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SUPPLEMENTARY DIFFERENCE SETS WITH

SYMMETRY FOR HADAMARD MATRICES

DRAGOMIR Ž. D– OKOVIĆ
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Abstract. An overview of the known supplementary difference sets (SDSs) (Ai) , 1 � i � 4 , with
parameters (n;ki;λ) , ki = |Ai| , where each Ai is either symmetric or skew and ∑ki = n+λ is
given. Five new Williamson matrices over the elementary abelian groups of order 52 , 33 and
72 are constructed. New examples of skew Hadamard matrices of order 4n for n = 47,61,127
are presented. The last of these is obtained from a (127,57,76) difference family that we have
constructed. An old non-published example of G-matrices of order 37 is also included.

1. Introduction

The Williamson matrices (over any finite abelian group) are too sparse [3] to gen-
erate Hadamard matrices of all feasible orders. The recent extensive computations per-
formed in [11] have extended the exhaustive searches for circulant Williamson matrices
of odd order n to the range n � 59. This result was made possible not only by using
the new and faster computing devices but also by designing a new efficient algorithm.
However, the search produced only one new set of Williamson matrices. The authors
suggest that the researchers should study instead the class of Williamson-type matrices.
The Williamson matrices over arbitrary finite abelian groups belong to this wider class.

In the present paper we consider the method due to Goethals and Seidel [10] of
constructing Hadamard matrices by using their well-known array

⎡
⎢⎢⎣

U XR YR ZR
−XR U −ZT R YT R
−YR ZT R U −XTR
−ZR −YT R XTR U

⎤
⎥⎥⎦ .

One has to find suitable quadruples of n× n binary matrices which can be substituted
for U,X ,Y,Z in this array to give a Hadamard matrix H of order 4n . (For the symbol R
see the next section.) One way of producing such suitable quadruples is via the supple-
mentary difference sets (SDS) in a finite abelian group A of order n . The parameters
of suitable SDSs A = (Ai) , 1 � i � 4, must satisfy an additional condition (see (2.1)).
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If all Ai s are symmetric in the sense that Ai = −Ai then the type I matrices constructed
from A are Williamson matrices in the wider sense. The classical Williamson matrices
arise when A is cyclic. If we only require that the first subset A1 be skew, in the sense
that A is the disjoint union of A1 , −A1 and {0} , then the resulting Hadamard matrix
H will be of skew type, i.e., H − I4n is skew-symmetric. We are mainly interested in
the cases where each Ai is either symmetric or skew and we introduce the notion of
(symmetry) types. For instance, the type (ksss) means that we require A1 to be skew
and the other three Ai s to be symmetric. The SDSs for Williamson matrices must have
type (ssss). There are essentially only four symmetry types (ssss), (ksss), (kkss) and
(kkks), disregarding the cases where the symmetry is only partial. The matrices arising
from the SDSs having one of these symmetry types have been studied for some time
by many researchers. We summarize in Tables 1 and 2 what is known about them for
small odd values of n � 63.

The new results that we have obtained are presented in the last section. In par-
ticular, we have constructed five new multicirculant Williamson matrices, two for each
of the orders 25, 27 and one for 49. We also give a new set of G-matrices of order
37 and new skew Hadamard matrices of order 4n for n = 47,61,127. The last one is
constructed via the new difference family with parameters (127,57,76) . This family
also gives a BIBD with the same parameters.

2. Preliminaries

Let A be a finite abelian group of order n . Let A = (A1,A2,A3,A4) , Ai ⊆ A , be
an SDS and let ki = |Ai| be the cardinality of Ai . By the definition of SDSs, there exists
an integer λ � 0 such that each nonzero element a ∈ A can be written in exactly λ
ways as the difference a = x− y with {x,y} ⊆ Ak and k ∈ {1,2,3,4} . We refer to the
6-tuple (n;k1,k2,k3,k4;λ ) as the set of parameters of A . We shall be interested only in
the case when the parameters satisfy the condition

λ = k1 + k2 + k3 + k4−n. (2.1)

