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Abstract. Quasi-Fredholm relations of degree d ∈ N in Hilbert spaces are defined in terms of
conditions on their ranges and kernels. They are completely characterized in terms of an alge-
braic decomposition with a quasi-Fredholm relation of degree 0 and a nilpotent operator of de-
gree d . The adjoint of a quasi-Fredholm relation of degree d ∈N is shown to be quasi-Fredholm
relation of degree d ∈ N . The class of quasi-Fredholm relations contains the semi-Fredholm re-
lations. Earlier results for quasi-Fredholm operators and semi-Fredholm operators are included.

1. Introduction

Semi-Fredholm operators were introduced by I.C. Gohberg and M.G. Kreı̆n [4]
and by T. Kato [7]. A closed linear operator A in a Hilbert space H is said to be
semi-Fredholm if

(S1) ranA is closed;

(S2) ker A or H/ranA is finite-dimensional.

Kato has shown that these operators allow an algebraic decomposition, the so-called
Kato decomposition. The more general class of quasi-Fredholm operators was intro-
duced and studied by J.-Ph. Labrousse [9]. A range space operator A in a Hilbert space
H (i.e., the graph of A is the range of a bounded linear operator from a Hilbert space K
to H×H) is said to be quasi-Fredholm of degree d if there exists a nonnegative integer
d ∈ N0 = N∪{0} , such that

(Q1) d is the smallest number with ranAn∩ker A = ranAd ∩ker A for all n � d ;

(Q2) ker A∩ ranAd is closed in H ;

(Q3) ranA+ker Ad is closed in H .
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A range space operator which is quasi-Fredholm of degree d is automatically closed.
Large classes of operators have the quasi-Fredholm property. Labrousse [9] has shown
that a quasi-Fredholm operator also allows an algebraic Kato decomposition, and that,
in fact, if an operator has an algebraic Kato decomposition then the operator is quasi-
Fredholm.

In the present work the concepts of semi-Fredholm and quasi-Fredholm operators
are considered in the context of linear relations. A linear relation A in a linear space
H is a linear subspace of the Cartesian product H×H ; it can be interpreted as a linear
multi-valued operator. All linear spaces in this paper are assumed to be complex. The
domain, range, kernel, and multi-valued part are denoted by domA , ranA , ker A , and
mulA . The inverse A−1 of a linear relation A is defined by A−1 = {{y,x} : {x,y} ∈
A} , so that domA−1 = ranA , ranA−1 = domA , ker A−1 = mulA , and mulA−1 =
ker A . A relation A is (the graph of) an operator if and only if mulA = {0} . Several
decompositions of linear relations in linear spaces have been considered in the context
of linear spaces in [17], [18], and in the context of Hilbert spaces in [5], [6]. The
motivation for the study of linear relations is manifold: there is of course interest from
a purely mathematical point of view, cf. [1], but there are also many fields where these
objects appear naturally.

The notions of semi-Fredholm relation and quasi-Fredholm relation are introduced
completely parallel to the operator case. The context of relations is quite natural since
then A is quasi-Fredholm if and only if its adjoint A∗ is quasi-Fredholm (without any
additional conditions concerning the denseness of the domain). The main results of
the paper are the Kato decompostion for quasi-Fredholm relations, and hence for semi-
Fredholm relations, and, in fact, the characterization of quasi-Fredholm relations by
their Kato decomposition. The theory of quasi-Fredholm operators in [9] has also been
extended in different directions, cf. [12], [14], [15].

Quasi-Fredholm relations are defined in terms of range space relations, rather than
in terms of closed relations. The notion of range space relation is a replacement for
the notion of closed relation. Range space operators were considered in [9]. A range
subspace in a Hilbert space is a subspace which is a Hilbert space in a stronger topology.
The advantage of this notion is that the sum of range subspaces is a range subspace.
Such spaces go back to J. Dixmier under the name of sous-espaces paracomplet. For
an introduction to range space operators, see [3], [9]. In the present paper this notion is
put in the context of linear relations.

The contents of the paper are as follows. Linear relations are discussed in Sec-
tion 2; in particular, the degree of a relation is introduced. Section 3 contains a short
introduction to range subspaces of Hilbert spaces. For the convenience of the reader
the presentation is more or less self-contained. Linear relations in Hilbert spaces are
discussed in Section 4; in particular, range space relations are studied. Quasi-Fred-
holm relations are introduced in Section 5, where also the corresponding decomposi-
tion result can be found. Equivalent definitions of quasi-Fredholm relations are given
in Section 6. Results concerning the adjoints of quasi-Fredholm relations are studied in
Section 7. Finally Section 8 contains a brief discussion of semi-Fredholm relations. A
short announcement of the present results appeared in [11].
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2. Linear relations in linear spaces

This section contains a brief introduction to linear relations in linear spaces. Linear
relations in linear spaces are defined and direct sum decompositions of linear relations
are considered, cf. [18]. Furthermore the degree of a linear relation is defined.

2.1. Linear relations in linear spaces

A linear relation A in a linear space H is a linear subspace of the space H×H ,
the Cartesian product of H and itself. In the rest of this paper the term relation will
refer to a linear relation. The notations domA and ranA denote the domain and the
range of A , defined by

domA = {x : {x,y} ∈ A}, ranA = {y : {x,y} ∈ A}.
Furthermore, ker A and mulA denote the kernel and the multi-valued part of A , defined
by

ker A = {x : {x,0} ∈ A}, mulA = {y : {0,y} ∈ A}.
The inverse relation A−1 is given by {{y,x} : {x,y} ∈ A} , so that

domA−1 = ranA, ranA−1 = domA, ker A−1 = mulA, mulA−1 = ker A.

A relation A is (the graph of) an operator if and only if mulA = {0} .
For relations A and B in a linear space H the component-wise sum A +̂ B is the

relation in H defined by

A +̂ B = {{x+u,y+ v} : {x,y} ∈ A, {u,v} ∈ B};
this last sum is direct when A∩B = {{0,0}} . The following identities are clear

A∩ (H×{0}) = ker A×{0}, A +̂(H×{0}) = H× ranA, (2.1)

A∩ ({0}×H) = {0}×mulA, A +̂({0}×H) = domA×H. (2.2)

Let M and N be two subspaces of H . The notation AM×N will be used for the
following subrelation of A : AM×N = A∩ (M×N) , so that

(AM×N)−1 = (A−1)N×M.

In particular,
ker A = domAH×{0}, mulA = ranA{0}×H.

For relations A and B in a linear space H the operator-wise sum A + B is the
relation in H defined by

A+B = {{x,y+ z} : {x,y} ∈ A, {x,z} ∈ B},
so that dom(A+B) = domA∩domB . For λ ∈ C the relation λA in H is defined by

λA = {{x,λy} : {x,y} ∈ A},
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while A−λ stands for A−λ I , where I is the identity operator on H . Observe that

(A−λ )−1 = {{y−λx,x} : {x,y} ∈ A},
and that

ker (A−λ ) = {x : {x,λx} ∈ A}.
For relations A and B in a linear space H the product AB is defined as the relation

AB = {{x,y} : {x,z} ∈ B, {z,y} ∈ A for some z ∈ H}.
For λ ∈ C the notation λA agrees in this sense with (λ I)A . The product of relations
is clearly associative. Hence An , n ∈ Z , is defined as usual with A0 = I and A1 = A .
Observe that

A ⊂ B ⇒ An ⊂ Bn. (2.3)

Clearly for each n ∈ N0 the following inclusions hold

domAn+1 ⊂ domAn, ranAn+1 ⊂ ranAn, (2.4)

and
ker An ⊂ ker An+1, mulAn ⊂ mulAn+1. (2.5)

A combination of (2.4) and (2.5) leads to

ker An ⊂ domAm, mulAn ⊂ ranAm, n,m ∈ N0. (2.6)

2.2. Some results about component-wise and operator-wise sums

Let the linear space H have the direct sum decomposition H= H1+H2 , H1∩H2 =
{0} . A linear relation A in H is said to be completely reduced by the pair H1 and H2

if
A = A1 +̂ A2, direct sum, (2.7)

where Ai = A∩ (Hi×Hi) , i = 1,2, cf. [18, Section 8]. Then

domA = domA1 +domA2, ranA = ranA1 + ranA2, (2.8)

mulA = mulA1 +mulA2, ker A = ker A1 +ker A2. (2.9)

The following lemma shows a connection between the component-wise sum and the
operator-wise sum of relations.

LEMMA 2.1. Let the relation A be completely reduced by the pair H1 and H2 as
in (2.7). Let P1 and P2 be the corresponding parallel projections onto H1 and H2 .
Then A allows an operator-wise sum decomposition

A = A1P1 +A2P2, (2.10)

in which case
ranA = ranA1P1 + ranA2P2. (2.11)
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Proof. Let {x,y} ∈ A , then by (2.7)

{x,y} = {s,t}+{u,v}, {s,t} ∈ A1, {u,v} ∈ A2

where s =P1x and u = P2x . Hence, {x,y}= {x,t+v} and {x, t}∈A1P1 , {x,v}∈A2P2 .
This shows A ⊂ A1P1 +A2P2 . Conversely, let {x,y} ∈ A1P1 +A2P2 . Then

{x,y} = {x,t + v}, {x,t} ∈ A1P1, {x,v} ∈ A2P2.

Let s = P1x and u = P2x , then {s,t} ∈ A1 and {u,v} ∈ A2 with u = P2x . Hence
{x,y} = {s, t}+ {u,v} ∈ A1 +̂ A2 = A . This shows A1P1 + A2P2 ⊂ A . Thus (2.10)
has been shown. Now note that ranAiPi = ranAi , i = 1,2, so that (2.11) follows from
(2.8). �

COROLLARY 2.2. Let the relation A be completely reduced by the pair H1 and
H2 as in (2.7). Let P1 and P2 be the corresponding parallel projections onto H1 and
H2 . Then for each j ∈ N

Aj = Aj
1 +̂ Aj

2, direct sum. (2.12)

In particular, A j allows an operator-wise sum decomposition

A j = Aj
1P1 +Aj

2P2, (2.13)

so that
ranAj = ranAj

1P1 + ranAj
2P2. (2.14)

Furthermore, A j
1P1 = (A1P1) j and A j

2P2 = (A2P2) j , j ∈ N .

Proof. First it is shown that (2.7) implies (2.12). Clearly, since A1 and A2 are
contained in A , the righthand side of (2.12) is contained in the lefthand side; cf. (2.3).
To see the reverse inclusion, let {x,y} ∈ Aj . Then with x0 = x and x j = y there exist
elements xi ∈ H such that

{x0,x1},{x1,x2}, . . . ,{x j−1,x j} ∈ A.

Apply the direct sum decomposition (2.7) to each {xi−1,xi} :

{xi−1,xi} = {ui−1,ui}+{vi−1,vi}, i = 1, . . . , j,

with {ui−1,ui} ∈ A1 and {vi−1,vi} ∈ A2 . Then {x,y} = {u0,u j}+{v0,v j} and

{u0,u j} ∈ Aj
1, {v0,v j} ∈ Aj

2,

which implies the reverse inclusion.
The identities (2.13) and (2.14) follow from (2.12) and Lemma 2.1. Finally, the

identities Aj
i Pi = (AiPi) j follow from the fact that Pix = x , x ∈ Hi , i = 1,2. This

completes the proof. �



6 J.-PH. LABROUSSE, A. SANDOVICI, H. S. V. DE SNOO AND H. WINKLER

The component-wise decomposition (2.7) and the corresponding operator-wise de-
composition (2.10) occur frequently in this paper. Sometimes it happens that one of the
components, say A2P2 , is an everywhere defined operator, which can then be inter-
preted as a perturbation of the component A1P1 . In special cases the domain and multi-
valued part of powers of such perturbations can be described explicitly. The following
lemma turns out to be very useful.

LEMMA 2.3. Let H be a linear space, let D be a linear relation in H , and let T
be an everywhere defined linear operator in H .

(i) If ranT ⊂ ker D, then

dom(D+T)n = domDn, n ∈ N. (2.15)

(ii) If ranD ⊂ ker T , then

mul(D+T)n = mulDn, n ∈ N. (2.16)

Proof. (i) Clearly, the identity in (2.15) is true for n = 0 and n = 1. Now assume
that n � 2 and let x0 ∈ dom(D+T )n , so that

{xi,xi+1} ∈ D+T, 0 � i � n−1,

for some xi ∈ H , 1 � i � n . Then

{xi,xi+1−Txi} ∈ D, 0 � i � n−1. (2.17)

Furthermore, the hypothesis implies that

{Txi,0} ∈ D, 0 � i � n−2. (2.18)

It follows from (2.17) and (2.18) that

{xi−Txi−1,xi+1−Txi} = {xi,xi+1−Txi}−{Txi−1,0} ∈ D, 1 � i � n−1,

which together with {x0,x1−Tx0}∈D implies that {x0,xn−Txn−1} ∈Dn . This shows
that dom(D+T)n ⊂ domDn . A similar argument leads to the reverse inclusion, namely
domDn ⊂ dom(D+T)n . Thus (2.15) has been shown.

(ii) It is easily seen that the identity in (2.16) is true for n = 0 and n = 1. Now
assume that n � 2 and let mn ∈ mul(D+T )n , so that

{mi,mi+1} ∈ D+T, 0 � i � n−1,

for some mi ∈ H , 0 � i � n−1 with m0 = 0. Then

{mi,mi+1−Tmi} ∈ D, 0 � i � n−1. (2.19)
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Using the hypothesis it follows that m1 ∈ mulD ⊂ ranD ⊂ ker T , which shows that

m2 = m2−Tm1 ∈ ranD ⊂ ker T.

It can be shown inductively that

mi ∈ ker T, 1 � i � n−1. (2.20)

A combination of (2.19) and (2.20) leads to

{mi,mi+1} ∈ D, 0 � i � n−1,

so that mn ∈ mulDn . This shows that mul(D + T )n ⊂ mulDn . A similar argument
leads to the reverse inclusion, namely mulDn ⊂ mul(D + T )n . Thus (2.16) has been
shown. �

2.3. The degree of a relation in a linear space

Let A be a relation in a linear space space H . Then ranAn+1 ⊂ ranAn for all
n∈ N0 , cf. (2.4). As soon as there is equality for some n , there is equality for all larger
n . The smallest n with this property is said to be the descent of A ; cf. [18]. In this
paper a modification of this notion is considered. For this purpose, define

Δ(A) = {n ∈ N : ranAn∩ker A = ranAm∩ker A for all m � n}

for a relation A in a linear space H . This leads to the definition of the degree of a
relation.

DEFINITION 2.4. Let A be a relation in a linear space space H . The degree δ (A)
of A , is defined as

δ (A) = minΔ(A) if Δ(A) �= /0, and δ (A) = ∞ if Δ(A) = /0.

