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(Communicated by L. Rodman)

Abstract. We describe the closed, densely defined linear transformations commuting with a
given operator T of class C0 in terms of bounded operators in {T}′ . Our results extend those
of Sarason for operators with defect index 1 , and Martin in the case of an arbitrary finite defect
index.

1. Introduction

There has been some interest recently in the study of closed unbounded linear
transformations in the commutant of a bounded operator. For instance, let T denote the
restriction of the backward unilateral shift to a proper invariant subspace. Then Sarason
[6] showed that any closed, densely defined linear transformation commuting with T
is of the form v(T )−1u(T ), where u,v ∈ H∞ and v(T ) is injective. This extends his
earlier result [5] pertaining to bounded operators, for which one can take v = 1.

It is fairly easy to see for the above example that closed linear transformations
commuting with T must in fact commute with every operator in {T}′ . Therefore
Sarason’s theorem can be viewed as a particular case of a result of Martin [4], which we
describe next. Assume that T is an operator of class C0(N) as defined in [7, Chapter
III], and X is a closed, densely defined linear transformation commuting with every
operator in {T}′ . Then Martin [4] proved that X = v(T )−1u(T ) with u,v ∈ H∞ such
that v(T ) is injective. Thus these linear transformations are exactly the ones that can
be obtained by applying the Sz.-Nagy–Foias functional calculus [7, Chapter IV] with
unbounded functions.

Martin conjectured that his result would be true for operators T of class C0 with
finite multiplicity. We will show that it is in fact possible to extend this result to arbi-
trary contractions of class C0 . This follows from a more general description of closed,
densely defined linear transformations X commuting with T . In case T has finite
multiplicity, our result states that every such linear transformation X can be written as
X = v(T )−1Y , where Y is a bounded operator in {T}′ , and v ∈ H∞ is such that v(T ) is
injective.
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2. Preliminaries

We will denote by B(H ,H ′) the space of bounded linear operators W : H →
H ′ , where H and H ′ are complex Hilbert spaces. We will also write B(H ) =
B(H ,H ) . Recall that an operator T ∈ B(H ) is a quasiaffine transform of T ′ ∈
B(H ′) if there exists a quasiaffinity, i.e. an injective operator with dense range, W ∈
B(H ,H ′) satisfying WT = T ′W . We write T ≺ T ′ if T is a quasiaffine transform
of T ′ . The operators T and T ′ are quasisimilar if T ≺ T ′ and T ′ ≺ T , in which case
we write T ∼ T ′ .

Assume that T ∈ B(H ) is a contraction, i.e. ‖T‖ � 1, and it is completely
nonunitary in the sense that it does not have any nontrivial unitary direct summand.
The Sz.-Nagy–Foias functional calculus [7, Chapter III] is an algebra homomorphism
u �→ u(T ) ∈ B(H ) of the algebra H∞ of bounded analytic functions in the unit disk,
and which extends the usual polynomial calculus. The operator T is said to be of class
C0 if u(T ) = 0 for some u ∈ H∞ \ {0} . When T is of class C0 , the ideal {u ∈ H∞ :
u(T ) = 0} is of the form mH∞ , where m is an inner function, uniquely determined
up to a constant factor of absolute value 1, and called the minimal function of T . For
any inner function m , there exist operators of class C0 with minimal function m . The
most basic example is constructed as follows. Denote by S the unilateral shift on the
Hardy space H2 , i.e. (S f )(λ ) = λ f (λ ) for f ∈ H2 . The space H (m) = H2 	mH2

is invariant for S∗ , and the operator S(m) ∈ B(H (m)) is defined by the requirement
that S(m)∗ = S∗|H (m) . The operator S(m) has minimal function equal to m .

Quasisimilarity allows a complete classification of operators of class C0 . We will
only need the facts collected in the following statement. We refer to [1, Theorem III.5.1]
for (1-3), [1, Theorem VII.1.9] for (4), [1, Proposition III.5.33] for (5), [7, Proposition
III.4.7] or [1, Proposition II.4.9] for (6), [1, Proposition VII.1.21] for (7), and [1, The-
orem IV.1.2] for (8).

THEOREM 1. Let T ∈ B(H ) and T ′ ∈ B(H ′) be operators of class C0 . De-
note by m the minimal function of T .

1. We have T ≺ T ′ if and only if T ′ ≺ T .

2. There exists a collection {mi}i∈I of inner divisors of m such that m = mi for
some i, and T ∼ ⊕

i∈I S(mi) .

3. If T has finite cyclic multiplicity n, we have T ∼⊕n
j=1 S(mj) , with m1 = m and

mj+1 divides mj for j = 1,2, . . . ,n−1 .

