ESTIMATING MATCHING DISTANCE BETWEEN SPECTRA

Abdelkrim Nokrane

(Communicated by P. Šemrl)

Abstract. We show that if a, b are elements of an unital Banach algebra such that almost all convex combinations of a and b have a finite spectrum of cardinality n, then the optimal matching distance between their spectra satisfies

$$
D(\sigma(a), \sigma(b)) \leqslant c_{n}(\|a\|+\|b\|)^{1-1 / n}\|a-b\|^{1 / n}
$$

where $c_{n} \leqslant 8(1+1 / n)(n / 2)^{1 / n}$.

1. Introduction

Let $K=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and $L=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right\}$ be two n-tuples of (not necessarly distinct) complex numbers. The optimal matching distance between these sets is given by:

$$
D(K, L)=\min _{\pi \in S_{n}} \max _{1 \leqslant i \leqslant n}\left|\lambda_{i}-\mu_{\pi(i)}\right|,
$$

where S_{n} denotes the group of all permutations of $\{1,2, \ldots, n\}$.
The distance D was introduced by Dufresnoy to resolve some combinatorial problems, D is also computed as:

$$
D(K, L)=\max _{\substack{I, J \subset\{1,2, . ., n\} \\ \#(I)+\#(J)=n+1}} \min _{i \in I, j \in J}\left|\lambda_{i}-\mu_{i}\right| .
$$

Let Δ denote the Hausdorff distance given by:

$$
\Delta(K, L)=\max \left\{\max _{\lambda \in K} \operatorname{dist}(\lambda, L), \max _{\lambda \in L} \operatorname{dist}(\lambda, K)\right\}
$$

The optimal matching distance is always greater than the Hausdorff one and they coincide in the case of sets of two elements.
D, Δ and several other distances are used in the study of variation eigenvalues of matrices. In the literature we can find a lot of spectral variation results for hermitian,

[^0]normal and general matrices (see [1], [2], [3], [4]). When dealing with nonnormal matrices the known perturbation bounds are of the form
$$
D(\sigma(a), \sigma(b)) \leqslant c_{n}(\|a\|+\|b\|)^{1-\frac{1}{n}}\|a-b\|^{\frac{1}{n}}
$$
where c_{n} is a constant depending on the size of matrices and $\sigma(a)$ denotes the spectrum of a.

By results of Elsner and Bhatia-Elsner-Krause (see [3], [7]), if a, b are $n \times n$ matrices, then:

$$
\begin{aligned}
& \Delta(\sigma(a), \sigma(b)) \leqslant(\|a\|+\|b\|)^{1-\frac{1}{n}}\|a-b\|^{\frac{1}{n}} \\
& D(\sigma(a), \sigma(b)) \leqslant 4(\|a\|+\|b\|)^{1-\frac{1}{n}}\|a-b\|^{\frac{1}{n}}
\end{aligned}
$$

The results of this type have been generalized for the Hausdorff distance in [6], to algebraic elements of an arbitrary unital Banach algebra: if a, b are algebraic of degree at most n, we have:

$$
\Delta(\sigma(a), \sigma(b)) \leqslant c_{n}(\|a\|+\|b\|)^{1-\frac{1}{n}}\|a-b\|^{\frac{1}{n}}
$$

where $c_{n} \leqslant\left(\frac{2}{3} n+\frac{1}{3}\right)^{\frac{1}{n}}$.
Here an analogous question for the matching distance D is treated, namely, the perturbation bounds for elements of a general unital Banach algebra with finite spectra (in fact, a stronger condition that almost all convex combinations of a and b have a finite spectrum is considered). The main result is:

Let a, b elements of an unital Banach algebra A. Suppose that the cardinality of $\sigma(a+t(b-a))$ is n for almost all $t \in[0,1]$. Then

$$
D(\sigma(a), \sigma(b)) \leqslant c_{n}(\|a\|+\|b\|)^{1-1 / n}\|a-b\|^{1 / n}
$$

where $c_{n} \leqslant 8(1+1 / n)(n / 2)^{\frac{1}{n}}$.

2. Algebroid multifunctions

Definition 1. A mapping K from an open subset Ω of \mathbb{C} into the set of non empty compact subsets of \mathbb{C} is called an algebroid multifunction if it is of the form

$$
K(z)=\left\{w: w^{n}+a_{1}(z) w^{n-1}+\ldots+a_{n-1}(z) w+a_{n}(z)=0\right\}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are holomorphic functions on Ω. The degree of K is the smallest integer n such that K has such a representation.

Algebroid multifunctions are extension of holomorphic functions and characterize the finite analytic multifunctions (see [1], 7.2.4, p. 155).