LEMMA 2.5. Let A be a relation in a linear space H . Then the following state-
ments are equivalent:

(i) d ∈ Δ(A);

(ii) ker Am ⊂ ker Ad + ranAn for all m, n ∈ N;

(iii) ker Am ⊂ ker Ad + ranA for all m ∈ N;

(iv) ranAd ∩ker An ⊂ ranAm ∩ker An for all m, n ∈ N;

(v) ranAd ∩ker A ⊂ ranAm ∩ker A for all m ∈ N .
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Proof. (i) ⇒ (ii) If m � d and n ∈ N , then clearly

ker Am ⊂ ker Ad ⊂ ker Ad + ranAn.

Now assume the statement is true for some m � d and n ∈ N :

ker Am ⊂ ker Ad + ranAn,

and proceed by induction. Let u ∈ ker Am+1 , so that {u,v} ∈ Am and {v,0} ∈ A for
some v ∈ H . Therefore, since m � d ,

v ∈ ranAm ∩ker A = ranAm+n∩ker A,

so that {w,v} ∈ Am+n for some w ∈ domAm+n . But then {w,z} ∈ An and {z,v} ∈ Am

for some z ∈ ranAn . Hence

{u− z,0}= {u,v}−{z,v} ∈ Am,

implies that u− z ∈ ker Am , so that u ∈ ker Am + ranAn ⊂ ker Ad + ranAn (by the in-
duction hypothesis). Hence,

ker Am+1 ⊂ ker Ad + ranAn,

which proves (ii).
(ii) ⇒ (iii) Put n = 1 in (ii).
(iii) ⇒ (iv) If m � d then (iv) is clearly satisfied. It is sufficient to show that for

any m � d and n ∈ N :

ranAm∩ker An ⊂ ranAm+1∩ker An.

Let u∈ ranAm∩ker An , so that {u,0}∈ An and {v,u} ∈ Am for some v∈H . Therefore
{v,0} ∈ Am+n , and thus by (iii)

v ∈ ker Am+n ⊂ ker Ad + ranA,

so that v = v1 + v2 for some v1 ∈ ker Ad and v2 ∈ ranA . Hence {w,v2} ∈ A for some
w ∈ H , and as m � d it follows that {v1,0} ∈ Am so that

{v2,u} = {v,u}−{v1,0} ∈ Am.

The last relation and the fact that {w,v2} ∈ A imply that {w,u} ∈ Am+1 , so that u ∈
ranAm+1 . Therefore ranAm ∩ker An ⊂ ranAm+1 and (iv) follows.

(iv) ⇒ (v) Put n = 1 in (iv).
(v) ⇒ (i) The relation (v) implies that

ranAd ∩ker A = ranAm ∩ker A, m � d,

and d ∈ Δ(A) follows by definition. �
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COROLLARY 2.6. Let A be a relation in a linear space H . If δ (A) <∞ , then for
all m, n ∈ N0 :

(i) ker Aδ (A) + ranAn = ker Am+δ (A) + ranAn ;

(ii) ranAδ (A)∩ker An = ranAm+δ (A)∩ker An .

Proof. If δ (A) < ∞ the the equivalent statements of Lemma 2.5 are valid with
d = δ (A) .

(i) Observe that (ii) of Lemma 2.5 and the second inclusion in (2.5) give

ker Am+δ (A) + ranAn ⊂ ker Aδ (A) + ranAn ⊂ ker Am+δ (A) + ranAn,

so that equality prevails.
(ii) Observe that (iii) of Lemma 2.5 and the first inclusion in (2.4) give

ranAδ (A)∩ ranAn ⊂ ranAm+δ (A)∩ ranAn ⊂ ranAδ (A) + ranAn,

so that equality prevails. �
It follows from the definition that δ (A) = 0 if and only if Δ(A) = N0 . Useful

equivalent statements are given in the following lemma.

LEMMA 2.7. Let A be a relation in a linear space H . The following statements
are equivalent:

(i) δ (A) = 0 ;

(ii) ker A ⊂ ranAm for all m ∈ N0 ;

(iii) ker An ⊂ ranA for all n ∈ N0 ;

(iv) ker An ⊂ ranAm for all n, m ∈ N0 .

Proof. (i) ⇒ (ii) Assume that δ (A) = 0, so that Δ(A) = N0 . Then

ranAm∩ker A = ranA0∩ker A = ker A,

for all m ∈ N0 . In other words, ker A ⊂ ranAm for all m ∈ N0 .
(ii) ⇒ (iii) This implication is proved by induction. The case n = 0 is trivial and

the case n = 1 is a direct consequence of (ii). Assume now that (iii) is valid for n = k .
Let u ∈ ker Ak+1 , so that {u,v} ∈ Ak and {v,0} ∈ A . Therefore v ∈ ker A ⊂ ranAk+1

by (ii), so that {w,v} ∈ Ak+1 for some w ∈ H . Hence, there exists z ∈ H such that
{w,z} ∈ A and {z,v} ∈ Ak . Clearly,

{u− z,0}= {u,v}−{z,v} ∈ Ak,

and then u− z ∈ ker Ak ⊂ ranA . Since z ∈ ranA , it follows that u ∈ ranA . Therefore
ker Ak+1 ⊂ ranA , and the induction step has been shown.
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(iii) ⇒ (iv) The case m = 0 is obvious and the case m = 1 follows from (iii).
Now assume that (iv)is valid for m = k . Let u ∈ ker An . It follows from (iii) that
u ∈ ranA , so that {v,u} ∈ A , which implies v ∈ ker An+1 . By induction hypothesis
ker An+1 ⊂ ranAk so v ∈ ranAk . Since {v,u} ∈ A , it follows that u ∈ ranAk+1 . Hence
(iv) holds with m = k+1.

(iv) ⇒ (i) Take n = 1 in (iv), so that ker A ⊂ ranAm for all m ∈ N . Therefore
ker A∩ ranAm = ker A for all m ∈ N0 . In other words, Δ(A) = N0 and, hence, δ (A) =
0. �

3. Range subspaces of Hilbert spaces

This section provides a concise introduction to the notion of range subspaces of
a Hilbert space. In the following a subspace of a Hilbert space is a linear manifold
which is not necessarily closed. The closure of a subspace M will be denoted by
closM . The notion of range subspace is a useful generalization of the notion of closed
subspace. Whereas the sum of two closed subspaces need not be closed, the sum of two
range subspaces is again a range subspace. All results in this section can be found in
[3], [9]; the present exposition is mostly self-contained and is meant to give the reader
a smooth introduction to the subject.

When M and N are subspaces of a Hilbert space, then the subspaces M⊥ and
N⊥ are automatically closed. Recall the following well-known result.

LEMMA 3.1. Let M and N be (not necessarily closed) subspaces of a Hilbert
space H . Then the following statements are equivalent:

(i) M+N is closed;

(ii) M+N = (M⊥ ∩N⊥)⊥ .

Proof. (i) ⇒ (ii) For not necessarily closed subspaces M and N it follows that
(M + N)⊥ = M⊥ ∩N⊥ , and, consequently, clos(M + N) = (M⊥ ∩N⊥)⊥ . The as-
sumption that M+N is closed leads to the identity in (ii).

(ii) ⇒ (i) This is clear. �
If M and N in Lemma 3.1 are replaced by M⊥ and N⊥ , then it follows that

M⊥ + N⊥ is closed if and only if M⊥ + N⊥ = (closM∩ closN)⊥ . Furthermore,
recall that when M and N are closed subspaces, then the subspace M+N is closed
if and only if the subspace M⊥ + N⊥ is closed; cf. [8, Chapter IV, Theorem 4.8.],
[9, Proposition 1.3.1, Corollaire 1.3.2]. These observations and Lemma 3.1 lead to the
following useful proposition.

PROPOSITION 3.2. Let M and N be closed subspaces of a Hilbert space H .
Then the following statements are equivalent:

(i) M+N is closed;

(ii) M+N = (M⊥ ∩N⊥)⊥ ;
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(iii) M⊥ +N⊥ is closed;

(iv) M⊥ +N⊥ = (M∩N)⊥ .

A pair of closed subspaces M and N of H of a Hilbert space H is said to be
complementary when H = M+N and M∩N = {0} . For each pair of complementary
subspaces M and N there exists a pair of bounded linear projections PM and PN

onto M and N , respectively. Note that when the closed subspaces M and N are
complementary, then also the closed subspaces M⊥ and N⊥ are complementary.

DEFINITION 3.3. A subspace M of a Hilbert space H is said to be a range sub-
space of H if there exist a Hilbert space K and an operator A ∈ L(K,H) such that
M = ranA .

If A ∈ L(K,H) is injective, then M = ranA is easily seen to be a Hilbert space,
when the space M is equipped with the inner product

(Ax,Ay)M = (x,y)K, x,y ∈ K.

In fact, it is no loss of generality to assume in Definition 3.3 that ker A = {0} ; just
replace K by K
ker A .

Assume that also M = ranA1 with A1 ∈ L(K1,H) with a Hilbert space K1 and
ker A1 = {0} . Then the injective operators A1 and A have the same range. Hence, by
Douglas’ lemma, there is an invertible operator B ∈ L(K1,K) such that A1 = AB ; cf.
[3]. This shows that the topologies induced on M by A1 and A are equivalent.

Furthermore, if A ∈ L(K,H) is injective, then there is an estimate for the corre-
sponding norms:

‖Ax‖M � 1
‖A‖‖Ax‖H, x ∈ K.

This estimate is a motivation for the following useful characterization. For further
equivalent statements, see [3].

PROPOSITION 3.4. Let M be a subspace of a Hilbert space H . Then M is a
range subspace of H if and only if there is an inner product (·, ·)+ on M , such that

(i) M is a Hilbert space when equipped with (·, ·)+ ;

(ii) ‖u‖+ � c‖u‖H , u ∈ M , for some c > 0 .

REMARK 3.5. In particular, if M is a Hilbert space with a continuous injection ι
in H , then ι(M) is a range subspace of H . Any closed subspace of a Hilbert space H
is a range subspace of H .

COROLLARY 3.6. Let M and N be subspaces of a Hilbert space H . If M is a
range subspace and N is a closed subspace, then M∩N is a closed subspace of M
as a range subspace.



12 J.-PH. LABROUSSE, A. SANDOVICI, H. S. V. DE SNOO AND H. WINKLER

Proof. Let (xk) be a sequence in M∩N which converges to x ∈ M with respect
to the range space topology of M . As the range space topology is stronger than the
topology on M induced by H , and since N is closed in H , it follows that x ∈ N .
Hence, x ∈ M∩N . Thus M∩N is a closed subspace of M as a range subspace. �

COROLLARY 3.7. Let M and N be subspaces of a Hilbert space H . If N is a
range subspace of H (so that N is a Hilbert space in its own topology), and M is a
range subspace of N , then M is a range subspace of H .

The Cartesian product H×H of H with itself will be providedwith the component-
wise inner product, so that H×H is a Hilbert space itself.

COROLLARY 3.8. If M and N are range subspaces of a Hilbert space H , then
M×N is a range subspace of H×H . Moreover, if M and N are subspaces of a
Hilbert space H , and M×N is a range subspace of H×H , then M and N are range
subspaces of M .

The following proposition implies that the range subspaces of a Hilbert space H
form a lattice; cf. [3], [9, Proposition 2.1.2].

PROPOSITION 3.9. Let M and N be range subspaces of a Hilbert space H .
Then:

(i) M+N is a range subspace of H;

(ii) M∩N is a range subspace of H .

Proof. (i) The mapping Φ : M×N→ M+N defined by

Φ({u,v}) = u+ v, u ∈ M, v ∈ N,

is a continuous linear mapping onto M+N .
(ii) Provide the space M∩N with the sum inner product

(u,v)M∩N = (u,v)M +(u,v)N, u ∈ M, v ∈ N.

It is straightforward to check that M∩N is a Hilbert space and that, in fact, M∩N is
a range space in M and in N . �

PROPOSITION 3.10. (’Neubauer’s lemma’) Let M and N be range subspaces of
a Hilbert space H . If the range subspaces M+N and M∩N are closed in H , then
M and N are closed subspaces of H .

Proof. First consider the case M∩N = {0} ; cf. [3]. Let the mapping

Φ : M×M⊂ H×H→ M+N⊂ H
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be defined by
Φ({u,v}) = u+ v, u ∈ M, v ∈ N.

Then Φ is continuous onto the closed subspace M+N . The assumption M∩N = {0}
implies that Φ is one-to-one. Hence, by Banach’s open mapping theorem, Φ is an open
mapping from M×N onto M+N . Hence

M = Φ(M×{0}), N = Φ({0}×N),

are closed in M+N , and, therefore, in H .
Now consider the general case, cf. [9, Proposition 2.1.1]. Define the subspaces

M′ and N′ by
M′ = M∩ (M∩N)⊥, N′ = N∩ (M∩N)⊥,

so that M′ and N′ are range subspaces by Corollary 3.6. Moreover, clearly,

M′ ∩N′ = (M∩N)∩ (M∩N)⊥, M′ +N′ = (M+N)∩ (M∩N)⊥

so that M′ ∩N′ = {0} and M′+N′ is closed. It follows that M′ and N′ are closed by
the first part of the proof. As M = M′ ⊕ (M∩N) and N = N′ ⊕ (M∩N) , orthogonal
sums, it is shown that M and N are closed. �

Proposition 3.10 is very useful: it gives special circumstances under which one
can conclude the closedness of range subspaces. The following corollary is a weakened
form of Proposition 3.10; cf. [9, Proposition 2.3.1].

COROLLARY 3.11. Let M and N be range subspaces of a Hilbert space H .
Assume that M + N is closed in H and that M∩N is closed in M with its own
topology. Then N is closed in H .

Proof. Let M0 be the orthogonal complement of M∩N in M , so that

M = (M∩N) [+]M0,

since M∩N is closed in M . Clearly, M0 ∩N ⊂ M0 ∩M∩N = {0} . Furthermore

M0 +N ⊂ M+N⊂ M0 +N,

which shows that M0 +N = M+N is closed. Hence by Proposition 3.10 it follows
that N is closed in H . �

The next corollary is taken from [9, Proposition 2.3.3]; it contains [9, Proposition
2.2.1].

COROLLARY 3.12. Let M and N be range subspaces of a Hilbert space H and
assume that M+N is closed in H . Then

(i) closM = M+ clos(M∩N)∩N = M+ clos(M∩N);
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(ii) closN = N+ clos(M∩N)∩M = N+ clos(M∩N);

(iii) (closM)∩N = clos(M∩N)∩N; M∩ (closN) = clos(M∩N)∩M;

(iv) (closM)∩ (closN) = (closM)∩N+M∩ (closN) = clos(M∩N) .

Proof. Define M0 = M+(clos(M∩N))∩N . Then it is clear that

M0 +N = M+N, M0 ∩N ⊂ (clos(M∩N))∩N ⊂ M0 ∩N.

