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AGLER INTERPOLATION FAMILIES OF KERNELS

MICHAEL T. JURY1 , GREG KNESE2 AND SCOTT MCCULLOUGH3

(Communicated by L. Rodman)

Abstract. An abstract Pick interpolation theorem for a family of positive semi-definite kernels on
a set X is formulated. The result complements those in [Ag] and [AM02] and will subsequently
be applied to Pick interpolation on distinguished varieties [JKM].

1. Introduction

Let s(z,w) denote Szegő’s kernel; i.e.,

s(z,w) =
1

1− zw
,

for complex numbers z and w . The kernel s is the reproducing kernel for the Hardy
space H2(D) of functions analytic in the unit disc D = {z ∈ C : |z| < 1} with square
summable power series. Thus, an analytic function f : D → C with power series ex-
pansion

f (z) =
∞

∑
n=0

fnz
n

is, by definition, in H2(D) if and only if ∑ | fn|2 converges. The Hardy space is a
Hilbert space with inner product

〈 f ,g〉 =
∞

∑
n=0

fngn.

Evidently, for a fixed w , the function sw(z) = s(z,w) is in H2(D) and earns the title of
reproducing kernel because, for f ∈ H2(D) ,

f (w) = 〈 f ,sw〉.

Szegő’s kernel is indispensable to the statement of
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THEOREM 1.1. (Pick Interpolation) Let n be a positive integer. Given points
w1, . . . ,wn;v1, . . . ,vn ∈D , there exists an analytic function f : D→D such that f (wj)=
v j if and only if Pick’s matrix, (

(1− v jv�)s(wj ,w�)
)

is positive semi-definite.

Extensions of the Pick interpolation theorem to domains and settings more general
than the disc D often involve replacing the Szegő kernel with a family of kernels. The
references [AM02, AM99, AM03, DPRS, Ab, B, BB, BCV, BTV, P, CLW, FF, M, JK,
MP, MS, P, R1, R2, S65] represent only a fraction of the results in this direction. For
instance, in Abrahamse’s [Ab] interpolation theorem on the annulus the Szegő kernel
is replaced by a family of kernels kt(z,w) - parametrized by t in the unit circle T -
identified by Sarason [S65]. See also [AD]. In a similar vein, the recent constrained
Pick interpolation in [DPRS] [R1][R2] are stated in terms of a family of kernels over
the disc canonically determined by the constraints.

The main result of this paper, Theorem 1.3 below, is a Pick theorem formulated,
like the related results in [Ag] and [AM02], purely in terms of a collection of kernels.
The result here has a natural operator algebraic interpretation which is exploited in the
proof by using the fact that the quotient of an operator algebra by a two sided ideal
is again an operator algebra. (This is a corollary of the Blecher-Ruan-Sinclair (BRS)
theorem. See [Pa] or [BL] for an exposition of the BRS theorem and the related topics
of completely positive maps, Arveson’s extension theorem, and Stinespring’s represen-
tation theorem.) In forthcoming work [JKM], Theorem 1.3 is applied to produce a Pick
interpolation theorem on distinguished varieties [AM05] [AM03].

The statement of the main result requires the notion of a (positive semi-definite)
matrix-valued kernel. Let Mn denote the n×n matrices with complex entries. An Mn -
valued kernel on a set X is a function k : X ×X → Mn which is positive semi-definite
in the sense that, for every finite subset F ⊂ X , the (block) matrix(

k(x,y)
)
x,y∈F

is positive semi-definite.

DEFINITION 1.2. Fix a set X and a sequence K = (Kn) where each Kn is a set
of Mn -valued kernels on X .

The collection K is an Agler interpolation family of kernels provided:

(i) if k1 ∈ Kn1 and k2 ∈ Kn2 , then k1 ⊕ k2 ∈ Kn1+n2 ;

(ii) if k ∈ Kn , z ∈ X , γ ∈ C
n , and γ∗k(z,z)γ 	= 0, then there exists an N , a kernel

κ ∈ KN , and a function G : X → Mn,N such that

k′(x,y) := k(x,y)− k(x,z)γγ∗k(z,y)
γ∗k(z,z)γ

= G(x)κ(x,y)G(y)∗;
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(iii) for each finite F ⊂ X and for each f : F → C , there is a ρ > 0 such that, for
each k ∈ K ,

F ×F � �→ (ρ2− f (x) f (y)∗)k(x,y)

is a positive semi-definite kernel on F ; and

(iv) for each x ∈ X there is a k ∈ K such that k(x,x) is nonzero.

THEOREM 1.3. Suppose K is an Agler interpolation family of kernels on X .
Further suppose Y ⊂ X is finite, g : Y → C and ρ � 0 . If for each k ∈ K the kernel

Y ×Y � (x,y) → (ρ2−g(x)g(y)∗)k(x,y) (1.1)

is positive semi-definite, then there exists f : X → C such that f |Y = g and for each
k ∈ K the kernel

X ×X �→ (ρ2− f (x) f (y)∗)k(x,y) (1.2)

is positive semi-definite.

