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ON THE MATRICES THAT PRESERVE THE VALUE OF THE

IMMANANT OF THE UPPER TRIANGULAR MATRICES

ROSÁRIO FERNANDES AND HENRIQUE F. DA CRUZ

(Communicated by C.-K. Li)

Abstract. Let χ be an irreducible character of the symmetric group of degree n , let Mn(F) be
the linear space of n -square matrices with elements in the field F of characteristic zero, let
TU
n (F) be the subset of Mn(F) of the upper triangular matrices and let dχ be the immanant

associated with χ . We denote by T (Sn,χ) the set of all A ∈ Mn(F) , such

dχ (AX) = dχ (X),

for all X ∈ TU
n (F) . The purpose of this paper is to present, in some cases, a complete description

of the matrices in the set T (Sn,χ) .

1. Introduction

Let Sn be the symmetric group of degree n , and let H be a subgroup of Sn . Let F

be an arbitrary field of characteristic zero and let χ be an F valued irreducible character
of H . If X = [xi j] is an n×n matrix over F , the generalized matrix function dH

χ (X) is
defined by, [9], [11],

dH
χ (X) = ∑

σ∈H
χ(σ)

n

∏
i=1

xiσ(i).

Let Mn(F) be the linear space of n -square matrices with elements in F . Matrices
that satisfy certain polynomial identities always have found several applications in sev-
eral areas of mathematics. One of this problems gets a special attention in the last years
of the past century. The goal is to obtain a description of the n×n matrices A over F

that satisfy
dH
χ (AX) = dH

χ (X), for all X ∈ Mn(F).

The study of this matrices was motivated by a problem in multilinear algebra:
finding condition for equality of two nonzero decomposable symmetrized tensors (see
[8], [10],[12], [5] [6], [7], [11] and [15]). This problem, suggests other problems sim-
ilar to this one. Some of such problems were also motivated by certain mathematical
problems. For instance the description of the n×n matrices A that satisfy

dH
χ (AX) = 0, for all X ∈ Mn(F)
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was motivated by the multilinear algebra problem of finding conditions for a decom-
posable symmetrized tensor to be zero (see [13]). During the years the previous two
problems, and others, were solved by several authors, while others problems remains
unsolved. In [15], G. de Oliveira and J. A. Dias da Silva solved the first problem
(characterize the n× n matrices A over F that satisfy dH

χ (AX) = dH
χ (X) for all X ∈

Mn(F)). In [2], A. Duffner presented a description for the n×n matrices A that satisfy
dH
χ (AX) = 0, for all X ∈ Mn(F) , when F = C , the complex field and H = Sn . For the

reader less familiar with this problems, [14] is a survey on this kind of problems.
This paper deals with a question similar to those problems. We want to obtain a

description of the n×n matrices over F that satisfy

dH
χ (AX) = dH

χ (X),

for all n×n upper triangular matrices X over F .
We denote the set of the n× n upper triangular matrices over F by TU

n (F) . The
set of the matrices that satisfy dH

χ (AX) = dH
χ (X), for all X ∈ TU

n (F) is denoted by
T (H,χ) . Hence

T (H,χ) = {A ∈ Mn(F) : dH
χ (AX) = dH

χ (X), for all X ∈ TU
n (F)}.

The paper [3] was the first, and the only, paper to deal with this problem and so it
is the main reference for this paper. In that paper a characterization of the set T (H,χ)
was presented. However, this characterization gives rise new questions that remains
unsolved until today. We are going now to make a resume of the main results of [3].
Let H be a subgroup of Sn and let χ be an irreducible character of H . The first
important conclusion on the set T (H,χ) was the fact that if A ∈ T (H,χ) then A is
nonsingular (proposition 2.5 of [3]). However, in general T (H,χ) is not a group (see
example 2.6 of [3]). It is well known that if A ∈ Mn(F) is nonsingular, there are an
upper triangular matrix R , a lower triangular matrix L and σ ∈ Sn such

A = P(σ)LR,

where P(σ) is the n× n permutation matrix whose (i, j) entry is P(σ)i j = δiσ( j),
i, j ∈ {1, . . . ,n} . Based on this fact she proved that A ∈ T (H,χ) if and only if

A = P(σ)LR,

where σ is an element of H satisfying χ(σ−1) �= 0, R is an upper triangular matrix

satisfying det(R) = χ(id)
χ(σ−1) and L is a lower triangular matrix with ones in the main

diagonal satisfying

dH
χ (P(σ)LX) = dH

χ (P(σ)X) for all X ∈ TU
n (F). (1)

Let σ ∈ H such that χ(σ−1) �= 0 . In [3] the author denoted by Vσ (H,χ) the set
of matrices L ∈ TL

n (F) (the set of n -square lower triangular matrices) with diagonal
elements equal to one, satisfying (1).

Using this notation we can state the previous conclusion as follows:
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THEOREM 1.1. [3] Let H be a subgroup of Sn and let χ be an irreducible char-
acter of H . Then,

T (H,χ) =
⋃

σ∈H,χ(σ−1) �=0

{
P(σ)LR : L ∈Vσ (H,χ),R ∈ TU

n (F),det(R) =
χ(id)
χ(σ−1)

}
.

�

By this theorem we conclude that if we want to obtain a complete description of
the set T (H,χ) we have to somehow obtain a description of the sets Vσ (H,χ) , for all
σ ∈ H such χ(σ−1) �= 0. That is obvious is that for any σ ∈ H such χ(σ−1) �= 0,
the n× n identity matrix, In , is in Vσ (H,χ) . A natural question is to know if there
are other matrices than In in Vσ (H,χ) , and, if so, how can we describe them. This
problem seems to be quite difficult. The most impressive results on this problem was
obtained in [3] when H = Sn . One of the reasons that made this case more easy is the
existence of a combinatorial algorithm, the Murnaghan-Nakayama rule (see [1]), that
allow us to compute the value of an irreducible character of Sn in any conjugacy class.
The Murnaghan-Nakayama rule was extensively used in [3]. Hence, from now on we
assume that H = Sn and χ is an irreducible character of Sn . A generalized matrix
function of the form dSn

χ is called immanant and is denoted simply by dχ .

NOTATION 1.2. Let σ ∈ Sn such that χ(σ) �= 0 . Denote by (Sn)σT the subgroup
of Sn generated by those transpositions, τ , of Sn satisfying

χ(σ−1τ) = −χ(σ−1),

If there is no transposition τ in Sn such χ(σ−1τ) = −χ(σ−1) then (Sn)σT = {id}.
Observe that χ(σ−1τ) = χ(τσ−1) .
The next theorem is crucial to obtain a characterization of the sets Vσ (Sn,χ) .

THEOREM 1.3. [3] Let L = [li j] ∈ TL
n (F) with diagonal elements equal to 1 and

let σ ∈ Sn such that χ(σ) �= 0 . If L ∈Vσ (Sn,χ) then li j = 0 whenever i and j belong
to different orbits of (Sn)σT .

The converse of this theorem is not true (see example 2.8 of [3]).
Let x be an indeterminate over the field F and E(i)+x( j) the matrix obtained from

the identity matrix by adding x times column j to column i . The next is very useful in
the proof of some results:

PROPOSITION 1.4. [3] Let L = E(k)+x(k+1) ∈ TL
n (F) with x �= 0 and σ ∈ Sn such

that χ(σ) �= 0 . Then L ∈Vσ (Sn,χ) if and only if χ((k, k+1)σ−1) = −χ(σ−1) .