Thus M0 +N is closed since M+N is assumed to be closed; furthermore M0∩N is
closed in N with its own topology, due to M0 ∩N = (clos(M∩N))∩N and Corol-
lary 3.6. Hence M0 is closed by Proposition 3.10. The inclusion M ⊂ M0 ⊂ closM
now implies that M0 = closM . This gives (i) and (ii) follows by symmetry. The first
identity in (iii) follows from M0 ∩N = (clos(M∩N))∩N and M0 = closM . The
second identity in (iii) follows by symmetry. Finally observe that

(closM)∩ (closN) ⊂ (M∩ (closN))+ (clos(M∩N))∩N

⊂ M∩ (closN)+ (closM)∩N,

where the first inclusion follows from M0 = closM and the second inclusion is trivial.
It follows from (iii) that

M∩ (closN)+ (closM)∩N ⊂ clos(M∩N) ⊂ (closM)∩ (closN).

Now (iv) is clear. �
The next corollary is taken from [9, Corollaire 2.3.1]; see also [9, Proposition

2.3.1].

COROLLARY 3.13. Let M and N be range subspaces of a Hilbert space H and
assume that M+N is closed. Then

(M∩N)⊥ = M⊥ +N⊥.

In particular, M⊥ +N⊥ is closed.

Proof. The assumption that M+N is closed leads to

M+N⊂ closM+ closN ⊂ clos(M+N) = M+N.

Thus (closM)+ (closN) is closed. Hence Proposition 3.2 and Corollary 3.12 may be
applied to obtain

M⊥ +N⊥ = (closM)⊥ +(closN)⊥ = ((closM)∩ (closN))⊥

= ((clos(M∩N))⊥ = (M∩N)⊥,

which gives the identity. �
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COROLLARY 3.14. Let M and N be range subspaces of a Hilbert space H and
let M+N be closed in H . If M and N are dense in H , then also M∩N is dense in
H .

PROPOSITION 3.15. Let M j , j ∈ N , be range subspaces of a Hilbert space H
with M j ⊂ M j+1 for all j ∈ N , such that

⋃∞
j=1 M j = H . Then there exists j0 ∈ N

such that M j0 = H .

Proof. See [9, Proposition 2.2.4]. �

4. Linear relations in Hilbert spaces

In this section linear relations are considered in Hilbert spaces. The concept of
range space relation is introduced and an important observation of C. Foiaş for range
space operators is placed in the context of range space relations, see [3, p. 258]. The
concept of adjoint relation is defined and studied for range space relations. Finally,
sufficient conditions are given for a range space relation A such that ranAn +ker Am is
closed.

4.1. Range space operators and relations

An operator or a relation A in a Hilbert space H is said to be closed if A as a
subspace of H×H is closed. The following definition gives a useful extension of this
concept.

DEFINITION 4.1. An operator or a relation A in H is said to be a range space
operator or range space relation if its graph A is a range subspace of H×H .

In particular, a closed relation in a Hilbert space H is a range space relation in
H . Clearly, with A also A−1 is a range space relation. Range space operators were
considered in [3] and [9]. The concept of range space relation seems to be new; cf.
[10].

LEMMA 4.2. Let A be a range space relation in a Hilbert space H . Then domA,
ranA, ker A, and mulA are range subspaces of H .

Proof. The subspaces H×{0} and {0}×H are closed in H×H . Hence, if A is
a range space relation, then it follows from Proposition 3.9 and the identities (2.1) and
(2.2) that domA , ranA , ker A , and mulA are range subspaces of H . �

If A is a range space operator or range space relation then the subset A of the
Cartesian product H×H equals ranF , where F is a bounded injective linear mapping
from a Hilbert space K to H×H . Then A has its own inner product, denoted by (·, ·)A

and clearly there exists a constant c > 0, so that

‖{u,v}‖A � c(‖u‖+‖v‖), {u,v} ∈ A, (4.1)
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cf. Proposition 3.4.
Let A be a range space relation in a Hilbert space H . Define the relation J from

A to domA by
J = {{{u,v},u} : {u,v} ∈ A}, (4.2)

so that J is (the graph of) an operator from A onto domA ⊂ H .

PROPOSITION 4.3. Let A be a range space relation in a Hilbert space H . Then
the operator J in (4.2) from A onto domA ⊂ H is bounded. Moreover, if domA is
closed, then J is an open mapping.

Proof. Let A be a range space relation with inner product (·, ·)A , so that A ⊂
H×H . It follows from (4.1) that

‖{u,v}‖A � c(‖u‖+‖v‖) � c‖u‖, {u,v} ∈ A.

This shows that J is a bounded operator from A onto domA ⊂ H . If domA is closed,
then the open mapping theorem shows that J is an open mapping. �

Proposition 4.3 is an extension of an observation by C. Foiaş, see [3, p. 258] and
[9, Proposition 2.1.5]. The original observation is the following corollary.

COROLLARY 4.4. (Foiaş) Let A be a range space operator in a Hilbert space H .
If domA is closed in H , then A is bounded and, hence, closed.

Proof. When A is an operator, the mapping J is injective. Since it is surjective as
well, the open mapping may be applied to conclude that J−1 is bounded, implying that

c(‖u‖+‖v‖) � ‖{u,v}‖A � d‖u‖, u ∈ domA.

In other words, with v = Au , it follows that

‖Au‖ � C‖u‖, u ∈ domA.

This completes the proof. �

COROLLARY 4.5. Let A be a range space relation in a Hilbert space H . Then:

(i) if domA is closed, then ker A is closed;

(ii) if ranA is closed, then mulA is closed.

Proof. (i) Observe that J maps A ∩ (H×{0}) = ker A × {0} one-to-one onto
ker A . The space A∩(H×{0}) is a closed subspace of the range space A by Corollary
3.6. According to Proposition 4.3 the mapping J is open, so that the image space ker A
is closed in domA .

(ii) If ranA is closed, then A−1 is a range space relation for which ranA =
domA−1 . The conclusion now follows from (i) and mulA = ker A−1 . �
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LEMMA 4.6. Let A be a range space relation in a Hilbert space H . Then:

(i) if ker A and ranA are closed, then A is closed;

(ii) if mulA and domA are closed, then A is closed.

Proof. Assume the conditions in (i). It follows from (2.1) that A∩ (H×{0}) and
A +̂(H×{0}) are closed. The conclusion now follows from Proposition 3.10. The
statement in (ii) follows likewise from (2.2). �

Let A and B be range space relations in a Hilbert space H . It follows from Propo-
sition 3.9 that the component-wise sum A +̂ B is a range space relation.

PROPOSITION 4.7. Let A and B be range space relations in a Hilbert space H .
Then the operator-wise sum A+B is a range space relation in H⊕H .

Proof. Denote by S the continuous mapping of A⊕B into H⊕H⊕H given by

({x,y}, {s,t}) �→ {x,x− s,y+ t}.

It follows from Remark 3.5 that ranS is a range subspace in H⊕H⊕H , and therefore
so is ranS∩ (H⊕{0}⊕H) which is isomorphic to A+B . �

PROPOSITION 4.8. Let A and B be range space relations in a Hilbert space H .
Then the product BA is a range space relation in H .

Proof. Denote by T the continuous mapping of A×B into H⊕H⊕H given by

({x,y}, {s,t}) �→ {x,y− s, t}

Then from Remark 3.5 it follows that ranT is a range subspace in H⊕H⊕H , and
therefore so is ranT ∩ (H⊕{0}⊕H) which is isomorphic to BA . �

COROLLARY 4.9. If A is a range space relation then An is a range space relation
for all n ∈ N .

Suitable restrictions of range space relations are again range space relations.

LEMMA 4.10. Let A be a range space relation in a Hilbert space H and let M
and N be range subspaces of H . Then

(i) AM×N is a range space relation;

(ii) domAM×N and ranAM×N are range subspaces;

(iii) ker AM×N and mulAM×N are range subspaces.
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Proof. If M and N are range subspaces of H , then M×N is a range subspace of
H×H , by (iii) of Proposition 3.9. Clearly, AM×N = A∩ (M×N) is a range subspace
of H×H by (i) of Proposition 3.9. This shows (i); the items (ii) and (iii) are now
straightforward consequences of (i). �

PROPOSITION 4.11. Let A be a range space relation in a Hilbert space H . Then

(i) if ranA is closed, then closA = A +̂(kerA×{0});
(ii) if domA is closed, then closA = A +̂({0}×mulA) .

Proof. Observe that

A +̂(H×{0}) = H× ranA, A∩ (H×{0}) = ker A×{0}.

If ranA is closed, then apply Corollary 3.12 with M = A and N = H×{0} to obtain
the identity in (i). The identity in (ii) can be shown in a similar way. �

If A is a range space operator and ranA is closed, then closA is (the graph of) an
operator if and only if domA∩kerA = {0} , cf. [9, Proposition 2.2.2].

4.2. Adjoint relations in Hilbert spaces

Let A be a relation in a Hilbert space H . The adjoint A∗ of A is the closed (linear)
relation defined by

A∗ = {{ f , f ′} ∈ H×H : ( f ′,h) = ( f ,h′) for all {h,h′} ∈ A},

so that A∗ is a range space relation. Note that A∗∗ is the closure of A . The following
identities are straightforward:

(domA)⊥ = mulA∗, (ranA)⊥ = ker A∗, (4.3)

or, equivalently,
domA = (mulA∗)⊥, ranA = (ker A∗)⊥.

If the relation A is closed, then

(ker A)⊥ = ranA∗, (mulA)⊥ = domA∗, (4.4)

or, equivalently,
kerA = (ranA∗)⊥, mulA = (domA∗)⊥.

The next result is a slight extension of a well-known result. The operator version of this
result can be found in [9, Proposition 2.3.2].

LEMMA 4.12. Let A be a range space relation in a Hilbert space H . Then

(i) if domA is closed, then domA∗ = (mulA)⊥ , so that domA∗ is closed;
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(ii) if domA∗ is closed, then domA∗∗ = (mulA∗)⊥ , so that domA∗∗ is closed;

(iii) if ranA is closed, then ranA∗ = (ker A)⊥ , so that ranA∗ is closed;

(iv) if ranA∗ is closed, then ranA∗∗ = (ker A∗)⊥ , so that ranA∗∗ is closed.

Proof. (i) Let the operator K be defined by K{u,v} = {v,−u} , so that A∗ =
(KA)⊥ . Clearly, the relation KA is a range space relation. Moreover, the subspace

(KA) +̂ (H×{0}) = H×domA

is closed in H×H , since domA is closed. Furthermore, the intersection is given by

(KA)∩ (H×{0}) = mulA×{0}

(which is closed in the range space KA , due to Corollary 3.6). Now apply Corollary
3.13 with M = KA and N = H×{0} as subspaces of H×H . Then

(mulA)⊥×H = (M∩N)⊥ = M⊥ +̂ N⊥ = A∗ +̂({0}×H) = domA∗ ×H.

This implies that domA∗ = (mulA)⊥ and domA∗ is closed.
(ii) This follows from (i) by going from A to A∗ and observing that A∗ is closed,

so that A∗ is a range space relation.
(iii) This follows from (i) by going from A to A−1 and observing that A−1 is also

a range space relation.
(iv) This follows from (iii) by going from A to A∗ and observing that A∗ is closed,

so that A∗ is a range space relation. �

COROLLARY 4.13. Let A be a closed linear relation in a Hilbert space H . Then

(i) domA is closed if and only if domA∗ is closed;

(ii) ranA is closed if and only if ranA∗ is closed.

The behaviour of the adjoint in sums and products is given in the following lemma.
Of course, equality can be shown under less strict conditions.

LEMMA 4.14. Let A and B be relations in a Hilbert space H . Then

A∗ +B∗ ⊂ (A+B)∗, B∗A∗ ⊂ (AB)∗. (4.5)

If A is a bounded everywhere defined operator, then

(A+B)∗ = A∗ +B∗, B∗A∗ = (AB)∗. (4.6)

In particular, note that
A∗n ⊂ An∗. (4.7)
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4.3. Some auxiliary results

This subsection contains some results of a technical nature, which will be used in
Section 7. The following construction is an extension of the construction of Labrousse
[9, p. 210] to the context of relations. Recall that for a closed relation A in a Hilbert
space H the subspaces ker A and mulA are closed.

LEMMA 4.15. Let A be a closed relation in a Hilbert space H . Let m ∈ N ,
m � 2 , and assume that

mulAi is closed for i = 2, . . . ,m.

Then for each x ∈ ker Am there exist unique vectors x1, . . . ,xm−1 ∈ H , such that

{x,x1},{xi,xi+1},{xm−1,0} ∈ A, 1 � i � m−2,

and such that
xi ⊥ mulAi ∩ker A, 1 � i � m−1.

In particular, the subspace ker Am provided with the norm

‖x‖m =

(
‖x‖2 +

m−1

∑
i=1

‖xi‖2

) 1
2

, x ∈ ker Am,

is a range subspace of the Hilbert space H .

Proof. For x ∈ ker Am there exists a sequence y1, . . . ,ym−1 ∈ H such that {x,y1} ,
{yi,yi+1} , 1 � i � m− 2, and {ym−1,0} belong to A . Let zm−1 be the orthogonal
projection of ym−1 into mulAm−1 ∩ ker A . Then there exists a sequence of vectors
z1, . . . ,zm−2 such that {0,z1} , {zi,zi+1} , i = 1, . . . ,m−2, and {zm−1,0} belong to A .
It follows that {x,y1−z1} , {yi−zi,yi+1−zi+1} for 1� i � m−2, and {ym−1−zm−1,0}
belong to A . Let xm−1 = ym−1 − zm−1 , then xm−1 ⊥ mulAm−1∩ker A . To continue in
an inductive way, assume that for some n < m− 1 the vectors {x,y1} , {yi,yi+1} for
1 � i � n− 1, and {yn,xn+1} belong to A with xn+1 ⊥ mulAn+1 ∩ ker A . If zn is the
orthogonal projection of yn into mulAn ∩ ker A , then xn = yn − zn is orthogonal to
mulAn ∩ ker A , and there exist as above vectors {x,y′1} , {y′i,y′i+1} for 1 � i � n− 2,
{y′n−1,xn} and {xn,xn+1} belonging to A .

To show the uniqueness of the sequence x1, . . . ,xm−1 , assume that the elements
{x,x1} , {xi,xi+1} , {xm−1,0} and {x,x′1} , {x′i,x′i+1} , {x′m−1,0} belong to A , and both
xi and x′i are orthogonal to mulAi ∩ ker A . Then {0,x1 − x′1} , {xi − x′i,xi+1 − x′i+1} ,
{xm−1 − x′m−1,0} belong to A , and thus xm−1 − x′m−1 ∈ mulAm−1 ∩ ker A . Hence,
xm−1 = x′m−1 . The continuation of this argument shows that xi = x′i for 1 � i � m−1.

