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ASYMPTOTIC BEHAVIOR OF GELFAND–NAIMARK DECOMPOSITION

HUAJUN HUANG

(Communicated by C.-K. Li)

Abstract. Let X = LσU be the Gelfand-Naimark decomposition of X ∈ GLn(C) , where L is
unit lower triangular, σ is a permutation matrix, and U is upper triangular. Call u(X) := diagU
the u -component of X . We show that in a Zariski dense open subset of the ω -orbit of certain
Bruhat decomposition,

lim
m→∞

|u(Xm)|1/m = diag (|λω(1) |, · · · , |λω(n) |).

The other situations where lim
m→∞

|u(Xm)|1/m converge to different limits or diverge are also

discussed.

1. Introduction

Gelfand-Naimark decomposition asserts that each X ∈ GLn(C) can be decom-
posed as X = LσU , where L is unit lower triangular, σ is a permutation matrix, and
U is upper triangular. Though Gelfand-Naimark decomposition is not unique, σ and
diagU are uniquely determined by X . We denote

u(X) := (u1(X), · · · ,un(X)) = diagU ∈ Cn

the u -component of X .
Suppose that X has eigenvalues

λ (X) := (λ1(X), · · · ,λn(X)) ∈ Cn

with ascending moduli: |λ1| � |λ2| � · · · � |λn| . Let

s(X) := (s1(X), · · · ,sn(X)) ∈ Rn
+

be the singular values of X in ascending order: s1(X) � · · · � sn(X) . Let X = QR be
the QR decomposition of X and denote

a(X) := diagR = (a1(X), · · · ,an(X)) ∈ Rn
+.

Mathematics subject classification (2000): 15A23, 15A42.
Keywords and phrases: Gelfand-Naimark decomposition, Bruhat decomposition, u -component,

eigenvalues.

c© � � , Zagreb
Paper OaM-03-25

439



440 HUAJUN HUANG

We view λ (X) , s(X) , a(X) and u(X) as diagonal matrices. Relations between those
four quantities were very recently studied [5].

Yamamoto proved [9] that

lim
m→∞

[s(Xm)]1/m = diag(|λ1|, · · · , |λn|). (1.1)

Huang and Tam proved [7, Theorem 2.7] (also see [4]) that

lim
m→∞

[a(Xm)]1/m = diag(|λω(1)|, · · · , |λω(n)|). (1.2)

Here ω is a permutation obtained as follow: Let X = C−1TC in which T =
[
ti j
] ∈

GLn(C) is an upper triangular matrix with tii = λi (so |t11| � · · · � |tnn|). Then ω
comes from the permutation matrix (also denoted by ω ) in a Bruhat decomposition
C = V ′ωU ′ of C , for certain upper triangular matrices V ′ and U ′ . This result can be
applied to both the Jordan decomposition and the Schur triangularization of X . Note
that the Gelfand-Naimark decomposition is a variation of the Bruhat decomposition [8].

When X has distinct eigenvalue moduli: |λ1|< |λ2|< · · ·< |λn| , consider the QR
iteration:

X1 = X = Q1R1; Xm := Rm−1Qm−1 = QmRm, m = 2,3, · · ·
where Xm = QmRm is the QR decomposition of Xm for m = 1,2, · · · . In [8, Theo-
rem 3.1], Tyrtyshnikov essentially proved that the lower triangular part of {Xm}∞m=1
converges to 0 and

lim
m→∞

diag(Xm) = diag(λω(1),λω(2), · · · ,λω(n)), (1.3)

where ω is the same as in (1.2). Indeed, Tyrtyshnikov proved this result for GR itera-
tions with no shifts. A detailed description on the asymptotic behavior of {Xm}∞m=1 for
the above QR iteration is given in [6, Theorem 5.1].