The set of all such SDSs will be denoted by FA or just F .
Let X = (Xx,y) be an n× n matrix whose rows and columns are indexed by the

elements x,y ∈ A . Such X is type I resp. type II matrix (relative to A ) if Xx+z,y+z =
Xx,y resp. Xx+z,y−z = Xx,y for all x,y,z ∈ A . Let R be the type II matrix defined by
Rx,y = δx+y,0 , where δ is the Kronecker symbol. Then R2 = I , the identity matrix. The
following facts are well known and easy to verify (see e.g. [17, Section 1.2]). Any two
type I matrices commute. Any type II matrix is symmetric. If X and Y are both type I
or both type II, then XY is type I. If X resp. Y is a type I resp. type II matrix, then XY
and YX are type II, and X and Y are amicable, i.e., XYT = YXT , where T denotes
transposition. If X and Y are type I and symmetric, then XR and YR are amicable and
commute.

We say that a matrix is binary if its entries are ±1. Let X ⊆A and let χ : A →R
be the characteristic function of X . We denote by Xc the type I binary matrix with
entries

Xc
x,y = 1−2χ(y− x), x,y ∈ A .



SUPPLEMENTARY DIFFERENCE SETS WITH SYMMETRY 559

Thus Xc
0,y =−1 if and only if y∈ X . It is well known that for any A∈F the following

matrix equation holds
4

∑
i=1

(Ai
c)T Ai

c = 4nIn. (2.2)

Each row-sum of Ai
c is equal to ai = n−2ki . It follows easily from (2.2) that

4

∑
i=1

ai
2 = 4n. (2.3)

For X ⊆ A we say that X is symmetric resp. skew if −X = X resp. X , −X
and {0} form a partition of A . If there is a skew X ⊆ A then n must be odd and
|X | = (n−1)/2. Let Σ = {s,k,∗} be the set of three symbols. We refer to a sequence
(σ1σ2σ3σ4) with σi ∈ Σ as a symmetry type (or simply a type). We say that an SDS
A = (Ai) has type (σ1σ2σ3σ4) if, for each i , Ai is symmetric resp. skew when σi = s
resp. σi = k . No condition is imposed on Ai when σi = ∗ .

When A has type (ssss) then the matrices Ai
c , i = 1, . . . ,4, are known as the

Williamson matrices. These are four symmetric type I binary matrices satisfying the
equation (2.2).

When A has type (ksss) then the matrices A1
c,A2

cR,A3
cR,A4

cR are good matri-
ces. When A has type (kkss) or (kkks) then the matrices (Ai

c) are G-matrices or best
matrices, respectively. For the general definition of good matrices, G-matrices and best
matrices see [15].

The cyclic case, i.e., when A is a cyclic group, has been investigated most thor-
oughly. We refer to [11] for the up-to-date information on cyclic Williamson matrices,
including the complete listing of all non-equivalent such matrices of odd order � 59.
See also the survey papers [19, 12]. For further information on the other three symmetry
types of matrices the reader should consult the survey paper [15] and its references.

For any A = (Ai)∈F , we can plug the matrices Ac
i into the Goethals–Seidel array

to obtain a Hadamard matrix H of order 4n . More precisely, we substitute the symbol
R with the n×n type II matrix R defined above, and substitute the symbols U,X ,Y,Z
with the four type I matrices Ac

1,A
c
2,A

c
3,A

c
4 (in that order). If A has type (k∗ ∗ ∗ ), i.e.,

A1 is skew, then H will be a skew Hadamard matrix.
Apart from the basic case A = Zn we consider here also the case of non-cyclic

elementary abelian groups in their incarnation as the additive group (Fq,+) of a finite
field Fq of order q . We refer to the latter type of SDSs as the multicirculant SDSs.

3. Known results: Cyclic SDSs

There are only two known infinite series of cyclic Williamson matrices. The first,
due to Turyn [22], gives Williamson matrices of order (q + 1)/2 where q is a prime
power ≡ 1 (mod 4) . These matrices are listed on Jennifer Seberry’s homepage [18] for
orders � 63. The second, due to Whiteman [24], gives Williamson matrices of order
p(p+1)/2 where p is a prime ≡ 1 (mod 4) . There is also an infinite series of cyclic
G-matrices constructed by Spence [20]. Their orders are (q+1)/2 where q is a prime
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power ≡ 5 (mod 8) . We are not aware of the existence of any infinite series of good
or best matrices.