To see that ker Am is complete with respect to the norm ‖ · ‖m , note that A is
closed, and if (xn) is a Cauchy sequence in ker Am with respect to ‖·‖m then ({xn

i ,x
n
i+1}

is a Cauchy sequence with respect to the graph norm. The inequality ‖·‖m � ‖·‖ shows
that ker Am is a range subspace of H . �

The following proposition gives sufficient conditions so that subspaces of the form
ranAn +ker Am are closed.
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PROPOSITION 4.16. Let A be a closed relation in a Hilbert space H . Assume
that

(i) d ∈ Δ(A);

(ii) ranA+ker Ad is closed in H;

(iii) mulAn is closed for all n ∈ N0 .

Then ranAn +ker Am is closed for all m,n ∈ N0 such that m+n � d .

Proof. The proof involves range subspace arguments. It will be given in three
steps for different ranges of the values of the parameters m and n .

Step 1. In this step it will be shown that

ranAn +ker Ad is closed. (4.8)

The proof is done by induction. If n = 0 then ranA0 = H and the result is obvious, and
for n = 1 it holds by assumption. Now assume that ranAn +ker Ad is closed in H for
some n ∈ N0 . Define the subspace M of domAn by

M = domAn∩ [ ranA+ker Ad ].

Since A is closed, it is a range space relation and it follows that domAn is a range
subspace of H . Furthermore, M is a closed subspace of domAn endowed with its
range space topology; cf. Corollary 3.6. Let M′ be the orthogonal complement of M
in domAn in the range space topology, so that

domAn = M [+]M′.

Introduce the domain restriction B of An by

B = An∩ (M′ ×H).

Clearly B is a range space relation, so that also ranB is a range subspace of H . Ob-
serve that ranAn+1 and ker Ad are also range subspaces. It will be proved that the
range subspaces ranAn+1 + ker Ad and ranB are closed by showing that they satisfy
the conditions of Proposition 3.10.

First it will be shown that

ranAn+1 +ker Ad + ranB = ranAn +ker Ad . (4.9)

Clearly, the lefthand side of (4.9) is included in the lefthand side. For the converse
inclusion, let u ∈ ranAn , so that {v,u} ∈ An for some v ∈ domAn . Then v = w+ z for
some w ∈M′ and some z ∈M , so that z ∈ domAn and z = z1 + z2 for some z1 ∈ ranA
and z2 ∈ ker Ad . Since ker Ad ⊂ domAn , cf. (2.6), it follows that z1 ∈ ranA∩domAn .
Clearly, z2 ∈ ker Ad+n . Hence there exist s, t ∈ H such that {z1,s} ∈ An , and {z2,t} ∈
An , so that s ∈ ranAn+1 and t ∈ ker Ad . Therefore

{z,s+ t} = {z1,s}+{z2,t} ∈ An,
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and since {w+ z,u} = {v,u} ∈ An , this implies that {w,u− s− t} ∈ An or in other
words that u− s− t ∈ ranB . Consequently, u ∈ ranAn+1 +ker Ad + ranB , so that (4.9)
is proved.

Next it will be shown that

[ranAn+1 +ker Ad ]∩ ranB = mulAn. (4.10)

Since mulAn ⊂ ranAn+1 and mulAn ⊂ ranB it follows that the righthand side of (4.10)
is included in its lefthand side. Conversely, let u ∈ [ ranAn+1 +ker Ad ]∩ ranB , so that
{v,u} ∈ An for some v ∈ M′ ⊂ domAn . Furthermore, u = w + y with w ∈ ranAn+1

and y ∈ ker Ad . Hence, there exists w′ ∈ domAn+1 such that {w′,w} ∈ An+1 . Since
u ∈ ranAn and w ∈ ranAn+1 ⊂ ranAn , it follows that y = u−w ∈ ranAn ∩ ker Ad .
Therefore {z,y} ∈ An with z ∈ ker An+d . Also note that there is an element w′′ such
that {w′,w′′} ∈ A and {w′′,w} ∈ An ; i.e., w′′ ∈ ranA∩domAn . Then

{v− z−w′′,0} = {v,w+ y}−{z,y}−{w′′,w} ∈ An,

so that x = v− z−w′′ ∈ ker An . Thus,

v = z+w′′ + x ∈ ker An+d + ranA+ker An = ranA+ker An+d,

so that v ∈ ranA∩ker Ad by (ii) of Lemma 2.5. Together with v ∈ domAn this shows
that v ∈ M . Therefore, v ∈ M∩M′ = {0} which implies that v = 0 and hence that
u ∈ mulAn , so that (4.10) is proved.

According to the induction hypothesis ranAn +ker Ad is closed in H and accord-
ing to assumption (ii) mulAn is closed in H . Hence (4.9) and (4.10) together with
Proposition 3.10 show that ranAn+1 +ker Ad and ranB are closed in H . In particular,
this completes the induction argument.

Step 2. The present step is concerned with a first simple extension of the range of
values for which ranAn +ker Ad is closed. It is based on the identity

ranAn +ker Ad = ranAn +ker Ad+m, n,m ∈ N0, d ∈ Δ(A), (4.11)

cf. Corollary 2.6. Hence (4.8) and (4.11) show that

ranAn +ker Ad+m is closed, n,m ∈ N,

in other words for m � d one has that

ranAn +ker Am is closed. (4.12)

Step 3. Assume now that the statement in (4.12) is valid for n and m , n+m � d .
Then the statement will be shown for n+1 and m−1 if 1 � m � d . For this purpose
the space ker Am will be provided with the inner product in Lemma 4.15, so that ker Am

is a range subspace of H .
Define the following subspace of ker Am :

M = [ranAn+1 +ker Am−1]∩ker Am. (4.13)
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It is trivial to check that (4.13) leads to

M = [ranAn+1∩ker Am]+ker Am−1. (4.14)

Now let u ∈ ker Am , and let u1, . . . ,um−1 be the unique sequence in Lemma 4.15 be-
longing to u . It will be shown that

u ∈ M ⇐⇒ um−1 ∈ ranAm+n∩ker A. (4.15)

Observe that u belongs to M if and only if u = v+w with v ∈ ranAn+1∩ker Am and
w ∈ ker Am−1 ; cf. (4.14). Let v1, . . . ,vm−1 and w1, . . . ,wm−2 be the unique sequences
in Lemma 4.15 belonging to v and w ; furthermore put wm−1 = 0. Then Lemma 4.15
implies that ui = vi +wi for 1 � i � m− 2 and um−1 = vm−1 . It follows that um−1 ∈
ranAm+n ∩ ker A . Conversely, let u ∈ ker Am be such that um−1 ∈ ranAm+n ∩ ker A .
Then there exists some v ∈ ranAn+1 such that {v,um−1} ∈ Am−1 and v ∈ ker Am . Note
that by construction {u,um−1} ∈ Am−1 , so that {u− v,0} ∈ Am−1 . Let w = u− v , then
u = v+w shows that u ∈ M , as v ∈ ranAn+1∩ker Am and w ∈ ker Am−1 ; cf. (4.14).

The space M is closed in the topology of ker Am . In order to prove this, let (xn)
be a sequence from M such that xn converges to x ∈ ker Am in the topology of ker Am .
Decompose each of these elements as in Lemma 4.15. In particular, it follows that
xn
m−1 → xm−1 in H , and as xn

m−1 ∈ ranAm+n ∩ker A (see (4.15)), and ranAm+n ∩ker A
is closed in H because of m + n � d , one finds that xm−1 ∈ ranAm+n ∩ ker A . This
implies that x ∈ M (see (4.15)).

Since the space M is closed in the topology of ker Am , there is the following
orthogonal decomposition

ker Am = M [+]M′, (4.16)

where M′ is the orthogonal complement of M in ker Am , with respect to its own inner
product.

The proof of the statement for n+ 1 and m− 1 if 1 � m � d is now based on
Proposition 3.10, once two identities have been shown. First observe that the following
identity

ranAn+1 +ker Am−1 +M′ = ranAn+1 +ker Am (4.17)

is satisfied. Clearly, the lefthand side of (4.17) is included in the righthand side of
(4.17). For the converse inclusion, it suffices to show that ker Am is included in the
lefthand side. Let u ∈ ker Am , so that by the decomposition (4.16) u = v+w for some
v ∈ M and for some w ∈ M′ . It follows from (4.14) that M ⊂ ranAn+1 + ker Am−1 ,
from which the desired inclusion follows. Next observe that

[ranAn+1 +ker Am−1]∩M′ ⊂ [ranAn+1 +ker Am−1]∩ker Am = M,

so that the following identity is clear:

[ranAn+1 +ker Am−1]∩M′ ⊂ M∩M′ = {0}. (4.18)

The induction hypothesis implies that the righthand side of (4.17) is closed. It follows
from the identities (4.17) and (4.18), and Proposition 3.10 that ranAn+1 +ker Am−1 and
M′ are closed in H . This completes the induction argument. �
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REMARK 4.17. Lemma 4.15 and Proposition 4.16 were stated for the case of
closed relations A . This required some assumptions on the closedness of mulAj . These
requirements are of course superfluous in the case of operators, cf. [9].

5. Quasi-Fredholm relations

The following definition of quasi-Fredholm relations is formulated for range space
relations. It will be shown in Theorem 5.2 below that any quasi-Fredholm relation is
automatically closed.

DEFINITION 5.1. A relation A in a Hilbert space H is said to be quasi-Fredholm
if A is a range space relation and if there exists an integer d ∈ N0 for which:

(Q1) δ (A) = d ;

(Q2) ranAd ∩ker A is closed in H ;

(Q3) ranA+ker Ad is closed in H .

In this case the relation A is said to be a quasi-Fredholm relation of degree d .

A range space relation A in a Hilbert space H is a quasi-Fredholm relation of
degree 0 if and only if the following conditions are satisfied:

(N1) ker A ⊂ ranAm , m ∈ N ;

(N2) ker A is closed in H ;

(N3) ranA is closed in H ;

cf. Lemma 2.7. In fact, the condition in (i) can be replaced by any of the equivalent
conditions (iii) or (iv) in Lemma 2.7. It is an immediate consequence of Lemma 4.6
that a quasi-Fredholm relation of degree 0 is closed.

The following decomposition result goes back to Kato [7] for semi-Fredholm op-
erators in the setting of pairs of operators; it was extended to the case of quasi-Fredholm
operators by Labrousse [9].

THEOREM 5.2. Let A be a range space relation in a Hilbert space H , which
is quasi-Fredholm of degree d ∈ N0 . Then A is closed and there exist two closed
subspaces M and N of H such that:

(i) H = M+N , M∩N = {0} ;

(ii) ranAd ⊂ M;

(iii) N ⊂ ker Ad and, if d � 1 , N �⊂ ker Ad−1 ;

(iv) A = AM×M +̂ AN×N , direct sum;
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(v) AM×M is a quasi-Fredholm relation of degree 0 with AM×M = AM×H and, in
particular, mulAM×M = mulA;

(vi) AN×N is a bounded operator defined on all of N with (AN×N)d = N×{0} .

Proof. Observe that for d = 0 one can choose M = H and N = {0} . Hence in
the rest of the proof it is assumed that d ∈ N .

The proof consists of four steps. In the first step the range subspace M of H
will be constructed inductively. In the second step the range subspace N of H will be
constructed inductively. In the third step it will be shown that H has a decomposition
in terms of M and N . The last step is to show that A is closed.

Step 1. Construction of the space M . Define the following sequence of subspaces
M j of H for j ∈ N0 :

M0 = H, M j+1 = (ranA+ker Ad)⊥ +
{

v : {u,v} ∈ A, u ∈ M j
}

. (5.1)

These spaces M j are all range subspaces in H . For j = 0 this is clear. Assume that M j

is a range subspace for j = m . Then A∩ (M j ×H) is a range relation and its range is a
range subspace; cf. Lemma 4.10. Furthermore, (ranA+ker Ad)⊥ is a closed subspace
and, hence, a range subspace. Since the sum of two range subspaces is again a range
subspace (see Proposition 3.9), it follows from (5.1) that M j is a range subspace for
j = m+1.

These linear subspaces M j form a decreasing sequence:

M j ⊂ M j−1, j ∈ N. (5.2)

The case j = 1 is clear. Assume now that the inclusion is true for j = m ; it will be
proved for j = m+1. Let x∈Mm+1 , then x = w+v , where w∈ (ranA+ker Ad)⊥ and
{u,v} ∈ A for some u ∈ Mm . By induction hypothesis u ∈ Mm−1 , but then x ∈ Mm .
Hence (5.2) is proved.

Furthermore, the linear subspaces M j satisfy the inclusions:

ranAj ⊂ {v : {u,v} ∈ A, u ∈ M j−1
}⊂ M j, j ∈ N. (5.3)

The second inclusion is clear from (5.1). It suffices to prove the first inclusion. The case
j = 1 is clear. Now assume that the first inclusion holds for j = m . Let v ∈ ranAm+1

so that {w,v} ∈ Am+1 for some w ∈ H . Then there exists an element u such that
{w,u} ∈ Am and {u,v} ∈ A . By the induction hypothesis u ∈ Mm . Hence the first
inclusion in (5.3) has been proved for j = m+1.

The linear subspaces M j satisfy the following stability property:{
v : {u,v} ∈ A, u ∈ M j

}
+ker Ad = ranA+ker Ad , j ∈ N. (5.4)

Clearly, the lefthand side is contained in the righthand side, so it suffices to show that

ranA ⊂ ranAM j×H +ker Ad , j ∈ N. (5.5)
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The case j = 0 is obvious. Assume that (5.5) holds true for j = m and let v ∈ ranA .
Therefore {u,v} ∈ A for some u ∈ domA . The assumption (Q3) leads to the following
orthogonal decomposition

u = x+ y, x ∈ (ranA+ker Ad)⊥, y ∈ ranA+ker Ad .

Note that y = t + s with t ∈ ranA and s ∈ ker Ad . It follows from the induction hy-
pothesis (5.5) with j = m that t ∈ ranAMm×H . Define w = x + t . Then w ∈ Mm+1

and
w = u− s ∈ domA+ker Ad ⊂ domA,

so that {w,w′} ∈ A for some w′ ∈ H . In fact, w′ ∈ ranAMm+1×H . Since {w,w′} ∈ A
and {u,v} ∈ A it follows that

{s,v−w′} = {u,v}−{w,w′} ∈ A.

