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JORDAN LEFT DERIVATIONS AND SOME LEFT DERIVABLE MAPS
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Abstract. Let A be an algebra and M be a left A -module. We say that a linear mapping
ϕ : A → M is a left derivable mapping at P if ϕ(ST ) = Sϕ(T ) +Tϕ(S) for any S,T ∈ A
with ST = P . In this paper, we show that Jordan left derivations or left derivable mappings at
zero or unit on some algebras are zero under certain conditions.

1. Introduction

Suppose that A is an algebra over the complex field C and M is a left A -
module. A linear mapping δ is called a left derivation from A into M if δ (AB) =
Aδ (B)+ Bδ (A) for any A,B ∈ A . δ is called a Jordan left derivation from A into
M if δ (A2) = 2Aδ (A) for any A ∈ A . Clearly, every left derivation is a Jordan
left derivation. One can easily prove that in a noncommutative prime ring, any left
derivation is zero. In [3], Brešar and Vukman prove that the existence of a nonzero
Jordan left derivation on prime ring R of charR �= 2,3 forces R to be commutative.
More related results have been obtained in [1, 2, 6, 12].

In this paper, we study some propositions of linear left derivations on some Banach
algebras.

In Section 2, we prove that if L is a CDCSL on H and M is a dual normal
unital Banach left algL -module, then every Jordan left derivation from algL into M
is zero.

Let A be an algebra and M be a left A -module. We say that a linear mapping
δ : A → M is a left derivable mapping at A if δ (ST ) = Sδ (T ) + Tδ (S) for any
S,T ∈ A with ST = A .

In Sections 3 and 4, we show that every left derivable mapping at zero or unit is
zero under certain conditions.

Let X be a complex Banach space and let B(X) be the set of all bounded linear
maps from X into itself. H denotes a complex separable Hilbert space.

A subspace lattice on X is a collection L of closed subspaces of X with (0),X in
L and such that for every family {Mr} of elements of L , both ∩Mr and ∨Mr belong
to L , where ∨Mr denotes the closed linear span of {Mr} . For a subspace lattice L ,
algL denotes the algebra of all operators on X that leave invariant each element of L .
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It is not difficult to show that algL is closed in operator-norm, and is a unital Banach
algebra.

A subspace lattice L on H is called a commutative subspace lattice (CSL) if
it consists of mutually commuting projections and algL is called a CSL algebra. A
totally ordered subspace lattice N is called a nest and the associated algebra algN is
called a nest algebra. If L is a completely distributive commutative subspace lattice
(CDCSL), then algL is called a CDCSL algebra. It is obvious that a nest algebra is a
CDCSL algebra. Given a subspace lattice L on X , put

JL = {K ∈ L : K �= {0} and K− �= X},
where K− = ∨{L ∈L : K �⊆ L} . Call L a J -subspace lattice on X if it satisfies the
following conditions:

(1) ∨{K : K ∈ JL } = X ;
(2) ∧{K− : K ∈ JL } = {0} ;
(3) K∨K− = X for any K ∈ JL ;
(4) K∧K− = 0 for any K ∈ JL .

If L is a J -subspace lattice, then algL is called a J -subspace lattice algebra.
For x∈ X and f ∈X∗ , the operator y→ f (y)x is denoted by x⊗ f . F (L ) stands

for the algebra of all finite rank operators in algL .
The following lemmas will be used repeatedly.

LEMMA 1.1. [9, Lemma 3.1] Let L be a J -subspace lattice on X . Then the
rank one operator x⊗ f ∈ algL if and only if there exists a subspace K ∈J (L ) such
that x ∈ K and f ∈ K⊥− .

The proof of the following lemma is analogous to that of [4, Lemma 2.10], we
omit it.

LEMMA 1.2. Suppose that L is a J -subspace lattice on X . Then every rank
one operator in algL is contained in the linear span of the idempotents in F (L ) .

2. Jordan left derivations

In this section, we assume that A is a unital algebra and M is any left A -
module, unless stated otherwise.

