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CONTRACTIBILITY OF THE MAXIMAL IDEAL SPACE

OF ALGEBRAS OF MEASURES IN A HALF–SPACE

AMOL SASANE

(Communicated by L. Rodman)

Abstract. Let H[n] be the canonical half space in Rn , that is,

H[n] = {(t1, . . . ,tn) ∈ Rn \{0} | ∀ j, [t j �= 0 and t1 = t2 = . . . = t j−1 = 0] ⇒ t j > 0}∪{0}.
Let M (H[n]) denote the Banach algebra of all complex Borel measures with support con-

tained in H[n] , with the usual addition and scalar multiplication, and with convolution ∗ , and the
norm being the total variation of μ . It is shown that the maximal ideal space X(M (H[n])) of
M (H[n]) , equipped with the Gelfand topology, is contractible as a topological space. In partic-
ular, it follows that M (H[n]) is a projective free ring. In fact, for all subalgebras R of M (H[n])
that satisfy a certain condition, it is shown that the maximal ideal space X(R) of R is con-
tractible. Several examples of such subalgebras are also given. We also show that this condition,
although sufficient, is not necessary for the contractibility of unital subalgebras of M (H[n]) .

1. Introduction

The aim of this paper is to show that the maximal ideal space X(R) of some
Banach subalgebras (possessing a certain property) of the convolution algebra M (H[n])
of all complex Borel measures with support in the half space H[n] , is contractible. It
follows then that such Banach algebras are projective free rings. All the notation and
precise definitions are explained below.

In particular, our result can be viewed as a two-fold generalization:

(1) of the result in [12], from the one dimensional case (of the half space [0,+∞) of
R) to the n -dimensional case (the half space H[n] of Rn ).

(2) of the result in [10], from the specific subalgebra of almost periodic measures of
M (H[n]) to all subalgebras of M (H[n]) satisfying a certain condition. (The re-
sult in [10] was in turn a generalization of a one-dimensional result of A. Brudnyi
[2] to the multi-dimensional setting.)

Although the current result is a generalization of the result from the conference paper
[12], it does not follow automatically.
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1.1. Preliminary definitions and notation

DEFINITION 1.1. Let H[n] ⊂ Rn be the canonical half space defined by

H[n] = {(t1, . . . ,tn) ∈ Rn \ {0} | ∀ j, [t1 = t2 = . . . = t j−1 = 0, t j �= 0] ⇒ t j > 0}∪{0}.

M (H[n]) denotes the set of all complex Borel measures with support contained in
H[n] . Then M (H[n]) is a complex vector space with addition and scalar multiplication
defined in the pointwise manner as usual. The space M (H[n]) becomes a complex
algebra if convolution of measures (denoted henceforth by ∗ ) is taken as the operation
of multiplication in the algebra. With the norm of μ taken as the total variation of μ ,
M (H[n]) is a Banach algebra. Recall that the total variation ‖μ‖ of μ is defined by

‖μ‖ = sup
∞

∑
k=1

|μ(Ek)|,

the supremum being taken over all partitions of H[n] , that is over all countable col-
lections (Ek)k∈N of Borel subsets of H[n] such that Ek

⋂
Em = /0 whenever m �= k and⋃

k∈N Ek = H[n] . The identity with respect to convolution in M (H[n]) is the Dirac
measure δ n

0 in Rn supported at 0 , given by

δ n
0 (E) =

{
1 if 0 ∈ E,
0 if 0 �∈ E,

where E is any Borel subset of H[n] .

DEFINITION 1.2.

(1) (μ [•] ) For μ ∈M (H[n]) , define the measures μ [k] ∈M (H[k]) , k = n,n−1, . . . ,2,1,
inductively as follows. Set

μ [n] = μ .

Suppose μ [k] ∈ M (H[k]) has been defined. Then μ [k−1] ∈ M (H[k−1]) is defined
by

μ [k−1](E) = μ({0}×E),

where E is any Borel subset of H[k−1] .

(2) (μ• ) Given θ ∈ [0,1) and μ ∈ M (H[k]) , the measure μθ ∈ M (H[k]) is defined
by

μθ (E) =
∫

E
(1−θ )t1dμ(t), (1)

where E is any Borel subset of H[k] . If θ = 1, then for μ ∈ M (H[k]) , μ1 is
defined as follows:

μ1 :=
{
δ 1

0 ⊗ μ [k−1] if k > 1,
μ({0})δ 1

0 if k = 1.
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NOTATION 1.3. If R is a complex commutative unital Banach algebra, then X(R)
denotes the maximal ideal space of R . Thus X(R) is the set of all nonzero complex
homomorphisms from R to C . X(R) is endowed with the Gelfand topology, that is,
the weak-� topology induced from the dual space L (R;C) of the Banach space R .

