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LIMITED APPROXIMATION OF

NUMERICAL RANGE OF NORMAL MATRIX

MARIA ADAM AND JOHN MAROULAS

(Communicated by C.-K. Li)

Abstract. Let A be an n× n normal matrix, whose numerical range NR[A] is a k -polygon.
If a unit vector v ∈ W ⊆ Cn, with dimW = k and the point v∗Av ∈ IntNR[A], then NR[A]
is circumscribed to NR[P∗AP], where P is an n× (k− 1) isometry of {span{v}}⊥W → Cn,
[1]. In this paper, we investigate an internal approximation of NR[A] by an increasing sequence
of NR[Cs] of compressed matrices Cs = R∗

s ARs, with R∗
s Rs = Ik+s−1, s = 1,2, . . . ,n− k and

additionally NR[A] is expressed as limit of numerical ranges of k -compressions of A.

1. Introduction and preliminaries

Let Mn denote the algebra of all n×n complex matrices. The numerical range
of A ∈ Mn is the well known set

NR[A] = {x∗Ax ∈ C : x ∈ C
n with ‖x‖2 = 1},

which is a nonempty compact and convex subset of C that contains the spectrum σ(A)
of A (see [5, Chapter 1]). We recall that the numerical ranges of unitarily similar
matrices are identified and if A = MDM∗ ; D = diag(λ1,λ2, . . . ,λn) is the unitary
diagonalising form of a normal matrix A, then NR[A] = Co{σ(A)}, where Co{·}
denotes the convex hull of the set.

Given two matrices A ∈ Mn and C ∈ Mk with 1 � k < n, the matrix C is a
k -compression of A, if there exists an n× k orthonormal matrix P (i.e., P∗P = Ik )
such that C = P∗AP . Clearly,

NR[C] = NR[P∗AP] ⊆ NR[A], (1)

and the equality holds only for k = n.
Moreover, we have

NR[C] ⊆ NR[PCP∗],

since NR[C] = NR[P∗(PCP∗)P] ⊆ NR[PCP∗].
The numerical range of compressions of normal matrices have attracted attention

and several results have been published in [1, 2, 3, 4]. The inclusion relation of NR[A]
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in (1) has been presented in details in [1], where the investigation leads to a structure
of P such that the boundary of NR[P∗AP] is supported by the edges of the boundary
of NR[A].

To explain, consider for a normal matrix A ∈ Mn the convex polygon P =
〈λ1,λ2, . . . ,λk〉= Co{σ(D)}= NR[A], where the eigenvalues λi, i = 1, . . . ,k, are sim-
ple. If W = span{e1, . . . ,ek} and ei, i = 1, . . . ,k, are vectors of the standard basis of
Cn, then for every unit vector

v =
k

∑
i=1

υi ei ∈ W ; υi ∈ C\{0}, i = 1,2, . . . ,k, (2)

the point v∗Dv lies inside of the polygon P. Denoting by E⊥
W (v) the orthogonal

complement of span{v} with respect to the subspace W, clearly for the vector γ =
γ1e1 + · · ·+ γkek ∈ E⊥

W (v), we have γ ◦ v = ∑k
i=1 υ iγi = 0 and further we take:

γ = γ1
(

e1− υ1

υ j
e j

)
+ γ2

(
e2− υ2

υ j
e j

)
+ · · ·+ γk

(
ek − υk

υ j
e j

)
, (3)

for an index j. Therefore, by the vectors

b1 = e1− υ1

υ j
e j, . . . , b j−1 = e j−1− υ j−1

υ j
e j,

b j = e j+1− υ j+1

υ j
e j, . . . , bk−1 = ek − υk

υ j
e j,

an orthonormal basis {w1,w2, . . . ,wk−1} of E⊥
W (v) is constructed. Defining the

n× (k−1) matrix

P =
[
w1 w2 · · · wk−1

]
, (4)

and C = P∗DP the corresponding (k− 1)-compression of D = diag(λ1,λ2, . . . ,λn),
we conclude

NR[C] = {(Pz)∗D(Pz) : z ∈ C
k−1, ‖z‖2 = 1} = {x∗Dx : x = Pz ∈ E⊥

W (v), ‖x‖2 = 1}
⊆ {x∗Dx : x ∈W, ‖x‖2 = 1} = 〈λ1,λ2, . . . ,λk〉.