Since the proof of the following lemma is analogous to that of [3, Proposition 1.1],
we omit it.

LEMMA 2.1. Let δ : A → M be a Jordan left derivation. Then
(i) δ (AB+BA) = 2Aδ (B)+2Bδ (A);
(ii) δ (ABA) = A2δ (B)+3ABδ (A)−BAδ (A) .

LEMMA 2.2. Let δ : A → M be a Jordan left derivation. Then for every A ∈A
and every idempotent P ∈ A ,

(i) δ (P) = 0 ;
(ii) δ (PA) = δ (AP) = Pδ (A) .
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Proof. (i) For any idempotent P in A , δ (P) = δ (P2) = 2Pδ (P) . So Pδ (P) =
2P2δ (P) = 2Pδ (P) . We have that Pδ (P) = 0. Thus

δ (P) = 2Pδ (P) = 0. (2.1)

(ii) By Lemma 2.1 and (2.1), for any A ∈ A , P = P2 ∈ A ,

δ (AP+PAP) = δ (APP+PAP) = 2Pδ (AP),
δ (AP+PAP) = δ (AP)+ δ (PAP) = δ (AP)+Pδ (A).

So 2Pδ (AP) = Pδ (A)+ δ (AP) . Thus Pδ (AP) = Pδ (A) . We have that

δ (AP) = Pδ (A). (2.2)

Since δ (AP+PA) = 2Aδ (P)+2Pδ (A) = 2Pδ (A) , by (2.2),

δ (PA) = 2Pδ (A)− δ (AP) = Pδ (A). (2.3)

By (2.2) and (2.3), δ (AP) = δ (PA) = Pδ (A) . �
By the introduction, it is easy to show the following result.

LEMMA 2.3. If δ is a Jordan left derivation from A into M , then for any idem-
potents P1, ...,Pn in A and A in A ,

δ (P1 . . .PnA) = δ (AP1 . . .Pn) = P1 . . .Pnδ (A).

We call a right ideal I of A a right separating set of M , if for any m in M ,
I m = 0 implies m = 0.

THEOREM 2.4. Let I be a right separating set of M . Suppose that I is con-
tained in the subalgebra of A generated by its idempotents. If δ is a Jordan left
derivation from A into M , then δ ≡ 0 . In particular, if δ is a left derivation from A
into M , then δ ≡ 0 .

Proof. By Lemma 2.3, for any S ∈ I and any A ∈ A ,

δ (AS) = δ (SA) = Sδ (A). (2.4)

Since I is a right ideal, TA∈I for any T ∈I ,A∈A . Thus for any A∈A , T ∈I ,
by Lemma 2.2(i) and (2.4),

Tδ (A) = δ (TA) = TAδ (I) = 0. (2.5)

Since I is a right separating set, it follows from (2.5) that δ (A) = 0 for any A ∈
A . �

Let A be an ultraweakly closed subalgebra of B(H) . The Banach space M is
said to be a dual normal Banach left A -module if M is a Banach left A -module,
M is a dual space, and for any m ∈ M , the map A 
 a → am is ultraweak to weak*
continuous.
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COROLLARY 2.5. If L is a CDCSL on H and δ is a Jordan left derivation
from algL into a dual normal unital Banach left algL -module M , then δ ≡ 0 . In
particular, every Jordan left derivation from algL into itself is equal to zero.

Proof. Let I = span{T : T ∈ algL , rankT = 1} . Then I is an ideal of algL .
By [4, Lemma 2.3], I is contained in the linear span of the idempotents in algL . By
[8, Theorem 3], we have that I is a right separating set of M . Hence it follows from
Theorem 2.4 that δ ≡ 0. �

COROLLARY 2.6. Let L be a J -subspace lattice on X . If δ is a Jordan left
derivation from algL into itself, then δ ≡ 0 .