In Table 1 we summarize what is known about the existence of cyclic SDSs A ∈
F with specified symmetry (ssss), (ksss), (kkss) or (kkks) for small odd values of n
(� 63). For the entry of Table 1 (and those of Table 2) marked with the symbol † see
Section 5.

In the first three columns we list the feasible parameters n , (ki) , λ with k1 �
k2 � k3 � k4 and 2k1 < n . Note that these conditions are not restrictive since we can
permute the Ai s and replace any Ai with its complement. As the row-sums ai of the
matrices Ai

c are often used, we list them in the fourth column. By our choice of the
ki we have ai > 0 for all i . For each of the above four symmetry types we give in the
last four columns the number of known non-equivalent SDSs. If this number is written
in bold type then an exhaustive search for these families has been carried out and a
reference is provided. The sign × means that the parameter set is not compatible with
the symmetry type of the column, and the blank entry means that the existence question
remains unresolved. (The second example of G-matrices for n = 41 given in [7] is not
valid.)

In the case of G-matrices constructed by Spence one has k1 = k2 = (n−1)/2. This
determines uniquely k3 and k4 in the cases n = 51,55 but not in the case n = 63. In
the last case we had to construct explicitly the SDS by using linear recurrent sequences
as explained in [20] and its references. Since this was quite involved computation, we
sketch here some details.

We start with the finite field Fq = Z5/(x3 − 2x + 2) of order q = 53 = 125 and
denote by a the image of the variable x . The polynomial x3 − 2x + 2 is primitive
over Z5 , i.e., a generates the multiplicative group F∗

q . We consider next the linear
reccurence relation axi+1 + xi + xi−1 = 0, i = 1,2, . . . , with initial values x0 = x1 = 1.
One can verify that the infinite sequence (x0,x1,x2, . . .) generated by the above relation
has minimal period q2 − 1 = 15624, i.e., it is an m-sequence in the terminology of
[20]. The set of indexes X = {i : 0 � i < q2−1, xi = 1} is a cyclic relative difference
set with parameters (126,124,125,1) using the definition in [14, 20]. By reducing
these indexes modulo 4(q + 1) = 504, we obtain the cyclic relative difference set Y
with parameters (63,8,125,31) . By replacing Y with the translate Y + 113 ⊆ Z504 ,
we obtain a Y which is fixed under multiplication by q :

Y = {8,9,11,12,16,17,19,21,24,26,38,39,40,41,42,44,45,53,

54,55,59,60,62,73,80,81,83,85,91,92,95,96,98,103,104,105,

106,109,117,119,120,122,128,130,136,146,154,176,177,183,190,

195,198,200,204,205,210,214,220,225,226,237,249,252,253,257,

259,265,266,270,275,277,283,284,287,295,300,304,310,313,317,

319,322,323,328,339,342,353,359,365,367,368,373,376,377,381,

384,393,400,405,407,408,411,412,414,415,424,425,427,434,444,

446,453,455,460,464,467,471,475,480,486,488,490,492,496}.
For 1 � i � 4 let Yi = { j ∈Y : j ≡ i−1 (mod 8)} and let Ai =Yi (mod 63) . The
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blocks A1 and A3 are symmetric while A2 and A4 are skew. Thus they are uniquely
determined by the intersections A∗

i = Ai∩{0,1, . . . ,31} . Explicitly, we have

A∗
1 = {2,4,6,7,8,10,11,13,14,16,17,20,21,22,23,24,26,28,30},

A∗
2 = {5,6,7,8,9,10,11,13,15,17,18,19,20,23,24,26,28,31},

A∗
3 = {0,3,4,7,12,14,15,19,20,21,26,28,29,31},

A∗
4 = {1,2,3,6,7,8,11,12,16,19,20,21,22,23,24,25,26,27,28,31}.

Finally we replace A1 with its complement. After permuting the blocks, the new SDS
has parameters (63;31,31,27,25;51) and type (kkss).