If R is any Banach subalgebra of M (H[n]) which satisfies an assumption, namely
Property (P) in Theorem 1.5 below, then we will show that X(R) is contractible. The
notion of contractibility of a topological space is recalled below.

DEFINITION 1.4. A topological space X is said to be contractible if there exists
a continuous map H : X × [0,1]→ X and an x0 ∈ X such that

for all x ∈ X , H(x,0) = x and H(x,1) = x0.

1.2. Main result

Our main result is the following:

THEOREM 1.5. Suppose that R is a unital Banach subalgebra of M (H[n]) satis-
fying:

For all μ ∈ R and all θ ∈ [0,1) ,
μθ
δ 1

0 ⊗ μ [n−1]
θ

...

δ n−1
0 ⊗ μ [1]

θ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ∈ R.
(P)

Then the maximal ideal space X(R) equipped with the Gelfand topology is contractible.

The Laplace transform μ̂ of μ ∈ M (H[n]) is defined by

μ̂(s) =
∫

H[n]
e−〈s,t〉dμ(t), s ∈ H[n].

Then μ̂ is continuous on H[n] . Let M̂ (H[n]) denote the set of all Laplace transforms
of elements of M (H[n]) . Then M̂ (H[n]) is a complex vector space with addition and
multiplication defined pointwise, and it is a complex algebra if we define multiplication
also in a pointwise manner. With the norm of μ̂ ∈ M̂ (H[n]) defined to be the norm of
μ ∈ M (H[n]) , M̂ (H[n]) becomes a Banach algebra, which is isometrically isomorphic
to M (H[n]) . Then our main result (Theorem 1.5) yields the following:
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THEOREM 1.6. Suppose that R is a unital Banach subalgebra of M̂ (H[n]) satis-
fying:

For all μ̂ ∈ R and all θ ∈ [0,1) , the maps
H[n] � (s1, . . . ,sn) �→ μ̂(s1 − log(1−θ ),s2, . . . ,sn),

H[n] � (s1, . . . ,sn) �→ μ̂ [n−1](s2 − log(1−θ ),s3, . . . ,sn),
...

H[n] � (s1, . . . ,sn) �→ μ̂ [1](sn − log(1−θ )),
belong to R.

(P̂)

Then the maximal ideal space X(R) equipped with the Gelfand topology is contractible.

1.3. Corollaries of the main result

By a result proved in [3], our main result from Theorem 1.5 implies that R is a
projective free ring. The definition of a projective free ring is given below.

DEFINITION 1.7. A commutative ring R with identity is said to be projective free
if every finitely generated projective R-module is free. Recall that if M is an R-module,
then

(1) M is free if M ∼= Rd for some integer d � 0;

(2) M is projective if there exists an R-module N and an integer d � 0 such that
M⊕N ∼= Rd .

In terms of matrices (with entries from R), the ring R is projective free iff for every
square matrix P satisfying P2 = P , there exists an invertible matrix G such that

GPG−1 =
[

Ik 0
0 0

]
;

see [4, Proposition 2.6].

For example, it can be seen from the matricial definition that any field F is pro-
jective free, since matrices P satisfying P2 = P are diagonalizable over F . Quillen
and Suslin independently proved, that the polynomial ring over a projective free ring is
again projective free (see [7]), and so in particular, the polynomial ring F[x1, . . . ,xn] is
projective free, settling Serre’s conjecture from 1955. In the context of Banach alge-
bras, the following result was shown recently [3, Corollary 1.4.(1)]:

PROPOSITION 1.8. Let R be a semisimple complex commutative unital Banach
algebra. If the maximal ideal space X(R) (equipped with the Gelfand topology) of the
Banach algebra R is contractible, then R is a projective free ring.

Recall that a commutative unital Banach algebra is said to be semisimple if its
radical (that is, the intersection of all maximal ideals) is 0 .
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PROPOSITION 1.9. Every Banach subalgebra R of M (H[n]) is semisimple.

This will be proved at the end of Section 2. In light of Proposition 1.8, the main
result given in Theorem 1.5 then implies the following.

COROLLARY 1.10. Let R be a Banach subalgebra of M (H[n]) satisfying the
property (P) from Theorem 1.5. Then R is projective free.

At the end of this article, we give examples of subalgebras of M (H[n]) (respec-
tively M̂ (H[n])) which satisfy the property (P) (respectively P̂), which include several
well-known classical convolution algebras of measures (and classes of almost periodic
functions). Thus we have (with the notation explained in Section 4):

COROLLARY 1.11. Let R be one of the Banach algebras L1(H[n])+Cδ n
0 , A (H[n]) ,

APWn
Σ or APn

Σ . Then the maximal ideal space X(R) is contractible. In particular, R is
projective free.

