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ON AN EXTREMAL PROBLEM OF GARCIA AND ROSS

I. CHALENDAR, E. FRICAIN AND D. TIMOTIN

(Communicated by L. Rodman)

Abstract. We show the equivalence of two extremal problems on Hardy spaces, thus answering a
question posed by Garcia and Ross. The proof uses a slight generalization of complex symmetric
operators.

1. Introduction

In [4] Garcia and Ross discuss a nonlinear extremal problem for functions in the
Hardy space and its relation to a well studied linear extremal problem. Specifically, let
D = {z ∈ C : |z| < 1} be the unit disc in the complex plane and T = {z ∈ C : |z| = 1}
the unit circle. For p > 0, let Hp denote the classical Hardy space on D (identified,
as usual, with a closed subspace of Lp = Lp(T)). For fixed ψ ∈ L∞ , the following
nonlinear extremal problem is considered in [4]:

Γ(ψ) := sup
f∈H2

‖ f‖2=1

∣∣∣∣ 1
2π i

∫
T

ψ(z) f (z)2 dz

∣∣∣∣ . (1)

This is closely related to the well known classical linear extremal problem

Λ(ψ) := sup
F∈H1

‖F‖1=1

∣∣∣∣ 1
2π i

∫
T

ψ(z)F(z)dz

∣∣∣∣ ; (2)

it is noted in [4] that we always have Γ(ψ) � Λ(ψ) , and it is proved that in some
particular cases, including the case of rational ψ , we have equality. We show in this
short note that equality actually holds for all ψ ∈ L∞ , thus answering an open question
stated in [4].

The two problems can be reformulated in terms of operators on a Hilbert space.
Denote by P+ the projection in L2 onto H2 and by P− the projection onto H2− := L2�
H2 . The Hankel operator of symbol ψ is Hψ : H2 → H2− , defined by Hψ f = P−ψ f .
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By changing the variable z = eit and denoting ζ (t) = eit , we have

Γ(ψ) = sup
f∈H2

‖ f‖2=1

∣∣∣∣ 1
2π

∫ 2π

0
ζ (t)ψ(eit) f (eit )2 dt

∣∣∣∣ = sup
f∈H2

‖ f‖2=1

|〈ψ f ,ζ f 〉|= sup
f∈H2

‖ f‖2=1

|〈Hψ f ,ζ f 〉|.

(3)
On the other hand, any function F ∈H1 may be written as F = f g with f ,g ∈H2

and ‖ f‖2 = ‖g‖2 = ‖F‖1 . Therefore we get

Λ(ψ)= sup
f ,g∈H2

‖ f‖2=‖g‖2=1

∣∣∣∣ 1
2π

∫ 2π

0
ζ (t)ψ(eit) f (eit )g(eit)dt

∣∣∣∣= sup
f ,g∈H2

‖ f‖2=‖g‖2=1

|〈ψ f ,ζ g〉|= ‖Hψ‖.

(4)
Both problems (1) and (2) are thus rephrased in terms of Hankel operators. A conve-
nient reference for these, including all results that we shall use below, is [9].

2. Complex symmetric operators and their relatives

In [2, 3] the authors introduce the notion of complex symmetric operator on a
Hilbert space, which has since found several applications; in particular, complex sym-
metric operators are used in [4] to prove the equivalence, in a particular case, of the two
extremal problems. We need an extension of some of these facts to operators acting
between two different spaces.

Suppose then that X ,Y are two Hilbert spaces. Define c : X → Y to be an
antiunitary operator if it is a conjugate linear surjective map which satisfies 〈cx,cx′〉 =
〈x′,x〉 for all x,x′ ∈ X . It is then immediate that c−1 : Y → X is also an antiunitary
operator. A conjugation is an antiunitary operator which acts on the same space and
is equal to its inverse. If T ∈ L (X ,Y ) , we say that T is c-symmetric if T = cT ∗c .
If T ∈ L (X ) and there exists a conjugation C such that T is C -symmetric, then one
says that T is complex symmetric; this is the class considered in [2, 3].

In order to go from complex symmetric to c-symmetric operators, the main tool is
the following lemma.

LEMMA 2.1. If c : X → Y is an antiunitary operator, then there exists a unitary
operator V : X → Y (not uniquely defined) such that C = V ∗c is a conjugation on
X . If such a V is fixed, then the map T 
→ V ∗T is a bijection between c-symmetric
operators and C-symmetric operators.