The remainder of this introduction contains five subsections. The first gives al-
ternate formulations and interpretations of the axioms of an Agler interpolation family.
The second through fourth subsections compare Theorem 1.3 with the results results
of [Ag] and [AM02] on kernel structures; with Quiggin’s Theorem; and with the test
function approach to interpolation like that found in [DMM]. We thank the referees for
both suggesting and providing substantial contributions toward these topics - as well as
for pointing out and fixing a rough patch in the proof of Theorem 1.3. The last subsec-
tion gives a road map to the rest of the paper. In particular, an initial discussion of the
connections with the interpolation Theorem of Abrahamse is in Section 5.

1.1. The axioms

Condition (ii) in the definition of interpolation family asks that Schur complements
of a kernel in the family is again in the family, at least up to conjugation.

Let K be a collection of kernels on X which doesn’t necessarily satisfy condition
(iii) of interpolation family. With Y a finite subset of X fixed, let M(Y ) denote those
functions f : Y → C for which there is a ρ such that

Y ×Y � (x,y) → (ρ2− f (x) f (y)∗)k(x,y)

is positive semi-definite for all k ∈ K . It is straightforward to check that M(Y ) is
an algebra. Moreover, M(Y ) consists of all complex-valued functions on Y (condition
(iii)) if and only if M(Y ) separates points if and only if for each y∈Y the characteristic
function of {y} is in M(Y ) .

Condition (iii) can be thought of as a type of (uniformly) full rank condition on the
collection K . With Y finite, k a kernel on Y , and y ∈ Y , view k(·,y) = (k(x,y))x∈Y

as a vector. For this single scalar kernel condition (iii) asks that the non-zero vectors in
the set {k(·,y) : y ∈ Y} form a linearly independent set.
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Condition (iv) says that, again for a finite subset Y of X ,

‖ f‖Y = inf{ρ2 : (ρ2− f (x) f (y)∗)k(x,y) � 0, k ∈ K }

determines a norm, and not just a semi-norm, on the set of complex-valued functions
on Y .

1.2. Kernel structures

In [AM02] (see also [Ag]), the notion of a kernel structure is introduced. A kernel
structure consists of a collection S of scalar kernels on a set X satisfying a list of
axioms which includes the requirement that a normalized average of kernels from the
collection should again be in the collection. The resulting (Pick) interpolation theorem
includes as a hypothesis a type of Schur complement condition in the spirit of (ii) in the
definition of interpolation family. What is problematic in certain examples, including
interpolation on distinguished varieties, is verifying that this Schur complement con-
dition is compatible with averaging of kernels (of course it is always possible to take
the closure of a given collection with respect to these operations, but at the expense of
perhaps an undesired enlargement).

The direct sum condition (i) in the notion of an interpolation family necessarily
introduces matrix-valued kernels and does in a sense play the role of averaging. How-
ever, it turns out that on a (nice) multiply connected domain R , the log modularity
of the algebra H∞(R) together with Theorem 1.3 recovers the Abrahamse interpolation
Theorem. On the other hand, it seems likely that in other applications that either matrix-
valued kernels must be included or the collection of scalar kernels must be enlarged,
and perhaps significantly so. Indeed, it appears this is the situation for distinguished
varieties.

1.3. NP kernels

It is interesting for several reasons to see that Quiggin’s theorem [Q] (see also
[AM00]) is a consequence of Theorem 1.3.

Let k be a positive definite (scalar-valued) kernel on a set X and assume that k is
normalized by k(x,b) = 1 for some fixed base point b ∈ X . (The implicit assumption
that there is a b such that k(x,b) is never zero can be avoided, but the extra generality is
not germane to this discussion). The kernel k is an NP kernel (NP for Nevanlinna-Pick)
if there is a positive kernel p(x,y) such that

k(x,y)−1 = p(x,y)k(x,y).

It turns out that the choice of base point did not matter.

LEMMA 1.4. For each a ∈ X there is a positive kernel qa such that

k(a,a)k(x,y)− k(x,a)k(a,y) = qa(x,y)k(x,y).
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Using this lemma, it is straightforward to prove that the collection of kernels
{In+1 ⊗ k : n ∈ N} (here In+1 is the (n + 1)× (n + 1) identity matrix) is an Agler-
interpolation family of kernels and consequently deduce Quiggin’s theorem.