The motivation for investigating whether or not convolution algebras of measures
are projective free rings also arises from control theory, in the problem of stabilization
of linear systems, since if R is a projective free ring, then every stabilizable plant with
a transfer function over the field of fractions of R has a doubly coprime factorization.
The reader is referred to [9], [3] for details.

The proof of Theorem 1.5 is given in Section 3, while examples are given in Sec-
tion 4. In Subsection 3.2, we also show that the condition (P) is sufficient but not
necessary for the contractibility of the maximal ideal space of the unital Banach subal-
gebra R of M (H[n]) . But first, a few technical results used in the sequel are proved in
Section 2.

2. Preliminaries

In this section, we show a few auxiliary facts needed to prove the main result.

LEMMA 2.1. Let k ∈ {1, . . . ,n} and μ ∈ M (H[k]) . Then for all θ ∈ [0,1] ,

(1) μθ ∈ M (H[k]) .

(2) ‖μθ‖ � ‖μ‖ .

(3) (δ k
0 )θ = δ k

0 .

Proof. (1) and (3) follow immediately from the definitions. The inequality in (2)
is a straightforward verification when θ = 1. We give a proof below when θ ∈ [0,1) .
Given a μ ∈ M (H[k]) , there exists a Borel measurable function w such that d|μ |(t) =
eiw(t)dμ(t) . Note that ‖μθ‖ = sup∑ |μθ (Ei)| , the supremum being taken over all par-
titions (Ei)i∈N of H[k] . So
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|μθ (Ei)| =
∣∣∣∣∫

Ei

(1−θ )t1dμ(t)
∣∣∣∣= ∣∣∣∣∫

Ei

e−iw(t)(1−θ )t1eiw(t)dμ(t)
∣∣∣∣

=
∣∣∣∣∫

Ei

e−iw(t)(1−θ )t1d|μ |(t)
∣∣∣∣� ∫

Ei

1d|μ |(t) = |μ |(Ei).

Hence ∑ |μθ (Ei)| � ∑ |μ |(Ei) = |μ |(H[k]) = ‖μ‖ . �

LEMMA 2.2. If μ ,ν ∈ M (H[k+1]) and k � 1 , then (μ ∗ν)[k] = μ [k] ∗ν [k] .

Proof. Let E ⊂ H[k] be a Borel set. Then

(μ ∗ν)[k](E) = (μ ∗ν)({0}×E) =
∫
{0}×E

μ(({0}×E)− t)dν(t)

=
∫
{0}×E

μ({0}× (E− τ))dν [k](τ)

=
∫

E
μ [k](E − τ)dν [k](τ) = (μ [k] ∗ν [k])(E).

This completes the proof. �

LEMMA 2.3. If μ ,ν ∈ M (H[k+1]) where k � 1 , then (δ 1
0 ⊗ μ [k])∗ (δ 1

0 ⊗ν [k]) =
δ 1

0 ⊗ (μ [k] ∗ν [k]) .

Proof. (The notation Fμ is used for the Fourier transform of μ : (Fμ)(w) =∫
eiwtdμ(t) , w ∈ R). For w1 ∈ R and ω ∈ Rk ,

F ((δ 1
0 ⊗ μ [k])∗ (δ 1

0 ⊗ν [k]))(w1,ω)

= (F (δ 1
0 ⊗ μ [k]))(w1,ω) · (F (δ 1

0 ⊗ν [k]))(w1,ω)

= (Fδ 1
0 )(w1) · (Fμ [k])(ω) · (Fδ 1

0 )(w1) · (Fν [k])(ω)

= 1 · (Fμ [k])(ω) ·1 · (Fν [k])(ω) = (Fμ [k])(ω) · (Fν [k])(ω)

= (F (μ [k] ∗ν [k]))(ω) = 1 · (F (μ [k] ∗ν [k]))(ω)

= (Fδ 1
0 )(w1) · (F (μ [k] ∗ν [k]))(ω)

= (F (δ 1
0 ⊗ (μ [k] ∗ν [k])))(w1,ω).

Taking the inverse Fourier transform, the claim follows. �

PROPOSITION 2.4. If μ ,ν ∈M (H[k]) , then for all θ ∈ [0,1] , (μ ∗ν)θ = μθ ∗νθ .
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Proof. Let us first suppose that θ ∈ [0,1) . If E is a Borel subset of H , then

(μ ∗ν)θ (E) =
∫

E
(1−θ )t1d(μ ∗ν)(t) =

∫∫
σ+τ∈E
σ ,τ∈H[k]

(1−θ )σ1+τ1dμ(σ)dν(τ).