Moreover, the following unit vectors of Cn ∩E⊥
W (v)

yi =
υ i+1√

|υi|2 + |υi+1|2
ei − υ i√

|υi|2 + |υi+1|2
ei+1 ; i = 1,2, . . . ,k, (5)

where in (5) ek+1 is substituted by e1 and υk+1 by υ1, correspond to the points

ci = y∗i Dyi =
|υi+1|2λi + |υi|2λi+1

|υi|2 + |υi+1|2 ; i = 1,2, . . . ,k ; λk+1 = λ1 (6)

which belong to the line segment 〈λi,λi+1〉 ⊂ ∂NR[D]. Obviously, the points ci de-
pend on the unit vector v and by Theorem 1 in [1] we have ∂NR[D]∩ ∂NR[C] =
{c1, . . . ,ck}.
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In the next section, we construct a sequence Cs, s = 1,2, . . . ,n− k of compres-
sions of a normal matrix A such that the area of NR[Cs] is increasing and is close
enough to the polygon P. Also, for i = 1,2, . . . ,k, a sequence of points ti,m ∈
NR[C1,m]∩ 〈λi,λr〉 is constructed, where the matrix C1,m is a k -compression of A,
depending on a vector ζm, with ‖ζm‖2 → ∞ and λr is an interior eigenvalue of the
polygon, finding out that lim

m→∞
ti,m = λi. By this statement we are led to lim

m→∞
NR[C1,m] =

NR[A]. Analogue results are obtained for subpolygons of P.

2. An interior approximation of NR[A]

The interior approximation of the boundary of NR[A] can be further elaborated,
using a compression of a normal matrix A by a sequence of numerical ranges of suitable
matrices.

PROPOSITION 1. Let A be an n× n normal matrix, where its numerical range
is a k -polygon P. Then there exists a finite sequence of compressions Cs = R∗

sDRs,
with R∗

sRs = Ik+s−1, s = 1,2, . . . ,n− k, such that

NR[C] ⊆ NR[C1] ⊆ NR[C2] ⊆ ·· · ⊆ NR[Cn−k] ⊆ NR[A], (7)

and for every s, we have {c1, . . . ,ck} ⊆ NR[Cs]∩P, with ci in (6).

Proof. Consider the unit vector v ∈W in (2) and let

ξ1 = v+πk+1ek+1 =
k

∑
i=1

υiei +πk+1ek+1.

If W1 = span{W, ek+1} and γ = (γ1, . . . ,γk,γk+1)∈E⊥
W1

(ξ1), then, γ ◦ξ1 =∑k
i=1 υ iγi +

πk+1γk+1 = 0 and for the same index j as in (3), we have:

γ = γ1
(

e1 − υ1

υ j
e j

)
+ · · ·+ γk

(
ek − υk

υ j
e j

)
+ γk+1

(
ek+1− πk+1

υ j
e j

)
.

Thus, the orthonormal basis {w1, . . . ,wk−1,r1} is constructed by the vectors

b1 = e1 − υ1

υ j
e j, . . . , b j−1 = e j−1− υ j−1

υ j
e j,

b j = e j+1− υ j+1

υ j
e j, . . . , bk−1 = ek − υk

υ j
e j, bk = ek+1 − πk+1

υ j
e j.