Sketch of proof of Lemma 1.4. Writing everything in terms of �(x,y) = p(x,y)−1,
it suffices to prove that

X ×X � (x,y) �→ �(x,y)+
�(x,a)�(a,y)
−�(a,a)

is a positive semi-definite kernel. This conclusion follows from two facts. First, for a
finite set F the matrix

(p(x,y)−1)x,y∈F

has exactly one negative eigenvalue, since it is a positive semi-definite matrix minus a
rank one positive and moreover, 0 � p(x,x) < 1 for all x . Second, if(−1 b∗

b D

)

has exactly one negative eigenvalue, then D+ bb∗ is positive semi-definite which fol-
lows from the computation,(

1 0
b I

)(−1 b∗
b D

)(
1 b∗
0 I

)
=

(−1 0
0 D+bb∗

)
. �

The proof of Quiggin’s theorem in [Q] uses Parrot’s Lemma to extend the domain
of definition of the function g to a point y0 not in X while preserving the positivity
in (1.1) (for the single NP kernel k ). A Zorn’s Lemma argument then completes the
proof. Unfortunately, this approach fails in the context of a collection of kernels (as
opposed to a single NP kernel). To see the difficulty, suppose g and ρ satisfy (1.1) and
let k ∈ Kn a vector γ ∈ Cn and a point y0 /∈ Y be given. Schur complement and an
application of Parrot’s Lemma produces a λk,γ such that the matrix

(
(1−λk,γλ ∗

k,γ)γ
∗k(y0,y0)γ (1−g(x)λ ∗

k,γ)γ
∗k(y0,x)x∈Y

(1−λk,γg(y)∗)k(x,y0)γ (1−g(x)g(y)∗(k(y,x)x,y∈Y

)

is positive semi-definite. Unfortunately, it is not obvious from these considerations
that there is a choice of λ independent of k and γ . Thus, to prove Theorem 1.3 it
is not simply a matter of using a Schur complement argument to show that a function
g : Y → C satisfying condition (1.1) can be extended to a g0 : Y ′ = Y0 ∪{y0}→ C (y0

any point of X not already in Y ) so that g0 satisfies (1.1) on Y ′ ×Y ′ .

1.4. Test Functions

In [DMM] (see also [AM02]) a family of test functions Ψ on a set X is a collection
of functions f : X → C such that



576 M. T. JURY, G. KNESE AND S. MCCULLOUGH

(i) sup{|ψ(x)| : ψ ∈Ψ} < 1 for each x ∈ X ;

(ii) for each finite subset Y of X , the algebra generated by the restrictions of ψ ∈Ψ
to Y is the algebra of all complex functions on Y ; and

(iii) Ψ is closed in the topology of pointwise convergence.

(Condition (iii) is not so important for the considerations here.)
Dualizing, let K (Ψ) denote the collection of kernels k such that

X ×X → (1−ψ(x)ψ(y)∗)k(x,y)

is positive semi-definite for every ψ ∈Ψ .

PROPOSITION 1.5. The collection K (Ψ) is an interpolation family.

Sketch of proof. Condition (i) of Definition 1.2 is evidently satisfied.
To prove item (ii) observe, suppose Y is a finite set, k is an n× n matrix-valued

kernel on Y , f : Y → C , and

Y ×Y � (x,y) �→ �(x,y) = (ρ2− f (x) f (y)∗)k(x,y)

is positive semi-definite. Given z ∈Y and a vector γ ∈ Cn , the Schur complement

�′(x,y) = �(x,y)− �(x,z)γγ∗�(z,y)
γ∗�(z,z)γ

is positive semi-definite. A bit of algebra gives,

�′ = (ρ2− f (x) f (y)∗)k′(x,y)− ( f (x)− f (z))( f (y)− f (z))∗L(x,y),

where k′ is the kernel from item (ii) of the definition of interpolation family and L is a
positive semidefinite kernel. It follows that if k ∈ K (Ψ) , then so is k′ .

That K (Ψ) satisfies condition (iii) of interpolation family follows immediately
from item (ii) in the definition of test functions and remarks in Subsection 1.1.

Given x∈ X , the kernel kx defined by kx(x,x) = 1 and kx(y,z) = 0 if (y,z) 	= (x,x)
is in K (Ψ) and hence K (Ψ) satisfies condition (iv) in the definition of interpolation
family. �

1.5. The rest of the paper

The remainder of the paper is organized as follows. Section 2 contains some back-
ground on the connections between kernels and operators. The proof of Theorem 1.3 in
the case that X is finite appears in Section 3. A main ingredient is the fact that the quo-
tient of an operator algebra by a closed ideal is again an operator algebra. The induction
step - passing from finite to infinite X and thus completing the proof of Theorem 1.3 -
is the subject of Section 4.
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In the forthcoming paper [JKM], Theorem 1.3 is applied to yield a Pick interpo-
lation theorem for distinguished varieties. There are similarities to interpolation on
multiply connected domains and the case of the annulus is discussed in Section 5,
where the role of item (ii) of Definition 1.2 becomes apparent. The fact that every
finite rank bundle shift over an annulus A is a direct sum of rank one bundle shifts
[AD] implies directly that the family of kernels obtained by taking finite direct sums
of Abrahamse/Sarason kernels over A is an interpolation family yielding Abrahamse’s
interpolation theorem on A . For more general multiply connected domains (and for
scalar interpolation) this is still true, but the proof is more involved and is not discussed
here. Also, though Theorem 1.3 addresses only scalar-valued interpolation, the condi-
tions of Definition 1.2 are formulated with matrix-valued interpolation in mind.

2. Operator Theoretic Preliminaries

The operator theoretic approach to interpolation associates to a positive semi-
definite matrix-valued kernel k a Hilbert space H2(k) . Functions satisfying, for this
given k , the positivity condition of item (iii) of Definition 1.2 determine bounded oper-
ators on H2(k) .