On the other hand,

(μθ ∗νθ )(E) =
∫
τ∈H[k]

μθ (E − τ)dνθ (τ)

=
∫
τ∈H[k]

(∫
σ∈E−τ
σ∈H[k]

(1−θ )σ1dμ(σ)

)
dνθ (τ)

=
∫∫

σ+τ∈E
σ ,τ∈H[k]

(1−θ )σ1+τ1dμ(σ)dν(τ).

Now consider the case when θ = 1. If k = 1, the claim follows immediately, since

(μ ∗ν)1 = (μ ∗ν)({0})δ 1
0 = μ({0}) ·ν({0})δ 1

0 = (μ({0})δ 1
0 )∗ (ν({0})δ 1

0 ) = μ1 ∗ν1.

If k > 1, then

μ1 ∗ν1 = (δ 1
0 ⊗ μ [k−1])∗ (δ 1

0 ⊗ν [k−1]) = δ 1
0 ⊗ (μ [k−1] ∗ν [k−1]) = δ 1

0 ⊗ (μ ∗ν)[k−1]

= (μ ∗ν)1.

This completes the proof. �

The following result says that for a fixed μ ∈M (H[k]) , the map θ �→ μθ : [0,1]→
M (H[k]) is continuous.

PROPOSITION 2.5. If μ ∈M (H[k]) and θ0 ∈ [0,1] , then lim
θ→θ0

μθ = μθ0 in M (H[k]) .

Proof. 1◦ Consider first the case when θ0 ∈ [0,1) . Let θ ∈ [0,1) . There exists a
Borel measurable function w such that d(μθ − μθ0)(t) = e−iw(t)d|μθ − μθ0 |(t) . Thus

‖μθ − μθ0‖ = |μθ − μθ0 |(H[k]) =
∫

H[k]
eiw(t)d(μθ − μθ0)(t)

=
∣∣∣∣∫

H[k]
eiw(t)d(μθ − μθ0)(t)

∣∣∣∣= ∣∣∣∣∫
H[k]

eiw(t)((1−θ )t1 − (1−θ0)t1)dμ(t)
∣∣∣∣.

Given an ε > 0, first choose an R > 0 large enough so that |μ |(B) < ε , where

B = {t ∈ H[k] | ‖t‖2 � R}.
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Hence

‖μθ − μθ0‖ �
∣∣∣∣∫

B
eiw(t)((1−θ )t1−(1−θ0)t1)dμ(t)

∣∣∣∣
+
∣∣∣∣∫

H[k]\B
eiw(t)((1−θ )t1 − (1−θ0)t1)dμ(t)

∣∣∣∣
�
(

max
t∈B

∣∣(1−θ )t1 − (1−θ0)t1
∣∣) |μ |(B)+2|μ |(H[k] \B)

�
(

max
t∈B

∣∣(1−θ )t1 − (1−θ0)t1
∣∣) |μ |(H[k])+2ε.

But by the mean value theorem applied to the function θ �→ (1−θ )t1 ,

(1−θ )t1 − (1−θ0)t1 = (θ −θ0) · t1 · (1− c)t1−1 = (θ −θ0) · t1 · (1− c)t1

1− c
,

for some c (depending on t = t1 , θ and θ0 ) in between θ and θ0 . Since c lies
between θ and θ0 , and since both θ and θ0 lie in [0,1) , and 0 � t1 � R , it follows
that (1− c)t1 � 1 and

1
1− c

� max

{
1

1−θ
,

1
1−θ0

}
.

Thus using the above, and the fact that 0 � t1 � R ,

max
t∈B

∣∣(1−θ )t1 − (1−θ0)t1
∣∣ = max

t∈B
|θ −θ0| · |t1| · |(1− c)t1 | · 1

|1− c|
� |θ −θ0| ·R ·1 ·max

{
1

1−θ
,

1
1−θ0

}
.

Hence

limsup
θ→θ0

‖μθ − μθ0‖ � limsup
θ→θ0

((
max
t∈B

∣∣(1−θ )t1 − (1−θ0)t1
∣∣)|μ |(H[k])+2ε

)
� limsup

θ→θ0

(
|θ −θ0| ·R ·max

{
1

1−θ
,

1
1−θ0

}
· |μ |(H[k])

)
+2ε

= 0 ·R · 1
1−θ0

|μ |(H[k])+2ε = 0+2ε = 2ε.

Since ε > 0 was arbitrary, it follows that limsup
θ→θ0

‖μθ−μθ0‖= 0. Also ‖μθ−μθ0‖� 0,

and so lim
θ→θ0

‖μθ − μθ0‖ = 0.