Furthermore, s∈ ker Ad implies that {s,t ′} ∈ A for some t ′ ∈ ker Ad−1 ⊂ ker Ad . Now,

{0,v−w′ − t ′} = {s,v−w′}−{s, t ′} ∈ A

shows that v−w′ − t ′ ∈ mulA , and hence,

v ∈ ranAMm+1 +ker Ad +mulA = ranAMm+1 +ker Ad ,

which leads to (5.5).
The space H allows the following decomposition:

M j +ker Ad = H, j ∈ N0. (5.6)

The statement (5.6) is clear for j = 0. It follows from the assumption (Q3) and the
identity (5.4) that:

H = (ranA+ker Ad)⊥ +(ranA+ker Ad)

= (ranA+ker Ad)⊥ +
{

v : {u,v} ∈ A, u ∈ M j
}

+ker Ad

= M j+1 +ker Ad , j ∈ N,

which leads to (5.6) with j ∈ N .
The decomposition in (5.6) is not direct in general. In fact one has the following

identity:
M j ∩ker Ak = ranAj ∩ker Ak, j, k ∈ N0. (5.7)

Indeed, ranAj ∩ker Ak ⊂ M j ∩ker Ak is obvious for j = 0 and follows from (5.3) for
j ∈ N and any k ∈ N0 . The converse inclusion,

M j ∩ker Ak ⊂ ranAj ∩ker Ak, j,k ∈ N0. (5.8)

will be proved by induction. The case j = 0 is clear for all k ∈ N0 . Now assume that
(5.8) holds for j = m and for all k . Let u ∈Mm+1∩ker Ak so that u = w+v′ for some
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w ∈ (ranA+ker Ad)⊥ and {v,v′} ∈ A with v ∈ Mm . Using Lemma 2.5 (ii), it follows
that

w = u− v′ ∈ ranA+ker Ak ⊂ ranA+ker Ad ,

so that
w ∈ (ranA+ker Ad)⊥∩ (ranA+ker Ad),

which shows that w = 0. Therefore v′ = u , and since u ∈ ker Ak , it follows that v ∈
ker Ak+1 . Now v ∈ Mm and the assumption (5.8) shows that v ∈ ranAm ∩ ranAk+1 . In
particular, it follows that u ∈ ranAm+1 . Hence (5.8) is valid for j = m+1 and all k .

The sequence of linear subspaces M j is eventually stable:

M j = Md , j � d. (5.9)

Indeed, it follows from (5.2) that M j ⊂ Md , j � d . Hence, it suffices to show that

Md ⊂ M j, j � d. (5.10)

Let u ∈ Md . The decomposition (5.6) implies that

u = v+w, v ∈ M j, w ∈ ker Ad .

Observe that v ∈ M j ⊂ Md . Hence, (5.7) and Lemma 2.5 (iii) imply that

w = u− v∈ Md ∩ker Ad = ranAd ∩ker Ad ⊂ ranAj ∩ker Ad .

Therefore w ∈ ranAj and, by (5.3), w ∈ M j , so that u ∈ M j . Hence (5.10) is now
proved and therefore (5.9) has been shown.

The eventual stability of the sequence M j leads to the following definition:

M = Md , (5.11)

and the above construction shows that M is a range subspace in H . The definitions
(5.1) and (5.11) show that

M = (ranA+ker Ad)⊥ +{v : {u,v} ∈ A, u ∈ M} . (5.12)

It follows from (5.1) and (5.3) that

ranAd ⊂ M, ranAM×H ⊂ M, (5.13)

and from (5.4) that
ranAM×H +ker Ad = ranA+ker Ad. (5.14)

Furthermore, it follows from (5.6) that

M+ker Ad = H. (5.15)

Finally, it follows from (5.7) that

M∩ker Ak = ranAd ∩ker Ak. (5.16)
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Step 2. Construction of the space N . Define the following sequence of subspaces
N j of H for j ∈ N0 :

N0 = {0}, N j+1 =
{

u ∈ (ranAd ∩ker A)⊥ : {u,v} ∈ A, v ∈ N j

}
. (5.17)

These spaces M j are all range subspaces in H . For j = 0 this is clear. Now assume
that N j is a range subspace for j = m . The space (ranAd ∩ ker A)⊥ is closed, and
hence a range subspace. Therefore, also (ranAd ∩ker A)⊥×Nm is a range subspace by
Proposition 3.9. Hence, Nm+1 = A∩ ((ranAd ∩ker A)⊥×Nm

)
is a range relation by

Lemma 4.10.
The linear subspaces N j form an increasing sequence:

N j ⊂ N j+1, j ∈ N0. (5.18)

The inclusion is clearly true for j = 0. Assume now that the inclusion is true for j = m ;
it will be proved for j = m+ 1. Let u ∈ Nm+1 , then u ∈ (ranAd ∩ ker A)⊥ and there
exists an element v ∈ Nm such that {u,v} ∈ A . Since, by assumption Nm ⊂ Nm+1 , it
follows that v ∈ Nm+1 , and, hence, u ∈ Nm+2 . Thus (5.18) has been shown.

Furthermore, the linear subspaces N j satisfy the inclusions:

N j ⊂ ker Aj, j ∈ N0. (5.19)

This is clear for j = 0. Assume now that the inclusion is true for j = m ; it will be
proved for j = m+1. Let u ∈ Nm+1 , so that there exists v ∈ Nm such that {u,v} ∈ A ,
i.e., {u,v} ∈ A and {v,0} ∈ Am , since Nm ⊂ ker Am . Hence, {u,0} ∈ Am+1 . Thus
(5.19) has been shown.

The linear subspaces N j satisfy the following stability property:

ker Aj = N j +(ranAd ∩ker Aj), j ∈ N0. (5.20)

It follows from (5.19) that the righthand side is contained in the lefthand side. So it
suffices to show that

ker Aj ⊂ N j +(ranAd ∩ker Aj), j ∈ N0. (5.21)

For j = 0 this is clear. To see the case j = 1, let u ∈ ker A . Then the assumption (Q2)
leads to the following orthogonal decomposition:

u = u1 +u2, u1 ∈ (ranAd ∩ker A)⊥, u2 ∈ ranAd ∩ker A.

Since u, u2 ∈ ker A , it follows that u1 ∈ ker A , which gives u1 ∈ N1 by definition, cf.
(5.17). Hence, (5.21) has been shown for the case j = 1. Assume now that (5.21) is
true for j = m � 1. Let u ∈ ker Am+1 so that {u,v} ∈ A and {v,0} ∈ Am for some
v ∈ H . Thus v ∈ ker Am and by (5.21) with j = m there is a decomposition

v = v1 + v2, v1 ∈ Nm, v2 ∈ ranAd ∩ker Am.
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Clearly, v1 = v− v2 ∈ ranA . Hence {u,v1} ∈ A for some u ∈ H . The assumption (Q2)
leads to the following orthogonal decomposition:

u = u1 +u2, u1 ∈ (ranAd ∩ker A)⊥, u2 ∈ ranAd ∩ker A.

Since {u2,0}∈A it follows that {u1,v1}∈A . Now v1 ∈Nm implies by (5.17) that u1 ∈
Nm+1 . Now v2 ∈ ranAd ∩ker Am and Lemma 2.5 (iii) lead to v2 ∈ ranAd+1 ∩ker Am .
Because of v2 ∈ ranAd+1 there is an element w such that {w,v2} ∈ Ad+1 which implies
the existence of an element u2 such that {w,u2} ∈ Ad and {u2,v2} ∈ A . Moreover,
v2 ∈ ker Am implies that u2 ∈ ker Am+1 , and hence u2 ∈ ranAd ∩ ker Am+1 . Now the
decomposition

{u,v} = {u1,v1}+{u2,v2}+{u3,0}, u3 = u− (u1 +u2),

and {u,v},{u1,v1},{u2,v2} ∈ A show that {u3,0} ∈ A . Furthermore, (5.21) with j =
1, (5.18), and ker A ⊂ ker Am+1 , imply that

u3 ∈ ker A = N1 +(ranAd ∩ker A) ⊂ Nm+1 +(ranAd ∩ker Am+1).

As u1 ∈ Nm+1 and u2 ∈ ranAd ∩ker Am+1 , it follows that

u = u1 +u2 +u3 ∈ Nm+1 +(ranAd ∩ker Am+1).

Therefore (5.21) with j = m+1 has been proved.
The decomposition in (5.20) is direct:

N j ∩ (ranAd ∩ker Aj) = {0}, j ∈ N0. (5.22)

The case j = 0 is obvious and so is the case j = 1. Proceed by induction on j and
assume that (5.22) holds true for j = m � 1. Let u ∈ Nm+1 ∩ (ranAd ∩ ker Am+1) .
Since u ∈ Nm+1 it follows that {u,v} ∈ A for some v ∈ Nm . Furthermore, (5.19)
implies that v ∈ ker Am . Since u ∈ ranAd , it is clear that v ∈ ranAd+1 . Hence, v ∈
ranAd+1∩ker Am = ranAd ∩ker Am according to Lemma 2.5 (ii). Therefore,

v ∈ Nm ∩ ranAd ∩ker Am = {0},
which implies that u ∈ ker A . Since u ∈ Nm+1 ⊂ (ranAd ∩ker A)⊥ , it follows that

u ∈ (ranAd ∩ker A)∩ (ranAd ∩ker A)⊥,

which implies that u = 0. Hence Nm+1 ∩ (ranAd ∩ ker Am+1) = {0} , and (5.22) is
proved. Note that (5.22) is equivalent to

N j ∩ ranAd = {0}, j ∈ N0, (5.23)

which follows from (5.19).
The sequence of linear subspaces N j is eventually stable:

N j = Nd , j � d. (5.24)
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The relation (5.18) implies that Nd ⊂ N j . To show the converse inclusion, note that
(5.19) and Lemma 2.5 (ii) lead to

N j ⊂ ker Aj ⊂ ker Ad + ranAd ,

and, since ker Ad ⊂ ker Aj , this in turn leads to

N j ⊂ ker Ad +(ranAd ∩ker Aj).

Now substitute (5.20) with j = d for the first term on the righthand side, so that

N j ⊂ Nd +(ranAd ∩ker Ad)+ (ranAd ∩ker Aj) ⊂ Nd +(ranAd ∩ker Aj).

Since Nd ⊂N j and N j∩(ranAd∩ker Aj) = {0} (by (5.22)), this shows that N j ⊂Nd .
Hence, (5.24) has been shown.

The eventual stability of the sequence N j leads to the following definition:

N = Nd , (5.25)

and the above construction shows that N is a range subspace in H . The definitions
(5.17) and (5.25) show that

N = {u ∈ (ranAd ∩ker A)⊥ : {u,v} ∈ A, v ∈ N}. (5.26)

It follows from (5.19) that
N ⊂ ker Ad , (5.27)

and it follows from (5.23) that

N∩ ranAd = {0}. (5.28)

Furthermore, (5.20) and (5.27) show that

ker Ad + ranAd ⊂ N+ ranAd ⊂ ker Ad + ranAd ,

and now (5.28) leads to the direct sum decomposition

ker Ad + ranAd = N+ ranAd , direct sum. (5.29)

Step 3. Decomposition by means of the spaces M and N . The linear subspaces
M and N have been defined in (5.11) and (5.25). Both M and N are range subspaces
of H . The first inclusion in (5.13), (5.29), and (5.15) lead to

M+N = M+ ranAd +N

= M+ ranAd +ker Ad

= M+ker Ad = H.



THE KATO DECOMPOSITION OF QUASI-FREDHOLM RELATIONS 31

Furthermore, (5.19), (5.16), and (5.28) imply that

M∩N = M∩ker Ad ∩N

= ranAd ∩ker Ad ∩N

= ranAd ∩N = {0}.
Hence, there is a direct sum decomposition H = M+N , M∩N = {0} , and the sum-
mands are range subspaces.

By Proposition 3.10 it follows that both M and N are closed subspaces of H .
The inclusions ranAd ⊂ M and N ⊂ ker Ad have been shown in (5.27) and the first
identity in (5.13). Hence (i), (ii), and the first part of (iii) of the theorem have been
demonstrated.

The second identity in (5.13) shows that AM×H ⊂ AM×M , and the reverse in-
clusion is obvious. Hence, the part of the statement (v) of the theorem concerning
AM×H = AM×M has been shown.

The identity (5.26) implies that domAN×N = N . It follows from (5.12) that
mulA⊂M . Hence AN×N is an operator. The identity (5.28) implies that ran(AN×N)d

= ranAd ∩M = {0} , that is

(AN×N)d = N×{0}, (5.30)

which completes the proof of (vi).
Next it will be shown that A satisfies the decomposition in (iv). To show the

decomposition, it suffices to show that

A ⊂ AM×M +̂ AN×N, (5.31)

as the reverse inclusion is obvious. Assume that {u,v} ∈ A . Then there is a unique
decomposition u = u1 +u2 with u1 ∈M and u2 ∈N . Since N = domAN×N ⊂ domA ,
it follows that also u1 = u−u2 ∈ domA . Moreover, since AN×N is an operator, there
is a unique v2 ∈ N such that {u2,v2} ∈ AN×N . Let v1 = v− v2 , then {u1,v1} =
{u,v}−{u2,v2} ∈ AM×H = AM×M . Hence,

{u,v} = {u1,v1}+{u2,v2} ∈ AM×M +̂ AN×N,

and (5.31) follows. To show that the sum in (iv) is direct, note that

AM×M ∩AN×N ⊂ (M×M)∩ (N×N) = {0,0}.
Hence, the decomposition in (iv) has been shown.

Now it will be shown that AM×M is quasi-Fredholm of degree 0. Observe that it
is an easy consequence of the decomposition (5.31) that

M∩domA = domAM×H, M∩ ranA = ranAM×H. (5.32)

The first identity is trivial. As to the second identity, note that the inclusion ranAM×H ⊂
M∩ ranA is clear. To see the converse inclusion, let v ∈ M∩ ranA . Hence there is an
element u such that {u,v} ∈ A and decompose {u,v} according to (5.31):

{u,v} = {u1,v1}+{u2,v2}, {u1,v1} ∈ AM×M, {u2,v2} ∈ AN×N.
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Since v∈M and v1 ∈M it follows that v2 = 0. This implies that v = v1 ∈ ranAM×M .
In particular, (5.32) gives the inclusion

ranAd ⊂ ranAM×H. (5.33)

Note that ranAd ⊂ ranA and according to (5.13) ranAd ⊂ M . It follows that ranAd ⊂
M∩ ranA , so that (5.32) leads to (5.33).