2.1. The Hilbert Space H2(k)

In this section we review the basic machinery of reproducing kernel Hilbert spaces;
see e.g. [AM02]. To a positive semi-definite kernel k : X ×X →Mn , there is associated
a Hilbert space H2(k) so that in the case that k is positive definite and X is finite,
H2(k) is, as a set, all functions F : X → C

n . To construct H2(k) , define a semi-inner
product on functions F,G : X → Cn of the form

F = ∑
x∈X

k(·,x)Fx,

G = ∑
x∈X

k(·,x)Gx,

by
〈F,G〉 = ∑

x,y∈X
〈k(x,y)Fy,Fx〉.

Let H2(k) denote the Hilbert space obtained by quotienting out null vectors and then
forming the completion of the resulting pre-Hilbert space. When X is finite the quotient
is finite dimensional and hence already complete. If moreover, k is positive definite,
then the set of null vectors is trivial.

Condition (ii) in Definition 1.2 has a natural interpretation in terms of H2(k) : if
N is the subspace of H2(k) spanned by the nonzero vector k(·,z)γ , then k′ is the
reproducing kernel for N ⊥ . Indeed, we have

PN =
k(·,z)γ(k(·,z)γ)∗
〈k(·,z)γ,k(·,z)γ〉 .
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Hence,

〈PN k(·,y)v,k(·,x)u〉 =
〈k(·,y)v,k(·,z)γ〉〈k(·,z)γ,k(·,x)u〉

〈k(z,z)γ,γ〉
=

〈k(z,y)v,γ〉〈k(x,z)γ,u〉
〈k(z,z)γ,γ〉

= u∗
k(x,z)γγ∗k(z,y)
〈k(z,z)γ,γ〉 v.

Thus, letting M = H2(k)�N and using the notation of item (ii) in Definition 1.2,

〈PM k(·,y)v,k(·,x)u〉 = 〈k(·,y)v,k(·,x)u〉− 〈k(x,z)γγ∗k(z,y)v,u〉
〈k(z,z)γ,γ〉

= 〈k(x,y)v,u〉− 〈k(x,z)γγ∗k(z,y)v,u〉
〈k(z,z)γ,γ〉

= 〈k′(x,y)v,u〉.

Assuming k is a member of an Agler interpolation family K , then, by item (ii)
of Definition 1.2 there is an N , a κ ∈ KN , and a function G : X → Mn,N such that

〈PM k(·,y)v,k(·,x)u〉 = 〈G(x)κ(x,y)G(y)∗v,u〉.

LEMMA 2.1. Let K be an Agler interpolation family of kernels on a finite set X .
Suppose k ∈ K , Z ⊂ X and for each z ∈ Z there is an associated subspace Jz ⊂ C

n.
Let Gz = k(·,z)Jz, let N =∑Gz ⊂ H2(k), and let M = H2(k)�N . There is an N ,
a kernel κ ∈ KN , and a function G : X → Mn,N such that

〈PM k(·,y)v,k(·,x)u〉 = 〈G(x)κ(x,y)G(y)∗u,v〉. (2.1)

Moreover, there is a positive Mn -valued kernel k′ such that, for u,v ∈ Cn ,

〈k′(x,y)u,v〉 = 〈PM k(·,y)u,k(·,x)v〉. (2.2)

Finally, the mapping W : M → H2(κ) defined by

WPM k(·,y)u = κ(·,y)G(y)∗u

is (well defined and) an isometry.

Proof. Equation (2.1) follows by an induction argument based on the computation
preceding the proof. The right hand side of equation (2.2) determines a (positive semi-
definite) kernel. Finally, that W is an isometry follows immediately from equation
(2.1). �
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2.2. The algebra H∞(k)

Let k be a positive semi-definite Mn -valued kernel on X and suppose for each
f : X → C there is a ρ > 0 such that

X ×X � (x,y) �→ (ρ2− f (x) f (y)∗)k(x,y)

is a positive semi-definite kernel on X . Let H∞(k) denote the set of functions f : X →C

endowed with the norm,

‖ f‖k = inf{ρ > 0 : (ρ2− f (x) f (y)∗)k(x,y) � 0 for all k ∈ K }.

Here � 0 means the relevant kernel is positive semi-definite.
An element f of H∞(k) is identified with the operator Mf : H2(k)→H2(k) whose

adjoint is determined by Mk( f )∗k(·,z)h = f (z)∗k(·,z)h . Indeed,

‖Mk( f )∗‖k = ‖ f‖k.

Hence Mk : H∞(k)→B(H2(k)) defined by f �→Mk( f ) is an isometric unital represen-
tation. Moreover, viewing H∞(k) as a subalgebra of B(H2(k)) determines an operator
algebra structure on H∞(k) .