2◦ Now consider the case when θ0 = 1. Assume first that k > 1 and μ [k−1] = 0. We
will show that lim

θ→1
μθ = 0 in M (H[k]) . Given an ε > 0, first choose a r > 0 small

enough so that with
B := {t ∈ H[k] | ‖t‖2 � r},
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we have |μ |(B) < ε . (This is possible, since μ [k−1] = 0.) There exists a Borel measur-
able function w such that dμθ (t) = e−iw(t)d|μθ |(t) . Thus

‖μθ‖ = |μθ |(H[k]) =
∫

H[k]
eiw(t)dμθ (t) =

∫
H[k]

eiw(t)(1−θ )t1dμ(t)

=
∣∣∣∣∫

H[k]
eiw(t)(1−θ )t1dμ(t)

∣∣∣∣
�
∣∣∣∣∫

B
eiw(t)(1−θ )t1dμ(t)

∣∣∣∣+ ∣∣∣∣∫
H[k]\B

eiw(t)(1−θ )t1dμ(t)
∣∣∣∣

� |μ |(B)+ (1−θ )r · |μ |(H[k] \B) � ε +(1−θ )r · |μ |(H[k]).

Consequently, limsup
θ→1

‖μθ‖ � ε . But ε > 0 was arbitrary, and so limsup
θ→1

‖μθ‖ = 0.

Since ‖μθ‖ � 0, it follows that lim
θ→1

‖μθ‖ = 0.

If μk−1 �= 0, then define ν := μ−δ 1
0 ⊗μ [k−1] ∈M (H[k]). It is clear that ν [k−1] = 0

and νθ = μθ−δ 1
0 ⊗μ [k−1] . From the above, lim

θ→1
νθ = 0, and so lim

θ→1
μθ = δ 1

0 ⊗μ [k−1] =

μ1 in M (H[k]) .

3◦ The case when θ0 = 1 and k = 1 is analogous to 2◦ above. �
Finally we prove that every Banach subalgebra R of M (H[n]) is semisimple.

Proof. [Proof of Proposition 1.9] If s ∈ C , Re(s) � 0, and k ∈ {1, . . . ,n} , then

Φ[k]
s , given by

Φ[k]
s (μ) =

∫
{t | t=(0,τ)∈Rk×H[n−k]}

e−stkdμ(t) (μ ∈ R),

is an element of X(R) , and so the kernel of Φ[k]
s is a maximal ideal in R . But if

Φ[k]
s (μ) = 0 for all s and all k , then μ is zero on H[n] . So the radical of R is 0 . �

3. Contractibility of X(R)

In this section we will prove our main result.

Proof. [Proof of Theorem 1.5] Define H : X(R)× [0,1] → X(R) as follows. If
θ ∈ [0,1] , Φ ∈ X(R) and μ ∈ R , then

(H(Φ,θ ))(μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φ(μnθ ) 0 � θ < 1

n ,

Φ(δ k
0 ⊗ μ [n−k]

nθ−k)
k
n � θ < k+1

n , k = 1, . . . ,n−1,

Φ(μ({0})δ n
0 ) = μ({0}) θ = 1.

We show that H is well-defined. From the definition, H(Φ,1) ∈ X(R) for all Φ ∈
X(R) . If θ ∈ [0,1) , then the linearity of H(Φ,θ ) : R → C is obvious. Continuity of
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H(Φ,θ ) follows from the fact that Φ is continuous and ‖μθ‖ � ‖μ‖ for θ ∈ [0,1] .
That H(Φ,θ ) is multiplicative is a consequence of Proposition 2.4, and the fact that Φ
respects multiplication. Finally (H(Φ,θ ))(δ n

0 ) = Φ((δ n
0 )θ ) =Φ(δ n

0 ) = 1.
It is obvious that H(·,0) is the identity map and H(·,1) is a constant map.
Finally, we show below that H is continuous. Since X(M (H[n])) is equipped

with the Gelfand topology, we just have to prove that for every convergent net (Φi,θi)i∈I

with limit (Φ,θ ) in X(M (H[n]))× [0,1] , there holds that (H(Φi,θi))(μ)→(H(Φ,θ ))(μ) .
We have

|(H(Φi,θi))(μ)− (H(Φ,θ ))(μ)|
� |(H(Φi,θi))(μ)− (H(Φi,θ ))(μ)|+ |(H(Φi,θ )−H(Φ,θ ))(μ)|,

and from the definition of H , it is immediate that |(H(Φi,θ )−H(Φ,θ ))(μ)| → 0.
So it remains to show that |(H(Φi,θi))(μ)− (H(Φi,θ ))(μ)| → 0. There is no loss of
generality in assuming that all the θi ’s belong to one of the intervals

[
0, 1

n

)
,
[

1
n , 2

n

)
, . . . ,[

n−1
n ,1

)
. But then Proposition 2.5 yields the desired result: for example if θi ∈ [ k

n , k+1
n )

and θ = k+1
n , then

|(H(Φi,θi))(μ)− (H(Φi,θ ))(μ)| = |Φi(δ k
0 ⊗ μ [n−k]

nθi−k − δ k
0 ⊗ (δ 1

0 ⊗ μ [n−k−1]))|
� ‖Φi‖ · ‖δ k

0‖ · ‖μ [n−k]
nθi−k − δ 1

0 ⊗ μ [n−k−1]‖
� 1 ·1 · ‖μ [n−k]

nθi−k − δ 1
0 ⊗ μ [n−k−1]‖→ 0.