Proof. Take an orthonormal basis (en) in X , and define V to be the unitary
operator which maps en into cen . Then it is easily seen that C = V ∗c is precisely the
conjugation on X associated with the basis (en) .

Now, if T ∈ L (X ,Y ) , then

T = cT ∗c ⇔ V ∗T =V ∗cT ∗c ⇔ V ∗T = V ∗cT ∗VV ∗c
⇔ V ∗T =C(V ∗T )∗C,

which proves the second part of the lemma. �
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As a consequence, we obtain the result that interests us, namely the analogue of
Theorem 1 in [4] (which deals with the complex symmetric case).

LEMMA 2.2. Suppose c : X → Y is an antiunitary operator and T : X →Y is
c-symmetric. Then:

(i) ‖T‖ = sup‖x‖=1 |〈Tx,cx〉| .
(ii) The supremum in (i) is attained if and only if T attains its norm (or, equiva-

lently, if ‖T‖ is an eigenvalue for |T | .) In this case Tx =ω‖T‖cx for some unimodular
constant ω .

Proof. Suppose that V is the unitary operator and C is the conjugation given
by Lemma 2.1; thus T ′ := V ∗T is C -symmetric. Theorem 1 in [4] says then that
‖T ′‖ = sup‖x‖=1 |〈T ′x,Cx〉| . Since ‖T‖ = ‖T ′‖ and

sup
‖x‖=1

|〈Tx,cx〉| = sup
‖x‖=1

|〈V ∗Tx,V ∗cx〉| = sup
‖x‖=1

|〈T ′x,Cx〉|,

the first assertion is proved.
For the second, it is immediate by Schwarz’s inequality that, if ‖x‖ = 1, then

‖T‖ = |〈Tx,cx〉| if and only if Tx = ω‖T‖cx for some unimodular constant ω . But it
is a general fact (for any operator T ) that T attains its norm if and only if ‖T‖ is an
eigenvalue of |T | , given that ‖T‖ = ‖|T |‖ and ‖|T |‖ = sup‖x‖=1〈|T |x,x〉 . �

It might be of independent interest to state, as a corollary, the corresponding ver-
sion of Theorem 2 in [1], characterizing the spectrum of the modulus of a c-symmetric
operator in terms of what Garcia [1] calls an approximate antilinear eigenvalue prob-
lem.

PROPOSITION 2.3. Let T be a bounded c-symmetric operator and λ � 0 . Then

(i) λ belongs to the spectrum of |T | if and only if there exists a sequence of unit
vectors ( fn)n such that limn→∞ ‖(T −λ c) fn‖ = 0 .

(ii) λ is a singular value of T if and only if T f = λ c f has a nonzero solution f .

3. Main result

We can now prove the equivalence of the two problems (1) and (2) in the general
case.

THEOREM 3.1. For any ψ ∈ L∞ we have Γ(ψ) = Λ(ψ) .

Proof. We intend to apply Lemma 2.2 to the following situation: X = H2 , Y =
H2− , T = Hψ and c : H2 →H2− defined by c f = ζ f . It is easy to see that c is antiunitary.
Note that c−1 : H2− → H2 is given formally by the same formula as c . To be more

accurate, we will define C : L2 → L2 by C f = ζ f . Then c = C|H2 = P−C|H2 and
c−1 = C|H2− = P+C|H2− . Moreover, we have CP+ = P−C .
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Then Hψ is c-symmetric: H∗
ψ : H2− → H2 acts by the formula H∗

ψg = P+ψg , so

(cH∗
ψc)( f ) = (cH∗

ψ )(ζ f ) = c(P+ψζ f ) = CP+(ψζ f )

= P−C(ψζ f ) = P−(ζψζ f ) = P−(ψ f ) = Hψ f .

We may apply Lemma 2.2 (i), which gives:

‖Hψ‖ = sup
‖ f‖=1

|〈Hψ f ,c f 〉| = sup
‖ f‖=1

|〈P−(ψ f ),ζ f 〉|.

Since c f = ζ f ∈ H2− , there is no need of P− in the last scalar product, and therefore,
by (3),

‖Hψ‖ = sup
‖ f‖=1

|〈ψ f ,ζ f 〉| = Γ(ψ).

Since ‖Hψ‖ = Λ(ψ) by (4), the theorem is proved. �

Also, from the second part of Lemma 2.2 it follows that the existence of an ex-
tremal function (a function that realizes Γ(ψ)) is equivalent to the fact that the Hankel
operator attains its norm. This happens, for instance, if Hψ is compact, which is equiv-
alent, via Hartman’s theorem [6], to ψ ∈ H∞ +C(T) , where C(T) denotes the algebra
of continuous functions on T .