Proof. Let I = span{T : T ∈ algL , rankT = 1} . Then I is an ideal of algL .
By Lemma 1.2, I is contained in the linear span of the idempotents in algL . By [7,
Lemma 2.3], I is a right separating set of algL . Hence it follows from Theorem 2.4
that δ ≡ 0. �

COROLLARY 2.7. Suppose that A is a unital Banach subalgebra of B(X) such
that A contains {x0 ⊗ f , f ∈ X∗} , where 0 �= x0 ∈ X . If δ : A → B(X) is a Jordan
left derivation, then δ ≡ 0 .

Proof. Let I = {x0 ⊗ f , f ∈ X∗} . Then I is a right ideal of A and a right
separating set of B(X) . For any x0 ⊗ f in A , if f (x0) �= 0, then 1

f (x0)
x0 ⊗ f is an

idempotent in I . If f (x0) = 0, choose f1 ∈ X∗ , such that f1(x0) = 1, we have that
x0 ⊗ f = 1

2x0 ⊗ ( f + f1)− 1
2x0 ⊗ ( f1 − f ) , both x0 ⊗ ( f + f1) and x0 ⊗ ( f1 − f ) are

idempotents. By Theorem 2.4, we have that δ ≡ 0. �

Let A be a weakly closed subalgebra of B(H) . If K is a complex separable
Hilbert space, then the tensor product A ⊗B(K) is defined as the weak operator closure
of the span of all elementary tensors A⊗B acting on H ⊗K , where A ∈ A and B ∈
B(H) . A weakly closed subalgebra A of B(H) is said to be of infinite multiplicity if
A ⊗B(K) is isomorphic to A .

PROPOSITION 2.8. Let A be a weakly closed unital subalgebra of B(H) of in-
finite multiplicity. If δ is a Jordan left derivation from A into a left A -module M ,
then δ ≡ 0 .

Proof. By [11, Theorem 4.3], every A ∈ A is a sum of eight idempotents in A .
Thus, it follows from Lemma 2.2 that δ (A) = 0 for any A ∈ A . �

PROPOSITION 2.9. Let L be a J -subspace lattice on X . If δ is a linear
mapping from F (L ) into an algebra B such that δ (P) = 0 for any idempotent
P ∈ F (L ) , then δ ≡ 0 .
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Proof. For any A,B ∈ F (L ) , by [10, Proposition 3.2], we have that A = A1 +
A2 + . . . + An , where Ai = xi ⊗ fi are rank one operators in algL . It follows from
Lemma 1.2 and Lemma 2.2 that δ (Ai) = 0, i = 1, . . . ,n . Thus δ (A) = 0 for any A ∈
F (L ) . �

COROLLARY 2.10. Let L be a J -subspace lattice on X . If δ is a Jordan left
derivation from F (L ) into a left algL -module M , then δ ≡ 0 .

PROPOSITION 2.11. Let L be a CSL on H . If δ is a bounded Jordan left deriva-
tion from algL into B(H) , then δ ≡ 0 .

Proof. By Lemma 2.2(ii), for any P = P2 ∈ algL and A ∈ algL ,

δ (PA) = δ (PPA) = Pδ (PA).

By [5, Theorem 2.20], δ (A) = Aδ (I) , for any A∈ algL . It follows from Lemma 2.2(i)
that δ (I) = 0. Thus δ (A) = 0 for any A ∈ algL . �

DEFINITION 2.12. Let M be a Banach left A -module. A linear mapping D
from A into M is an approximately local left derivation if for each a in A , there is a
sequence of left derivations {Da,n} from A into M such that D(a) = limn→∞Da,n(a) .
If, in addition, D is bounded, then we say that D is a bounded approximately local
derivation.

Let A be a Banach algebra and let I be the subalgebra of A generated by the
idempotents in A . We say that A is topologically generated by idempotents if I is
dense in A .

PROPOSITION 2.13. Let A be a Banach algebra topologically generated by idem-
potents. Then every bounded approximately local left derivation from A into any Ba-
nach left A -module M is zero.