4. If T has finite multiplicity, and M is an invariant subspace for T such that
T ∼ T |M , then M = H .

5. Every invariant subspace M for T is of the form M = AH , with A in the
commutant {T}′ of T .

6. An operator of the form v(T ) with v ∈ H∞ is injective if and only if v and m
have no nonconstant common inner factors. In this case, v(T ) is a quasiaffinity.
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7. If T has finite multiplicity and A ∈ {T}′ is injective, then the map M �→ AM is
an order preserving automorphism of the lattice of invariant subspaces of T .

8. For every Y in the double commutant {T}′′ there exist u,v ∈H∞ such that v(T )
is a quasiaffinity and Y = v(T )−1u(T ) .

The following result appears in [3, Lemma 2.7] (see also [1, Proposition IV.1.13]),
but unfortunately only for multiplicity 2. The argument here follows a different path.

PROPOSITION 2. Assume that T ∈ B(H ) is of class C0 and has finite multi-
plicity. For every injective A ∈ {T}′ there exits another injective B ∈ {T}′ , and a
function v ∈ H∞ such that AB = BA = v(T ) . The operators A,B and v(T ) are then
quasiaffinities.

Proof. As seen in [3], it suffices to consider operators of the form T =
⊕n

j=1 S(mj),
where mj+1 divides mj for j = 1,2, . . . ,n−1. Let A ∈ {T}′ be an injective operator.
By Theorem 1(7), the map M �→ AM is an order preserving automorphism of the lat-
tice of invariant subspaces for T . Regard H (mj) as subspaces of H =

⊕n
j=1 H (mj) ,

and set H j = AH (mj) , K j =
∨

i�= j Hi , and H ′
j = H 	 K j for j = 1,2, . . . ,n .

We must then have
⋂n

j=1 K j = {0} , H j ∩K j = {0} and H j ∨K j = H . The last
two equalities imply that the operator Xj ∈ B(H j,H

′
j ) defined by Xj = PH ′

j
|H j

is a quasiaffinity. Moreover, this operator satisfies the equation X(T |H j) = TjX ,
where Tj ∈ L (H ′

j ) is defined by the equality T ∗
j = T ∗|H ′

j . Thus T |H j ≺ Tj , and
since S(mj) ≺ T |H j (via the operator A|H (mj)), there must exist a quasiaffinity
Yj ∈B(H ′

j ,H (mj)) satisfying YjTj = S(mj)Yj . We define now an operator C ∈ {T}′
by setting

Ch =
n⊕

j=1

YjPH ′
j
h.

It is easy to verify that C is a quasiaffinity. Indeed, Ch = 0 implies that PH ′
j
h = 0, and

hence h∈ ⋂n
j=1 K j = {0}. Also, CH =

∨n
j=1YjH ′

j = H . The product AC leaves all
the summands H (mj) invariant, and therefore Sarason’s generalized interpolation the-
orem [5] implies the existence of functions u j ∈ H∞ such that AC =

⊕n
j=1 u j(S(mj)) .

Moreover, u j and mj have no nonconstant common inner factor because AC is injec-
tive. We deduce from [1, Theorem III.1.14] that there exist scalars t j such that v j =
u j + t jm j has no nonconstant common inner factor with the minimal function m1 of T .
Note that we also have AC =

⊕n
j=1 v j(S(mj)) . Define now v = v1v2 · · ·vn ∈ H∞ and

operators D,B ∈ {T}′ by D =
⊕n

j=1(v/v j)(S(mj)) and B = CD . We have AB = v(T )
and A(BA− v(T)) = ABA− v(T)A = 0 so that BA = v(T ) because A is injective. The
operator v(T ) is a quasiaffinity because v and m1 do not have nonconstant common
inner divisors. �
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3. Unbounded linear transformations in the commutant

Consider a Hilbert space H and a linear transformation X : D(X) → H , where
D(X) ⊂ H is a dense linear manifold. Recall that X is said to be closed if its graph

G (X) = {h⊕Xh : h ∈ D(X)}

is a closed subspace in H ⊕H . The linear transformation X is closable if the closure
G (X) is the graph of a linear transformation, usually denoted X and called the closure
of X .