Table 1: Cyclic SDSs with symmetry

n (ki) λ (ai) (ssss) (ksss) (kkss) (kkks)
3 1,1,1,0 0 1,1,1,3 1,[1] 1,[13] 1,[7] 1,[8]
5 2,2,1,1 1 1,1,3,3 1,[1] 1,[13] 1,[7] ×
7 3,3,3,1 3 1,1,1,5 1,[1] 1,[13] 1,[7] 1,[8]

3,2,2,2 2 1,3,3,3 1,[1] 2,[13] × ×
9 4,4,3,2 4 1,1,3,5 2,[1] 1,[13] 1,[7] ×

3,3,3,3 3 3,3,3,3 1,[1] × × ×
11 5,4,4,3 5 1,3,3,5 1,[1] 3,[21] × ×
13 6,6,6,3 8 1,1,1,7 1,[1] 2,[13] 0,[7] 2,[8]

6,6,4,4 7 1,1,5,5 1,[1] 4,[13] 8,[7] ×
5,5,5,4 6 3,3,3,5 2,[1] × × ×

15 7,7,6,4 9 1,1,3,7 3,[1] 7,[13] 32,[7] ×
7,6,5,5 8 1,3,5,5 1,[1] 4,[13] × ×

17 8,7,7,5 10 1,3,3,7 3,[1] 2,[13] × ×
7,7,6,6 9 3,3,5,5 1,[1] × × ×

19 9,9,7,6 12 1,1,5,7 3,[1] 5,[13] 9,[7] ×
8,8,8,6 11 3,3,3,7 3,[1] × × ×
9,7,7,7 11 1,5,5,5 0,[1] 3,[13] × ×

21 10,10,10,6 15 1,1,1,9 1,[1] 4,[13] 23,[7] 21,[8]
10,9,8,7 13 1,3,5,7 3,[1] 6,[13] × ×
9,8,8,8 12 3,5,5,5 3,[1] × × ×

23 11,11,10,7 16 1,1,3,9 0,[1] 6,[21] 16,[7] ×
10,10,9,8 14 3,3,5,7 1,[1] × × ×

25 12,11,11,8 17 1,3,3,9 1,[5] 3,[21] × ×
12,12,9,9 17 1,1,7,7 3,[5] 0,[21] 13,[7] ×
12,10,10,9 16 1,5,5,7 3,[5] 6,[21] × ×
10,10,10,10 15 5,5,5,5 3,[5] × × ×

27 13,13,11,9 19 1,1,5,9 2,[16] 6,[21] 20,[7] ×
12,12,12,9 18 3,3,3,9 0,[16] × × ×
13,12,10,10 18 1,3,7,7 3,[16] 6,[21] × ×
12,11,11,10 17 3,5,5,7 1,[16] × × ×
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Table 1 (continued)
n (ki) λ (ai) (ssss) (ksss) (kkss) (kkks)

29 14,13,12,10 20 1,3,5,9 1,[2] 5,[21] × ×
13,13,11,11 19 3,3,7,7 0,[2] × × ×

31 15,15,15,10 24 1,1,1,11 0,[2] 2,[21] 8,[7] 8,[8]
14,14,13,11 21 3,3,5,9 0,[2] × × ×
15,13,12,12 21 1,5,7,7 1,[2] 1,[21] × ×
13,13,13,12 20 5,5,5,7 1,[2] × × ×

33 16,16,15,11 25 1,1,3,11 1,[3] 6,[9] 9,[7] ×
16,16,13,12 24 1,1,7,9 1,[3] 4,[9] 22,[7] ×
16,14,14,12 23 1,5,5,9 2,[3] 5,[9] × ×
15,14,13,13 22 3,5,7,7 1,[3] × × ×

35 17,16,16,12 26 1,3,3,11 0,[3] 4,[9] × ×
17,16,14,13 25 1,3,7,9 0,[3] 2,[9] × ×
16,15,15,13 24 3,5,5,9 0,[3] × × ×

37 18,18,16,13 28 1,1,5,11 0,[5] 1,[9] 5,[7],† ×
17,17,17,13 27 3,3,3,11 1,[5] × × ×
17,17,15,14 26 3,3,7,9 1,[5] × × ×
18,15,15,15 26 1,7,7,7 0,[5] 1,[9] × ×
16,16,15,15 25 5,5,7,7 2,[5] × × ×