Proof. For any idempotents e1, . . . ,em in A , there is a sequence of left deriva-
tions {Dn} from A into M such that D(e1 . . .em) = limn→∞Dn(e1 . . .em) . Since
every left derivation is Jordan left derivation, it follows from Lemmas 2.2(i) and 2.3
that Dn(e1 . . .em) = e1 . . .em−1Dn(em) = 0. Thus D(e1 . . .em) = 0 for any idempotents
e1, . . . ,em in A . Since A is generated by idempotents and D is bounded, we have
that D ≡ 0. �

By the ideas in [3], we can use Theorem 2.4 to study the the following functional
equations.

THEOREM 2.14. Let A be a unital Banach algebra and M be a unital left A -
module. Suppose that I is a right separating set of M and I is contained in the
subalgebra of A generated by idempotents. Let f , g : A → M be linear mappings.
If

f (A) = A2g(A−1) (2.6)
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holds for any invertible element A in A , then the following statements hold:
(i) f (A) = g(A) for all A ∈ A ;
(ii) f (A) = A f (I) for all A ∈ A .

Proof. (i) By (2.6), we have that

g(A) = A2 f (A−1) (2.7)

Let D = f −g . It follows from (2.6) and (2.7) that D(A) = −A2D(A−1) holds for any
invertible element A ∈ A . Then D(I) = 0. In the following, we prove that D is a
Jordan left derivation. Since D is linear, we only need to show that

D(A2) = 2AD(A) (2.8)

for any A ∈ A . Let A ∈ A be arbitrary. Choose an integer n such that B−1 and
(I−B)−1 exist, where B = nI+A . Thus we have B2 = B− (B−1 +(I−B)−1)−1 . Then

D(B2) = D(B)−D((B−1 +(I−B)−1)−1)
= D(B)+ (B−1 +(I−B)−1)−2D(B−1 +(I−B)−1)
= D(B)− (I−B)2B2B−2D(B)−B2(I−B)2(I−B)−2D(I−B)
= D(B)− (I−B)2D(B)+B2D(B) = 2BD(B).

Hence D(B2) = 2BD(B) which implies (2.8) since D(I)=0. Thus D is a Jordan left
derivation from A into M . By Theorem 2.4, it follows that D ≡ 0. Hence f (A) =
g(A) for any A ∈ A . The relation (2.6) can be written in the form

f (A) = A2 f (A−1). (2.9)

(ii) Let us first assume that f (I) = 0. Our goal is to show that in this case, f = 0.
For any A ∈ A and let us again choose an integer n such that B−1 and (I−B)−1

exist, where B = nI +A . By (2.9), we have

f (B) = B2 f (B−1) = B2 f (B−1(I−B))
= B2(B−1(I−B))2 f ((I −B)−1B)
= (I−B)2 f ((I−B)−1− I)
= (I−B)2((I−B)−1)2 f (I −B) = − f (B).

Hence f (B) = 0. Thus f (A) = 0 for any A ∈ A .
Now we assume that f (I) �= 0. Let h(A) = f (A)−A f (I) . It is obvious that h

is linear. A routine calculation shows that h(A) = A2h(A−1) holds for any invertible
operator A ∈ A . Since h(I) = 0, we have that h(A) = 0 for any A ∈ A . Thus f (A) =
A f (I) for any A ∈ A . �

COROLLARY 2.15. Let L be a CDCSL or a J -subspace lattice on H and let
f ,g : algL → algL be linear mappings. Suppose that f (A) = A2g(A−1) holds for any
invertible element A in A . Then the following statements hold:

(i) f (A) = g(A) for all A ∈ algL ;
(ii) f (A) = A f (I) for all A ∈ algL .
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Similar to the proof of Theorem 2.14, by Proposition 2.11, we can get the follow-
ing theorem.

THEOREM 2.16. Let L be a CSL on H and let f ,g : algL → B(H) be bounded
linear mappings. Suppose that f (A) = A2g(A−1) holds for any invertible element A in
A . Then the following statements hold:

(i) f (A) = g(A) for all A ∈ algL ;
(ii) f (A) = A f (I) for all A ∈ algL .