The main purpose of this paper is to discuss the asymptotic behavior of |u(Xm)|1/m

as m → ∞ . Unlike s(Xm)1/m and a(Xm)1/m , the sequence {|u(Xm)|1/m}∞m=1 may not
converge. However, as we will see, the permutation ω obtained from the Bruhat de-
composition of C continues to play a significant role for the asymptotic behavior of
|u(Xm)|1/m . We provide some sufficient conditions for the convergenceof the sequence.
In particular, when X is positive definite (it has Cholesky decomposition [3]) [7, The-
orem 3.1]

lim
m→∞

|u(Xm)|1/m = diag(|λω(1)|, · · · , |λω(n)|).

In Section 2, we give an upper bound on the asymptotic behavior of |u1(Xm) · · ·uk(Xm)|1/m

in terms of ω . Then we prove that lim
m→∞

|u1(Xm) · · ·uk(Xm)|1/m converges to a prod-

uct of k eigenvalue moduli of X if the k -compound matrix of X has distinct eigen-
value moduli. Moreover, when C goes through a Zariski dense open subset of the
ω -orbit in the Bruhat decomposition C = V ′ωU ′ , the matrix Xm = C−1λ (X)mC has
LU -decomposition for sufficiently large m , and

lim
m→∞

|u(Xm)|1/m = diag(|λω(1)|, · · · , |λω(n)|).



ASYMPTOTIC BEHAVIOR OF GELFAND-NAIMARK DECOMPOSITION 441

In particular, lim
m→∞

|u(Xm)|1/m = diag(|λn|, |λn−1|, · · · , |λ1|) when X is in a dense open

subset (in Euclidean topology) of GLn(C) .
In Section 3, we use examples to illustrate the theoretical results given in Section

2. In particular, we show that when the eigenvalue moduli of the k -compound of X are
not distinct for some k , lim

m→∞
|u(Xm)|1/m may diverge.

2. The asymptotic behavior of |u(Xm)|1/m

Obviously, u1(X) in the Gelfand-Naimark decomposition X = LσU is the first
nonzero entry in the first column of X , and a1(X) in the QR decomposition X = QR
is the norm of the first column of X . Therefore, |u1(X)| � a1(X) . Using compound
matrix technique, we get the following relationship between u(X) and a(X) .

THEOREM 2.1. [5, Theorem 3.1] The scalars u(X) ∈ Cn and a(X) ∈ Rn
+ satisfy

that

|u1(X) · · ·uk(X)| � a1(X) · · ·ak(X), 1 � k � n−1,

u1(X) · · ·un(X) = ±a1(X) · · ·an(X),

where the sign on the last equality depends on whether σ is even (+ ) or σ is odd (− ).

Suppose that X =C−1TC ∈GLn(C) where T =
[
ti j
]

is an upper triangular matrix
with tii = λi (so |t11| � |t22| � · · · � |tnn|), and C has a Bruhat decomposition C =
V ′ωU ′ where V ′ and U ′ are upper triangular, and ω is a permutation matrix. By
Theorem 2.1 and (1.2), we get the following result:

THEOREM 2.2. The asymptotic behavior of |u(Xm)|1/m is bounded by

lim
m→∞

|u1(Xm) · · ·uk(Xm)|1/m � |λω(1) · · ·λω(k)|, 1 � k � n−1;

|u1(Xm) · · ·un(Xm)|1/m = |λω(1) · · ·λω(n)| = |det(X)|.

Denote

C−1 =
[
c′i j
]
, C =

[
ci j
]
, Xm =

[
x(m)
i j

]
, and Tm =

[
t(m)
i j

]
.

The coefficients of Xm are related to those of Tm by Xm =C−1TmC . To study Xm , we
first investigate the coefficients of Tm .

A subsequence s := {s0,s1, · · · ,sk} of {1,2, · · · ,n} is called a T -path if tsisi+1 �= 0
for i = 0, · · · ,k− 1. Clearly s0 < s1 < · · · < sk . We call s0 the initial point, sk the
terminal point, and |s| := k the length, of the T -path s respectively. Let Si j denote
the set of all T -paths of with the initial point i and the terminal point j . Then Si j = /0
whenever i > j , since T is upper triangular.