This completes the proof. �

3.1. Remarks about the conditions (P) and (P̂) and the proof of Theorem 1.5

Our definition of the map H is based on the following consideration, in the case
of n = 1, when H[n] = H[1] = [0,+∞) .

The result given below can be thought of as a generalization of the Riemann-
Lebesgue Lemma for functions fa ∈ L1(0,+∞) (that the limit as s → +∞ of the
Laplace transform of fa is 0):

PROPOSITION 3.1. If μ ∈ M (H[1]) , then lim
s→+∞

∫ +∞

0
e−stdμ(t) = μ({0}) .

The set X(M (H[1])) contains the half plane C�0 := {s ∈ C | Re(s) � 0} in the
sense that each s ∈ C�0 , gives rise to the corresponding complex homomorphism Φs :
M (H[1]) → C , given simply by point evaluation of the Laplace transform of μ at s :

μ �→Φs(μ) =
∫ +∞

0
e−stdμ(t), μ ∈ M (H[1]).

If we imagine s tending to +∞ along the real axis we see from Proposition 3.1, that
Φs starts looking more and more like the complex homomorphism Φ+∞ given by

μ �→Φ+∞(μ) := μ({0}), μ ∈ M (H[1]).
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So we may define H(Φs,θ ) = Φs−log(1−θ) , which would suggest that at least the part

C�0 of X(M (H[1])) is contractible to Φ+∞ . But we see that we can view the action of
H(Φs,θ ) defined above as follows:

(H(Φs,θ ))(μ) = Φs−log(1−θ)(μ)

=
∫ +∞

0
e−(s−log(1−θ))tdμ(t) =

∫ +∞

0
e−st(1−θ )tdμ(t)

= Φs(ν),

where ν is the measure such that dν(t) = (1−θ )tdμ(t) . This motivates the definition
of μθ given in (1), and the definition of H in the proof of Theorem 1.5.

We note that the map μ �→ μθ is just a particular translation in the “frequency
domain”, that is, by taking Laplace transforms. Indeed, we have

μ̂θ (s) =
∫ +∞

0
e−st(1−θ )tdμ(t) =

∫ +∞

0
e−(s−log(1−θ))tdμ(t) = μ̂(s− log(1−θ )).

This explains the relation between the conditions (P) and (P̂ ).

3.2. The condition (P) or (P̂) is not necessary for contractibility

In this subsection, we will give an example of a unital Banach subalgebra of
M̂ (H[1]) that has a contractible maximal ideal space, but fails to possess the prop-
erty ( P̂). The example can be adapted also to get a counterexample for the necessity
of ( P̂) for the contractibility of the maximal ideal space of M̂ (H[n]) for n > 1. By
taking inverse Laplace transforms, we then also get the analogous result in the case of
M (H[n]) .

The subalgebra R of M̂ (H[1]) . Consider the element μ̂ ∈ M̂ (H[1]) , given by

μ̂(s) =
s(s−1)
(s+1)2 , s ∈ C�0 := {s ∈ C | Re(s) � 0}.

Thus μ ∈M (H[1]) is given by dμ(t)= (δ 1
0 −3e−t +2te−t)dt . Consider the subalgebra

R = [1, μ̂ ] of M̂ (H[1]) generated by the identity element 1 (namely the map s �→ 1)
and the element μ̂ , that is, R is the closure in M̂ (H[1]) of all polynomials in μ̂ . In
other words, R is the closure in M̂ (H[1]) of elements of the form p(μ̂) := a01+a1μ̂+
a2(μ̂)2 + . . .+an(μ̂)n , where a1,a1,a2, . . . ,an are complex scalars, and n denotes any
nonnegative integer.