Let now T ∈ B(H ) be a completely nonunitary contraction, let v ∈ H∞ be such
that v(T ) is a quasiaffinity, and let A ∈ {T}′ . The linear transformation X = v(T )−1A
with domain

D(X) = {h ∈ H : Ah ∈ v(T )H }
has graph

G (X) = {h⊕ k : Ah = v(T )k},
so that X is obviously closed. Moreover, since v(T )A = Av(T ) , we have

G (X) ⊃ G (Av(T )−1) = {v(T )h⊕Ah : h ∈ H }

and thus D(X) ⊃ v(T )H is dense. If v1 ∈ H∞ is another function such that v1(T ) is
a quasiaffinity, the equality v(T )−1Ah = v1(T )−1A1h for h in a dense linear manifold
D ⊂ D(v(T )−1A)∩D(v1(T )−1A1) implies v(T )−1A = v1(T )−1A1 . Indeed, we have
v1(T )Ah = v(T )A1h for h ∈ D , hence v1(T )A = v(T )A1 . Then we have

v1(T )((v(T )k−Ah) = v(T )(v1(T )k−A1h),

so that h⊕k∈ G (v(T )−1A) if and only if h⊕k∈ G (v1(T )−1A1) . These remarks apply
more generally to linear transformations of the form B−1A , where A,B ∈ {T}′ , B is a
quasiaffinity, and AB = BA . When A and B do not commute, the linear transformation
B−1A is still closed, but might not be densely defined, while AB−1 is densely defined
but perhaps not closable.

Linear transformations of the form v(T )−1A , A ∈ {T}′ , commute with T in the
sense that TX ⊂ XT or, equivalently, G (X) is invariant for T ⊕T .

PROPOSITION 3. Let T ∈ B(H ) be an operator of class C0 , and let X be a
closed, densely defined linear transformation commuting with T . There exist bounded
operators A,B ∈ {T}′ such that B is a quasiaffinity and X = AB−1 .

Proof. The operator T ′ = (T ⊕T )|G (X) is of class C0 , and T ′ ≺ T . Indeed, the
operator W ∈ B(G (X),H ) defined by W (h⊕ k) = h satisfies WT ′ = TW , and W is
injective (because G (X) is a graph) and has dense range D(X) . Theorem 1(1) implies
the existence of an injective operator V ∈B(H ,H ⊕H ) such that VH = G (X) and
(T ⊕T )V =VT . Writing Vh = Bh⊕Ah for h∈H , the operators A,B must belong to
{T}′ . Moreover, B is a quasiaffinity. Indeed, Bh = 0 implies Ah = XBh = 0, so that
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Vh = 0 and hence h = 0 because V is injective. The fact that VH is dense in G (X)
implies that BH ⊃D(X) , and hence B has dense range. Obviously, G (AB−1) =VH ,
and hence X = AB−1 . �

For operators with finite multiplicity, a stronger result can be proved.

THEOREM 4. Let T ∈ B(H ) be an operator of class C0 with finite multiplicity,
and let X be a closed, densely defined linear transformation commuting with T . There
exist A ∈ {T}′ and v ∈ H∞ such that v(T ) is a quasiaffinity and X = v(T )−1A.

Proof. By Proposition 3, we can find A0,B ∈ {T}′ such that B is a quasiaffinity
and X ⊃ A0B−1 . Proposition 2 implies the existence of v ∈ H∞ and of a quasiaffinity
C ∈ {T}′ such that BC = CB = v(T ). Setting now A = A0C , we have

Av(T )−1 = A0C(BC)−1 ⊂ A0B
−1 ⊂ X .

We conclude the proof by showing that both v(T )−1A and X coincide with the clo-
sure of Av(T )−1 . For this purpose, define operators T1 = (T ⊕ T )|G (X) , T2 = (T ⊕
T )|G (v(T )−1A) , and T3 = (T ⊕T )|G (Av(T )−1) . As observed earlier, T1 ∼ T2 ∼ T3 ∼
T . Since G (Av(T )−1) is an invariant subspace for T1 and T2 , theorem 1(4) implies the
desired conclusion that X = v(T )−1A . �

Our final result pertains to double commutants.

THEOREM 5. Let T ∈ B(H ) be an operator of class C0 , and let X be a closed,
densely defined linear transformation commuting with every A∈ {T}′ . Then there exist
u,v ∈ H∞ such that v(T ) is a quasiaffinity and X = v(T )−1u(T ) .

Proof. We first prove the result under the additional assumption that T has finite
multiplicity. In this case, Theorem 4 yields A0 ∈ {T}′ and v0 ∈ H∞ such that v0(T )
is a quasiaffinity and X = v0(T )−1A0 . We observe next that A0 belongs to the double
commutant {T}′′ . Indeed, for any B ∈ {T}′ and h ∈ D(X) we have Bh ∈ D(X) and
XBh = BXh so that

v0(T )XBH = v0(T )BXH = Bv0(T )Xh

and therefore A0Bh = BA0h . We conclude that A0B = BA0 because D(X) is dense.
By Theorem 1(8), there exist u,v1 ∈ H∞ such that v1(T ) is a quasiaffinity and A0 =
v1(T )−1u(T ). We reach the desired conclusion X = v(T )−1u(T ) with v = v0v1 .