We define a partition α of n as α = (α1, . . . ,αr) where the αi
, s are integers,

α1 � . . . �αr � 0, and α1 + . . .+αr = n . We do not distinguish between two partitions
that differ by a sequence of zeros. If α = (α1, . . . ,αr) is a partition of n and αr > 0,
we say that r is the length of α . Each partition α = (α1, . . . ,αr) of length r is related
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to a Young diagram, denoted by [α] , which consists of r left justified rows of boxes.
The number of boxes in the i th row is αi .

If α = (α1, . . . ,αr) is a partition of n , the α1 -tuple α ′ = (α ′
1, . . . ,α ′

α1
) defined by

α ′
i = |{ j : α j � i}|

is also a partition of n called the conjugate partition of α .
We say that a Young diagram is symmetric if it is associated with a partition α

such that α = α ′ .
It is well known (see [1], [4] or [9]) that the irreducible characters of Sn are in a

bijective correspondence with the ordered partitions of n . We identify the irreducible
character λ with the partition that corresponds to λ . If λ is an irreducible character of
Sn , the character λ ′ such that

λ ′(σ) = ε(σ)λ (σ)

for all σ ∈ Sn is an irreducible character called the character associated with λ . If
λ = λ ′ we say that λ is self-associated.

In [3], the author proved, by applying the Murnaghan-Nakayama rule, that if χ is
a self-associated irreducible character of Sn then, for any σ ∈ Sn such χ(σ) �= 0, there
is no transposition τ ∈ Sn satisfying χ(σ−1τ) = −χ(σ−1) . Hence, (Sn)T

σ = {id} and
by theorem 1.3 we conclude that

Vσ (Sn,χ) = {In},
for all σ ∈ Sn such χ(σ) �= 0. The same conclusion can be easily achieve if χ = 1,
that is, if χ the principal character of Sn . The converse of this statements also holds
and we can summarize this conclusions in the following theorem:

THEOREM 1.5. [3] Let χ be an irreducible character of Sn . Then
⋃

σ∈Sn, χ(σ) �=0

Vσ (Sn,χ) = {In}

if and only if
χ = 1 or χ is self-associated .

This theorem allowed us to solve the characterization of the set T (Sn,χ) when
χ is an irreducible self-associated character of Sn . In fact, using the previous theorem
and theorem 1.1, we conclude that if χ is an irreducible self-associated character of Sn

then A ∈ T (Sn,χ) if and only if

A = P(σ)R,

where σ is an element of Sn satisfying χ(σ−1) �= 0 and R is an upper triangular matrix

satisfying det(R) = χ(id)
χ(σ−1) .

If χ is not self-associated this problem remains unsolved. The principal result
on this case was also obtained in [3] and is a description of the set Vσ (Sn,χ) where
χ = (n−1,1) and σ is a cycle with length n−2:
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THEOREM 1.6. [3] Let χ = (n− 1,1) be the irreducible character of Sn with
n > 3 . Let σ ∈ Sn be a cycle with length n− 2 and L = [li j] ∈ TL

n (F) with diagonal
elements equal to 1 . Then

L ∈Vσ (Sn,χ)

if and only if L satisfies the condition:
“For r > p, if there exists an integer k such that p � k � r and σ(k) �= k then

lrp = 0 .”

The purpose of this paper is to go further on this problem and present a complete
description of the matrices in the set T (Sn,χ) , with χ = (n−1,1) or χ = (n−2,2) .
Hence, the main results of this paper are the theorems 2.7 and 3.16 in the end of the
second and third sections of this paper respectively. The strategy adopted is similar
in both cases. In the first step we identify the permutations σ ∈ Sn , χ(σ) �= 0, such
(Sn)T

σ �= {id} . Applying theorem 1.3 we know, for a given L ∈ Vσ (H,χ) , the entries
below the main diagonal that could be different from zero. After, using (1) with some
appropriated upper triangular matrices we can show that some of this entries, that could
be different of zero, must be, in fact, equal to zero. This allow us to obtain a description
of the set Vσ (Sn,χ) and consequently a description of the set T (Sn,χ) .

2. The character χ = (n−1,1)

In this section we characterize the set Vσ (Sn,χ) where χ is the irreducible char-
acter of Sn , χ = (n− 1,1) , and σ ∈ Sn is such that χ(σ) �= 0. We are going to see
that the proof of Theorem 1.6 is very important in this section. We suppose that n > 3
because if n = 2 then χ = (1,1) = ε and if n = 3 then χ = (2,1) = χ ′ (Theorem 1.5).

Let ρ ∈ Sn . If ρ = ρ1 . . .ρk , where ρ1, . . . ,ρk are pairwise disjoint cycles with
length π1, . . . ,πk respectively, we denote by C[π1,...,πk] the class where ρ belongs.

EXAMPLE 2.1. Let ρ = (1243)(57)(6) ∈ S7 . Then ρ ∈C[4,2,1].

LEMMA 2.2. Let σ ∈ Sn such that χ(σ) �= 0 and σ ∈C[π1,...,πk] where k � 3 and
πk−2 > πk−1 = πk = 1 . Let u,v ∈ {1, . . . ,n} such that u �= v, σ(u) = u and σ(v) = v.
Then

(Sn)σT = 〈(u,v)〉.
Proof. Let σ ∈ Sn such that χ(σ) �= 0 and σ ∈C[π1,...,πk] where k � 3 and πk−2 >

πk−1 = πk = 1. Then σ has two fix point. Let u,v ∈ {1, . . . ,n} such that u �= v ,
σ(u) = u and σ(v) = v and let τ = (u,v) . Then σ−1τ ∈C[π1,...,πk−2,2] and so

χ(σ−1τ) = −1 = −χ(σ−1).

Therefore, (u,v) ∈ (Sn)σT . Let now a,b ∈ {1, . . . ,n} such that a �= b and σ(a) �= a or
σ(b) �= b . Let τ ′ = (a,b) . Then, σ−1τ ′ has at least one fix point and so χ(σ−1τ ′) �=
−χ(σ−1) . Hence τ ′ /∈ (Sn)σT . �
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LEMMA 2.3. Let σ ∈ Sn such that χ(σ) �= 0 and σ ∈ C[π1,...,πk] where πk = 2 .
If σ = σ1 . . .σk where σ1, . . . ,σk are pairwise disjoint cycles, then

(Sn)σT = 〈σi : σi is a transposition of σ〉.

Proof. Let σ ∈ Sn such that χ(σ) �= 0 and σ ∈ C[π1,...,πk] where πk = 2. Then,
σ do not have fix points and so χ(σ) = −1 = χ(σ−1) . Let u,v ∈ {1, . . . ,n} such that
u �= v and τ = (u,v) is a transposition of σ . Consequently τ is a transposition of σ−1 .
Then σ−1τ ∈C[π1,...,πk−1,12] and so

χ(σ−1τ) = 1 = −χ(σ−1).

Therefore, (u,v) ∈ (Sn)σT . Let now a,b ∈ {1, . . . ,n} such that a �= b and τ ′ = (a,b) is
not a transposition of σ−1 . Then, σ−1τ ′ do not have fix points, and so χ(σ−1τ ′) =
−1 = χ(σ−1) or σ−1τ ′ has one fix point and so χ(σ−1τ ′) = 0. In both cases we have
χ(σ−1τ ′) �= −χ(σ−1) . �

LEMMA 2.4. Let σ ∈ Sn such that χ(σ) �= 0 and σ ∈C[π1,...,πk] . Then, (Sn)σT =
{id} if and only if πk−2 = πk−1 = πk = 1 or πk � 3 .