LEMMA 2.2. Suppose X is a finite set and k : X ×X → Mn is a (positive semi-
definite) kernel. If for each f : X → C there exists a ρ > 0 such that

X ×X � (x,y) → (ρ2− f (x) f (y)∗)k(x,y)

is positive semi-definite, then, for each x ∈ X the mapping

Qxk(·,y)v =

{
k(·,x)v y = x;

0 y 	= x.

determines a well defined bounded linear mapping Qx : H2(k) → H2(k).

Proof. Let χx denote the characteristic function of {x} and note that Qx = M∗
χx

and thus the Lemma follows from the remarks above. �

LEMMA 2.3. Suppose X is finite. If H is a Hilbert space and τ : H∞(k) →
B(H ) is a completely contractive unital representation, then there is a Hilbert space
E and an isometry V : H → E ⊗H2(k) such that

τ( f ) = V ∗(I⊗Mk( f ))V.

Proof. Identify H∞(k) with the subspace {Mk( f ) : f ∈ H∞(k)} of B(H2(k)) .
Since τ is completely contractive and unital, it extends to a completely contractive uni-
tal map Φ : B(H2(k))→B(H ) . By Stinespring’s representation theorem, there exists
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a Hilbert space L , an isometry V : H → L , and a representation π : B(H2(k)) →
B(L ) such that

Φ(T ) = V ∗π(T )V.

In particular, for f ∈ H∞(k) , we have τ( f ) = V ∗π(Mk( f ))V.

Since H2(k) is finite dimensional (as X is finite), π is a multiple of the identity
representation; i.e., up to unitary equivalence, π(T ) = I⊗T , and under this identifica-
tion there is a Hilbert space E such that L = E ⊗H2(k) . �

3. The Proof for finite X

In this section we prove Theorem 1.3 first under the added hypothesis that X is a
finite set. Accordingly, until Section 4, assume that X is finite.

3.1. Representations of quotients

Given f : X → C, let Z ( f ) denote the zero set of f .
Also, given Y ⊂ X and a kernel k : X ×X → Mn , let k|Y = k|Y×Y . Thus k|Y is

a kernel on Y , and, given a collection of kernels K on X we use the notation K |Y ,
for the collection of kernels of the form k|Y for k ∈ K . In particular, if K is an
interpolation family of kernels, then so is K |Y .

LEMMA 3.1. Suppose

(i) K is an Agler interpolation family on the finite set X ;

(ii) k ∈ Kn;

(iii) H and E are Hilbert spaces, and V : H → E ⊗H2(k) is an isometry;

(iv) σ : H∞(k) → B(H ) given by

H∞(k) � f �→V ∗(I⊗Mk( f ))V

is a (unital) representation; and

(v) Y ⊂ X .

If σ(g) = 0 whenever Y ⊂ Z (g), then, for each ψ ∈ H∞(k),

‖σ(ψ)‖ � sup{‖Mκ(ψ |Y )‖} : κ ∈ K |Y}.

REMARK 3.2. Note σ(ψ)∗ depends only upon ψ |Y . In fact, σ induces a repre-
sentation σ̃ : H∞(k)/I → B(H ) , where I is the ideal of functions in H∞(k) which
vanish on the complement, Ỹ , of Y in X .
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Proof. Fix 0 	= ψ ∈ H∞(k) and ε > 0. Choose unit vectors h,γ in H such that

‖σ(ψ)∗‖ � 〈σ(ψ)∗h,γ〉+ ε. (3.1)

Because X is a finite set, there exists a finite dimensional subspace E0 of E such
that 0 	= V γ ∈ E0 ⊗H2(k) . Let K denote the kernel K : X × X → B(E0)⊗H2(k)
defined by

K(x,y)e⊗ v = e⊗ k(x,y)v.

Since K is closed with respect to direct sums, K ∈ K . Indeed, K is the direct sum
of k with itself m times, where m is the finite dimension of E0 . Let N = mn and view
K : X ×X → CN . Summarizing, H∞(k) = H∞(K) (as operator algebras), E ⊗H2(k) is
canonically identified with H2(K)⊕ (E ⊥

0 ⊗H2(k)), and V γ ∈ H2(K) .
Let P denote the projection onto H2(K) . Thus P = PE0 ⊗ I, from which it follows

that the subspace H2(K) reduces (IE ⊗Mk(ϕ)∗) for each ϕ ∈ H∞(k). Thus, for h∗ ∈
H ,

〈σ(ϕ)∗h∗,γ〉 = 〈V ∗(IE ⊗Mk(ϕ)∗)Vh∗,γ〉
= 〈P(IE ⊗Mk(ϕ)∗)Vh∗,V γ〉
= 〈(IE0 ⊗Mk(ϕ)∗)PVh∗,V γ〉
= 〈V ∗MK(ϕ)∗PVh∗,γ〉,

(3.2)

where V γ = PV γ was used in the second equality.
Because of item (iii) in the definition of interpolation family and Lemma 2.2, for

x ∈ X ,

QxK(·,y)v =

{
K(·,x)v y = x;

0 y 	= x

determines a bounded operator Qx : H2(K) → H2(K) .
Next observe Q2

x = Qx, the range of Qx is [K(·,x)v : v ∈ CN ], there is the (non-
orthogonal) resolution I = ∑x Qx, and

MK(ϕ)∗Qx = ϕ(x)∗Qx (3.3)

for ϕ ∈ H∞(k) .
For x ∈ X , let

Gx = QxPVH .