Let
T (s) := (ts0s0 , · · · ,tsksk)
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be the (k+1)-tuple of the diagonal entries of T corresponding to the T -path s . Define
the polynomial

Mp(T (s)) := Mp(ts0s0 , · · · ,tsksk) := ∑
a0,··· ,ak�0

a0+···+ak=p

ts0s0
a0 · · · tsksk ak (2.1)

the sum of all degree p monomials for the variables ts0s0 , · · · , tsk,sk . Then Mp(T (s)) =
0 whenever p < 0. Define the polynomial

fs(T ) :=

{
ts0s1ts1s2 · · ·tsk−1sk , |s| � 1;

1, |s| = 0.
(2.2)

LEMMA 2.3. The entries of Tm =
[
t(m)
i j

]
for an upper triangular matrix T =[

ti j
]

are given by

t(m)
i j = ∑

s∈Si j

fs(T )Mm−|s|(T (s)). (2.3)

Proof. By direct computation,

t(m)
i j = ∑

i=i0�i1�···�im= j

(
m−1

∏
p=0

tipip+1

)

= ∑
i= j0< j1<···< jk= j

a0�0, ···, ak�0
a0+···+ak=m−k

(
k−1

∏
p=0

t jp jp+1 ·
k

∏
p=0

t
ap
jp jp

)

= ∑
i= j0< j1<···< jk= j

(
k−1

∏
p=0

t jp jp+1

)⎡⎢⎣ ∑
a0�0, ···, ak�0
a0+···+ak=m−k

(
k

∏
p=0

t
ap
jp jp

)⎤⎥⎦
= ∑

s∈Si j

fs(T )Mm−|s|(T (s)).

This proves (2.3).
Formula (2.3) implies the following asymptotic result when the diagonal entries

of T have strictly ascending moduli.

THEOREM 2.4. Suppose that the upper triangular matrix T ∈GLn(C) has strictly
ascending moduli diagonal entries, that is, |t11| < |t22| < · · · < |tnn| . Let diag(T ) be
the diagonal matrix of T . Then lim

m→∞
Tmdiag(T )−m converges to an upper triangular

matrix. Precisely, t(m)
j j /t j j

m = 1 for j = 1,2, · · · ,n, and

lim
m→∞

t(m)
i j

t j j
m = ∑

(s0,···,sk)∈Si j

∏k−1
p=0 tspsp+1

∏k−1
p=0(t j j − tspsp)

for 1 � i < j � n. (2.4)
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REMARK 2.5. Therefore, lim
m→∞

∣∣∣t(m)
i j

∣∣∣1/m
= 0 or |t j j| , for 1 � i � j � n .

Proof. [Proof of Lemma 2.4] According to (2.3), for i < j we have

t(m)
i j

t j j
m = ∑

s∈Si j

[
fs(T )
t j j

|s| · Mm−|s|(T (s))
t j j

m−|s|

]
. (2.5)

Let us discuss the asymptotic behavior of M�(T (s))
t j j �

when � → ∞ . Rewrite T (s) :=

(y0, · · · ,yk) where |y0| < · · · < |yk| . Then

M�(y0, · · · ,yk)
y�
k

= ∑
a0�0, ··· , ak�0
a0+···+ak=�

ya0
0 · · · yak

k

ya0+···+ak
k

= 1+M1

(
y0

yk
, · · · , yk−1

yk

)
+M2

(
y0

yk
, · · · , yk−1

yk

)

+ · · · +M�

(
y0

yk
, · · · , yk−1

yk

)

=
�

∑
q=0

Mq

(
y0

yk
, · · · , yk−1

yk

)
. (2.6)

Therefore, the following limit converges by |y0| < · · · < |yk| ,

lim
�→∞

M�(y0, · · · ,yk)
y�
k

=
∞

∑
q=0

Mq

(
y0

yk
, · · · , yk−1

yk

)