Proof. Assume that σ ∈ Sn is such that σ ∈C[π1,...,πk] , where πk � 3. Then

χ(σ) = −1 = χ(σ−1).

Let τ be a transposition of Sn . Then σ−1τ has at most one fix point and so

χ(σ−1τ) = −1 or χ(σ−1τ) = 0.

Hence χ(σ−1τ) �= −χ(σ−1), and so (Sn)T
σ = {id} .

Assume now that πk−2 = πk−1 = πk = 1. Then χ(σ) = χ(σ−1) � 2 and if τ ′ is a
transposition of Sn , σ−1τ ′ has at least one fix point and so χ(σ−1τ ′) �= −χ(σ−1) and
(Sn)T

σ = {id} .
Using Propositions 2.2 and 2.3 we can conclude this result. �

If σ ∈ Sn is in the conditions of Proposition 2.4, using Theorem 1.3, Vσ (Sn,χ) =
{In} . Suppose that σ is in the conditions of Proposition 2.2.

PROPOSITION 2.5. Let σ ∈ Sn be a permutation in the conditions of Proposition
2.2 with u > v and L = [li j] ∈ TL

n (F) with diagonal elements equal to 1 . Then

L ∈Vσ (Sn,χ)

if and only if L satisfies the condition:
“For r > p, if there exists an integer k such that p � k � r and σ(k) �= k then

lrp = 0 .”
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Proof. Necessity. Suppose that L = [li j] ∈ Vσ (Sn,χ) . By Theorem 1.3, if a > b ,
a, b ∈ {1, . . . ,n} and σ(a) �= a or σ(b) �= b then lab = 0.

Suppose there exists an integer k such that u > k > v and σ(k) �= k . Let Z be the
matrix whose (v + 1) th column is the v th column of In and the u th column of Z is
the (v+1) th column of In , the remaining columns of Z are the columns of In . Since
lu,v+1 = 0 then

dχ(P(σ)LZ) = (χ(σ−1(v+1, u))+ χ(σ−1(v+1, u, v)))luv.

Since σ−1(v+1,u)(v+1) �= v+1 and σ−1(v+1,u)(u) �= u then σ−1(v+1, u)
has one fix point. So,

χ(σ−1(v+1, u)) = 0.

But σ−1(v+1, u, v) does not have fix points, then χ(σ−1(v+1, u, v)) = −1. There-
fore, dχ(P(σ)LZ) = −luv . Since L ∈Vσ (Sn,χ) ,

−luv = dχ(P(σ)LZ) = dχ(P(σ)Z) = 0.

Consequently, luv = 0 and we have the condition.
Sufficiency. Let L = [li j] be a matrix satisfying the condition of the theorem. Then

L =
{

In if u �= v+1
E(v)+luv(u) if u = v+1

Let X ∈ TU
n . If u �= v+1,

dχ(P(σ)LX) = dχ(P(σ)InX) = dχ(P(σ)X),

and then L ∈Vσ (Sn,χ) .
If u = v+1, by Proposition 1.3, L ∈Vσ (Sn,χ) . �

PROPOSITION 2.6. Let σ ∈ Sn be a permutation in the conditions of Proposition
2.3 and L = [li j] ∈ TL

n (F) with diagonal elements equal to 1 . Then

L ∈Vσ (Sn,χ)

if and only if L satisfies the conditions:

1. “For r > p, if σ(rp) does not have two fix points, or there is an integer k such
that p < k < r , then lrp = 0 .”

2. “For r > p, if σ(r+1,r)(p+1, p) has four fix points then lr+1,r = 0 or lp+1,p =
0 .

Proof. Necessity. Let L = [li j] ∈Vσ (Sn,χ) . If σ(rp) does not have two fix points,
using Theorem 1.3, lrp = 0. If there is two integers a,b such that σ(r, p)(a) = a and
σ(r, p)(b) = b and there is an integer k such that p < k < r , we are going to prove that
lrp = 0. Observe that a = p , b = r and (r, p+1) �∈ (Sn)σT .
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Let Z be the matrix whose (p + 1) th column is the p th column of In and the
r th column of Z is the (p + 1) th column of In , the remaining columns of Z are the
columns of In . Since lr,p+1 = 0 then

dχ(P(σ)LZ) = (χ(σ−1(p+1, r))+ χ(σ−1(p+1, r, p)))lrp.

Since σ−1(p + 1,r) does not have fix points and r is the only fix point of σ−1(p +
1,r, p) , using the Murnaghan-Nakayama rule,

χ(σ−1(p+1, r)) = −1, χ(σ−1(p+1, r, p)) = 0.

Therefore, dχ(P(σ)LZ) = −lrp . Since L ∈Vσ (Sn,χ) ,

−lrp = dχ(P(σ)LZ) = dχ(P(σ)Z) = 0.

Consequently, lrp = 0 and we have this condition.
Suppose that r > p and there is four fix points k,h, l,m of σ(r + 1,r)(p+ 1, p) ,

we are going to see that lr+1,r = 0 or lp+1,p = 0. Observe that {k,h, l,m} = {r,r +
1, p, p + 1} and p + 1 < r . Let W be the matrix whose (r + 1) th column is the r th
column of In and the p + 1th column of W is the p th column of In , the remaining
columns of W are the columns of In . Then

dχ(P(σ)LW ) = (χ(σ−1)+ χ(σ−1(p+1, p))+ χ(σ−1(r+1, r))

+χ(σ−1(r+1, r)(p+1, p)))lr+1,rlp+1,p.

Since σ−1(p+1, p) and σ−1(r+1, r) have two fix points and σ−1(r+1, r)(p+
1, p) has four fix points, then

dχ(P(σ)LW ) = (−1+1+1+3)lr+1,rlp+1,p = 4lr+1,rlp+1,p.

Since L ∈Vσ (Sn,χ) ,

4lr+1,rlp+1,p = dχ(P(σ)LW ) = dχ(P(σ)W ) = 0.

Consequently, lr+1,r = 0 or lp+1,p = 0 and we have this condition.
Sufficiency. Let L = [li j] be a matrix satisfying the conditions of the theorem. Then

L =
{

E(r)+lr+1,r(r+1) if σ(r+1,r) has two fix points
In otherwise

Let X ∈ TU
n .

If σ(r+1,r) has two fix points, by Proposition 1.3, L ∈Vσ (Sn,χ) .
If L = In , then

dχ(P(σ)LX) = dχ(P(σ)InX) = dχ(P(σ)X).

Consequently, L ∈Vσ (Sn,χ) . �
The next theorem is now an easy consequence of theorem 1.1 and propositions 2.5

and 2.6 and it gives a complete description of the set T (Sn,χ) , with χ = (n−1,1) :
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THEOREM 2.7. If χ = (n−1,1) then A ∈ T (Sn,χ) if and only if A = P(σ)LσR

such that σ ∈ Sn satisfy χ(σ) �= 0 , R ∈ TU
n (F) satisfy det(R) = χ(id)

χ(σ) and Lσ = [li, j]
is a lower triangular matrix with all diagonal elements equal to 1 and satisfying the
following conditions:

1. lrp = 0 whenever r �∈ {p+1, p} ;

2. Lσ = In if σ /∈C[π1,...πk,12] , πk � 2 or σ /∈C[π1,...πk,2u,10] , πk � 3 and u � 1 ;

3. There is at most one i , 1 � i � n−1 , such that li+1,i �= 0 , if {i, i+1} is the set
of the fix points of σ or, if σ don’t have fix points, (i, i+1) is a transposition of
σ .