The following lemma is a version of Schwarz lemma for the matching distance. It can be deduced from [9], Theorem 1.3. We prove the result by the technique used in [2] Theorem VIII 2.4.

Lemma 1. Let K be an algebroid multifunction of degree n, on the unit disk U into the set of non empty compacts sets of U. Then

$$
D(K(z), K(0)) \leqslant 8\left|\frac{z}{2}\right|^{\frac{1}{n}} \quad(z \in U)
$$

Proof As K is an algebroid multifunction of degree n, the set $K(z)$ contains $w_{1}(z), w_{2}(z), \cdots$ and $w_{n}(z), n$ distinct points for all z outside some closed discrete subset E of U [[1] Theorem 3.4.25].

Let γ be a curve joining 0 to z, staying within the disk of center 0 and radius $|z|$, and avoiding the set E except perhaps for its endpoints. There are n curves $\Gamma_{1}, \Gamma_{2}, \cdots$ and Γ_{n} which trace $K(\gamma)$, setting up a bijection between $K(0)$ and $K(z)$ (counting multiplicities). It follows that:

$$
D(K(z), K(0)) \leqslant \max _{1 \leqslant j \leqslant n} \operatorname{diam} \Gamma_{j}
$$

To get the result, it suffice to estimate the diameters of the curves $\Gamma_{k}, k=1,2, \cdots, n$. For this we need a version of Schwarz lemma of algebroid multifunctions presented in [9].

Let b the Blaschke product of degree n associated to $K(0)$:

$$
b(w)=\prod_{1 \leqslant j \leqslant n}\left(\frac{w-w_{j}(0)}{1-\overline{w_{j}(0)} w}\right) .
$$

By [[9] lemma 2.1], we have for all $z \in U$ and $w \in K(z)$:

$$
|b(w)| \leqslant|z| .
$$

Then

$$
\begin{aligned}
\prod_{1 \leqslant j \leqslant n}\left|w-w_{j}(0)\right| & \leqslant|z| \prod_{1 \leqslant j \leqslant n}\left|1-\overline{w_{j}(0)} w\right| \\
& \leqslant 2^{n}|z|
\end{aligned}
$$

It is shown in [[2] lemma VIII 1.4, p:228] that if Γ is a compact connected subset of \mathbb{C} and p is a monic polynomial of degree n, then

$$
\operatorname{diam} \Gamma \leqslant 4.2^{-\frac{1}{n}} \max _{w \in \Gamma}|p(w)|^{\frac{1}{n}}
$$

In particular for $k \in\{1,2, \cdots, n\}$, we have

$$
\begin{aligned}
\operatorname{diam} \Gamma_{k} & \leqslant 4.2^{-\frac{1}{n}} \max _{w \in \Gamma_{k}}\left(\prod_{1 \leqslant j \leqslant n}\left|w-w_{j}(0)\right|\right)^{\frac{1}{n}} \\
& \leqslant 8.2^{-\frac{1}{n}}|z|^{\frac{1}{n}}
\end{aligned}
$$

Finaly

$$
\begin{aligned}
D(K(z), K(0)) & \leqslant \max _{1 \leqslant k \leqslant n} \operatorname{diam} \Gamma_{k} \\
& \leqslant 8.2^{-\frac{1}{n}}|z|^{\frac{1}{n}}
\end{aligned}
$$

3. Matching estimates for the spectrum

Let A, B two $n \times n$ complex matrices, it is known that:

$$
D(\sigma(A), \sigma(B)) \leqslant \frac{16}{3 \sqrt{3}}(2 M)^{1-1 / n}\|A-B\|^{1 / n}
$$

where $\|$.$\| is the operator norm, and M=\max (\|A\|,\|B\|)$ ([8], theorem1, p. 78). Similar estimates are given for other norms in matrix algebras (see [3], p. 197).

Using analytic arguments we give here estimation in a general unital Banach algebra.

THEOREM 1. Let $(A,\| \|)$ be an unital Banach algebra, and let $a, b \in A$. Suppose that the cardinality of $\sigma(a+t(b-a))$ is n for almost all $t \in[0,1]$. Then

$$
\begin{equation*}
D(\sigma(a), \sigma(b)) \leqslant c_{n}(\|a\|+\|b\|)^{1-1 / n}\|a-b\|^{1 / n} \tag{3.1}
\end{equation*}
$$

where $c_{n} \leqslant 8(1+1 / n)(n / 2)^{\frac{1}{n}}$.
Proof Let f be the analytic function from the complex unit disk U into the unital Banach algebra A defined by

$$
f(z)=(\|a\|+r\|b-a\|)^{-1}(a+r z(b-a)) \quad(z \in U, r>1)
$$

Note that for all $z \in U$, the spectrum of $f(z)$ is a subset of the unit disk U. Consequently the multifunction defined on U by:

$$
K(z)=\sigma(f(z))
$$

is analytic on U into the set of non-empty compacts of U.
The condition $\#(\sigma(a+t(b-a)))=n$ for almost all $t \in[0,1]$ ensures that K is finite,
and by [[1] theorem 7.1.7, p. 147], K is an algebroid multifunction of degree n. From the preceding lemma, we deduce that

$$
D(K(1 / r), K(0)) \leqslant 8 .(2 r)^{-\frac{1}{n}}
$$

Therefore

$$
\begin{aligned}
D(\sigma(a), \sigma(b)) & \leqslant 8(2 r)^{-\frac{1}{n}}(\|a\|+r\|b-a\|) \\
& \leqslant 8(2 r)^{-\frac{1}{n}}(\|a\|+r\|b-a\|+\|b\|)
\end{aligned}
$$

In the case that $\|a\|+\|b\|>n\|b-a\|$, we take $r=\frac{\|a\|+\|b\|}{n\|b-a\|}$ and conclude

$$
D(\sigma(a), \sigma(b)) \leqslant 8(1+1 / n)(n / 2)^{\frac{1}{n}}(\|a\|+\|b\|)^{1-\frac{1}{n}}\|a-b\|^{\frac{1}{n}}
$$

If $\|a\|+\|b\| \leqslant n\|b-a\|$, we obtain

$$
\begin{aligned}
D(\sigma(a), \sigma(b)) & \leqslant(\|a\|+\|b\|) \\
& \leqslant(\|a\|+\|b\|)^{1-\frac{1}{n}} n^{\frac{1}{n}}\|b-a\|^{\frac{1}{n}}
\end{aligned}
$$

and final result follows.
For the Hausdorff distance, the constant can be improved to $2(1+1 / n) n^{\frac{1}{n}}$ by replacing the result of lemma by an immediate consequence of Theorem 1.1 of [9], and following the same arguments in the proof of theorem.

4. Remarks

4.1. Polarity assumption

It is stated in Aupetit's book [1] (scarcity theorem), that if $\sigma(a+\lambda(b-a))$ is finite for all λ in some non-polar subset of \mathbb{C}, then there exists an integer p such that $\# \sigma(a+\lambda(b-a)) \leqslant p$ for all $\lambda \in \mathbb{C}$, with equality for all λ outside a closed, discrete set. Thus, in Theorem 1, it suffices to assume that $\# \sigma(a+\lambda(b-a))=n$ for λ in some non polar set E in \mathbb{C}. Polar sets are sets of capacity zero, they are negligible sets for potential theory (for more details see [10], 3.2, p.55).

4.2. Example of application

Let $\mathscr{B}(X)$ be the algebra of linear bounded operators on a Banach space X. Let A be a finite rank operator and B any algebraic element of $\mathscr{B}(X)$. By [[5], corollary 4.5] for all λ in the unit disk U, the operator $(1-\lambda) A+\lambda B$ is algebraic. And by Aupetit's result, there is an integer n such that n is the degree of almost all algebraic elements in the segment $[A, B]$. Then we have estimation like (3.1) for the operators A and B.

Acknowledgement. The author wants to thank the anonymous referees for their comments and valuable remarks.

REFERENCES

[1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
[2] R. Bhatia, Matrix Analysis, Springer, 1997.
[3] R. Bhatia, L. Elsner and G. Krause, Bounds for the Variation of the Roots of a Polynomial and the Eigenvalues of a Matrix, Linear Algebra Appl., 142 (1990), 195-209.
[4] R. Bhatia and D. Drissi, Perturbation theorems for Hermitian elements in Banach algebras, Studia Math., 134, 2 (1999), 111-117.
[5] M. Brešar and P. Šemrl, Derivation mapping into the socle, Math. Proc. Camb. Phil. Soc., 120 (1996), 339-346.
[6] Y. Chen, A. Nokrane and T. Ransford, Estimates for the spectrum near algebraic elements, Linear Algebra Appl., 308 (2000), 153-161.
[7] L. ElSNER, An optimal bound for the spectral variation of two matrices, Linear Algebra Appl., 71 (1985), 77-80.
[8] G. Krause, Bounds for the variation of matrix eigenvalues and polynomial roots, Linear Algebra Appl., 208/209 (1994), 73-82.
[9] A. NOKRANE AND T. RANSFORD, Schwarz's Lemma for Algebroid Multifunctions, Complex Variables Theory Appl., 45 (2001), 183-196.
[10] T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society, Cambridge University Press, 1995.

[^0]: Mathematics subject classification (2000): 15A42, 47A10.
 Keywords and phrases: spectrum, algebroid multifunction, matching distance.