Contractibility of X(R) . The following result is known; see [5, Theorem 1.4, page 68]:

PROPOSITION 3.2. Let B be a finitely generated Banach algebra, generated by
x1, . . . ,xm . Then the joint spectrum of x1, . . . ,xm in B, namely the set

σB(x1, . . . ,xm) = {(x̂1(ϕ), . . . , x̂m(ϕ)) | ϕ ∈ X(B)} (⊂ Cm),

is homeomorphic to the maximal ideal space X(B) . (Here ·̂ denotes the Gelfand trans-
form.)
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So in our case, it suffices to show that the joint spectrum of 1 and μ̂ in R is
contractible. We observe that

σR(1, μ̂) = {(1, μ̂(ϕ)) | ϕ ∈ X(R)} = {1}×{μ̂(ϕ) | ϕ ∈ X(R)} = {1}×σR(μ̂). (2)

Hence it is enough to show that σR(μ̂) is contractible. We recall the following result,
which relates the spectrum of an element x of a subalgebra of a Banach algebra with
the spectrum of x in the Banach algebra; see [11, Theorem 10.18, page 238].

PROPOSITION 3.3. Let B be a unital Banach algebra, and S be a Banach subal-
gebra of B that contains the unit of B. If x ∈ S , then σS(x) is the union of σB(x) and
a (possibly empty) collection of bounded components of the complement of σB(x) .

We apply the above with

B = ̂L1(0,∞)+Cδ 1
0 =

{
s �→

∫ ∞

0
e−st fa(t)dt +α

∣∣∣∣ fa ∈ L1(0,∞) and α ∈ C

}
,

S = R , and x = μ̂ ∈ R ⊂ ̂L1(0,∞)+Cδ 1
0 . The maximal ideal space of ̂L1(0,∞)+Cδ 1

0
can be identified with {s ∈ (C∪{∞}) | and Re(s) � 0} ; see [6, pages 112-113]. Con-
sequently,

σ ̂L1(0,∞)+Cδ 1
0

(μ̂) =
{

s(s−1)
(s+1)2

∣∣∣∣ s ∈ (C∪{∞}) and Re(s) � 0

}
(s= 1+z

1−z)=
{

z+ z2

2

∣∣∣∣ |z| � 1

}
.

It can be shown that this last set is the closure of the interior of a simple closed curve
C ; see Figure 1.

Thus the complement of σ ̂L1(0,∞)+Cδ 1
0

(μ̂) has no bounded components, and so

by Proposition 3.3 we conclude that σR(μ̂) = σ ̂L1(0,∞)+Cδ 1
0

(μ̂) . Hence σR(μ̂) is con-

tractible and from (2) it follows that also σR(1, μ̂) = {1}×σR(μ̂) is contractible. Fi-
nally, by Proposition 3.2, X(R) is contractible.

( P̂) does not hold. Now we show that the map

s �→ μ̂(s− log(1−θ )) =: μ̂θ (s) (s ∈ C�0)

does not belong to R for a particular choice of θ ∈ [0,1) , demonstrating that ( P̂ ) does
not hold. In fact we take θ = 1− 1

e , so that − log(1−θ ) = 1. Suppose on the contrary
that μ̂θ ∈ R . Then by the density of polynomials in μ̂ in R , it follows that given
ε = 1

10 , there exists a nonnegative integer n and scalars a1,a1,a2, . . . ,an such that

‖μ̂θ − (a01+a1μ̂ +a2(μ̂)2 + . . .+an(μ̂)n)‖ < ε. (3)
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Figure 1: The simple closed curve C is depicted by the bold line. The bold line C together with

the dotted line is the curve θ �→ eiθ+e2iθ

2 : [0,2π] → C .

But for every ν ∈ M (H[1]) , we have that

|ν̂(s)| =
∣∣∣∣∫ ∞

0
e−stdν(t)

∣∣∣∣= ∣∣∣∣∫ ∞

0
e−iw(t)e−std|ν|(t)

∣∣∣∣� ∫ ∞

0
1 ·d|ν|(t) = ‖ν‖ (s ∈ C�0),

where in the above, w denotes a Borel measurable function such that d|ν|(t)= eiw(t)dν(t) .
In light of this, we have from (3) that

|μ̂(s+1)− (a01(s)+a1μ̂(s)+a2(μ̂(s))2 + . . .+an(μ̂(s))n)| < ε (s ∈ C�0).

Now putting s = 0 and s = 1, respectively, we obtain the inequalities∣∣∣∣(0+1)(0+1−1)
(0+1+1)2 −a0

∣∣∣∣= |a0|< ε and

∣∣∣∣(1+1)(1+1−1)
(1+1+1)2 −a0

∣∣∣∣= ∣∣∣∣29 −a0

∣∣∣∣< ε.

Adding these, we obtain 2
9 �

∣∣ 2
9 −a0

∣∣+ |a0| < 2ε = 2
10 , a contradiction.