Denoting by R1 =
[
P r1

]
, where P is the matrix in (4), clearly R∗

1R1 = Ik and the
equation

C1 = R∗
1DR1 =

[
P∗DP P∗Dr1

r∗1DP r∗1Dr1

]
(8)
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yields the inclusion

NR[C] = NR[P∗DP] ⊆ NR[C1].

If W2 = span{W1, ek+2}= span{W, ek+1, ek+2} and ξ2 = ξ1 +πk+2ek+2, similarly we
define the orthonormal basis {w1, . . . ,wk−1,r1,r2} of E⊥

W2
(ξ2) and the matrix R2 =[

P r1 r2
]
=

[
R1 r2

]
. Thus,

C2 = R∗
2DR2 =

[
R∗

1DR1 R∗
1Dr2

r∗2DR1 r∗2Dr2

]
,

concluding that NR[C1] = NR[R∗
1DR1] ⊆ NR[C2]. Continuing in the same way, we

consider the vector

ξn−k = v+πk+1ek+1 +πk+2ek+2 + · · ·+πnen

of subspace Wn−k = span{W, ek+1, . . . , en} and for the same index j as in (3), we
receive the orthonormal basis {w1, . . . ,wk−1,r1,r2, . . . ,rn−k} of E⊥

Wn−k
(ξn−k). If

Cn−k = R∗
n−kDRn−k,

where Rn−k =
[
Rn−k−1 rn−k

]
= · · · = [

P r1 r2 · · · rn−k
]
n×(n−1) , clearly

NR[Cn−k−1] ⊆ NR[Cn−k] ⊆ NR[A].

Furthermore, by the inclusions in (7), we have that the tangential points ci in (6)
of NR[C] and the polygon P = NR[A], belong also to NR[Cs], for s = 1, . . . ,n−
k. Note that the vectors yi in (5) belong to the subspaces E⊥

Ws
(ξs), with ξs = v +

πk+1ek+1 +πk+2ek+2 + · · ·+πk+sek+s, s = 1,2, . . . ,n− k and for the unit vectors gi,s ,
i = 1, . . . ,k, defined by the equation Rsgi,s = yi, we have:

ci =
|υi|2λi+1 + |υi+1|2λi

|υi|2 + |υi+1|2 = y∗i Dyi = g∗i,s(R
∗
sDRs)gi,s = g∗i,sCsgi,s,

with ‖gi,s‖2 = 1. �
If, instead of v in (2), we consider the vector

u =
n

∑
j=k+1

u j e j,

where ek+1, . . . ,en are the remaining vectors of the standard basis of C
n and simul-

taneously the eigenvectors of D corresponding to the eigenvalues in the interior of

polygon P, then E⊥
W (u) = W. Thus for P̃ =

[
e1 e2 · · · ek

]
n×k =

[
Ik

On−k

]
, we

obtain:

NR[P̃∗DP̃] = {(P̃z)∗D(P̃z) : z ∈ C
k, ‖z‖2 = 1}

= {z∗diag(λ1, . . . ,λk)z : z ∈ C
k, ‖z‖2 = 1} = P.
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Regarding a vector,

βi,τ = u+
τ

∑
j=i
ρ j e j ; for 1 � i � τ � k, (9)

along similar lines as in Proposition 1, we conclude the following proposition.

PROPOSITION 2. Let A be an n× n normal matrix, whose the numerical range
is a k -polygon P. Let also a vector βi,τ as in (9). Then there exists a (n− 1)-com-
pression C̃i,τ of D such that

NR[C̃i,τ ] = Co{〈λ1, . . . ,λi−1〉∪ 〈λτ+1, . . . ,λk〉∪NR[Bi,τ ]}, (10)

where Bi,τ is an (n− k+ τ− i)-compression of D.

Proof. Let a vector γ = (γ1,γ2, . . . ,γn) ∈ span{βi,τ}⊥, then

γ ◦βi,τ =
n

∑
j=k+1

ujγ j +
τ

∑
j=i

ρ jγ j = 0.