Hence with (5.33), (5.29), and (5.14) it follows that

ranAM×H +N = ranAM×H + ranAd +N (5.34)

= ranAM×H + ranAd +ker Ad

= ranAM×H +ker Ad

= ranA+ker Ad ,

which is closed by assumption (Q3). Furthermore, observe that

ranAM×H ∩N ⊂ M∩N = {0}. (5.35)

It follows from (5.34), (5.35), and Proposition 3.10 that

ranAM×H is closed. (5.36)

Taking k = 1 in (5.16) it follows that

ker AM×H = ker A∩M = ker A∩ ranAd . (5.37)

Hence, it follows from assumption (Q2) and (5.37) that

ker AM×H is closed. (5.38)

Furthermore, (5.37) leads to

ker AM×H = ker A∩ ranAj ⊂ ranAj, j � d. (5.39)

The decomposition result in (iv) remains valid for powers of the relation A :

Aj = (AM×M) j +̂(AN×N) j, direct sum, j � 1, (5.40)

cf. Corollary 2.2.
From (5.30) and (5.40) it follows that

ran(AM×M) j = ranAj, j � d. (5.41)

Now, (5.39) and (5.41) imply that

ker AM×H ⊂ ranAj
M×M, j � d. (5.42)

Due to the shrinking of the powers of the ranges (see (2.5)) it follows from (5.36),
(5.38), and (5.42) that AM×M is a quasi-Fredholm relation of degree 0. This completes
the proof of (iv).
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It remains to show that N �⊂ ker Ad−1 . To see this, assume that N ⊂ ker Ad−1 . It
will be proved that this implies that

ranAd−1∩ker A ⊂ ranAd ∩ker A, (5.43)

so that there is actually equality. This leads to d−1 ∈ Δ(A) , which is a contradiction,
since A is a quasi-Fredholm relation of degree d . In order to demonstrate (5.43), let y∈
ranAd−1∩ker A , so that {x,y} ∈ Ad−1 and {y,0} ∈ A . According to the decomposition
(5.40) with j = d−1, there exist elements

{xM,yM} ∈ (AM×M)d−1, {xN,yN} ∈ (AN×N)d−1,

such that
{x,y} = {xM,yM}+{xN,yN}. (5.44)

The fact that {y,0} ∈ A implies that

{yM,−z} ∈ AM×M, {yN,z} ∈ AN×N,

for some z ∈ H . Since M∩N = {0} it follows that z = 0. Therefore, the elements in
the decomposition (5.44) satisfy

{yM,0} ∈ AM×M, {yN,0} ∈ AN×N. (5.45)

Since xN ∈ N , the assumption N ⊂ ker Ad−1 implies that {xN,0} ∈ Ad−1 , so that, in
fact, according to the decomposition (5.40) with j = d−1:

{xN,0} ∈ (AN×N)d−1. (5.46)

Now (5.44) and (5.46) show that

{0,yN} ∈ (AN×N)d−1. (5.47)

Since AN×N is an operator, (5.47) implies that yN = 0. Thus, by (5.44) and (5.45),
y = yM ∈ ker AM×M ⊂ ran(AM×M)d ; recall that AM×M is a quasi-Fredholm relation
of degree 0. In particular, y ∈ ranAd . Consequently, y ∈ ranAd ∩ker A , which proves
(5.43). Hence part (v) has been completely shown.

Step 4. The closedness of the relation A. The case d = 0 has been discussed
already. Now consider the case d ∈ N . Let { fn, f ′n} ∈ A converge to { f , f ′} ∈ H×H .
Due to the decomposition A = AM×M +̂ AN×N it follows that

{ fn, f ′n} = {gn,g
′
n}+{hn,h

′
n}, {gn,g

′
n} ∈ AM×M, {hn,h

′
n} ∈ AN×N.

Since M×M and N×N are complementary spaces in H×H , each of the sequences
in this decomposition converges. Note AM×M is closed because it is quasi-Fredholm
of degree 0. The operator AN×N is defined on all of N and hence bounded in N by
Lemma 4.4, and therefore also closed. Hence,

{gn,g
′
n}→ {g,g′} ∈ AM×M, {hn,h

′
n}→ {h,h′} ∈ AN×N,

and as { f , f ′} = {g,g′}+{h,h′} it follows that { f , f ′} ∈ A and thus A is closed. This
completes the proof �
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REMARK 5.3. Observe that all statements of Theorem 5.2, except the one con-
cerning N �⊂ ker Ad−1 , have been proved under the assumptions that

1. d ∈ Δ(A) ;

2. ranAd ∩ker A is closed in H ;

3. ranA+ker Ad is closed in H .

The fact that d = δ (A) leads to the ’minimality condition’ N �⊂ ker Ad−1 .

REMARK 5.4. The spaces M and N in the decomposition of a quasi-Fredholm
relation A are not, in general, unique. In [12] it is shown that if M1 , N1 and M2 , N2

are two decompositions associated with a quasi-Fredholm operator A , then M1 , N2

and M2 , N1 are also decompositions associated with the operator A ; in [12] there is
also a condition for the uniqueness of the decomposition for the operator case.

REMARK 5.5. The definition of a quasi-Fredholm relation can be extended to the
context of a Banach space, when in Definition 5.1 H denotes a Banach space and the
conditions (Q2) and (Q3) are replaced by

(Q2’) ranAd ∩ker A is complemented in H ;

(Q3’) ranA+ker Ad is complemented in H .

The case of a quasi-Fredholm operator in a Banach space was briefly discussed in a
remark in [9, p. 206]. For a bounded quasi-Fredholm operator in a Banach space the
analog of Theorem 5.2 can be found in [14].

6. Equivalent definitions of quasi-Fredholm relations

There are several ways to characterize quasi-Fredholm relations. It is possible to
characterize such relations without an explicit reference to the degree. Another way
to characterize these relations is via the decomposition as described in Theorem 5.2.
Finally it will be shown that quasi-Fredholm relations can be seen as particular pertur-
bations of quasi-Fredholm relations of degree 1.

6.1. A Baire type characterization of quasi-Fredholm relations

The first way to characterize quasi-Fredholm relations is a direct adaptation of a
result of Labrousse [9, Proposition 3.3.6] for the operator case. Note that the degree
does not explicitly show up in the characterization.

PROPOSITION 6.1. Let A be a range space relation in a Hilbert space H . Then
A is a quasi-Fredholm relation if and only if the spaces

ranA+
∞⋃
j=1

ker Aj and ker A∩
(

∞⋂
j=1

ranAj

)
(6.1)

are closed in H .
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Proof. Observe that for any relation A one has the identities

ranA+
∞⋃

j=1

ker Aj =
∞⋃

j=1

(
ranA+ker Aj) (6.2)

and

ker A∩
(

∞⋂
j=1

ranAj

)
=

∞⋂
j=1

(
ker A∩ ranAj) . (6.3)

(⇒) Let A be a quasi-Fredholm relation of degree d . Then Lemma 2.5 implies
that ker Aj ⊂ ranA+ker Ad and it follows from (6.2) that

ranA+
∞⋃
j=1

ker Aj = ranA+ker Ad. (6.4)

Furthermore, the sequence ker A∩ ranAj is decreasing as j ∈ N increases, and, in
addition, ker A∩ ranAj = ker A∩ ranAd , j � d . Hence, it follows from (6.3) that

ker A∩
(

∞⋂
j=1

ranAj

)
= ker A∩ ranAd . (6.5)

By definition the spaces ranA+ker Ad and ker A∩ ranAd are closed. Hence (6.4) and
(6.5) show that the spaces in (6.1) are closed.

(⇐) Let A be a range space relation for which the spaces in (6.1) are closed.
Define the subspace H0 of H by the lefthand side of (6.2), so that H0 is closed. Each
space ranA + ker Aj is a range subspace of H0 , and the sequence ranA + ker An is
increasing in H0 as n ∈ N increases. Therefore it follows from Proposition 3.15 that
there is an index j0 such that ranA+ker Aj0 = H0 . Let d be the smallest index j0 for
which this identity holds:

ranA+ker Ad = H0.

As the sequence ranA+ker An is increasing in H0 as n∈N increases, the construction
implies that for all n � d

ranA+ker Ad = ranA+ker An (⊂ H0).

By Lemma 2.5, this leads to δ (A) = d < ∞ . Again by Lemma 2.5 it is seen that the
identity

ker A∩ ranAd = ker A∩
(

∞⋂
j=1

ranAj

)

holds. This shows that ker A∩ ranAd is closed. Therefore A is a quasi-Fredholm
relation of degree d . �
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6.2. Kato decomposable relations

A second way to characterize the decomposition of quasi-Fredholm relations in
Theorem 5.2 is in fact an inverse result.

DEFINITION 6.2. A range space relation A in a Hilbert space H is said to be Kato
decomposable of degree d if there exist two closed subspaces M and N of H such
that the properties (i)–(vi) in Theorem 5.2 are satisfied.

LEMMA 6.3. Let A be a Kato decomposable relation in a Hilbert space H . Then
its degree is well defined.

Proof. Let (M1,N1,d1) and (M2,N2,d2) be two triplets which satisfy Defini-
tion 6.2 and assume that d1 < d2 . It will be shown that N2 ⊂ ker Ad1 , leading to a
contradiction. Let u ∈ N2 . Then the assumption concerning the triplet (M2,N2,d2)
leads to u ∈ ker (AN2×N2)

d2 . Observe that

{u,0} ∈ (AN2×N2)
d2 = (AN2×N2)

d2−d1 × (AN2×N2)
d1 ,

shows that

{u,u′} ∈ (AN2×N2)
d1 ⊂ Ad1

for some

u′ ∈ ker (AN2×N2)
d2−d1 ⊂ ker Ad2−d1 ⊂ ker Ad2 .

Note that, in particular, u′ ∈ N2 . Therefore, the assumption concerning the triplet
(M1,N1,d1) leads to u = v + w for some v ∈ M1 and w ∈ N1 . Observe that w ∈
N1 ⊂ ker Ad1 , so that

{v,u′} = {u,u′}−{w,0} ∈ Ad1 ,

and, therefore, u′ ∈ ranAd1 ⊂ M1 . Hence,

u′ ∈ M1 ∩ker Ad2 = ker (AM1×M1)
d2 ,

where the last equality follows from AM1×H = AM1×M1 . Since AM1×M1 is a quasi-
Fredholm relation of degree 0 in M1 , one has that

ker (AM1×M1)
d2 ⊂ ran(AM1×M1)

d2 ⊂ ranAd2 ,

where the first inclusion follows from Lemma 2.7. Hence u′ ∈ ranAd2 ⊂ M2 , which
together with u′ ∈ N2 implies that u′ ∈ M2 ∩N2 = {0} . Thus u′ = 0 and then u ∈
ker Ad1 . Therefore, it follows that N2 ⊂ ker Ad1 . The assumption N2 �⊂ ker Ad2−1 then
leads to d2−1 < d1 , so that d2 � d1 , a contradiction.

In the same way the inequality d1 > d2 leads to a contradiction. Therefore d1 =
d2 . �
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THEOREM 6.4. Let A be a range space relation A in a Hilbert space H and let
d � 1 . The relation A is Kato decomposable of degree d if and only if A is quasi-
Fredholm of degree d .

Proof. (⇐) Assume that A is quasi-Fredholm of degree d . Then Theorem 5.2
implies that A is Kato decomposable of degree d .

(⇒) Assume that A is Kato decomposable of degree d . The decomposition result
remains valid for powers of the relation A as in (5.40); cf. Corollary 2.2:

Am = (AM×M)m +̂(AN×N)m.

Hence it is clear that ranAm = ran(AM×M)m for all m � d . Thus, if m � d , then

ranAm ∩ker A = ran(AM×M)m ∩ker A

= ran(AM×M)m ∩ker AM×M = ker AM×M,
(6.6)

as AM×M is quasi-Fredholm of degree 0; cf. Lemma 2.7. It follows from (6.6) that
for all m � d

ranAm ∩ker A = ranAd ∩ker A,

so that δ (A) � d .
To show that A is quasi-Fredholm of degree δ (A) , one has to prove that the sub-

spaces ranAδ (A)∩ker A and ranA+ker Aδ (A) are closed, cf. Definition 5.1.
In order to show that ranAδ (A) ∩ker A is closed, observe that ranAδ (A) ∩ker A =

ranAd ∩ker A . Hence, (6.6) implies that

ranAδ (A)∩ker A = ker AM×M.

Since AM×M is quasi-Fredholm of degree 0 in M , the space ker AM×M is closed.
Therefore, ranAδ (A)∩ker A is closed.

In order to show that ranA+ker Aδ (A) is closed, observe that Corollary 2.6 gives

ranA+ker Aδ (A) = ranA+ker Ad .

Hence for the proof it suffices to show that

ranA+ker Ad = ranAM×M +N, (6.7)

and that the righthand side is closed. Clearly the righthand side of (6.7) is contained in
the lefthand side. For the reverse inclusion observe that

ranA ⊂ ranAM×M + ranAN×N ⊂ ranAM×M +N, (6.8)
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and that

ker Ad ⊂ (M∩ker Ad)+N = ker (AM×M)d +N⊂ ranAM×M +N. (6.9)

The first inclusion in (6.9) follows from N⊂ ker Ad and H =M+N . The last inclusion
follows from Lemma 2.7. The equality in (6.9) follows from

M∩ker Ad = ker (AM×M)d ,

which is clear since AM×H = AM×M . Observe that (6.8) and (6.9) complete the proof
of (6.7). Now it will be shown that the righthand side of (6.7) is closed. As AM×M is
quasi-Fredholm of degree 0 in M , by definition ranAM×M is closed in M , and hence
closed. Furthermore, M and N are complementary subspaces of H , which completes
the argument.

It has been shown that A is a quasi-Fredholm relation of degree δ (A) � d . Hence,
Theorem 5.2 implies that A is Kato decomposable of degree δ (A) . The original as-
sumption is that A is Kato decomposable of degree d . It follows from Lemma 6.3 that
δ (A) = d . Hence, A is quasi-Fredholm of degree d . �

6.3. Normally decomposable linear relations

The third way to characterize the decomposition result in Theorem 5.2 is via a
special operator-sum decomposition of the relation A ; cf. [18].

DEFINITION 6.5. A range space relation A in a Hilbert space H is said to be
normally decomposable of degree d if there exist two range space relations D and T
in H such that:

(i) D is a quasi-Fredholm relation of degree at most 1;

(ii) T is an everywhere defined nilpotent operator of degree d ;

(iii) A = D+T , TD = domA×{0} , DT = H×mulA .

LEMMA 6.6. Let A be a range space relation in a Hilbert space H , which is
normally decomposable as in Definition 6.5. Then

ranT ⊂ ker D and ranD ⊂ ker T, (6.10)

so that

domAk = dom(D+T )k = domDk, mulAk = mul(D+T)k = mulDk, (6.11)

with k ∈ N . Furthermore,

TDj = domAj ×{0}, DjT = H×mulAj, j ∈ N. (6.12)

In particular,
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domTDj = domDj = domAj, mulDjT = mulDj = mulAj, j ∈ N.

Moreover,
An = Dn, n � d. (6.13)

Proof. Let A = D + T with D and T as in Definition 6.5. Let h ∈ H so that
{h,0} ∈ H×mulA = DT . Then {Th,0} ∈ D so that Th ∈ ker D . Thus ranT ⊂ ker D .
Moreover, let d′ ∈ ranD so that {d,d′} ∈ D for some d ∈ domD . Since {d′,Td′} ∈ T
it follows that {d,Td′} ∈ TD = domA×{0} which shows that Td′ = 0. Thus d′ ∈
ker T which means that ranD ⊂ ker T . This proves (6.10).