4. Examples

As specific examples of R in Theorem 1.5 and Theorem 1.6, we have the follow-
ing:

4.1. The algebra L1(H[n])+Cδ n
0

Consider the Banach subalgebra L1(H[n]) + Cδ n
0 of M (H[n]) , consisting of all

complex Borel measures of the type μa +αδ n
0 , where μa is absolutely continuous

(with respect to the Lebesgue measure) and α ∈ C . It can be checked that this Banach
subalgebra of M (H[n]) has the property (P) in the statement of Theorem 1.5.
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4.2. The algebra A (H[n])

The Banach subalgebra A (H[n]) of M (H[n]) consists of all complex Borel mea-
sures that do not have a singular non-atomic part. Then it can be verified that A (H[n])
also possesses the property (P). (So in the case when n = 1, we recover the main result
in [13], but this time without recourse to the explicit description of the maximal ideal
space.)

4.3. Algebras of almost periodic functions

The algebra APn of complex valued (uniformly) almost periodic functions is, by
definition, the smallest closed subalgebra of L∞(Rn) (with all operations defined point-
wise), that contains all the functions eλ (x) := ei〈λ ,x〉 . Here the variable x = (x1, . . . ,xn) ,
the parameter λ = (λ1, . . . ,λn) ∈ Rn , and 〈λ ,x〉 := ∑n

k=1λkxk . For any f ∈ APn , its
Bohr-Fourier series is defined by the formal sum ∑λ fλ ei〈λ ,x〉 (x ∈ Rn ), where

fλ := lim
N→∞

1
(2N)n

∫
[−N,N]n

e−i〈λ ,x〉a(x)dx, λ ∈ Rn,

and the sum ∑λ fλ ei〈λ ,x〉 is taken over the set σ( f ) := {λ ∈ Rn | fλ �= 0} , called the
Bohr-Fourier spectrum of f . The Bohr-Fourier spectrum of every f ∈ APn is at most
a countable set.

The almost periodic Wiener algebra APWn is defined as the set of all APn such
that the Bohr-Fourier series ∑λ fλ ei〈λ ,x〉 of f converges absolutely. The almost pe-
riodic Wiener algebra is a Banach algebra with pointwise operations and the norm
‖ f‖ := ∑λ∈Rn | fλ | . Let Δ be a nonempty subset of Rn . Denote

APn
Δ = { f ∈ APn | σ( f ) ⊂ Δ}

APWn
Δ = { f ∈ APWn | σ( f ) ⊂ Δ}.

If Δ is an additive subset of Rn , then APn
Δ (respectively APWn

Δ ) is a Banach subalgebra
of APn (respectively APWn ). Moreover, if 0∈ Δ , then APn

Δ and APWn
Δ are also unital.

Let Σ⊂ H[n] be an additive semigroup (if λ ,μ ∈ Σ , then λ +μ ∈ Σ) and suppose
0 ∈ Σ . The Banach algebra APWn

Σ is isometrically isomorphic to the following Banach
subalgebra R of M (H[n]) :

R =
{
∑
λ

fλ δ n
0 (λ )

∣∣∣∣ ∑
λ

fλ ei〈λ ,x〉 ∈ APWn
Σ

}
.

Then APWn
Σ = R̂ . In the above, δ n

0 (λ )∈M (H[n]) denotes the Dirac measure supported
at λ ∈ H[n] , that is,

(δ n
0 (λ ))(E) =

{
1 if λ ∈ E,
0 if λ �∈ E,

where E is any Borel subset of H[n] . It can be seen that the subalgebra R has the
property (P), and R̂ has the property ( P̂ ). Thus the maximal ideal space of APWn

Σ
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is contractible. The maximal ideal spaces of APn
Σ and APWn

Σ are homeomorphic as
topological spaces; see for example [1, Theorem 3.1]. So the maximal ideal space of
APn

Σ is contractible as well. Thus we recover the main result from [10]. (In [10], instead
of the canonical half space H[n] , more general half spaces S were considered. There a
subset S of Rn was called a half space in Rn if it satisfied the properties S∪(−S)= Rn ,
S∩(−S) = {0} , x+y ∈ S for all x,y ∈ S , αx ∈ S for all x ∈ S and α � 0. However, it
was shown in [10, Proposition 1.2] that any such half space S is of the form ZH[n] for
an invertible matrix Z ∈ Rn×n .)

Summarizing the results of this section, we have shown Corollary 1.11 as a partic-
ular consequence of our main results in Theorems 1.5 and 1.6.

5. Open question

We have seen that the condition (P) is sufficient but not necessary for the con-
tractibility of the maximal ideal space of the unital Banach subalgebra R of M (H[n]) .
The following natural question then arises:

Can the condition (P) be replaced by a weaker condition (P ′ ) so that the new
condition (P ′ ) is necessary and sufficient for the contractibility of the maximal ideal
space of a unital Banach subalgebra of M (H[n]) in Theorem 1.5?
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