Consider now an arbitrary operator of class C0 , and let m denote its minimal
function. Let M ⊂ H be an invariant subspace for T such that T |M has finite
multiplicity and minimal function equal to m . By Theorem 1(5), M = CH for some
C ∈ {T}′ . We have CD(X) ⊂ D(X)∩M and

X(CD(X)) ⊂CXD(X) ⊂CH ⊂ M .
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Therefore there exists a closed densely defined linear transformation XM on M such
that

G (XM ) = G (X)∩ (M ⊕M ).

We claim that D(XM ) = D(X)∩M . Indeed, let us set T1 = (T ⊕ T )|G (XM ) and
T2 = (T ⊕T )|G (X)∩ (M ⊕H ) . The projection on the first component demonstrates
the relations T1 ≺ T |M and T2 ≺ T |M . The equality

G (XM ) = G (X)∩ (M ⊕H ),

and hence D(XM ) = D(X)∩M , follows from Theorem 1(4). A similar argument
shows that G (XM ) is the closure of {Ch⊕CXh : h ∈ D(X)} .

We show next that XM commutes with every operator in the commutant of T |M .
Indeed, let D ∈B(M ) be such an operator. Then DC ∈ {T}′ so that DCh ∈D(X) for
every h ∈ D(X) , and

XDCh = DCXh = DXCh.

Thus D⊕D leaves {Ch⊕CXh : h ∈ D(X)} invariant, and hence it leaves its closure
invariant as well, i.e. D commutes with XM .

The first part of the proof implies the existence of u,v ∈ H∞ such that v(TM ) is a
quasiaffinity, and XM = v(T |M )−1u(T |M ) . Note that v(T ) is a quasiaffinity as well
since T and T |M have the same minimal function (cf. Theorem 1(6)). We claim that
X = v(T )−1u(T ) . Indeed, consider arbitrary vectors h1 ∈D(X) , h2 ∈D(v(T )−1u(T )) ,
and let M1 ⊃ M be an invariant subspace for T such that T |M1 has finite multiplic-
ity, and h1,h2 ∈ M1 ; for instance, once can take M1 to be the smallest invariant sub-
space containing M ,h1 and h2 . The preceding argument, with M1 in place of M ,
shows that XM1 = v1(T |M1)−1u1(T |M1) for some u1,v1 ∈ H∞ such that v1(T ) is a
quasiaffinity. Note now that, for h ∈ D(X)∩M , we have both v(T )Xh = u(T )h and
v1(T )Xh = u1(T )h, and therefore

(v1(T )u(T )− v(T )u1(T ))h = v1(T )v(T )Xh− v(T)v1(T )Xh = 0

for such vectors. Since D(X)∩M is dense in M , we have (v1u− u1v)(T |M ) = 0.
We deduce that m , which is the minimal function of T |M , divides v1u− vu1 , and
thus v1(T )u(T ) = v(T )u1(T ) . This implies that v(T )−1u(T ) = v1(T )−1u1(T ) , and
therefore

h1 ∈ D(X)∩M1 = D(XM1) = D(v1(T |M1)−1u(T |M1)) ⊂ D(v(T )−1u(T )),

h2 ∈ D(v(T )−1u(T ))∩M1 = D(v(T |M1)−1u(T |M1))
= D(v1(T |M1)−1u(T |M1)) = D(XM1) ⊂ D(X),

and
Xhj = v1(T )−1u1(T )h j = v(T )−1u(T )h j

for j = 1,2. The desired equality X = v(T )−1u(T ) follows. �
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When T has multiplicity 1, i.e. T has a cyclic vector, the algebra {T}′ is pre-
cisely the algebra generated by T and closed in the weak operator topology; see [1,
Theorem IV.1.2]. Therefore Theorem 5 implies the following extension of Sarason’s
result [6].

COROLLARY 6. Let T ∈ B(H ) be an operator of class C0 with multiplicity 1 ,
and let X be a closed, densely defined linear transformation commuting with T . Then
there exist u,v ∈ H∞ such that v(T ) is a quasiaffinity and X = v(T )−1u(T ) .

In Theorem 5, if we only assume that X is a densely defined linear transformation
commuting with {T}′ , the conclusion is that X ⊂ v(T )−1u(T ) for some u,v∈H∞ such
that v(T ) is a quasiaffinity. Indeed,the operator X must be closable by [2, Proposition
5.8]. As noted by Martin, in case T = S(m) the closability of such linear transforma-
tions was also proved by Sarason [4, Lemma 3].
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