Note that in [4] the solution to the extremal problem is related to truncated Toeplitz
operators. These are operators on KΘ = H2�ΘH2 defined, for φ ∈H∞ , by the formula

AΘ
φ ( f ) = PΘφ f , f ∈ KΘ,

where PΘ is the orthogonal projection onto KΘ . More precisely, it is shown in [4] that,
if there is an inner function Θ such that ψΘ ∈ H∞ , then

Λ(ψ) = Γ(ψ) = ‖AΘ
ψΘ‖.

The relation with Theorem 3.1 above is made by the following observation. Consider
the orthogonal decompositions H2 = KΘ⊕ΘH2 and H2− =ΘKΘ⊕ΘH2− . With respect
to them, the only nonzero entry of the matrix of Hψ is in the upper left corner, and it is

equal to AψΘ : KΘ →KΘ followed by multiplication with Θ . Consequently, in this case
most of the results for the Hankel operators can be translated in terms of the truncated
Toeplitz operator. Moreover, this is an analytic truncated Toeplitz operator, that is, one
whose symbol is in H∞ . Their theory is significantly simpler that in the case of general
truncated Toeplitz operators, since we may apply Sarason’s interpolation arguments.

4. Final remarks

This section has no claim of novelty; its purpose is to put some other results in [4]
in a more general context.
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4.1 First, note that it is immediate that Γ(ψ) � ‖ψ‖∞ . Obviously Γ(ψ) depends only
on the antianalytic part of ψ . Using the equivalence of (1) and (2), and Nehari’s the-
orem [8], it follows that for each ψ ∈ L∞ there exists ψ̂ such that ψ − ψ̂ ∈ H∞ and
‖ψ̂‖∞ = Γ(ψ) . In the context of truncated Toeplitz operators used in [4], ψ̂ corre-
sponds to what is called therein a norm attaining symbol.

4.2 In case an extremal function exists (equivalently, when the Hankel operator attains
its norm) one can say more. With the previous notations, suppose g∈H2 is an extremal
function with ‖g‖2 = 1; thus ‖Hψ̂g‖2 = ‖Hψ̂‖ . The sequence of inequalities

‖ψ̂‖∞ = ‖Hψ̂‖ = ‖Hψ̂g‖2 = ‖P−(ψ̂g)‖2 � ‖ψ̂g‖2 � ‖ψ̂‖∞‖g‖2 = ‖ψ̂‖∞

imply that ‖P−(ψ̂g)‖2 = ‖ψ̂g‖2 = ‖ψ̂‖∞ . It follows then, first that ψ̂ has constant
modulus, and secondly that ψ̂g ∈ H2− and thus ψ̂go ∈ H2− , where go is the outer part
of g . Then ‖Hψ̂go‖2 = ‖ψ̂go‖2 = ‖ψ̂‖∞ = ‖Hψ̂‖ . Therefore, in case an extremal
function exists, one can chose it outer, and thus not having zeros in D . This recaptures
the result of [7] quoted in [4], which says that if the symbol is continuous then there
exists an extremal function which is nonzero on D (as noted above, a Hankel operator
with continuous symbol is compact and thus attains its norm).

4.3 In case there exists an inner function Θ such that φ = ψ̂Θ ∈ H∞ , then the result
can be strengthened. With the above notations, we have then Θφgo ∈ H2− , which im-
plies φgo ∈ KΘ ; thus φ is a scalar multiple of the inner part of a function in KΘ . This
is essentially noticed in the remarks after [4, Theorem 2].

4.4 Finally, let us note that, in case there exists no extremal function, norm attaining
symbols might not have constant modulus. An example appears in [5, Ch. IV, Example
4.2]. Namely, suppose Θ is an inner function that does not extend analytically across
the unit circle in the neighborhood of 1, while f is a nonconstant invertible outer func-
tion with ‖ f‖∞ = 1 that has modulus 1 on an arc of T around 1. Then the only norm
attaining symbol for the Hankel operator HΘ f is Θ f , which has not constant modulus.
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INSA de Lyon; Ecole Centrale de Lyon
CNRS, UMR 5208

Institut Camille Jordan
43 bld. du 11 novembre 1918
F-69622 Villeurbanne Cedex

France
e-mail: chalenda@math.univ-lyon1.fr

E. Fricain
Université Lyon 1
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