,A ) and let ϕ ∈ s(A ). Then ∑

s∈S

[ϕ (x(s)∗x(s))]
p
2 <∞. Since

|ϕ (x(s))|2p = |ϕ (1∗ · x(s))|2p � [ϕ (x(s)∗x(s)) ·ϕ (1∗1)]p = [ϕ (x(s)∗x(s))]p ,

∑
s∈S

|ϕ (x(s))|p � ∑
s∈S

[ϕ (x(s)∗x(s))]
p
2 < ∞.

This means x ∈ �p(S,A ). Therefore �p
∗(S,A ) ⊆ �p(S,A ).

For A = C , it is not hard to see that �p
∗(S,C) = �p(S,C) . The following example

shows that the inclusion in the previous proposition can be proper.

EXAMPLE 6.6. For p ∈ [2,∞), �
p
∗(S,A ) can be a proper subset of �p(S,A ).

Proof. Let A = B
(
�2
)

and S = N. Let xn be the matrix having a 1 in the (n,1)
entry and 0 in all others. Then x∗nxn is the matrix having a 1 in the (1,1) position
and 0 in all other entries. Define ϕ(A) = a11 for each A =

[
a jk
] ∈ B

(
�2
)
. Then

ϕ (x∗nxn) = 1 for all n. Hence
∞

∑
n=1

[ϕ (x∗nxn)]
p
2 diverges. This means x = {xn}∞n=1 /∈

�
p
∗(S,A ).

Next, we show that x = {xn}∞n=1 ∈ �p(S,A ). Let ϕ ∈ s(A ). By Dixmier’s The-
orem ([5] p. 50; [2]), there are unique A := Aϕ =

[
a jk
] ∈ C 1 and ψ ∈ [A #

]
σ , where

C 1 is the space of trace class operators and
[
A #
]
σ is the space consisting of the zero

functional and functionals on A which vanish on the compact operators, such that for
all x ∈ A ϕ(x) = trace(Ax)+ψ(x). Since each xn is compact, ψ (xn) = 0. There-

fore ϕ (xn) = trace(Axn)= a1n. Since |a1n|� ‖A‖� ‖A‖C 1 � ‖ϕ‖= 1,
∞

∑
n=1

|ϕ (xn)|p =

∞

∑
n=1

|a1n|p �
∞

∑
n=1

|a1n|2 � ‖A‖2 < ∞. Hence {xn}∞n=1 ∈ �p(S,A ).

With a suitable adaptation of the argument used in the proof of Proposition 5.2,
we have the following proposition.

PROPOSITION 6.7. For p ∈ [1,∞), set

�p
c (S,A ) =

{
x ∈ A S : ϕ �→ ϕ̃(x) is weak∗ to norm continuous from

s(A ) to �p(S,C)
}

.

Then

�p
c (S,A ) = �p

u(S,A ) =
{

x ∈ A S : ∀ε > 0 ∃F0 ∈ F such that∥∥ϕ̃ (xS\F0

)∥∥< ε ∀ ϕ ∈ s(A )
}

.

Recall that, for p ∈ [1,∞) :

�p(S,A ) =

{
x ∈ A S : ∑

s∈S

|ϕ (x(s))|p < ∞ ∀ ϕ ∈ s(A )

}
, and
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�2p
∗ (S,A ) =

{
x ∈ A S : ∑

s∈S

[ϕ (x(s)∗x(s))]p < ∞ ∀ϕ ∈ s(A )

}
.

The following theorem gives a relation between �p(S,A ) and �2p
∗ (S,A ) .

THEOREM 6.8. Let a ∈ A S. Then ax ∈ �p(S,A ) for every x ∈ �2p
∗ (S,A ) if and

only if a∗ ∈ �2p
∗ (S,A ) . If a satisfies either of these conditions, then Ta(x) = ax defines

a bounded linear transformation from �2p
∗ (S,A ) to �p(S,A ) and ‖Ta‖ = ‖a∗‖

�
2p∗

.

Proof. Suppose a∗ ∈ �2p
∗ (S,A ) . Let x ∈ �2p

∗ (S,A ) and let ϕ ∈ s(A ). Then

∑
s∈S

|ϕ (a(s)x(s))|p �∑
s∈S

(
‖x(s)‖p

ϕ · ‖a(s)∗‖p
ϕ

)

�
(
∑
s∈S

‖x(s)‖2p
ϕ

) 1
2
(
∑
s∈S

‖a(s)∗‖2p
ϕ

) 1
2

(†)

�‖x‖p

�
2p∗
‖a∗‖p

�
2p∗

< ∞

which implies that ax ∈ �p(S,A ).
Conversely, define Ta : �2p

∗ (S,A ) → �p(S,A ) by

Ta(x) = ax ∀ x ∈ �2p
∗ (S,A ) .