=
k−1

∏
p=0

[
1+
(

yp

yk

)
+
(

yp

yk

)2

+
(

yp

yk

)3

+ · · ·
]

=
1

∏k−1
p=0(1− yp

yk
)

=
yk
k

∏k−1
p=0(yk − yp)

. (2.7)

From (2.5) we get

lim
m→∞

t(m)
i j

t j j
m = ∑

s=(s0,···,sk)∈Si j

⎡
⎣ fs(T )

t j j
|s| · t j j

|s|

∏|s|−1
p=0 (t j j − tspsp)

⎤
⎦

= ∑
(s0,···,sk)∈Si j

∏k−1
p=0 tspsp+1

∏k−1
p=0(t j j − tspsp)

.

This completes the proof.
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The above results can be used to analyze the coefficients and the u -components in
the Gelfand-Naimark decomposition of Xm =C−1TmC where T is an upper triangular
matrix with ascending moduli diagonal entries.

Suppose that X has distinct eigenvalue moduli: |λ1|< |λ2|< · · ·< |λn| . There are
many possible ways to decompose X = C−1TC where the upper triangular matrix T
has ascending moduli diagonal entries. For example, Jordan decomposition and Schur
triangularization provide two different such decompositions. However, the permutation
ω obtained from the Bruhat decomposition of C is uniquely determined by X . This
could be seen from (1.2) and the fact that X has distinct eigenvalue moduli.

Because X has distinct eigenvalue moduli and thus is diagonalizable, it has a de-
composition X = C−1TC where T = λ (X) is an ascending moduli diagonal matrix.
The equality Xm = C−1λ (X)mC implies that

x(m)
i j =

n

∑
p=1

c′ipcp jλm
p . (2.8)

So x(m)
11 =

n

∑
p=1

c′1pcp1λm
p . Suppose that C has the Bruhat decomposition C = V ′ωU ′

for certain upper triangular matrices V ′ and U ′ , then ω(1) is the largest q such that
cq1 �= 0 in C . Thus

x(m)
11 =

ω(1)

∑
p=1

c′1pcp1λm
p . (2.9)

Since
ω(1)

∑
p=1

c′1pcp1 =
n

∑
p=1

c′1pcp1 = 1, there exists the largest integer r � ω(1) such that

c′1rcr1 �= 0. Equality (2.9) implies that x(m)
11 �= 0 when m is sufficiently large. Moreover,

the following lemma holds:

LEMMA 2.6. Suppose that X = C−1λ (X)C has distinct eigenvalue moduli. Then

lim
m→∞

|u1(Xm)|1/m = |λr| (2.10)

where r � ω(1) is the largest integer such that c′1rcr1 �= 0 .

As shown below, r = ω(1) in a Zariski dense open set. The Zariski topology on
GLn(C) is defined in the way that a Zariski closed set is the zeros of a set of polynomials
on the matrix coefficients and det−1 [2, page 7].

LEMMA 2.7. Suppose that Λ is a diagonal matrix with strictly ascending moduli,
and ω is a permutation matrix, both in GLn(C) . Let OΛ,ω denote the set of all ma-
trices X = C−1ΛC where C has a Bruhat decomposition C = V ′ωU ′ for some upper
triangular matrices V ′ and U ′ . Then on a Zariski dense open subset of the ω -orbit in
the Bruhat decomposition of C ,

lim
m→∞

|u1(Xm)|1/m = lim
m→∞

|x(m)
11 |1/m = |λω(1)|.
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Proof. The coefficient cω(1)1 is always nonzero by the Bruhat decomposition C =
V ′ωU ′ . Therefore, (2.9) implies that whenever c′1ω(1) �= 0,

lim
m→∞

|u1(Xm)|1/m = lim
m→∞

|x(m)
11 |1/m = |λω(1)|.