Observe Gx is invariant for {MK(φ)∗ : φ ∈ H∞(K)} because of equation (3.3). Thus
GỸ = ∑z/∈Y Gz is invariant for {MK(φ)∗ : φ ∈ H∞(k)}. Let M = H2(K)�GỸ .

If g ∈ H∞(k) and Y ⊂ Z (g) , and if h∗ ∈ H , then

0 = 〈σ(g)∗h∗,γ〉
= 〈MK(g)∗PVh∗,V γ〉
= 〈∑

x
g(x)∗QxPVh∗,V γ〉

= 〈∑
z/∈Y

g(z)∗QzPVh∗,V γ〉.
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The first equality follows from the hypothesis on σ which gives σ(g) = 0; the second
uses equation (3.2); the third uses equation (3.3) and I = ∑Qx ; and the fourth equality
from the fact that g(y) = 0 for y ∈Y . Fix a z0 /∈Y and use item (iii) in the definition of
interpolation family to choose g ∈ H∞(k) such that g(z0) = 1 and g(x) = 0 otherwise
to obtain

0 = 〈Qz0PVh∗,V γ〉.
Thus, V γ is orthogonal to each Gz0 and therefore to GỸ . Hence V γ ∈ M .

Since PM QzPVH = 0 for z /∈ Y , if h∗ ∈ H and PVh∗ is written as

PVh∗ = ∑
y∈X

K(·,y)vy,

then, for z /∈ Y,
PM K(·,z)vz = 0. (3.4)

In particular,
PM PVh∗ = ∑

y∈Y
PM K(·,y)vy. (3.5)

Thus, with L equal to the span of {K(·,y)v : y∈Y, v∈CN} , it follows that PM PVH ⊂
L .

From Lemma 2.1 there is an M, a kernel κ ∈ KM , and a function G : X → MN,M

such that
〈PM K(·,y)v,K(·,x)u〉 = 〈κ(x,y)G(y)∗v,G(x)∗u〉. (3.6)

In particular, the map W : L → H2(κ |Y ) defined by WPM K(·,y)v = κ(·,y)G(y)∗v is
(well defined and) an isometry.

Returning to the vector h∈H in equation (3.1), there exists hx,γx ∈CN such that

PVh = ∑
x∈X

QxPVh =∑K(·,x)hx

V γ = ∑
x∈X

QxV γ =∑K(·,x)γx.
(3.7)

Note that, since h and γ are unit vectors, ‖PVh‖ � 1 and ‖V γ‖ = 1.
With these notations and for ϕ ∈ H∞(k) ,

〈σ(ϕ)∗h,γ〉 = 〈MK(ϕ)∗PVh,V γ〉
= ∑

y∈X
〈ϕ(y)∗K(·,y)hy,PMV γ〉

= ∑
x,y∈X

〈ϕ(y)∗K(·,y)hy,PM K(·,x)γx〉

= ∑
x,y∈X

〈ϕ(y)∗PM K(·,y)hy,PM K(·,x)γx〉

= ∑
x,y∈Y

〈ϕ(y)∗PM K(·,y)hy,PM K(·,x)γx〉

= ∑
x,y∈Y

〈ϕ(y)∗WPM K(·,y)hy,WPM K(·,x)γx〉
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= ∑
x,y∈Y

〈ϕ(y)∗κ(·,y)G(y)∗hy,κ(·,x)G(x)∗γx〉

= 〈Mκ |Y (ϕ |Y )∗ ∑
y∈Y

k|Y (·,y)G(y)∗hy,∑
x∈Y

k|Y (·,x)G(x)∗γx〉

= 〈Mκ |Y (ϕ |Y )∗WPM PVh,WV γ〉.

Here the first equality follows from the definition of σ ; the second uses equation (3.3)
and V γ ∈ M as well as equation (3.7); the fifth uses equation (3.4); the sixth that
W : L → H2(κ |Y ) is an isometry; the seventh the definition of W ; and finally the last
equality uses both the definition of W and equation (3.5).

Hence,

‖σ(ϕ)∗‖− ε � |〈σ(ϕ)∗h,g〉|
= |〈Mκ |Y (ϕ |Y )∗WPM PVh,V γ〉|
� ‖Mκ |Y (ϕ |Y )∗‖ ‖WPM PVh‖ ‖WV γ‖
� ‖Mκ |Y (ϕ |Y )∗‖ ‖h‖ ‖γ‖.

and the proof is complete. �

3.2. The end of the proof for finite X

In this subsection we complete the proof of Theorem 1.3 in the case that X is
finite, in which case there exists m and x1, . . . ,xm such that Y = X \ {x1, . . . ,xm}. Fix
g : Y → C . Define

ρ = sup{‖Mk|Y (ψ |Y )‖ : k ∈ K }.
By item (iii) in the definition of interpolation family, ρ is finite.