3. Left derivable mappings at zero

In this section, we study some propositions of a left derivable mapping at zero for
a class of algebras.

LEMMA 3.1. If δ is a left derivable mapping at zero from a unital algebra A
into a unital left A -module M , then for any P = P2 ∈ A , A ∈ A ,

(i) δ (P) = Pδ (I) = Pδ (P);
(ii) δ (PA) = Pδ (A)+ (AP−PA)δ (I);
(iii) δ (AP) = Pδ (A) .

Proof. (i) Since P(I−P) = 0, it follows that

0 = Pδ (I−P)+ (I−P)δ (P) = Pδ (I)−Pδ (P)+ (I−P)δ (P).

So Pδ (I) = Pδ (P) = δ (P) .
(ii) Since P(I−P)A = (I−P)PA = 0, we have that

0 = Pδ ((I−P)A)+ (I−P)Aδ (P) = Pδ (A)−Pδ (PA)+Aδ (P)−PAδ (P),
0 = (I−P)δ (PA)+PAδ (I−P) = δ (PA)−Pδ (A)+PAδ (I)−PAδ (P).

Thus
δ (PA) = Pδ (A)+Aδ (P)−PAδ (I) = Pδ (A)+ (AP−PA)δ (I).

(iii) Since AP(I−P) = A(I−P)P = 0, we have that

0 = APδ (I−P)+ (I−P)δ (AP) = APδ (I)−APδ (P)+ δ (AP)−Pδ (AP),
0 = A(I−P)δ (PA)+Pδ (A(I−P)) = Aδ (P)−APδ (P)+Pδ (A)−Pδ (AP).

Thus
δ (AP) = Aδ (P)+Pδ (A)−APδ (I) = Pδ (A). �

COROLLARY 3.2. Let δ ,A and M be as in Lemma 3.1 with δ (I) = 0 . Suppose
B is the subalgebra of A generated by all idempotents in A . Then for any S∈B,A∈
A , δ (SA) = δ (AS) = Sδ (A) .



134 J. LI AND J. ZHOU

THEOREM 3.3. Let δ ,A and M be as in Corollary 3.2. Suppose A contains a
right separating set I of M . If I is contained in the subalgebra of A generated by
idempotents in A , then δ ≡ 0 .

Proof. By Corollary 3.2, for any A,B ∈ A , S ∈ I ,

δ (SAB) = Sδ (AB), δ (SAB) = δ ((SA)B) = SAδ (B).

Thus

S(δ (AB)−Aδ (B)) = 0. (3.1)

Since I is a right separating set of M , by (3.1), it follows that δ (AB) = Aδ (B) , for
any A,B ∈ A . Hence δ (A) = δ (AI) = Aδ (I) = 0, for any A ∈ A . �

COROLLARY 3.4. Suppose that L is a CDCSL algebra on H . If δ is a left
derivable mapping at zero from algL into a dual normal unital Banach left algL -
module M and δ (I) = 0 , then δ ≡ 0 .

COROLLARY 3.5. Suppose that L is a J -subspace lattice on X . If δ is a left
derivable mapping at zero from algL into itself and δ (I) = 0 , then δ ≡ 0 .

COROLLARY 3.6. Suppose that A is a unital Banach subalgebra of B(X) such
that A contains {x0 ⊗ f , f ∈ X∗} , where 0 �= x0 ∈ X . If δ : A → B(X) is a left
derivable mapping at zero and δ (I) = 0 , then δ ≡ 0 .

PROPOSITION 3.7. Let A be a weakly closed unital infinite multiplicity algebra
of B(H) . If δ is a left derivable mapping at zero from A into a unital left A -module
M and δ (I) = 0 , then δ ≡ 0 .

Proof. By [11, Theorem 4.3], every A ∈ A is a sum of eight idempotents in A .
Thus, it follows from Lemma 3.1(i) and δ (I) = 0 that δ (A) = 0 for any A ∈ A . �

PROPOSITION 3.8. Let L be a CSL on H . If δ : algL → B(H) is a bounded
linear mapping such that δ (I) = 0 and Aδ (B)+Bδ (A) = 0 for all AB = 0 , then δ ≡ 0 .