�

3. The character χ = (n−2,2)

In this section we present a complete characterization of the set T (Sn,χ) , when
χ = (n−2,2) . We start with an easy result:

LEMMA 3.1. Let χ = (n−2,2) and let σ ∈C[π1,...,πk,2v,1u] with πk � 3 . Then,

χ(σ) =
1
2
u(u−3)+ v.

Proof. Easy from Murnagham-Nakayma rule.

LEMMA 3.2. Let χ = (n− 2,2) and let σ ∈ C[π1,...,πk,2v,1u] , πk � 3 , such that
χ(σ) �= 0 . Then, (Sn)T

σ = {id} except in the following situations:

1. v = 0 and u = 2 ;

2. v = 1 and u = 0 or u = 3 .

If v = 0 and u = 2 then

(Sn)σT = 〈(a,b) : a and b be the fix points of σ〉.

If v = 1 and u = 0 then

(Sn)σT = 〈(a,b) : (a,b) is the unique transposition of σ〉.

If v = 1 and u = 3 then

(Sn)σT = 〈(a,b) : a is in the unique transposition of σ and

b is a fix point of σ〉.
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Proof. Let χ = (n− 2,2) and let σ ∈ C[π1,...,πk,2v,1u] , with πk � 3, such that
χ(σ) �= 0. Then σ−1 ∈C[π1,...,πk,2v,1u] . Let τ be a transposition of Sn . Then, we have
the following cases:

1. σ−1τ ∈C[π ′1,...,π ′k,2v,1u] with π ′
k � 3;

2. σ−1τ ∈C[π1,...,πk,2v−1,1u+2] , if v � 1;

3. σ−1τ ∈C[π1,...,πk,2v+1,1u−2] , if u � 2;

4. σ−1τ ∈C[π ′1,...,π ′k,2v−1,1u−1] with π ′
k � 3, if v,u � 1;

5. σ−1τ ∈C[π ′1,...π ′k,,2v−1,1u] with π ′
k � 3, if v � 1;

6. σ−1τ ∈C[π ′1,...,π ′k,2v,1u−1] with π ′
k � 3, if u � 1;

In first case we have χ(σ−1τ) = χ(σ−1) . Assume that v � 1 and σ−1τ ∈
C[π1,...,πk,2v−1,1u+2]. Then,

χ(σ−1τ) = −χ(σ−1) ⇐⇒ 1
2 (u+2)(u−1)+ v−1= − 1

2u(u−3)− v

⇐⇒ (u+2)(u−1)+2v−2= −u(u−3)−2v

⇐⇒ u2−u+2(v−1)= 0

⇐⇒ u = 1±√
9−8v
2 .

In this case we conclude that if v > 1 then χ(σ−1τ) �= −χ(σ−1) . If v = 1 then
u = 0 or u = 1. But if v = 1 and u = 1 we have χ(σ) = 0. So we only have to consider
the case v = 1, u = 0 and τ = (a,b) where (a,b) is the unique transposition of σ .

If u � 2 and σ−1τ ∈C[π1,...,πk,2v+1,1u−2] we have

χ(σ−1τ) = −χ(σ−1) ⇐⇒ 1
2 (u−2)(u−5)+ v+1= − 1

2u(u−3)− v

⇐⇒ (u−2)(u−5)+2v+2= −u(u−3)−2v

⇐⇒ u2−5u+6+2v= 0

⇐⇒ u = 5±√
1−8v
2 .

If v > 0 we conclude that χ(σ−1τ) �=−χ(σ−1) , for all transpositions τ ∈ Sn that
satisfy this condition. If v = 0 then u = 3 or u = 2. If u = 3 we have χ(σ) = 0. So in
this case, if χ(σ−1τ) = −χ(σ−1) then v = 0, u = 2 and τ = (a,b) where a and b be
the fix points of σ .
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If v,u � 1 and if σ−1τ ∈C[π ′1,...,π ′k,2v−1,1u−1] with π ′
k � 3, we obtain

χ(σ−1τ) = −χ(σ−1) ⇐⇒ 1
2 (u−1)(u−4)+ v−1= − 1

2u(u−3)− v

⇐⇒ (u−1)(u−4)+2v−2= −u(u−3)−2v

⇐⇒ u2−4u+2v+1= 0

⇐⇒ u = 4±√
12−8v
2 .

If v > 1 we have χ(σ−1τ) �= −χ(σ−1) . If v = 1 then u = 3 or u = 1. But if
v = 1 and u = 1 then χ(σ) = 0. So we only have to consider the case v = 1 and u = 3.

If v � 1, σ−1τ ∈C[π ′1,...,π ′k,2v−1,1u] with π ′
k � 3, then

χ(σ−1τ) = χ(σ−1)−1,

and so

χ(σ−1τ) = −χ(σ−1) ⇐⇒ χ(σ−1) =
1
2
,

which in impossible.
Finally, if u � 1 and σ−1τ ∈C[π ′1,...,π ′k,2v,1u−1] with π ′

k � 3, then

χ(σ−1τ) = −χ(σ−1) ⇐⇒ 1
2(u−1)(u−4)+ v= − 1

2u(u−3)− v

⇐⇒ (u−1)(u−4)+2v= −u(u−3)−2v

⇐⇒ u2−4u+2(v+1)= 0

⇐⇒ u = 4±√
8−8v
2 .

If v > 1 we have χ(σ−1τ) �= −χ(σ−1) . If v = 1 then u = 2. But if v = 1 e
u = 2, χ(σ) = 0.

Therefore, we only have to consider the following cases:

1. v = 0 and u = 2;

2. v = 1 and u = 0 or u = 3.

By the previous computations we have:
If v = 0 and u = 2 then

(Sn)σT = 〈(a,b) : a and b be the fix points of σ〉.
If v = 1 and u = 0 then

(Sn)σT = 〈(a,b) : (a,b) is the unique transposition of σ〉.
If v = 1 and u = 3 then

(Sn)σT = 〈(a,b) : a is in the unique transposition of σ and

b is a fix point of σ〉.
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In all the other cases we have

(Sn)σT = {id}.
�

PROPOSITION 3.3. Let χ = (n− 2,2) , let σ ∈C[π1,...,πk,2v,1u] , πk � 3 , such that
v = 0 and u = 2 (χ(σ) �= 0 ). Let L = [li, j] ∈ TL

n (F) , with diagonal elements equal
to one. Then, L ∈ Vσ (Sn,χ) if and only if there exists at most one a ∈ {2, . . . ,n} such
la,a−1 �= 0 , being a and a−1 the fix points of σ .

Proof. By the previous proposition we have

(Sn)σT = 〈(a,b) : a and b be the fix points of σ〉.
Assume that L ∈ Vσ (Sn,χ) . By Theorem 1.3 L as at most one non zero entries

below the main diagonal. Suppose that there exists a k ∈ {1, . . . ,n} such a > k > b .
Let X be the upper triangular matrix whose (b+1) th column is the b th column of In ,
the (a) th column is the (b+ 1) th column of In , and the remaining columns of X are
the correspondent columns of In . Since la,b+1 = 0 then,

dχ(P(σ)LX) = (χ(σ−1(b,b+1,a))+ χ(σ−1(b+1,a)))la,b.

Bearing in mind that σ ∈C[π1,...,πk,20,12] , (Sn)σT = 〈(a,b)〉 , where a and b be the
fix points of σ , and attending that there exists a k ∈ {1, . . . ,n} such a > k > b , we
conclude that

σ−1(b,b+1,a)∈C[π ′1,...,π ′k,20,10] and σ−1(b+1,a)∈C[π ′′1 ,...,π ′′k ,20,11].