Since (6.10) holds, Lemma 2.3 may be applied. In the operator-wise sum A =
D + T one has domA = dom(D + T ) = domD and mulA = mul(D + T ) = mulD .
Lemma 2.3 may be applied so that similar identities hold for powers, which leads to
(6.11).

Consider the first identity in (6.12). The case j = 1 is clear by hypothesis. Now
assume that TDk = domAk×{0} for some k ∈ N . Let {x,y} ∈ TDk+1 , so that {x,z} ∈
D and {z,y} ∈ TDk = domAk ×{0} = domDk ×{0} ; cf. (6.11). This implies that
z ∈ domDk and y = 0. Therefore, it follows from {x,z} ∈ D and z ∈ domDk that
x ∈ domDk+1 = domAk+1 . This gives

TDk+1 ⊂ domAk+1 ×{0}. (6.14)

Conversely, let x ∈ domAk+1 = domDk+1 ; cf. (6.11). Then, {x,x′′} ∈ Dk+1 for some
x′′ ∈ H . This implies that {x,x′} ∈ D and {x′,x′′} ∈ Dk for some x′ ∈ H , so that
{x′,Tx′′} ∈ TDk . Therefore, Tx′′ = 0 and then {x,0} ∈ TDk+1 . Thus

domAk+1 ×{0} ⊂ TDk+1. (6.15)

Now (6.14) and (6.15) lead to the first identity in (6.12), and the induction process is
finished.

Consider the second identity in (6.12). The case j = 1 is clear by hypothesis. Now
assume that DkT = H×mulAk . Let {x,y} ∈Dk+1T , so that {x,z} ∈DkT and {z,y} ∈
D for some z ∈ H . Hence, by assumption, z ∈ mulAk = mulDk , so that {0,z} ∈ Dk ;
cf. (6.11). Therefore, {0,y} ∈ Dk+1 , i.e., y ∈ mulDk+1 = mulAk+1 . Hence {x,y} ∈
H×mulAk+1 . Thus,

Dk+1T ⊂ H×mulAk+1. (6.16)

Conversely, let {x,y} ∈ H×mulAk+1 . This implies that {x,0} ∈H×{0} and {0,y} ∈
Dk+1 , so that {0,z} ∈ Dk and {z,y} ∈ D for some z ∈ H . Then, {0,z} ∈ DkT , and
since {x,0} ∈ DkT by induction hypotheses, it follows that

{x,z} = {x,0}+{0,z} ∈ DkT,

so that {x,y} ∈ Dk+1T . Thus,

H×mulAk+1 ⊂ Dk+1T. (6.17)
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Finally, (6.16) and (6.17) lead to the second identity in (6.12), and the induction process
is finished.

Now (6.13) will be shown. Assume that n � d . This implies that Tnx = 0 for all
x ∈ H . To prove that An ⊂ Dn consider {x0,xn} ∈ An , so that {xi,xi+1} ∈ A , 0 � i �
n−1, for some vectors xi ∈ H , 1 � i � n−1. This implies that

{xi,xi+1−Txi} ∈ D, 0 � i � n−1, (6.18)

which shows that {xi,T (xi+1−Txi)} ∈ TD = domA×{0} . This leads to

Txi+1 = T 2xi, 0 � i � n−1. (6.19)

Since ranT ⊂ ker D , it is also known that

{Txi,0} ∈ D, 0 � i � n. (6.20)

A combination of (6.18) and (6.20) implies that

{xi−Txi−1,xi+1−Txi} = {xi,xi+1 −Txi}−{Txi−1,0} ∈ D,

for all 1 � i � n−1, which together with {x0,x1−Tx0} ∈ D leads to

{x0,xn−Txn−1} ∈ Dn. (6.21)

Furthermore, it follows from (6.19) that

Txn−1 = Tnx0 = 0. (6.22)

Then (6.21) and (6.22) imply that {x0,xn} ∈ Dn , which shows that An ⊂ Dn .
Conversely, let {y0,yn} ∈ Dn , so that {yi,yi+1} ∈ D , 0 � i � n− 1 for some

vectors yi ∈ H , 1 � i � n−1, which implies that

{yi,yi+1 +Tyi} ∈ A, 0 � i � n−1. (6.23)

Furthermore, {yi,Tyi+1} ∈ TD = domA×{0} , 0 � i � n−1, so that

Tyi = 0, 1 � i � n. (6.24)

It follows from (6.23) and (6.24) that

{yi,yi+1} ∈ A, 1 � i � n−1. (6.25)

Since ranT ⊂ ker D , one has {T iy0,0} ∈ D , 1 � i � n− 1, which together with
{T iy0,T i+1y0} ∈ T leads to

{T iy0,T
i+1y0} ∈ A, 1 � i � n−1. (6.26)

A combination of (6.25) and (6.26) implies that

{yi +T iy0,yi+1 +T i+1y0} ∈ A, 1 � i � n−1. (6.27)
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It follows from (6.23) that {y0,y1 +Ty0} ∈ A and thus (6.27) shows that

{y0,yn +Tny0} ∈ An,

so that {y0,yn} ∈ An . Hence, Dn ⊂ An . Therefore, An = Dn . �

THEOREM 6.7. Let A be a range space relation in a Hilbert space H . Then A is
normally decomposable of degree d if and only if A is quasi-Fredholm of degree d .

Proof. (⇐) Assume that A is quasi-Fredholm of degree d . If d = 0 it suffices to
consider D = A and T = 0. Now suppose that d � 1 and apply Theorem 5.2. Let M
and N be closed complementary subspaces as in that theorem and let PM and PN be
the projections corresponding to M and N , respectively. Define the linear relations D
and T in H by

D = AM×MPM, T = AN×NPN, (6.28)

where AM×M and AN×N are as in Theorem 5.2. The relations D and T are range
space relations, due to Proposition 4.8. It follows from Theorem 5.2 and (6.28) that

D+T = AM×M +̂ AN×N = A, (6.29)

see Corollary 2.2 for the first equality.
Now the identity TD = domA×{0} will be shown. Let {x,y} ∈ TD , so that

{x,z} ∈ D and {z,y} ∈ T for some z ∈ H . Then, by definition, {PMx,z} ∈ AM×M

and {PNz,y} ∈ AN×N . Clearly, PMx ∈ domA , so that x = PMx+PNx ∈ domA ; recall
that N ⊂ domA . Also observe that z ∈ M , so that PNz = 0 and, consequently, y = 0.
Hence, TD ⊂ domA×{0} . To show the converse inclusion, let {x,0} ∈ domA×{0} .
Then PMx ∈ domAM×M , so that {PMx,z} ∈ AM×M for some z ∈ M , in other words
{x,z} ∈ D . Furthermore, {z,0} ∈ T as {PNz,0} = {0,0} ∈ AN×N . Thus it follows
that, domA×{0}⊂ TD .

Next the identity DT = H×mulA will be shown. Let {x,y} ∈ DT , so that
{x,z} ∈ T and {z,y} ∈ D for some z ∈ H . By definition, {PNx,z} ∈ AN×N and
{PMz,y} ∈AM×M . Now z∈N , so that PMz = 0. Therefore, y∈mulAM×M = mulA .
Hence, DT ⊂ H×mulA . To show the converse inclusion, let {x,y} ∈ H×mulA .
Then PNx ∈ N , so that {PNx,z} ∈ AN×N for some z ∈ N . This implies {PMz,y} =
{0,y} ∈ AM×M . Therefore, {x,z} ∈ T , {z,y} ∈ D , so that {x,y} ∈ DT . Hence,
H×mulA ⊂ DT .

Now it will be shown that D is quasi-Fredholm of degree at most 1. First observe
that

ker D = (M∩ker A)+N. (6.30)

To see this, let x∈ ker D , so that {PMx,0} ∈A and x = PMx+PNx∈ (ker A∩M)+N .
Conversely, if x = x1 +x2 with x1 ∈M∩ker A and x2 ∈N , then {PMx,0}= {x1,0} ∈
AM×M and {x,0} ∈ AM×MPM = D . Hence, x ∈ ker D . It follows from (6.30) that
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M∩ker D = M∩ker A = ker AM×M ⊂ ran(AM×M) j ⊂ ranAj, j ∈ N, (6.31)

since AM×M is quasi-Fredholm of degree 0. Recall that the decomposition (iv) in
Theorem 5.2 implies the decomposition (5.40), so that by Corollary 2.2

Aj = (AM×M) jPM +(AN×N) jPN, j ∈ N. (6.32)

Hence, Aj = (AM×M) jPM for j � d ; note that (AM×M) jPM = (AM×MPM) j , by
Corollary 2.2. Due to (6.28), it follows that

Aj = Dj for all j � d. (6.33)

A combination of (6.31) and (6.33) leads to

ranD∩ker D ⊂ M∩ker D ⊂ ranAj ∩ker D = ranDj ∩ker D,

for all j � d . Hence ranD∩ ker D = ranDj ∩ ker D for all j � 1. This shows that
δ (D) � 1. Observe that Ad = (AM×M)d , so that ranAd ∩ ker D = ranAd ∩ ker A .
Therefore,

ranD∩ker D = ranDd ∩ker D = ranAd ∩ker D = ranAd ∩ker A,

which shows that ranD∩ker D is closed. Furthermore, observe that

ranD+ker D = ranAM×H +ker AM×H +N = ranAM×H +N.

The righthand side is closed due to (5.34), and hence ranD+ker D is closed. Thus D
is a quasi-Fredholm relation of degree at most 1.

Finally, it will be shown that T is nilpotent of degree d . Since N ⊂ ker Ad it
follows that T is nilpotent of degree d0 � d . Let j � d0 , so that Aj = Dj . This implies
that ranAj = ranDj (⊂ M) , which further leads to

ranAj ∩ker A = ranDj ∩ker D = ranD∩ker D,

since M∩ ker D = ker AM×M . Thus, d = δ (A) � d0 , and therefore d = d0 . This
allows to conclude that A is normally decomposable of degree d .

(⇒) Assume that A is normally decomposable of degree d . First it will be shown
that the identity

ranDj ∩ker A = ranDj ∩ker D (6.34)

is valid. Let y ∈ ranDj ∩ ker A , so that {y,0} ∈ A and {x,y} ∈ Dj for some x ∈ H .
It follows from {y,0} ∈ A that {y,z} ∈ D and {y,−z} ∈ T for some z ∈ H . Then,
{x,−z} ∈ TDj = domAj×{0} , so that z = 0. Therefore y∈ ker D which further leads
to

ranDj ∩ker A ⊂ ranDj ∩ker D. (6.35)
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Conversely, let y ∈ ranDj ∩ker D . Then {y,0} ∈ D and {x,y} ∈ Dj for some x ∈ H .
Therefore {x,Ty} ∈ TDj = domAj ×{0} . This shows that Ty = 0 so that y ∈ ker A .
Thus

ranDj ∩ker D ⊂ ranDj ∩ker A. (6.36)

A combination of (6.35) and (6.36) leads to (6.34).
Next it follows from Lemma 6.6 and (6.34) that

ranAj ∩ker A = ranDj ∩ker A = ranDj ∩ker D = ranD∩ker D

for all j � d , which implies that δ (A) � d . Moreover, since ranD∩ker D is closed in
H it follows that ranAd0 ∩ker A is closed when d0 = δ (A) . Since D is quasi-Fredholm
of degree 1, it follows from Corollary 2.6 that

ranD+ker Dd = ranD+ker D. (6.37)

Now A = D + T implies that ranA ⊂ ranD + ranT ⊂ ranD + ker D , where the last
inclusion follows from (6.10). Hence ranA ⊂ ranD+ker Dd . Together with Ad = Dd

(cf. (6.13)) this leads to

ranA+ker Ad ⊂ ranD+ker Dd . (6.38)

For the converse inclusion, observe that D = A−T leads to

ranD ⊂ ranA+ ranT ⊂ ranA+ker D ⊂ ranA+ker Dd = ranA+ker Ad ,

where, again, (6.10) and (6.13) have been used. Hence it follows

ranD+ker Dd ⊂ ranA+ker Ad . (6.39)

Therefore, (6.38), (6.39), and (6.37) lead to

ranA+ker Ad = ranD+ker Dd = ranD+ker D.

As d0 = δ (A) , it follows from Corollary 2.6 that

ranA+ker Ad0 = ranD+ker D,

so that ranA+ker Ad0 is closed in H . Therefore, A is a quasi-Fredholm relation in H
of degree d0 � d . Now using the first part of the proof it follows that there exist two
range space relations D′ and T ′ satisfying the items (i), (ii), and (iii) of Definition 6.5,
with T ′ nilpotent of degree d0 , and d0 � d . This shows that d = d0 . This completes
the proof. �

7. Adjoints of quasi-Fredholm relations

Let A be a quasi-Fredholm relation of degree d ∈ N in a Hilbert space H . The
adjoint A∗ of A is a closed relation and, in particular, a range space relation. It will be
shown that A∗ is also a quasi-Fredholm relation of degree d , i.e.,
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1. δ (A∗) = d ;

2. ranA∗d ∩ker A∗ is closed in H ;

3. ranA∗ +ker A∗d is closed in H .

For d = 0 the first condition can be replaced by the equivalent condition ker A∗ ⊂
ranA∗n , n ∈ N ; cf. Lemma 2.7. The cases where d = 0 or d = 1 will be treated first;
the general case follows then by means of the normal decomposability of A .

PROPOSITION 7.1. Let A be a quasi-Fredholm relation of degree d � 1 in a
Hilbert space H . Then A∗ is a quasi-Fredholm relation of degree d . Moreover, for
all n ∈ N:

(ker An)⊥ = ranA∗n, n ∈ N, (7.1)

and
(ker A∗n)⊥ = ranAn, n ∈ N. (7.2)

Proof. The proof consists of several steps; in particular, the equality (7.1) will
be proved for the cases d = 0 and d = 1 separately. The equality (7.2) follows by
symmetry.

Step 1. First observe that for any relation A in a Hilbert space H the following
inclusion holds

ranA∗n ⊂ (ker An)⊥, n ∈ N. (7.3)

Note that the inclusion (7.3) follows from (4.7) and (4.4):

ranA∗n ⊂ ran(An)∗ ⊂ ran(An)∗ = (ker An)⊥, n ∈ N.

Hence, in order to show (7.1), in view of (7.3) it suffices to prove that

(ker An)⊥ ⊂ ranA∗n, n ∈ N. (7.4)

This will be done by induction for the cases d = 0 and d = 1 respectively.

Step 2. Assume that A is a quasi-Fredholm relation of degree d = 0. Then A is a
range space relation for which ker A and ranA are closed. It follows from Lemma 4.6
that A is closed. The adjoint A∗ is a closed relation and, in particular, a range space
relation. The fact that A∗ is closed implies that ker A∗ is closed, whereas ranA∗ is
closed due to Lemma 4.12.