Proof. By Lemma 3.1 and δ (I) = 0, for P = P2 and A in algL ,

δ (PA) = δ (PPA) = Pδ (PA).

By [5, Theorem 2.20], δ (A) = Aδ (I) = 0, for any A ∈ algL . �
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4. Left derivable mappings at unit

LEMMA 4.1. Let A be a unital algebra and M be a unital left A -module. If δ
is a left derivable mapping at I from A into M , then

(i) δ (P) = 0 for any P = P2 ∈ A ,
(ii) Pδ (P) = 0 for any P ∈ A such that P2 = 0 .

Proof. (i) δ (I) = δ (I · I) = Iδ (I)+ Iδ (I) = 2δ (I) . So δ (I) = 0. For any idempo-

tent P ∈ A , we have that I = (P− 1−√
3i

2 I)(P− 1+
√

3i
2 I) . It follows that

0 = δ (I) = δ

((
P− 1−√

3i
2

I

)(
P− 1+

√
3i

2
I

))

=

(
P− 1−√

3i
2

I

)
δ

(
P− 1+

√
3i

2
I

)
+

(
P− 1+

√
3i

2
I

)
δ

(
P− 1−√

3i
2

I

)

= (2P− I)δ (P) = 2Pδ (P)− δ (P).

Thus 2Pδ (P) = Pδ (P) . Hence δ (P) = 2Pδ (P) = 0.
(ii) For any P ∈ A with P2 = 0, we have that

0 = δ (I) = δ ((I−P)(I +P)) = (I−P)δ (I +P)+ (I+P)δ (I−P)
= (I−P)δ (P)− (I+P)δ (P) = −2Pδ (P).

Thus Pδ (P) = 0. �

COROLLARY 4.2. Let A be a von Neumann algebra and M be a unital normed
left A -module. If δ is a norm continuous left derivable mapping at I from A into
M , then δ ≡ 0 .

Proof. For any orthogonal projections P1, . . . ,Pn ∈ A and for any r1, . . . ,rn ∈ R ,
let Q = ∑n

i=1 riPi . By Lemma 4.1(i),

δ (Q) = δ (
n

∑
i=1

riPi) =
n

∑
i=1

riδ (Pi) = 0.

Since δ is norm continuous, for any selfadjoint operator S ∈ A , we have δ (S) = 0.
For any T ∈ A , there exist selfadjoint operators T1,T2 ∈ A such that T = T1 + iT2 .
Thus δ (T ) = 0. �

COROLLARY 4.3. Let L be a CDCSL on H . If δ is a strong operator topology
continuous left derivable mapping at I from algL into B(H) , then δ ≡ 0 .

Proof. By Lemma 4.1(i), for any P = P2 ∈ algL , δ (P) = 0. Let T = span{T ∈
algL , rank(T ) = 1} . Then T is the subalgebra generated by rank one operators. By
[4, Lemma 2.3], T is contained in the linear span of idempotents in algL . Thus for
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any S ∈ T , δ (S) = 0. By [8, Theorem 3], T is dense in algL in strong operator
topology. Since δ is strong operator topology continuous, it follows that δ (T ) = 0, for
any T ∈ algL . �

PROPOSITION 4.4. Let A be a weakly closed unital algebra of B(H) of infinite
multiplicity. If δ is a left derivable mapping at I from A into a unial left A -module
M , then δ ≡ 0 .

Proof. By [11, Theorem 4.3], every A ∈ A is a sum of eight idempotents in A .
Thus, it follows from Lemma 4.1(i) that δ (A) = 0 for any A ∈ A . �

THEOREM 4.5. Let L be a J -subspace lattice on X . If δ is a left derivable
mapping at I from algL into itself, then δ ≡ 0 .