Let F ∈ F . Define
TF(x) = (ax)F ∀ x ∈ �2p

∗ (S,A )

i.e.,

[TF(x)](s) =

{
a(s)x(s) if s ∈ F

0 if s /∈ F
.

Then it is not hard to show that each TF is bounded. An application of the uniform
boundedness principle shows that there exists M > 0 such that ‖TF‖ � M ∀ F ∈ F .
Thus, for each x ∈ �2p

∗ (S,A ) ,

‖Tax‖
�p(S,A )

= lim
F∈F

‖TFx‖
�p(S,A )

� limsup
F∈F

‖TF‖‖x‖
�
2p∗

� M ‖x‖
�
2p∗

that is Ta is a bounded linear transformation from �2p
∗ (S,A ) to �p(S,A ) . Define

y(s) =

{
a(s)∗ if s ∈ F

0 if s 
∈ F.

Then y ∈ �
2p
∗ (S,A ) and ‖y‖2p

�
2p∗

= ‖a∗F‖2p

�
2p∗

. Given ε > 0, there is a ψ ∈ s(A ) such

that

‖y‖2p

�
2p∗
− ε < ∑

s∈F
‖a(s)∗‖2p

ψ � ‖TF (y)‖p
�p � ‖TF‖p‖y‖p

�
2p∗

� Mp ‖y‖p

�
2p∗

.
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So
‖y‖2p

�
2p∗
− ε

‖y‖p

�
2p∗

< Mp for all ε > 0 and hence ‖y‖p

�
2p∗

=
‖y‖2p

�
2p∗

‖y‖p

�
2p∗

� Mp. Therefore

sup
ϕ∈s(A )

(
∑
s∈F

‖a(s)∗‖2p
ϕ

) 1
2

= ‖a∗F‖p

�
2p∗

= ‖y‖p

�
2p∗

� Mp for all F ∈ F . Thus for each

fixed ϕ ∈ s(A ),

(
∑
s∈F

‖a(s)∗‖2p
ϕ

) 1
2

� Mp ∀ F ∈ F and hence

(
∑
s∈S

‖a(s)∗‖2p
ϕ

) 1
2

�

Mp. Since this is true for all ϕ ∈ s(A ),

‖a∗‖p

�
2p∗

= sup
ϕ∈s(A )

(
∑
s∈S

‖a(s)∗‖2p
ϕ

) 1
2

� Mp

which implies that a∗ ∈ �2p
∗ (S,A ) .

We now show that ‖Ta‖ = ‖a∗‖
�
2p∗

. For any x ∈ �
2p
∗ (S,A ) , by the inequality (†)

above,

‖Ta(x)‖p
�p =‖ax‖p

�p � sup
ϕ∈s(A )

(
∑
s∈S

‖a(s)∗‖2p
ϕ

) 1
2

· sup
ϕ∈s(A )

(
∑
s∈S

‖x(s)‖2p
ϕ

) 1
2

=‖a∗‖p

�
2p∗
· ‖x‖p

�
2p∗

.

Thus
(
Ta : �2p

∗ (S,A ) → �p(S,A ) is bounded and
)

‖Ta‖ � ‖a∗‖
�
2p∗

. Let F ∈ F and

y be as defined above. Then

‖y‖2p

�
2p∗

=‖a∗F‖2p

�
2p∗

= sup
ϕ∈s(A )

(
∑
s∈F

[ϕ (a(s)a(s)∗)]p
)

= sup
ϕ∈s(A )

(
∑
s∈F

|ϕ (a(s)y(s))|p
)

= ‖Ta(y)‖p � ‖Ta‖p ‖y‖p

�
2p∗

=‖Ta‖p‖a∗F‖p

�
2p∗

.

Hence ‖a∗F‖p

�
2p∗

� ‖Ta‖p or ‖a∗F‖�
2p∗

� ‖Ta‖ ∀ F ∈ F . Taking supremum over all

F ∈ F , we have ‖a∗‖
�
2p∗

� ‖Ta‖ . Therefore ‖Ta‖ = ‖a∗‖
�
2p∗

.
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