Let K+ denote those k̃ ∈ K such that k̃(x,x) 	= 0 for each x ∈ X . Because of
condition (iv) in the definition of interpolation family, for each x ∈ X there is a kx such
that kx(x,x) 	= 0. Hence, if k ∈ K , then k̃ = k⊕x∈X kx ∈ K+ . In particular, K+ is
non-empty and if

X ×X � (x,y) �→ (ρ2− f (x) f (y)∗)k̃(x,y)

is positive semi-definite for all k̃ ∈ K+ , then

X ×X � (x,y) �→ (ρ2− f (x) f (y)∗)k(x,y)

for all k ∈ K .
Let k̃ be a given element of K+ . Let Ik̃ denote the ideal of functions in H∞(k̃)

which vanish on Y . The quotient H∞(k̃)/Ik̃ is a unital operator algebra and hence (by
the BRS theorem) it has a completely isometric unital representation τ on a Hilbert
space H (see [BL] Proposition 2.3.4).

The quotient mapping

π : H∞(k̃) → H∞(k̃)/Ik̃
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is completely contractive and unital. Thus, σ = τ ◦π : H∞(k̃)→B(H ) is a completely
contractive representation. Further, because τ is a (complete) isometry,

‖π(φ)‖ = ‖σ(φ)‖
for φ ∈ H∞(k̃) . Since π is a unital completely contractive representation of H∞(k̃) , π
has the form given in Lemma 2.3. Hence, Lemma 3.1 applies to give

‖π(ψ)‖ � ρ .

whenever ψ |Y = g ; also note that ϕ |Y = ψ |Y if and only if π(ϕ) = π(ψ) and since is
completely isometric, we conclude that ϕ |Y = ψ |Y if and only if σ(ϕ) = σ(ψ) .

Suppose now that ρ ′ > ρ . By the definition of the quotient norm, there exists a ϕ
such that π(ϕ) = π(ψ) and so that

X ×X � (x,y) → [(ρ ′)2−ϕ(x)ϕ(y)∗]k̃(x,y) (3.8)

is positive semi-definite.
Consider the set

Ck̃,ρ ′ = {(ϕ(x1), . . . ,ϕ(xm)) : π(ϕ) = π(ψ) and equation (3.8) holds} ⊂ C
m.

From above Ck̃,ρ ′ is nonempty. It is evidently closed, and because k̃ ∈ K+ , it is also

bounded. Because K is closed with respect to direct sums, the collection {Ck̃,ρ ′ : k̃ ∈
K+} has the finite intersection property. Hence, there exists a ϕ such that ϕ |Y = g
and, for each κ ∈ K+ , the kernel

X ×X � (x,y) → [(ρ ′)2−ϕ(x)ϕ(y)∗]κ(x,y) (3.9)

is positive semi-definite. Hence the same is true for all k ∈ K .
To finish the proof, choose a sequence ρ� > ρ converging to ρ . There exists ϕ�

such that the kernel in equation (3.9), with ϕ� in place of ϕ and ρ� in place of ρ ′ , is
positive semi-definite. Because ϕ� is uniformly bounded (again using item (iv) of the
definition of interpolation family) it has a subsequence converging pointwise to some
f which then satisfies the conclusion of the Theorem 1.3

4. The case of arbitrary X

The passage from finite X to infinite X involves a Zorn’s Lemma argument.
Let K denote a given interpolation family on a set X . Let Y , a finite subset of

X , g : Y → C and ρ > 0 such that for each k ∈ K the kernel

Y ×Y � (x,y) �→ (ρ2−g(x)g(y)∗)k(x,y)

is positive semi-definite, be given.
Consider the collection S of pairs (U, f ) where Y ⊂U ⊂X , f :U →C , f |Y = g ,

and for each k ∈ K the kernel

U ×U � (x,y) �→ (ρ2− f (x) f (y)∗)k(x,y)
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is positive semi-definite. (We do not assume U is finite.)
Partially order S as follows. Say (U, f ) � (W,h) if U ⊂W and h|U = f . Sup-

pose C = {(U, fU)} is a chain from S . To see that C has an upper bound, let T =∪U
and define h : T → C by h(x) = fU (x) , where (U, fU ) is any element of C for which
x ∈U . The fact that C is linearly ordered implies that h is well defined. Further, if F
is any finite subset of T , then there exists a (U, fU) ∈ C such that F ⊂U and hence,
for each k ∈ K , the matrix

Ak,F =
(
(ρ2− fU(x) fU (y)∗)k(x,y)

)
x,y∈F

=
(
(ρ2−h(x)h(x)∗)k(x,y)

)
is positive semi-definite. It follows that (T,h) ∈ S and is an upper bound for C .