Hence, χ(σ−1(b,b+1,a)) = 0 and χ(σ−1(b+1,a)) = −1 and then

dχ(P(σ)LX) = −la,b.

Since L ∈Vσ (Sn,χ) we have

dχ(P(σ)LX) = dχ(P(σ)X) = 0,

because X has a zero row and so we must have

la,b = 0.

Using Proposition 1.4 we have that all matrices L = [li, j] ∈ TL
n (F) such that there

exists most one a ∈ {2, . . . ,n} that satisfies la,a−1 �= 0, being a and a−1 the fix points
of σ , and all the other entries below the main diagonal are null, are in Vσ (Sn,χ) . �

PROPOSITION 3.4. Let χ = (n− 2,2) , let σ ∈C[π1,...,πk,2v,1u] , πk � 3 , such that
v = 1 and u = 0 (χ(σ) �= 0 ). Let L = [li, j] ∈ TL

n (F) , with diagonal elements equal to
one. Then, L ∈Vσ (Sn,χ) if and only if there exists at most one a ∈ {1, . . . ,n−1} such
la+1,a �= 0 , being (a,a+1) the unique transposition of σ .



ON THE MATRICES THAT PRESERVE THE VALUE... 89

Proof. By Lemma 3.2, if σ ∈C[π1,...,πk,21,10] ,

(Sn)σT = 〈(a,b)〉,
where (a,b) is the unique transposition of σ . If L ∈Vσ (Sn,χ) , by Theorem 1.3, L has
at most one non zero entry below to the main diagonal; the entry (a,b) . Assume that
b > a and assume that there exists a k ∈ {1, . . . ,n} such a > k > b . Let X be the upper
triangular matrix whose (a+ 1) th column is the a th of In , and the b th column is the
(a+1) th column of In . Since

σ−1(b,b+1,a)∈C[π ′1,...,π ′k,20,11] and σ−1(b+1,a)∈C[π ′′1 ,...,π ′′k ,20,10],

we have χ(σ−1(b,b+1,a)) = −1 and χ(σ−1(b+1,a)) = 0 and then

dχ(P(σ)LX) = −la,b = 0.

To complete the proof we only have to show that all matrices with this form are
in Vσ (Sn,χ) . Using Proposition 1.4 we have that all matrices L = [li, j] ∈ TL

n (F) such
that there exists most one a ∈ {2, . . . ,n} that satisfies la,a−1 �= 0, being (a,a− 1) the
unique transposition of σ , and all the other entries below the main diagonal are null,
are in Vσ (Sn,χ) . �

To complete the characterization of the set T (Sn,χ) , where χ = (n− 2,2) we
only have characterize the set Vσ (Sn,χ) , with σ ∈C[π1,...,πk,21,13] . By Lemma 3.2,

(Sn)σT = 〈(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)〉,

where (a,b) is the unique transposition of σ and c,d and e be the fix points of σ . We
will consider several cases:

1. a > b > c > d > e ;

2. a > c > b > d > e ;

3. a > c > d > b > e ;

4. a > c > d > e > b ;

5. c > a > d > e > b ;

6. c > d > a > e > b ;

7. c > d > e > a > b ;

8. c > a > b > d > e ;

9. c > d > a > b > e ;

10. c > a > d > b > e .
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We are going to proof the first three of these cases. The proof of the others is
similar.

PROPOSITION 3.5. Let χ = (n− 2,2) , let σ ∈ C[π1,...,πk,21,13] , πk � 3 , and let

L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Let (a,b) be the unique trans-

position of σ and let c,d and e be the fix points of σ . Assume that a > b > c > d > e.
Then, L = [li, j] ∈ Vσ (Sn,χ) if and only if L has at most one nonzero entry bellow the
main diagonal; the entry lb,c if b = c+1 .

Proof. Let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Assume that

L ∈ Vσ (Sn,χ) . Then, by Theorem 1.3, the entries of L , below the main diagonal,
that could be different from zero are la,b, la,c, lc,d , lb,d , la,d , la,e, lb,e, lc,e and ld,e . We will
show that all this entries are zero except eventually lb,c .

Let Z1 be the upper triangular matrix whose a th column is the b th column of In
and the other columns of Z1 are the correspondent columns of In . Then

dχ(P(σ)LZ1) = (χ(σ−1)+ χ(σ−1(a,b)))la,b.

Since σ−1(a,b) ∈C[π1,...,πk,20,15] we have, by Lemma 3.1, that χ(σ−1(a,b)) = 5.
Hence

dχ(P(σ)LZ1) = 6la,b,

and since L ∈Vσ (Sn,χ) ,

dχ(P(σ)LZ1) = dχ(P(σ)Z1) = 0,

because Z1 has a zero row. Then, la,b = 0.
Let Z2 be the upper triangular matrix whose d th column is the e th column of In

and the other columns of Z2 are the correspondent columns of In . Then

dχ(P(σ)LZ2) = (χ(σ−1)+ χ(σ−1(e,d)))ld,e.

Since d and e are fix points of σ we have σ−1(e,d) ∈ C[π1,...,πk,22,1] and by

Lemma 3.1, that χ(σ−1(e,d)) = 1. Hence

dχ(P(σ)LZ2) = 2ld,e,

and since L ∈Vσ (Sn,χ) ,

dχ(P(σ)LZ2) = dχ(P(σ)Z2) = 0,

because Z2 has a zero row. Then, ld,e = 0.
Let Z3 be the upper triangular matrix whose c th column is the e th column of

In and the other columns of Z3 are the correspondent columns of In , and let Z4 be
the upper triangular matrix whose c th column is the d th column of In and the other
columns of Z4 are the correspondent columns of In . By similar computations we have
lc,e = lc,d = 0.
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Let Z5 be the upper triangular matrix whose d th column is the e th column of In ,
the b th column is the d th column of In and the other columns of Z5 are the correspon-
dent columns of In . Then

dχ(P(σ)LZ5) = (χ(σ−1(e,d,b))+ χ(σ−1(d,b)))lb,e.

Since σ−1(e,d,b) ∈ C[π1,...,πk,20,1] and σ−1(d,b) ∈ C[π1,...,πk,20,12] we have, by

Lemma 3.1 that χ(σ−1(d,b)) = χ(σ−1(e,d,b)) = −1. Therefore

dχ(P(σ)LZ5) = −2lb,e.

Since L ∈Vσ (Sn,χ) ,

dχ(P(σ)LZ5) = dχ(P(σ)Z5) = 0,

because Z5 has a zero row, and so lb,e = 0.
By a similar process we obtain la,e = lb,d = la,d = 0.
Let Z9 be the upper triangular matrix whose b th column is the c th column of In

and the a th column of Z9 is the b th column of In . The remaining columns of Z9 are
the correspondent columns of In . Then

dχ(P(σ−1LZ9)) = (χ(σ−1(c,b,a))+ χ(σ−1(a,b)))la,c = 0.

Since χ(σ−1(b,c,a))+ χ(σ−1(a,b)) = 6, we conclude that la,c = 0.
Hence L has at most one nonzero element bellow the main diagonal; lb,c . Assume

that there exists an integer k such c < k < b . Let Z10 be the upper triangular matrix
whose (c+ 1) th column is the c th column of In and the b th column is the (c+ 1) th
column of In . The other columns of Z10 are the correspondent columns of In . Since
χ(σ−1(c+1,b)) = 0 we obtain

dχ(P(σ)LZ10) = χ(σ−1(c,c+1,b))lb,c = −lb,c = 0.