39 19,18,17,14 29 1,3,5,11 0,[3] 3,[9] × ×
19,17,16,15 28 1,5,7,9 0,[3] 2,[9] × ×
17,17,17,15 27 5,5,5,9 1,[3] × × ×
18,16,16,16 27 3,7,7,7 0,[3] × × ×

41 19,19,18,15 30 3,3,5,11 0,[11] × × ×
20,20,16,16 31 1,1,9,9 1,[11] 1,[7] ×
19,18,17,16 29 3,5,7,9 0,[11] × × ×

43 21,21,21,15 35 1,1,1,13 0,[11]
21,21,18,16 33 1,1,7,11 0,[11] ×
21,19,19,16 32 1,5,5,11 1,[11] × ×
21,20,17,17 32 1,3,9,9 0,[11] × ×
19,18,18,18 30 5,7,7,7 1,[11] × × ×

45 22,22,21,16 36 1,1,3,13 0,[23] ×
22,21,19,17 34 1,3,7,11 0,[23] × × ×
21,20,20,17 33 3,5,5,11 0,[23] × × ×
21,21,18,18 33 3,3,9,9 0,[23] × × ×
22,19,19,18 33 1,7,7,9 0,[23] × ×
20,20,19,18 32 5,5,7,9 1,[23] × × ×

47 23,22,22,17 37 1,3,3,13 0,[11] × ×
22,22,20,18 35 3,3,7,11 0,[11] × × ×
23,21,19,19 35 1,5,9,9 0,[11] × ×
22,20,20,19 34 3,7,7,9 0,[11] × × ×
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Table 1 (continued)
n (ki) λ (ai) (ssss) (ksss) (kkss) (kkks)

49 24,24,22,18 39 1,1,5,13 0,[11] ×
23,23,23,18 38 3,3,3,13 0,[11] × × ×
24,22,21,19 37 1,5,7,11 0,[11] × ×
22,22,22,19 36 5,5,5,11 0,[11] × × ×
23,22,20,20 36 3,5,9,9 1,[11] × × ×
21,21,21,21 35 7,7,7,7 0,[11] × × ×

51 25,24,23,19 40 1,3,5,13 0,[23] × ×
25,25,21,20 40 1,1,9,11 1,[23] 1,[20] ×
24,23,22,20 38 3,5,7,11 1,[23] × × ×
23,22,22,21 37 5,7,7,9 0,[23] × × ×

53 25,25,24,20 41 3,3,5,13 0,[11] × × ×
26,25,22,21 41 1,3,9,11 0,[11] × ×
26,23,22,22 40 1,7,9,9 0,[11] × ×
24,24,22,22 39 5,5,9,9 0,[11] × × ×

55 27,27,24,21 44 1,1,7,13 0,[11] 1,[20] ×
27,25,25,21 43 1,5,5,13 0,[11] × ×
26,26,23,22 42 3,3,9,11 1,[11] × × ×
27,24,24,23 43 1,7,7,11 0,[11] × ×
25,25,24,22 41 5,5,7,11 0,[11] × × ×
26,24,23,23 41 3,7,9,9 0,[11] × × ×

57 28,28,28,21 48 1,1,1,15 0,[11]
28,27,25,22 45 1,3,7,13 0,[11] × ×
27,26,26,22 44 3,5,5,13 0,[11] × × ×
28,26,24,23 44 1,5,9,11 0,[11] × ×
27,25,25,23 44 3,7,7,11 0,[11] × × ×
25,25,25,24 42 7,7,7,9 1,[11] × × ×

59 29,29,28,22 49 1,1,3,15 0,[11] ×
28,28,26,23 46 3,3,7,13 0,[11] × × ×
28,27,25,24 45 3,5,9,11 0,[11] × × ×
27,26,25,25 44 5,7,9,9 0,[11] × × ×

61 30,29,29,23 50 1,3,3,15 × ×
30,28,27,24 48 1,5,7,13 × ×
28,28,28,24 47 5,5,5,13 × × ×
30,30,25,25 49 1,1,11,11 1,[22] ×
28,27,27,25 46 5,7,7,11 × × ×
30,26,26,26 47 1,9,9,9 × ×