The inclusion (7.4) will be shown for the case d = 0. It is clear for n = 0; fur-
thermore, it is clear for n = 1 due to (4.4) and the fact that ranA∗ is closed. As-
sume that (7.4) is satisfied for some n ∈ N , n � 1, and let u ∈ (ker An+1)⊥ . Since
ker An ⊂ ker An+1 it follows that u ∈ (ker An)⊥ , and by the induction hypothesis, that
{v,u} ∈ A∗n for some v∈ domA∗n . Let x ∈ ker A , then {x,0} ∈ A , and ker A ⊂ ranAn ,
n∈ N , implies that {y,x} ∈ An and y ∈ ker An+1 . Since {y,x} ∈ An and {v,u} ∈ A∗n ⊂
An∗ (cf. (4.7)), it follows that 0 = (y,u) = (x,v) for all x ∈ ker A . In other words,
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v ∈ (ker A)⊥ = ranA∗ , which implies u ∈ ranA∗(n+1) . Hence (7.4) has been proved,
which completes the proof of (7.1).

Since A is a quasi-Fredholm relation of degree 0, it follows from Lemma 2.7 that
ker An ⊂ ranA , n ∈ N , which implies by (4.4) and (7.1) that

ker A∗ = (ranA)⊥ ⊂ (ker An)⊥ = ranA∗n, n ∈ N.

Hence, A∗ is a quasi-Fredholm relation of degree 0.

Step 3. Assume that A is a quasi-Fredholm relation of degree d = 1. Then A is a
range space relation for which ranA+ker A and ranA∩ker A are closed. Proposition
3.10 implies that ranA and ker A are closed. It follows from Lemma 4.6 that A is
closed. The adjoint A∗ is a closed relation and, in particular, a range space relation.
The fact that A∗ is closed implies that ker A∗ is closed, whereas ranA∗ is closed due to
Lemma 4.12. In particular it is clear that ranA∗ ∩ker A∗ is closed. Furthermore, since
ranA+ker A is closed, it follows from Proposition 3.2 that also the subspace

ranA∗ +ker A∗ = ranA∗ +kerA∗ = (ranA)⊥ +(ker A)⊥ (7.5)

is closed; cf. (4.3) and (4.4).
Now the inclusion (7.4) will be shown for the case d = 1. It is clear for n =

0; furthermore, it is clear for n = 1 due to (4.4) and the fact that ranA∗ is closed.
Assume that (7.4) is satisfied for some n ∈ N , n � 1, and let u ∈ (ker An+1)⊥ . Since
ker An ⊂ ker An+1 it follows that u ∈ (ker An)⊥ , and by the induction hypothesis, that
{v,u} ∈ A∗n for some v ∈ domA∗n . Let x ∈ ranAn ∩ ker A , so that {x,0} ∈ A and
{y,x} ∈ An for some y ∈ H . Note that y ∈ ker An+1 . Since {y,x} ∈ An and {v,u} ∈
A∗n ⊂ An∗ (cf. (4.7)), it follows that 0 = (y,u) = (x,v) for all x ∈ ranAn∩ker A . Hence
v ∈ (ranAn ∩ker A)⊥ = (ranA∩ker A)⊥ , where the last equality is by definition, since
d = 1. Observe that

v ∈ clos(ranA∗ +kerA∗) = clos(ranA∗ +ker A∗) = ranA∗ +ker A∗,

cf. (7.5). It follows that v ∈ ranA∗ +ker A∗ , so that

v = v1 + v2, v1 ∈ ranA∗, v2 ∈ ker A∗.

Since {v2,0} ∈ A∗n , it follows from {v,u} ∈ A∗n that {v1,u} ∈ A∗n . Since v1 ∈ ranA∗ ,
it follows that u∈ ranA∗(n+1) . Hence (7.4) has been proved, which completes the proof
of (7.1).

Since A is a quasi-Fredholm relation of degree 0, it follows from Corollary 2.6
that

ker An + ranA = ker A+ ranA. (7.6)

The identities (4.3), (7.1), and (7.6) show that

ker A∗ ∩ ranA∗n = (ranA)⊥∩ (ker An)⊥ = (ranA+ker An)⊥

= (ranA+ker A)⊥ = ker A∗ ∩ ranA∗.
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Therefore δ (A∗) � 1. This leads to δ (A∗) = 1; otherwise δ (A∗) = 0, which implies
δ (A) = δ (A∗∗) = 0, a contradiction. Hence, A∗ is a quasi-Fredholm relation of degree
0.

Step 4. Let A be a quasi-Fredholm relation of degree d � 1. Then A is closed and
A∗ is a quasi-Fredholm relation of degree d . Hence the statement in (ii) follows from
(i) by replacing A by A∗ . Hence one may replace A by A∗ in (7.1) to obtain (7.2). �

COROLLARY 7.2. Let A be a quasi-Fredholm relation of degree d in a Hilbert
space H . Then:

(i) ranAn is closed for all n � d ;

(ii) mulAn is closed for all n ∈ N0 ;

Proof. Since A is a quasi-Fredholm relation of degree d , it follows from Theorem
6.7 that it is normally decomposable. Therefore, A = D+T , with D a quasi-Fredholm
relation of degree at most 1 and T a nilpotent operator of degree d . By Proposition
7.1 it follows that ranDn = (ker D∗n)⊥ is closed for all n ∈ N .

(i) For n � d it follows from Lemma 6.6 that An = Dn . In particular,

ranAn = ranDn, n � d,

is closed. This proves (i).
(ii) It also follows from Lemma 6.6 that

mulAn = mulDn, n ∈ N.

Recall that ranDn , n ∈ N , is closed in H . Hence it follows from Corollary 4.5 that
mulDn , n ∈ N , is closed in H . This proves (ii). �

THEOREM 7.3. Let A be a quasi-Fredholm relation of degree d . Then A∗ is a
quasi-Fredholm relation of degree d .

Proof. Since A is quasi-Fredholm of degree d , it follows from Theorem 6.7 that
it is normally decomposable of the same degree. Therefore A = D+T with D a quasi-
Fredholm relation of degree at most 1 and T a nilpotent operator of degree d , as in
Definition 6.5. Since T is an everywhere defined bounded operator, Lemma 4.14 shows
that A∗ = D∗ +T∗ . According to Proposition 7.1, D∗ is a quasi-Fredholm relation of
degree at most 1. Furthermore, T ∗ is a bounded everywhere defined nilpotent operator
of degree d . It follows from TD = domA×{0} and Lemma 4.14 that

D∗T ∗ = (TD)∗ = H×mulA∗. (7.7)

Moreover, DT = H×mulA and Lemma 4.14 imply that

T ∗D∗ ⊂ (DT )∗ = domA∗ ×{0}. (7.8)
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It is clear that domT ∗D∗ = domD∗ ; furthermore A∗ = D∗+T ∗ implies that domA∗ =
domD∗ . Hence domT ∗D∗ = domA∗ , and it follows from (7.8) that

T ∗D∗ = domA∗ ×{0}. (7.9)

The decomposition A∗ = D∗ +T ∗ together with (7.7) and (7.9) shows that A∗ is a nor-
mally decomposable relation of degree d0 � d , with d0 = δ (A∗) . Therefore, according
to Theorem 6.7, A∗ is quasi-Fredholm of degree d0 , which implies that A∗∗ = A is
quasi-Fredholm relation of degree d = δ (A) = δ (A∗∗) � δ (A∗) = d0 . Thus δ (A) =
δ (A∗) and A∗ is a quasi-Fredholm relation of degree d . �

PROPOSITION 7.4. Let A be a quasi-Fredholm relation of degree d in a Hilbert
space H . Then:

(ker An)⊥ = ranA∗n, (ker A∗n)⊥ = ranAn, n ∈ N0. (7.10)

Moreover, ranAn + ker Am and ranA∗n + ker A∗m are closed for all n,m ∈ N0 with
n+m � d . In fact,

ranAn +ker Am = (ker A∗n∩ ranA∗m)⊥, (7.11)

ranA∗n +ker A∗m = (ker An∩ ranAm)⊥, (7.12)

for all n , m ∈ N0 with n+m � d .

Proof. Step 1. The second identity in (7.10) will be shown. The first identity in
(7.10) will then follow from the fact that A∗ is quasi-Fredholm and closed.

Assume that A is quasi-Fredholm of degree d . If d = 0 then Proposition 7.1 gives
the result. Now suppose that d � 1 and apply Theorem 5.2. Let M and N be closed
complementary subspaces as in that theorem and let PM and PN be the projections
corresponding to M and N , respectively. Define the linear relations D and T in H by
(6.28) where AM×M and AN×N are as in Theorem 5.2. The relations D and T are
range space relations, due to Proposition 4.8. It follows from Theorem 5.2 and (6.28)
that the identities (6.29) and (6.32) hold:

An = Dn +Tn, n ∈ N. (7.13)

In particular, due to the special structure of D and T :

ranAn = ranDn + ranTn, (7.14)

cf. Lemma 2.1. It follows from the construction that ranD ⊂ M and ranT ⊂ N , so
that

M⊥ ⊂ ker D∗, N⊥ ⊂ ker T ∗.

As H = M+N , M∩N = {0} , it follows from Proposition 3.2 that H = M⊥ +N⊥ ,
M⊥∩N⊥ = {0} . Hence, this leads to

H ⊂ ker D∗ +ker T ∗ ⊂ ker D∗n +ker T ∗n,
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so that
ker D∗n +ker T ∗n = H. (7.15)

In particular, the space in the lefthand side of (7.15) is closed. It follows from (7.14),
Proposition 7.1, and the fact that T is an everywhere defined bounded operator, that

(ranAn)⊥ = (ranDn)⊥ ∩ (ranTn)⊥

= kerD∗n∩ker T ∗n (7.16)

= clos(ker D∗n∩ker T ∗n),

where Corollary 3.12 and (7.15) have been used in the last equality. Next, observe that
(7.13) leads to A∗ = D∗ +T ∗ , cf. (4.6). Hence, clearly,

ker D∗n∩ker T ∗n ⊂ ker A∗n. (7.17)

Recalll from (4.7) that ker A∗n ⊂ ker (An)∗ , so that a combination of (7.16) and (7.17)
leads to

(ranAn)⊥ ⊂ closker A∗n ⊂ ker (An)∗ = (ranAn)⊥.

It follows that
(ranAn)⊥ = closker A∗n,

which gives the second identity in (7.10).

Step 2. Since A is a quasi-Fredholm relation of degree d , it is clear that δ (A) =
d and that ranA + ker Ad is closed (see Definition 5.1). Theorem 5.2 implies that
A is closed. Corollary 7.2 implies that mulAn is closed for all n ∈ N . Hence the
conditions (i), (ii), and (iii) of Proposition 4.16 are satisfied. Therefore the subspace
ranAn +ker Am is closed for all m,n ∈ N0 such that m+n � d . By symmetry a similar
statement also follows for the adjoint A∗ .

Step 3. Observe that ranAn , ker Am , ker A∗n , and ranA∗m are all range subspaces.
The fact that ker A∗n + ranA∗m is closed for m+n � d and Corollary 3.13 show that

(ker A∗n∩ ranA∗m)⊥ = (ker A∗n)⊥ +(ranA∗m)⊥.

By (7.10) and Corollary 3.12 it follows that

(ker A∗n∩ ranA∗m)⊥ = ranAn +kerAm = clos(ranAn +ker Am).

Now observe that ranAn +ker Am is closed for m+n � d , so that (7.11) follows. The
proof of (7.12) is similar. �

8. Semi-Fredholm relations

Labrousse has shown that semi-Fredholm operators are in fact quasi-Fredholm
operators. A direct proof of this can be found in [9, p. 197]. Now the situation of semi-
Fredholm relations will be considered. A closed linear relation A in a Hilbert space H
is said to be semi-Fredholm if
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(S1) ranA is closed;

(S2) ker A or H/ranA is finite-dimensional.

Semi-Fredholm relations were studied in [2], [13]. The following result parallels The-
orem 7.3.

PROPOSITION 8.1. Let A be a closed linear relation in a Hilbert space. Then A
is a semi-Fredholm relation if and only if A∗ is a semi-Fredholm relation.

Proof. Let A be a closed linear relation which is semi-Fredholm. Then ranA is
closed, so that by Corollary 4.13 also ranA∗ is closed. The identities

ker A∗ = H
 ranA, H
 ranA∗ = ker A,

show that if ker A is finite-dimensional, then H/ranA∗ is finite-dimensional, whereas
if H/ranA is finite-dimensional, then ker A∗ is finite-dimensional. Hence A∗ is semi-
Fredholm. The converse statement follows by symmetry. �

The next observation is a simple application of finite-dimensional arguments, see
for instance [17], [18].

LEMMA 8.2. Let A be a closed linear relation in a Hilbert space H , such that

(i) ranA is closed;

(ii) ker A is finite-dimensional.

Then A is a quasi-Fredholm relation.

Proof. Since ker A is finite-dimensional, it follows that dim(ker A∩ ranAn) is a
nonincreasing sequence and has therefore a limit. Hence, there is some smallest d ∈N0

such that ker A∩ ranAd = ker A∩ ranAd+n for all n ∈ N , and thus (Q1) is satisfied.
The condition (Q2) holds because ker A∩ ranAd is finite-dimensional, and as ranA
is closed and dimker Ad � d dimker A is finite (see [17], [18]), the condition (Q3) is
valid too. �

The following result is a straightforward consequence of Lemma 8.2.

LEMMA 8.3. Let A be a closed linear relation in a Hilbert space H , such that

(i) ranA is closed;

(ii) H/ranA is finite-dimensional.

Then A is a quasi-Fredholm relation.
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Proof. The adjoint A∗ of A is a closed relation by definition. As A is closed and
ranA is closed, it follows from Corollary 4.13 that ranA∗ is closed. The identity

ker A∗ = H
 ranA,

shows that ker A∗ is finite-dimensional, since H/ranA is finite-dimensional. Now ap-
ply Lemma 8.2 with A replaced by A∗ . This shows that A∗ is quasi-Fredholm, and by
Theorem 7.3 it follows that A is quasi-Fredholm. �

A combination of Lemma 8.2 and Lemma 8.3 leads to the main result of this
section.

PROPOSITION 8.4. Let A be a semi-Fredholm relation in a Hilbert space H .
Then A is a quasi-Fredholm relation.

Hence the decomposition result of Kato for semi-Fredholm operators remains
valid in the context of relations as follows from Theorem 5.2; see also Theorem 6.4.

COROLLARY 8.5. A semi-Fredholm relation in a Hilbert space is Kato decom-
posable.

REMARK 8.6. Parallel to semi-Fredholm relations one can introduce Browder re-
lations and B-Fredholm relations. Results for the operator case can be found in, for
instance, [14], [16].
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