The sufficiency of the condition follows from Proposition 1.4. �

PROPOSITION 3.6. Let χ = (n−2,2) , let σ ∈C[π1,...,πk,21,13] , πk � 3 , such χ(σ) �=
0 and let L = [li, j] ∈ TL

n (F) , with diagonal elements equal to one. Let (a,b) be
the unique transposition of σ and c,d and e be the fix points of σ . Assume that
a > c > b > d > e. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal: the entry lb,d if
b = d +1 , the entry lc,b if c = b+1 or the entry la,c if a = c+1 .

3. L has at most two nonzero entries below the main diagonal, the entry lc,b if
c = b+1 and the entry la,c if a = c+1 .
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Proof. Let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Assume that

L ∈ Vσ (Sn,χ) . Then, by Theorem 1.3, the entries of L , below the main diagonal, that
could be different from zero are la,c, lc,b, la,b, lc,d , lb,d , la,d , la,e, lc,e, lb,e and ld,e . We will
show that all this entries are zero except eventually lb,d , lc,b and la,c .

Let Z1 be the upper triangular matrix whose d th column is the e th column of In
and the other columns of Z1 are the correspondent columns of In . Then

dχ(P(σ)LZ1) = (χ(σ−1)+ χ(σ−1(e,d)))ld,e = 2ld,e = 0.

Hence ld,e = 0.
Let Z2 be the upper triangular matrix whose d th column is the e th column of In

and b th column is the d th column of In . The other columns of Z2 are the correspondent
columns of In . Then

dχ(P(σ)LZ2) = (χ(σ−1(e,d,b))+ χ(σ−1(b,d)))lb,e = −2lb,e = 0.

Hence lb,e = 0.
Let Z3 be the upper triangular matrix whose c th column is the e th column of In

and the other columns of Z3 are the correspondent columns of In . Then

dχ(P(σ)LZ3) = (χ(σ−1)+ χ(σ−1(c,e)))lc,e = 2lc,e = 0,

and so lc,e = 0.
Let Z4 be the upper triangular matrix whose d th column is the e th column of In

and the a th column of Z4 is the d th column of In . The remaining columns of Z4 are
the correspondent columns of In . Then

dχ(P(σ)LZ4) = (χ(σ−1(e,d,a))+ χ(σ−1(d,a)))la,e = −2la,e = 0,

and so la,e = 0.
Let Z5 be the upper triangular matrix whose b th column is the d th column of

In and the c th column is the b th column of In . The other columns of Z5 are the
correspondent columns of In . Then

dχ(P(σ)LZ5)= (χ(σ−1)+χ(σ−1(d,b)))lb,dlc,b+(χ(σ−1(d,b,c))+χ(σ−1(b,c)))lc,d .

Since χ(σ−1)+ χ(σ−1(d,b)) = 0 we obtain

dχ(P(σ)LZ5) = −2lc,d = 0,

and so lc,d = 0.
Let Z6 be the upper triangular matrix whose a th column is the b th column of In

and the other columns of Z6 are the correspondent columns of In . Then

dχ(P(σ)LZ6)= (χ(σ−1)+χ(σ−1(a,b)))la,b+(χ(σ−1(b,a,c))+χ(σ−1(a,c)))la,clc,b.

Since χ−1(σ−1(b,a,c))+ χ(σ−1(a,c)) = 0 we obtain

dχ(P(σ)LZ6) = 6la,b = 0,
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and so la,b = 0.
Let Z7 be the upper triangular matrix whose b th column is the d th column of In

and the a th column is the b th column of In . The remaining columns of Z7 are the
correspondent columns of In . Then

dχ(P(σ)LZ7) = (χ(σ−1(a,b))+ χ(σ−1(d,b,a)))la,d

+(χ(σ−1(a,c))+ χ(σ−1(a,c)(b,d)))lb,dlc,bla,c

= 6la,d −2lb,dlc,bla,c

= 0.

Therefore
3la,d = lb,dlc,bla,c. (2)

Let Z8 be the upper triangular matrix whose c th column is the d th column of In
and the other columns of Z8 are the correspondent columns of In . Then

dχ(P(σ)LZ8) = (χ(σ−1(d,c,b))+ χ(σ−1(c,b)))lb,dlc,b = −2lb,dlc,b = 0.

Hence lb,dlc,b = 0 and by (2) we conclude that la,d = 0.
We have shown that in this case, if L = [li, j] ∈Vσ (Sn,χ) then L has at most three

nonzero entries bellow the main diagonal; the entry lb,d , the entry lc,b and the entry
la,c . We also have

lb,dlc,b = 0. (3)

Let Z9 be the upper triangular matrix whose b th column is the d th column of
In and the a th column is the c th column of In . The other columns of Z9 are the
correspondent columns of In . Then

dχ(P(σ)LZ9) = −2lb,dla,c = 0,

and so
lb,dla,c = 0. (4)

If lb,d �= 0, by (3) and (4) we conclude la,c = lc,b = 0. Assume that lb,d �= 0 and
there exists an integer k such d < k < b . Let Z10 be the upper triangular matrix whose
d + 1th column is the d th column of In and the b th column is the d + 1th column of
In . The other columns of Z10 are the correspondent columns of In . Then

dχ(P(σ)LZ10) = (χ(σ−1(d,d +1,b))+ χ(σ−1(d +1,b)))lb,d.

Since χ(σ−1(d +1,b)) = 0 we obtain

dχ(P(σ)LZ10) = −lb,d = 0,

and so lb,d = 0, which is a contradiction. We have proved that if lb,d �= 0 then b = d+1.
If lc,b �= 0 and la,c �= 0, by (3) or (4), ld,b = 0. If there exists an integer k such

b < k < c or if there exists an integer k such c < k < a we conclude, by a similar away,
that lc,b = 0 or la,c = 0, and the proof of the necessity of the condition is complete.
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To prove the sufficiency of the conditions, bearing in mind the Proposition 1.4, we
only have to prove that if L has at most two nonzero entries below the main diagonal,
the entry lc,b if c = b + 1 and the entry la,c if a = c + 1 then L ∈ Vσ (Sn,χ) . Let
X = [xi, j] ∈ TU

n (F) . Then

dχ(P(σ)LX) = χ(σ−1)
(
∏n

i=1
i �=a,i �=c

xi,i

)
(lc,bxb,c + xc,c)(la,cxc,a + xa,a)

+ χ(σ−1(a,c))
(
∏n

i=1
i �=a,i �=c

xi,i

)
(lc,bxb,a + xc,a)la,cxc,c

+ χ(σ−1(b,c))
(
∏n

i=1
i �=a,i �=b,i �=c

xi,i

)
xb,clc,bxb,b(la,cxc,a + xa,a)

+ χ(σ−1(b,a,c))
(
∏n

i=1
i �=a,i �=b,i �=c

xi,i

)
xb,ala,cxc,clc,bxb,b

=
(
∏n

i=1
i �=a,i �=c

xi,i

)
(lc,bxb,cla,cxc,a + lc,bxb,cxa,a + xc,cla,cxc,a + xa,axc,c)

−
(
∏n

i=1
i �=a,i �=c

xi,i

)
(lc,bxb,ala,cxc,c + xc,ala,cxc,c)

−
(
∏n

i=1
i �=a,i �=b,i �=c

xi,i

)
(xb,clc,bxb,bla,cxc,a + xb,clc,bxb,bxa,a)

+
(
∏n

i=1
i �=a

xi,i

)
xb,ala,clc,b

= ∏n
i=1 xi,i

= dχ(P(σ)X),

and the proof is complete. �

PROPOSITION 3.7. Let χ = (n−2,2) , let σ ∈C[π1,...,πk,21,13] , πk � 3 , such χ(σ) �=
0 and let L = [li, j] ∈ TL

n (F) , with diagonal elements equal to one. Let (a,b) be
the unique transposition of σ and c,d and e be the fix points of σ . Assume that
a > c > d > b > e. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry lb,e if b =
e+ 1 , the entry ld,b if d = b+ 1 , the entry lc,b if c = b+ 2 or the entry la,c if
a = c+1 .