Clearly, c′1ω(1) �= 0 if and only if the cofactor of the (ω(1),1) entry of C is nonzero.
This forms a Zariski dense open subset of the ω -orbit in the Bruhat decomposition of
C .

Let Ck(X) denote the k -compound matrix of X ∈ GLn(C) , k = 1, · · · ,n . Let Qk,n

denote the set of all k -subsequences of {1,2, · · · ,n} . The entries of Ck(X) are of the
form xα ,β (α,β ∈Qk,n ), where xα ,β is the determinant of the submatrix formed by the
α -rows and the β -columns of X . So Ck(X) ∈ GL(n

k)(C) . The k -compound of a per-

mutation (resp. diagonal, upper triangular, lower triangular)matrix is still a permutation
(resp. diagonal, upper triangular, lower triangular) matrix. Therefore, the k -compound
preserves the Gelfand-Naimark decomposition and the Bruhat decomposition.

Assume that the k -compound of X has distinct eigenvalue moduli for every k . In
other words, ∏i∈α |λi(X)| for all α ∈ Qk,n are mutually distinct. Then Lemma 2.6 and
Lemma 2.7 can be extended to a product of ui(X) by the compound matrix technique.

THEOREM 2.8. Suppose that the k -compound of X ∈GLn(C) has distinct eigen-
value moduli for every k = 1, · · · ,n. Then Xm has LU decomposition when m is suffi-
ciently large, and

lim
m→∞

|u1(Xm) · · ·uk(Xm)|1/m = ∏
i∈αk

|λi| for some αk ∈ Qk,n. (2.11)

In particular, lim
m→∞

|uk(Xm)|1/m exists for k = 1, · · · ,n.

Proof. Suppose that X = C−1λ (X)C . Let X(k|k) be the submatrix formed by the
first k rows and the first k columns of X . By direct computation on Xm =C−1λ (X)mC ,
the (1,1) entry in Ck(X)m = Ck(Xm) is

detXm(k|k) = ∑
α∈Qk,n

(
mα∏

i∈α
λm

i

)
= ∑

α∈Qk,n

[
mα

(
∏
i∈α

λi

)m]
(2.12)

where mα are constants related to the first k -rows of C−1 and the first k -columns of C .
Clearly ∑α∈Qk,n

mα = 1 by setting all λi = 1 in (2.12). By assumption, {∏i∈α |λi| | α ∈
Qk,n} are mutually distinct. There is one αk ∈ Qk,n such that mαk �= 0 and ∏i∈αk

|λi|
is maximal. Formula (2.12) implies that detXm(k|k) �= 0 when m is sufficiently large.
Moreover,

lim
m→∞

|u1(Xm) · · ·uk(Xm)|1/m = lim
m→∞

|u1(Ck(Xm))|1/m

= lim
m→∞

|detXm(k|k)|1/m = ∏
i∈αk

|λi|.

This completes the proof.
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REMARK 2.9. It is not necessarily true that αk−1 ⊆αk . So the limit lim
m→∞

|uk(Xm)|1/m

in Theorem 2.8 may not equal to an eigenvalue modulus of X . An example is presented
in Example 3.1 (3).

THEOREM 2.10. Suppose that Λ= diag(λ1, · · · ,λn)∈GLn(C) is a diagonal ma-
trix with strictly ascending moduli, and the elements in {∏i∈α |λi| | α ∈ Qk,n} are mu-
tually distinct for every k = 1,2, · · · ,n. Suppose that ω ∈ GLn(C) is a permutation
matrix. Let OΛ,ω denote the set of all matrices X = C−1ΛC where C has a Bruhat
decomposition C = V ′ωU ′ for some upper triangular matrices V ′ and U ′ . Then on a
Zariski dense open subset of the ω -orbit in the Bruhat decomposition of C ,

lim
m→∞

|uk(Xm)|1/m = |λω(k)| for k = 1, · · · ,n.