63 31,31,29,24 52 1,1,5,15 ×
30,30,30,24 51 3,3,3,15 × × ×
31,31,27,25 51 1,1,9,13 1,[20] ×
30,29,28,25 49 3,5,7,13 × × ×
31,30,26,26 50 1,3,11,11 1,[22] × ×
31,28,27,26 49 1,7,9,11 × ×
29,29,27,26 48 5,5,9,11 × × ×
30,27,27,27 48 3,9,9,9 × × ×
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4. Known results: Multicirculant SDSs

There is an infinite series of multicirculant Williamson matrices due to Xia and
Liu [25]. It gives matrices of order q2 where q is a prime power ≡ 1 (mod 4) . For
such q they construct SDSs having symmetry type (ssss) and parameters(

q2;

(
q
2

)
,

(
q
2

)
,

(
q
2

)
,

(
q
2

)
;q(q−2)

)
.

There are only four proper odd prime powers: 32,52,33,72 in the range that we
consider. If n is one of these powers then 4n−3 is not a square. Thus, the symmetry
type (kkks) cannot occur. Table 2 shows what is presently known about the existence
of multicirculant SDSs for these four powers. It includes the four previously known
isolated examples. The “No” entry means that we have carried out an exhaustive search
and did not find any SDSs of that type.

Table 2: Multicirculant SDSs with symmetry

n (ki) λ (ai) (ssss) (ksss) (kkss)

32 4,4,3,2 4 1,1,3,5 No No No
3,3,3,3 3 3,3,3,3 Yes [19] × ×

52 12,11,11,8 17 1,3,3,9 Yes † No ×
12,12,9,9 17 1,1,7,7 Yes † No Yes [4]
12,10,10,9 16 1,5,5,7 No No ×
10,10,10,10 15 5,5,5,5 Yes [19, 25] × ×

33 13,13,11,9 19 1,1,5,9 No No No
12,12,12,9 18 3,3,3,9 Yes † × ×
13,12,10,10 18 1,3,7,7 No No ×
12,11,11,10 17 3,5,5,7 No × ×

72 24,24,22,18 39 1,1,5,13
23,23,23,18 38 3,3,3,13 × ×
24,22,21,19 37 1,5,7,11 ×
22,22,22,19 36 5,5,5,11 × ×
23,22,20,20 36 3,5,9,9 × ×
21,21,21,21 35 7,7,7,7 Yes [26],† × ×

5. New results

The new results of positive nature are presented in increasing order n of the addi-
tive abelian group A employed.

5.1. Multicirculant Williamson matrices of order 25

Let F25 = Z5[x]/(x2 +2) be the finite field of order 25, and let us identify x with
its image in F25 . Let
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A′
1 = {1,2,x,1+ x,2+ x,2+2x},

A′
2 = {x,1+ x,1−2x,2± x},

A′
3 = {1,x,2x,2+ x,1+2x},

A′
4 = {1,1± x,2−2x},

B′
1 = {1,2,1+ x,1−2x,2+ x,2+2x},

B′
2 = {1,2,x,2x,1+ x,2+2x},

B′
3 = {1,2,2− x,2−2x},

B′
4 = {1± x,1+2x,2+2x}.

The eight subsets

A1 = A′
1∪ (−A′

1), A2 = A′
2∪{0}∪ (−A′

2),
A3 = A′

3∪{0}∪ (−A′
3), A4 = A′

4∪ (−A′
4),

B1 = B′
1∪ (−B′

1), B2 = B′
2∪ (−B′

2),
B3 = B′

3∪{0}∪ (−B′
3), B4 = B′

4∪{0}∪ (−B′
4)

are obviously symmetric. One can easily verify that (Ai) and (Bi) are SDSs in A =
(F25,+) . Their parameters are (52;12,11,11,8;17) and (52;12,12,9,9;17) , respec-
tively.

As far as we know, the existence of elementary abelian SDSs of type (ssss) and
with the above parameters was not known previously. For the parameters (52;10,10,10,
10;15) such SDS was constructed by A. Whiteman, see [19]. It turns out that his SDS
is equivalent to one in the infinite series of M. Xia and G. Liu [25].