3. L has at most two nonzero entries below the main diagonal, the entry la,c if
a = c+1 and the entry lc,b if c = b+2 .

Proof. Let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Assume that

L ∈ Vσ (Sn,χ) . Then, by Theorem 1.3, the entries of L , below the main diagonal, that
could be different from zero are la,c, lc,b, la,b, lc,d , lb,d , la,d , la,e, lc,e, lb,e and ld,e . We will
show that all this entries are zero except eventually lb,e , ld,b , lc,b and la,c .
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Let Z1 be the upper triangular matrix whose c th column is the d th column of In .
The other columns of Z1 are the correspondent columns of In . Then

dχ(P(σ)LZ1) = (χ(σ−1)+ χ(σ−1(c,d)))lc,d = 2lc,d = 0,

because L ∈Vσ (Sn,χ) and Z1 has a zero row. Therefore, lc,d = 0.
Let Z2 be the upper triangular matrix whose c th column is the d th column of

In and the a th column is the c th column of In . The other columns of Z2 are the
correspondent columns of In . Then

dχ(P(σ)LZ2) = (χ(σ−1(d,c,a))+ χ(σ−1(c,a)))la,d = −2la,d = 0,

and so la,d = 0.
Let Z3 be the upper triangular matrix whose a th column is the b th column of In .

The other columns of Z3 are the correspondent columns of In . Then

dχ(P(σ)LZ3)= (χ(σ−1)+χ(σ−1(a,b)))la,b+(χ(σ−1(a,c))+χ(σ−1(b,a,c)))lc,bla,c.

Since χ(σ−1(a,c)) + χ(σ−1(b,a,c)) = 0 and χ(σ−1) + χ(σ−1(a,b)) = 6 we
conclude that la,b = 0.

By a similar away we can prove that ld,e = lc,e = 0.
Let Z6 be the upper triangular matrix whose b th column is the e th column of In

and the a th columns the b th column of In . The other columns of Z6 are the correspon-
dent column of In . Then

dχ(P(σ)LZ6) = (χ(σ−1(a,c))+ χ(σ−1(e,b)(a,c)))lb,elc,bla,c

+(χ(σ−1(e,b,a))+ χ(σ−1(a,b))la,e

= −2lb,elc,bla,c +6la,e

= 0.

Therefore
3la,e = lb,elc,bla,c (5)

Let Z7 be the upper triangular matrix whose b th column is the e th column of In
and the a th columns the c th column of In . The other columns of Z7 are the correspon-
dent column of In . Then

dχ(P(σ)LZ7) = (χ(σ−1)+ χ(σ−1(e,b))+ χ(σ−1(a,c))+ χ(σ−1(e,b)(a,c)))lb,ela,c

= −2lb,ela,c

= 0.

Hence, lb,ela,c = 0 and by (5) we conclude that la,e = 0.
By a similar process we can prove that

ld,bla,c = 0, ld,blc,b = 0, lb,eld,b = 0 and lb,elc,b = 0. (6)
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Assume that lb,e �= 0 and assume that there is an integer such e < k < b . Let Z11

the upper triangular matrix whose (e + 1) th column is the e th column of In and the
b th column is the (e+1) th column of In . Then

dχ(P(σ)LZ11) = (χ(σ−1(e,e+1,b))+ χ(σ−1(e+1,b))lb,e.

Since χ(σ−1(e+1,b)) = 0 we obtain

dχ(P(σ)LZ11) = −lb,e = 0,

which is a contradiction. We have proved that if lb,e = 0 then b = e+1.
By a similar process we prove that if la,c �= 0 then a = c + 1, if ld,b �= 0 then

d = b+1 and if lc,b �= 0 then c = b+2 and the proof of the necessity of the conditions
is now complete.

To prove the sufficiency of the conditions, bearing in mind the Proposition 1.4, we
only have to prove that if L has the (c,b) entry different from zero, with c = b+2, and
the other entries below the main diagonal are null then L ∈Vσ (Sn,χ) . Let X = [xi, j] ∈
TU
n (F) . Then

dχ(P(σ)LX) = χ(σ−1)
(
∏n

i=1
i �=b+2

xi,i

)
(lc,bxb,b+2 + xb+2,b+2)

+χ(σ−1(b,c))
(
∏n

i=1
i �=b,i �=b+2

xi,i

)
lc,bxb,bxb,b+2

+χ(σ−1(d,c))
(
∏n

i=1
i �=b+1,i �=b+2

xi,i

)
lc,bxb,b+1xb+1,b+2

+χ(σ−1(b,d,c))
(
∏n

i=1
i �=b,i �=b+1,i �=b+2

xi,i

)
lc,bxb,bxb,b+1xb+1,b+2

= ∏n
i=1 xi,i

= dχ(P(σ)X),

Assume now that la,c �= 0 and lc,b �= 0. Let X = [xi, j] ∈ TU
n (F) . Bearing in mind

that c = a−1 = b+2, we have

dχ(P(σ)LX) = χ(σ−1)
(
∏n

i=1
i �=a,i �=c

xii

)
(la,cxc,a + xa,a)(lc,bxb,c + xc,c)

+ χ(σ−1(b,d,c))
(
∏n

i=1
i �=a,i �=c,i �=d

xii

)
(la,cxc,a + xa,a)lc,bxb,dxd,c

+ χ(σ−1(b,c))
(
∏n

i=1
i �=a,i �=c

xii

)
(la,cxc,a + xa,a)lc,bxb,c

+ χ(σ−1(d,c))
(
∏n

i=1
i �=a,i �=c,i �=d

xii

)
(la,cxc,a + xa,a)lc,bxb,dxd,c

+ χ(σ−1(a,c))
(
∏n

i=1
i �=a

xii

)
(lc,bxb,a + xc,a)la,c
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+ χ(σ−1(a,c,b,d))
(
∏n

i=1
i �=a,i �=d

xii

)
lc,bxb,dxd,ala,c

+ χ(σ−1(a,c,b))
(
∏n

i=1
i �=a

xii

)
lc,bxb,ala,c

+ χ(σ−1(a,c,d))
(
∏n

i=1
i �=a,i �=d

xii

)
lc,bxd,axb,dla,c

= ∏n
i=1 xi,i

= dχ(P(σ)X),

and the is proof is complete. �

PROPOSITION 3.8. Let χ = (n−2,2) , let σ ∈C[π1,...,πk,21,13] , πk � 3 , such χ(σ) �=
0 and let L = [li, j] ∈ TL

n (F) , with diagonal elements equal to one. Let (a,b) be
the unique transposition of σ and c,d and e be the fix points of σ . Assume that
a > c > d > e > b. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry le,b if e =
b+1 , the entry ld,b if d = b+2 or the entry la,c if a = c+1 .