By Zorn’s Lemma, C has a maximal element (W,h). Suppose W 	= X . In this
case, there is a point z ∈ X \W . Given a finite subset F ⊂Y , let G = F ∪{z}. For each
u ∈ C , define a function q : G → C by declaring q|F = h|F and q(z) = u . Now define
CF to be the set of u ∈ C for which the kernel

G×G �→ (ρ2−q(x)q(y)∗)k(x,y)

is positive semidefinite for all k ∈ K. The set CF is nonempty by the finite case of
Theorem 1.3 and is also closed. It is bounded by condition (iv) of Definition 1.2. Thus
CF is compact.

The collection {CF : F ⊂ X , |F | < ∞} has the finite intersection property and
hence there is a u∗ such that

u∗ ∈ ∩{CF : F ⊂ X , |F | < ∞}.
Define h∗ : Y ∪{z}→ C by h∗|Y = h and h∗(z) = u∗ . Then (W ∪{z},h∗) ∈ S and is
greater than (W,h) , a contradiction which completes the proof.

5. Examples: the disc and the annulus

For the case of the disc, let Kn = {sn = In ⊗ s}, where In is the identity n× n
matrix and s is Szegő’s kernel. Given a unit vector γ ∈ Cn and λ ∈ D let Q = I− γγ∗,
and let ϕλ denote a Möbius map of the disc sending λ to 0, and G = ϕλ γγ∗ +Q . It is
readily verified that

k′(z,w) = sn(z,w)− sn(z,λ )γγ∗sn(λ ,w)
γ∗sn(λ ,λ )γ

= G(w)∗sn(z,w)G(z).

Hence K is an Agler interpolation family.
Let A denote an annulus, {r < |z| < 1

r } . There is a family kt(z,w) of scalar
kernels parametrized by T in the unit circle T which collectively play a role on the
annulus similar to that played by Szegő’s kernel on the disc [S65]. These are the kernels
appearing in Abrahamse’s interpolation theorem on A [Ab]. It turns out that given
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t ∈ T and λ ∈ A there is an s ∈ T (which can be explicitly described in terms of the
Abel-Jacobi map) and an analytic function ϕλ such that

kt(z,w)− kt(z,λ )kt(λ ,w)
kt(λ ,λ )

= ϕλ (w)∗ks(z,w)ϕλ (z).

Moreover, to each t and s there is a λ such that the above identity holds, explaining,
at least heuristically, the need to consider the whole Sarason collection of kernels when
interpolating on A .

Let Kn denote the collection of kernels of the form kt1 ⊕ . . .⊕ ktn . The results in
[AD] show that K = (Kn) is an Agler interpolation family on A . Moreover, interpo-
lation with respect to this family is interpolation in H∞(A) as in [Ab].

As a final remark, note that in the proof of Lemma 3.1 and using the notations
there if k is a direct sum of kernels and if GỸ = L , then κ is also the direct sum of
scalar kernels. If this were always the case, then there would be no need to consider
direct sums in the definition of interpolation family. Thus, the fact that, for scalar
interpolation on a multiply connected domain it suffices to consider scalar kernels only
represents additional structure not modeled by Theorem 1.3.

RE F ER EN C ES

[Ab] M. B. ABRAHAMSE, The Pick interpolation theorem for finitely connected domains, Michigan
Math. J. 26 (1979), no. 2, 195–203.

[AD] M. B. ABRAHAMSE AND RONALD DOUGLAS,A class of subnormal operators related to multiply-
connected domains, Advances in Math. 19 (1976), no. 1, 106–148.

[Ag] JIM AGLER, Interpolation, unpublished manuscript.
[AM99] JIM AGLER AND JOHN MCCARTHY,Nevanlinna-Pick interpolation on the bidisk, J. Reine Angew.

Math. 506 (1999), 191–204.
[AM00] JIM AGLER AND JOHN MCCARTHY, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175

(2000), no. 1, 111–124.
[AM02] JIM AGLER AND JOHN MCCARTHY, Pick interpolation and Hilbert function spaces, Graduate

Studies in Mathematics, 44. American Mathematical Society, Providence, RI, 2002. xx+308 pp.
ISBN: 0-8218-2898-3.

[AM03] JIM AGLER AND JOHN MCCARTHY, Norm preserving extensions of holomorphic functions from
subvarieties of the bidisk, Ann. of Math. (2) 157 (2003), no. 1, 289–312.

[AM05] JIM AGLER AND JOHN MCCARTHY, Distinguished varieties, Acta Math. 194 (2005), no. 2, 133–
153.

[B] JOSEPH BALL, Interpolation problems and Toeplitz operators on multiply connected domains, In-
tegral Equations Operator Theory 4 (1981), no. 2, 172–184.

[BB] JOSEPH BALL AND VLADIMIR BOLOTNIKOV, Nevanlinna-Pick interpolation for Schur-Agler
class functions on domains with matrix polynomial defining function in Cn , New York J. Math.
11 (2005), 247–290.

[BCV] JOSEPH BALL, KEVIN CLANCEY, AND VICTOR VINNIKOV, Concrete interpolation of meromor-
phic matrix functions on Riemann surfaces, Interpolation theory, systems theory and related topics
(Tel Aviv/Rehovot, 1999), 137–156, Oper. Theory Adv. Appl., 134, Birkhäuser, Basel, 2002.
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