5.2. Multicirculant Williamson matrices of order 27

Let F27 = Z3[x]/(x3−x+1) , a finite field of order 27, and let us identify x with its
image. As far as we know, the existence of an elementary abelian SDS with parameters
(33;12,12,12,9;18) and symmetry type (ssss) is not known. In the cyclic case it is
known [15] that such SDS does not exist. We have constructed the following two non-
equivalent examples of multicirculant SDSs with the above parameters and type.

Let us begin with the seven subsets

A′
1 = {1,x2,1+ x2,x± x2,1− x− x2},

A′
2 = {1,1+ x2,x± x2,1± x− x2},

A′
3 = {1,x,x2,1− x2,x− x2,1+ x− x2},

B′
1 = {1,x,1+ x,x+ x2,1± x+ x2},

B′
2 = {x,x2,1+ x,1− x2,x+ x2,1+ x− x2},

B′
3 = {x,x2,x− x2,1+ x+ x2,x2 − x±1},

A′
4 = B′

4 = {1,x,1− x2,x− x2}
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of A = (F27,+) . Each of the subsets

Ai = A′
i ∪ (−A′

i), Bi = B′
i∪ (−B′

i), i = 1,2,3;

and also A4 = B4 = A′
4 ∪ {0}∪ (−A′

4) is symmetric. Moreover one can verify that
each of the quadruples (Ai) and (Bi) is an SDS with the above parameters. Hence the
corresponding multicirculant matrices, i.e., type 1 matrices, are Williamson matrices.

Let us prove that these two SDSs are not equivalent. Assume that ϕ(Bi) = A1 +a
for some automorphism ϕ of A , some i∈ {1,2,3} , and some nonzero element a∈A .
Since Bi = −Bi and A1 = −A1 , we have

A1 +a = ϕ(−Bi) = −ϕ(Bi) = −(A1 +a) = A1−a,

and so A1 = A1 − 2a = A1 + a . This means that A1 is the union of four cosets of
the subgroup {0,a,−a} . Consequently, a must occur exactly 12 times in the list of
differences x− y with x,y ∈ A1 . Since a 
= 0, a simple computation shows that this
is not true. We now conclude that if our two SDSs are equivalent then there exists an
automorphism ϕ of A and a permutation σ of {1,2,3} such that ϕ(Ai) = Bσ(i) for
i = 1,2,3. Since |A1 ∩A2 ∩A3| = 4 and |B1 ∩B2 ∩B3| = 2, this is impossible. Hence
the two SDSs are not equivalent.

5.3. New G-matrices of order 37

For n = 37 four non-equivalent SDSs of type (kkss) were found in [7]. (Their
search in this case was not exhaustive.) We have constructed one such SDS in 1995 but
were not able to include it in our paper [4] and so it remained unpublished. As it is not
equivalent to the four SDSs just mentioned, we list it here:

(37;18,18,16,13;28)
{2,3,5,6,9,10,11,13,15,18,20,21,23,25,29,30,33,36},
{1,2,4,6,9,10,11,12,17,18,21,22,23,24,29,30,32,34},
{1,2,4,5,6,10,17,18,19,20,27,31,32,33,35,36},
{0,3,11,13,15,16,17,20,21,22,24,26,34}.

5.4. A new skew Hadamard matrix of order 4 ·47

We have constructed recently [6] SDSs with parameters (47;30,22,22;39) and
(47;21,19,19;24) (two of each kind). By combining them with the skew cyclic (47;23;
11) difference set, we obtained SDSs with parameters (47;23,30,22,22;50) and (47;
23,21,19,19;35) . By replacing in the former the second set with its complement,
the parameters become (47;23,22,22,17;37) . All of these SDSs have symmetry type
(k∗ ∗ ∗ ). Thus, by using the Goethals–Seidel array, they give four skew Hadamard ma-
trices of order 188. We have now constructed an SDS with parameters (47;23,21,19,
19;35) and type (ks∗ ∗ ). It gives a new skew Hadamard matrix of order 188. Here is
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this SDS:

{1,2,3,4,6,7,8,9,12,14,16,17,18,21,24,25,27,28,32,34,36,37,42},
{0,6,8,10,11,14,17,18,19,21,23,24,26,28,29,30,33,36,37,39,41},
{0,1,2,5,6,8,9,15,16,19,21,23,27,28,33,36,38,39,40},
{0,2,3,4,7,8,9,10,12,18,21,23,24,25,26,30,34,35,44}.