Proof. By Lemma 1.2 and Lemma 4.1(i), we have that δ (B) = 0, where B∈ algL
and rankB = 1.

Let T ∈ algL . For any K ∈ J (L ) , by K− ∧K = 0, we can choose f ∈ (K−)⊥

such that f (t) �= 0 for any 0 �= t ∈ K .
For any y ∈ K . Let x = δ (T )y . Thus x ∈ K . By Lemma 1.1, x⊗ f ∈ algL .

Take λ ∈ C such that |λ | > ‖T‖ and ‖(λ I − T )−1x‖‖ f‖ < 1. Since λ I − T and
λ I−T −x⊗ f = (λ I−T )(I−(λ I−T )−1x⊗ f ) are invertible and their inverses are still
in algL . It is obvious that (I− (λ I−T )−1x⊗ f )−1 = I +(1−α)−1(λ I−T )−1x⊗ f ,
where α = f ((λ I −T)−1x) . For any invertible A in algL , since δ is left derivable at
I, we have that δ (A−1) = −A−2δ (A) . Hence

0 = (I +(1−α)−1(λ I−T )−1x⊗ f )(λ I−T )−1δ (λ I−T − x⊗ f )
+(λ I−T − x⊗ f )δ ((I +(1−α)−1(λ I−T)−1x⊗ f )(λ I−T )−1)

= −(I +(1−α)−1(λ I−T )−1x⊗ f )(λ I−T )−1δ (T )
+(λ I−T − x⊗ f )δ ((λ I−T )−1)

= −(I +(1−α)−1(λ I−T )−1x⊗ f )(λ I−T )−1δ (T )
−(λ I−T − x⊗ f )(λ I−T )−2δ (λ I−T )

= −(I +(1−α)−1(λ I−T )−1x⊗ f )(λ I−T )−1δ (T )
+(λ I−T − x⊗ f )(λ I−T )−2δ (T )

= −(1−α)−1(λ I−T )−1x⊗ f (λ I−T )−1δ (T )
−x⊗ f (λ I−T )−2δ (T ). (4.1)

By (4.1), for any t ∈ K ,

(1−α)−1 f ((λ I−T )−1δ (T )(t))(λ I−T )−1x = − f ((λ I−T )−2δ (T )(t))x.

Case 1: When (λ I−T )−1δ (T )(t) = 0 or (λ I−T )−2δ (T )(t) = 0 for any t ∈ K ,
we have that δ (T )(t) = 0 for any t ∈ K . Thus δ (T )y = 0.
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Case 2: Suppose that there exists t0 ∈ K such that (λ I − T )−1δ (T )(t0) �= 0
and (λ I −T )−2δ (T )(t0) �= 0, we have that f ((λ I −T )−1δ (T )(t0)) �= 0 and f ((λ I −
T )−2δ (T )(t0)) �= 0. Thus there exists a scalar βλ �= 0 such that

(λ I−T )−1x = βλ x. (4.2)

Since x = δ (T )y , we have that

(λ I−T)−1δ (T )y = βλδ (T )y, (4.3)

(λ I−T )−2δ (T )y = β 2
λ δ (T )y. (4.4)

It follows form (4.1), (4.2), (4.3) and (4.4) that

0 = (1−α)−1(λ I−T )−1x⊗ f (λ I−T )−1δ (T )y+ x⊗ f (λ I−T)−2δ (T )y
= (1−α)−1βλ x⊗ fβλδ (T )y+ x⊗ fβ 2

λδ (T )y

= ((1−α)−1 +1)β 2
λ f (δ (T )y)x.

Since |α| < 1 and βλ �= 0, we have that f (x)x = 0. If x = 0, then it is clear that
δ (T )y = x = 0. If f (x) = 0, it follows from x ∈ K that x = 0. Thus δ (T )y = 0.

Hence, by Cases 1 and 2, we have that for any K ∈ J (L ) , δ (T )|K = 0. Since
∨{K : K ∈ J (L )} = X , it follows that δ (T ) = 0 for any T ∈ algL . �
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