Proof. The proof is done by applying Lemma 2.7 to the k -compound matrices of
X for k = 1, · · · ,n , and using the fact that the intersection of finitely many Zariski dense
open subsets is still a Zariski dense open subset. Note that the diagonal entry moduli of
Ck(Λ) may not be in strictly ascending order. However, [7, Lemma 2.10] shows that:
there exists a permutation matrix P ∈ GL(n

k)(C) such that the diagonal of P−1Ck(Λ)P

is in ascending moduli order, and P−1Ck(V ′)P is still upper triangular for every upper
triangular matrix V ′ ∈ GLn(C) . Then

Ck(X) = Ck(C)−1 Ck(Λ) Ck(C)
= (P−1Ck(C))−1(P−1Ck(Λ)P)(P−1Ck(C))

where P−1Ck(C) has a Bruhat decomposition

P−1Ck(C) = (P−1Ck(V ′)P) (P−1Ck(ω)) Ck(U ′).

This leads to the proof of Theorem 2.10.

3. Examples

Let X ∈ GLn(C) such that the k -compound of X has distinct eigenvalue moduli
for k = 1, · · · ,n . By Theorem 2.8, limm→∞ |uk(Xm)|1/m exists for k = 1, · · · ,n . Example
3.1 indicates that limm→∞ |uk(Xm)|1/m may or may not equal to an eigenvalue modulus
of X .

EXAMPLE 3.1. Consider the following two situations:

1. Suppose X = C−1TC for C :=
[
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]
∈ SU2(C) and T :=

[
1 1
0 2

]
.

Then ω =
[
0 1
1 0

]
for a Bruhat decomposition C = V ′ωU ′ of C . We have

Xm =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

][
1 1
0 2

]m [1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
=
[
2m 2m−1
0 1

]
.
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It turns out that

lim
m→∞

|u1(Xm)|1/m = 2 = |λω(1)|,
lim
m→∞

|u2(Xm)|1/m = 1 = |λω(2)|.

2. Suppose X = C−1TC for C :=
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]
∈ SU2(C) and T :=

[
1 1
0 2

]
.

Then ω =
[
0 1
1 0

]
for a Bruhat decomposition C = V ′ωU ′ of C . We have

Xm =
[
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

][
1 1
0 2

]m [ 1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]
=
[

1 0
1−2m 2m

]
.

Clearly

lim
m→∞

|u1(Xm)|1/m = 1 �= |λω(1)| = 2,

lim
m→∞

|u2(Xm)|1/m = 2 �= |λω(2)| = 1.

3. Suppose X = C−1TC for

C :=

⎡
⎣1 −1 1

1 1 −1
1 1 1

⎤
⎦ , T :=

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ .

Then C−1 =
1
2

⎡
⎣ 1 1 0
−1 0 1
0 −1 1

⎤
⎦ , and

Xm =
1
2

⎡
⎣ 1 1 0
−1 0 1
0 −1 1

⎤
⎦
⎡
⎣1m 0 0

0 2m 0
0 0 3m

⎤
⎦
⎡
⎣1 −1 1

1 1 −1
1 1 1

⎤
⎦

=
1
2

⎡
⎣ 1+2m −1+2m 1−2m

−1+3m 1+3m −1+3m

−2m +3m −2m +3m 2m +3m

⎤
⎦ .

It is clear that Xm has LU decomposition and

lim
m→∞

|u1(Xm)|1/m = lim
m→∞

∣∣∣∣1+2m

2

∣∣∣∣
1/m

= 2,

lim
m→∞

|u1(Xm)u2(Xm)|1/m = lim
m→∞

∣∣∣∣ 1+2m

2
−1+2m

2−1+3m

2
1+3m

2

∣∣∣∣
1/m

= 3.

Therefore, limm→∞ |u2(Xm)|1/m = 3
2 is not an eigenvalue of X .
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The next example shows that: if the k -compound of X has no distinct eigenvalue
moduli for certain k , then limm→∞ |ui(Xm)|1/m may not exist. A lemma is needed to
illustrate the example.