The first set is the (47;23;11) skew difference set consisting of all nonzero squares in
Z47 .

5.5. Multicirculant Williamson matrices of order 49

According to [15] there are no cyclic SDSs of type (ssss) with the parameters
(72;21,21,21,21;35) . On the other hand, elementary abelian SDSs having the same
type and parameters exist; an example due to R.M. Wilson is given in [26]. We have
constructed another such SDS, not equivalent to Wilson’s example.

Let F49 = Z7[x]/(x2 − 3) and let us identify x with its image in F49 . Our SDS
consists of four symmetric blocks Ai = A′

i∪{0}∪ (−A′
i) in A = (F49,+) , where

A′
1 = {1,2,2x,x+2,2x+2,2x−1,3x+1,3x−2,3x±3},

A′
2 = {2,x,2x,x+2,x−1,x±3,2x+3,3x+2,3x+3},

A′
3 = {2,2x,x+1,x+3,x−2,2x−2,2x±3,3x−2,3x−3},

A′
4 = {3,3x,x+2,x+3,2x+1,2x+3,3x−1,3x−2,3x±3}.

Note that {±1,±3x} is the unique subgroup of order 4 in F∗
49 and none of the

Ai contains this subgroup. In Wilson’s example one of the four blocks contains the
subgroup of order 4. By using this fact and an argument from 5.2, it is easy to show
that the two examples are not equivalent. Both examples give rise to multicirculant
Williamson matrices of order 49.

5.6. A new skew Hadamard matrix of order 4 ·61

We have constructed a cyclic SDS (Ai) with parameters (61;30,28,27,24;48)
and symmetry type (k∗ ∗s). The four blocks are:

A1 = {1,6,7,9,13,16,17,18,20,22,24,25,27,28,30,32,35,38,

40,42,46,47,49,50,51,53,56,57,58,59},
A2 = {0,1,2,3,7,11,12,13,14,15,19,21,22,24,26,28,29,30,

33,34,35,39,42,47,48,58,59,60},
A3 = {2,3,4,5,11,16,19,20,21,22,25,26,27,29,32,33,36,39,

40,41,42,45,46,49,50,52,58},
A4 = {7,8,10,12,15,16,18,20,24,25,27,30,31,34,36,37,41,

43,45,46,49,51,53,54}.
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By using the Goethals–Seidel array, we obtain a new skew Hadamard matrix of order
4 ·61.

5.7. A new skew Hadamard matrix of order 4 ·127

We have constructed a cyclic SDS (Ai) with parameters (127;57,57,57;76) and
symmetry type (ks∗ ∗ ). As 127 is a prime, we have A = (Z127,+) . Let H = {1,2,4,8,
16,32,64} , the subgroup of Z∗

127 of order 7. We enumerate its 18 cosets as αi , 0 � i �
17, such that α2i+1 = −1 ·α2i , 0 � i � 8. For even indexes we have

α0 = H, α2 = 3H, α4 = 5H, α6 = 7H, α8 = 9H,
α10 = 11H, α12 = 13H, α14 = 19H, α16 = 21H.

We use the index sets:

J1 = {0,1,2,3,6,7,16,17},
J2 = {4,6,7,11,13,14,15,16},
J3 = {0,4,5,7,11,12,15,16}

to define the three blocks by

Ai = {0}∪
⋃
k∈Ji

αk, 1 � i � 3.

By combining this SDS with the classical Paley skew (127;63;31) difference set, we
obtain an SDS with parameters (127;63,57,57,57;107) and type (ks∗ ∗ ). By using
the Goethals–Seidel array, it gives a new skew Hadamard matrix of order 4 ·127.

Note that the above SDS (A1,A2,A3) is a difference family and so it gives a bal-
anced incomplete block design (BIBD) with parameters (v,k,λ ) = (127,57,76) .
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