PROPOSITION 3.9. Let χ = (n−2,2) , let σ ∈C[π1,...,πk,21,13] , πk � 3 , such χ(σ) �=
0 and let L = [li, j] ∈ TL

n (F) , with diagonal elements equal to one. Let (a,b) be
the unique transposition of σ and c,d and e be the fix points of σ . Assume that
c > a > d > e > b. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry le,b if e =
b+ 1 , the entry ld,b if d = b+ 2 , the entry la,d if a = d + 1 or the entry lc,a if
c = a+1 .

3. L has at most two nonzero entries below the main diagonal, the entry la,d if
a = d +1 and the entry ld,b if d = b+2 .

PROPOSITION 3.10. Let χ = (n− 2,2) , let σ ∈ C[π1,...,πk,21,13] , πk � 3 , such

χ(σ) �= 0 and let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Let (a,b)

be the unique transposition of σ and c,d and e be the fix points of σ . Assume that
c > d > a > e > b. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry le,b if e =
b + 1 , the entry la,e if a = e + 1 , the entry ld,a if d = a + 1 , the entry ld,b if
d = b+3 or the entry lc,a if c = a+2 .
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3. L has at most two nonzero entries below the main diagonal, the entry ld,b if
d = b+ 3 and the entry ld,a if d = a+ 1 or the entry le,b if e = b+ 1 and the
entry la,e if a = e+1 .

PROPOSITION 3.11. Let χ = (n− 2,2) , let σ ∈ C[π1,...,πk,21,13] , πk � 3 , such

χ(σ) �= 0 and let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Let (a,b)

be the unique transposition of σ and c,d and e be the fix points of σ . Assume that
c > d > e > a > b. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry ld,a if d =
a+2 , the entry le,a if e = a+1 or the entry le,b if e = b+2 .

3. L has at most two nonzero entries below the main diagonal, the entry le,b if
e = b+2 and the entry le,a if e = a+1 .

PROPOSITION 3.12. Let χ = (n− 2,2) , let σ ∈ C[π1,...,πk,21,13] , πk � 3 , such

χ(σ) �= 0 and let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Let (a,b)

be the unique transposition of σ and c,d and e be the fix points of σ . Assume that
c > a > b > d > e. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry lb,d if b =
d +1 , the entry lc,b if c = b+2 and the entry lc,a if c = a+1 .

3. L has at most two nonzero entries below the main diagonal, the entry lc,b if
c = b+2 and the entry lc,a if c = a+1 .

PROPOSITION 3.13. Let χ = (n− 2,2) , let σ ∈ C[π1,...,πk,21,13] , πk � 3 , such

χ(σ) �= 0 and let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Let (a,b)

be the unique transposition of σ and c,d and e be the fix points of σ . Assume that
c > d > a > b > e. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:

1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry lb,e if b =
e+1 or lc,a if c = a+2 , the entry ld,a if d = a+1 or the entry ld,b if d = b+2 .

3. L has at most two nonzero entries below the main diagonal, the entry ld,b if
d = b+2 and the entry ld,a if d = a+1 .

PROPOSITION 3.14. Let χ = (n− 2,2) , let σ ∈ C[π1,...,πk,21,13] , πk � 3 , such

χ(σ) �= 0 and let L = [li, j] ∈ TL
n (F) , with diagonal elements equal to one. Let (a,b)

be the unique transposition of σ and c,d and e be the fix points of σ . Assume that
c > a > d > b > e. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if:
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1. L = In ;

2. L has at most one nonzero entry bellow the main diagonal, the entry lb,e if b =
e+1 or ld,b if d = b+1 , the entry la,d if a = d +1 , the entry lc,a if c = a+1
or the entry lc,b if c = b+3 .

3. L has at most two nonzero entries below the main diagonal, the entry ld,b if
d = b+ 1 and the entry la,d if a = d + 1 or the entry lc,b if c = b+ 3 and the
entry lc,a if c = a+1 .

It is possible to rewrite the 10 cases in a Theorem.

THEOREM 3.15. Let χ = (n−2,2) , let σ ∈C[π1,...,πk,21,13] , πk � 3 , such χ(σ) �=
0 and let L = [li, j] ∈ TL

n (F) , with diagonal elements equal to one. Let (a,b) be the
unique transposition of σ with b < a. Then, L = [li, j] ∈Vσ (Sn,χ) if and only if except
at most one of the following conditions, all the other elements below the main diagonal
of L are zero:

1. if lb,b−1 �= 0 then b−1 is a fix point of σ ;

2. if lb+1,b �= 0 then b+1 is a fix point of σ ;

3. if lb+2,b �= 0 then b+1 and b+2 are fix points of σ ;

4. if lb+2,b �= 0 and/or lb+3,b+2 �= 0 then b+ 1 and b+ 2 are fix points of σ and
a = b+3 ;

5. if lb+1,b �= 0 and/or lb+2,b+1 �= 0 then b+1 is a fix point of σ and a = b+2 ;

6. if lb+3,b �= 0 and/or lb+3,b+2 �= 0 then b+ 1 and b+ 3 are fix points of σ and
a = b+2 ;

7. if lb+2,b �= 0 and/or lb+2,b+1 �= 0 then b+2 is a fix point of σ and a = b+1 ;

8. if la,a−1 �= 0 then a−1 is a fix point of σ ;

9. if la+1,a �= 0 then a+1 is a fix point of σ ;

10. if la+2,a �= 0 then a+1 and a+2 are fix points of σ ;

The next theorem is now an easy consequence of theorem 1.1 and propositions 2.5
and 2.6 and it gives a complete description of the set T (Sn,χ) , with χ = (n−2,2) :

THEOREM 3.16. If χ = (n−2,2) then A∈T (Sn,χ) if and only if A = P(σ)LσR

such σ ∈ Sn satisfy χ(σ) �= 0 , R ∈ TU
n (F) satisfy det(R) = χ(id)

χ(σ) and Lσ = [li, j] is
a lower triangular matrix with all diagonal elements equal to 1 and satisfying the
following conditions:

1. lrp = 0 whenever r �∈ {p, p+1, p+2, p+3} ;
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2. Lσ = In if σ /∈C[π1,...πk,20,12] , σ /∈C[π1,...πk,21,10] or σ /∈C[π1,...πk,21,13] ;

3. There is at most one i , 1 � i � n−1 , such that li+1,i �= 0 , if {i, i+1} is the set
of the fix points of σ or, if σ don’t have fix points and (i, i + 1) is the unique
transposition of σ or, if i is in the unique transpositions of σ and i+1 is a fix
point of σ or, if i+ 1 is in the unique transposition of σ and i is a fix point of
σ .

4. There exists at most one i , 1 � i � n− 2 , such that li+2,i �= 0 , being i+ 1 and
i+2 fix points of σ and i is in the unique transposition of σ ;

5. There is at most one i , 1 � i � n− 3 such li+2,i �= 0 and/or li+3,i+2 �= 0 being
i+1 and i+2 fix points of σ and (i, i+3) is the unique transposition of σ ;

6. There is at most one i , 1 � i � n− 2 such li+1,i �= 0 and/or li+2,i+1 �= 0 being
i+1 a fix point of σ and (i, i+2) is the unique transposition of σ ;

7. There is at most one i , 1 � i � n− 3 li+3,i �= 0 and/or li+3,i+2 �= 0 being i+ 1
and i+3 fix points of σ and (i, i+2) is the unique transposition of σ ;

8. There is at most one i , 1 � i � n− 2 such li+2,i �= 0 and/or li+2,i+1 �= 0 being
i+2 a fix point of σ and (i, i+1) is the unique transposition of σ ;

�
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