LEMMA 3.2. For every t ∈ (0,1) , there exists an irrational number α ∈ R \Q

and two positive integer sequences {pk}∞k=1 ⊆ Z+ and {mk}∞k=1 ⊆ Z+ , such that for
k = 1,2, · · · ,

1. mk is divisible by k , and

2. α ∈ Ik :=
(

pk +1/4
mk

,
pk +1/4+ tmk

mk

)
.

Proof. First we use induction to construct α ∈ R , {pk}∞k=1 ⊆ Z+ and {mk}∞k=1 ⊆
Z+ that satisfy (1) and (2). Then we show that α must be irrational.

Denote m1 = p1 = 1 and I1 := (1+1/4,1+1/4+ t). Suppose that mk, pk ∈ Z+ ,
and

Ik :=
(

pk +1/4
mk

,
pk +1/4+ tmk

mk

)
⊆ R+

are well-defined. Then there exists a sufficiently large mk+1 ∈Z+ and a suitable pk+1 ∈
Z+ such that k+1 divides mk+1 and the closure of

Ik+1 :=
(

pk+1 +1/4
mk+1

,
pk+1 +1/4+ tmk+1

mk+1

)

is contained in Ik . By induction we obtain {pk}∞k=1 ⊆ Z+ , {mk}∞k=1 ⊆ Z+ , and the
open interval sequence {Ik}∞k=1 such that

I1 ⊃ I1 ⊃ I2 ⊃ I2 ⊃ I3 ⊃ I3 ⊃ I4 ⊃ ·· · .

Because the lengths of closed intervals in {Ik}∞k=1 are decreasing to 0, by the Nested
Interval Theorem [1],

⋂∞
i=1 Ik =

⋂∞
i=1 Ik contains exactly one number α ∈ R+ .

We show that α /∈ Q . Suppose on the contrary, α = a
b where a,b ∈ Z+ . By

simultaneously multiplying a positive integer c on a and b , we may assume that b is
large enough so that 4tmb < 4tb < 1. Then

α ∈ Ib =
(

pb +1/4
mb

,
pb +1/4+ tmb

mb

)
.

Therefore,

4mbα ∈ (4pb +1,4pb +1+4tmb) ⊂ (4pb +1,4pb +2). (3.1)

However, 4mbα ∈Z+ since α = a
b and mb is an integer multiple of b . This contradicts

to (3.1). Thus α ∈ R\Q and we are done.



ASYMPTOTIC BEHAVIOR OF GELFAND-NAIMARK DECOMPOSITION 449

EXAMPLE 3.3. Fix a number t ∈ (0,1) . Let θ := 2πα where α is given in

Lemma 3.2. Denote X :=
[

cosθ sinθ
−sinθ cosθ

]
. Then Xm =

[
cosmθ sinmθ
−sinmθ cosmθ

]
. Obvi-

ously cosmθ �= 0 for all m ∈ Z+ and {cosmθ | m ∈ Z+} = [−1,1] since α =
θ
2π

is

irrational. So every Xm has LU decomposition and |u1(Xm)|1/m = |cosmθ |1/m . We
claim that lim

m→∞
|u1(Xm)|1/m = lim

m→∞
|cosmθ |1/m does not exist. On one hand, it is easy

to find a subsequence {n1,n2, · · ·} ⊂ {1,2, · · ·} such that lim
i→∞

|cosniθ |1/ni = 1. On the

other hand, let {mk}∞k=1 and {pk}∞k=1 be given as in Lemma 3.2. Then for k = 1,2, · · · ,

mkθ = 2mkπα ∈
(
2pkπ +

π
2

,2pkπ +
π
2

+2πtmk

)
. (3.2)

Hence

|cosmkθ |1/mk = |− sin(mkθ −2pkπ− π
2

)|1/mk � |2πtmk |1/mk → t.

Therefore, lim
m→∞

|u1(Xm)|1/m does not exist.
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