Thus, for an index � with k+1 � � � n, we have:

γ = γ1e1 + · · ·+ γi
(

ei − ρ i

u�
e�

)
+ · · ·+ γτ

(
eτ − ρτ

u�
e�

)
+ γτ+1eτ+1 + · · ·+ γkek

+γk+1

(
ek+1 − uk+1

u�
e�

)
+ · · ·+ γn

(
en− un

u�
e�

)

By the vectors ω j = e j− ρ j
u�

e� ( j = i, . . . ,τ) and φk+1 = ek+1− uk+1
u�

e� , . . . , φ�−1 =

e�−1− u�−1
u�

e� , φ� = e�+1− u�+1
u�

e� , . . . , φn−1 = en− un
u�

e� an orthonormal basis

{e1, . . . ,ei−1, ω̂i, . . . , ω̂τ , eτ+1, . . . ,ek, φ̂k+1, . . . , φ̂n−1}
is constructed and the n× (n−1) matrix

P̃i,τ =
[
Q1 Q2 Ω Φ

]
, (11)

where Q1 =
[
e1 e2 · · · ei−1

]
, Q2 =

[
eτ+1 eτ+2 · · · ek

]
n×(k−τ) , Ω=

[
ω̂i · · · ω̂τ

]
n×(τ−i+1) ,

Φ =
[
φ̂k+1 · · · φ̂n−1

]
n×(n−k−1) , is an isometry. Hence by the (n−1)-compression of

D

C̃i,τ = P̃∗
i,τDP̃i,τ =

⎡
⎢⎢⎣

Q∗
1DQ1 O O O

O Q∗
2DQ2 O O

O O Ω∗DΩ Ω∗DΦ
O O Φ∗DΩ Φ∗DΦ

⎤
⎥⎥⎦ (12)

=

⎡
⎢⎢⎣

diag(λ1, . . . ,λi−1) O O O

O diag(λτ+1, . . . ,λk) O O

O O Ω∗DΩ Ω∗DΦ
O O Φ∗DΩ Φ∗DΦ

⎤
⎥⎥⎦
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we are led to the relation

NR[C̃i,τ ] = Co{〈λ1, . . . ,λi−1〉∪ 〈λτ+1, . . . ,λk〉∪NR[Bi,τ ]},

where Bi,τ =
[
Ω∗DΩ Ω∗DΦ
Φ∗DΩ Φ∗DΦ

]
is an (n− k+ τ− i)-compression of D . �

Considering the vector

β1 = u+ρi ei ; i ∈ {1,2, . . . ,k},

as in (9), by (12) we may construct the corresponding compression

C̃1 = diag (diag(λ1, . . . ,λi−1), diag(λi+1, . . . ,λk), B1) , (13)

where B1 =
[
ω̂∗

i Dω̂i ω̂∗
i DΦ

Φ∗Dω̂i Φ∗DΦ

]
is (n−k)-compression of D. Due to the construction of

the orthonormal basis {ω̂i,Φ}, ∂NR[B1] is inscribed to the polygon 〈λi,λk+1, . . . ,λn〉.

PROPOSITION 3. Let A be an n×n normal matrix and the polygon P=〈λ1, . . . ,λk〉
= NR[A].

I. If we consider a sequence of vectors ζm = v + qme j, where e j is eigenvector
of D corresponding to the interior eigenvalue λ j of P, such that lim

m→∞
‖ζm‖2 = ∞,

and the matrices C1,m ∈ Mk are the k -compressions of D in (8) defined by ζm, then
there exists a sequence of points ti,m ∈ NR[C1,m]∩〈λi,λ j〉, such that lim

m→∞
ti,m = λi, for

i ∈ {1,2, . . . ,k}.
II. Let βm =

n

∑
j=k+1

u j,m e j +ρi ei be a sequence of vectors, with i∈ {1,2, . . . ,k}.

If lim
m→∞

|u j,m| =∞ holds for a prefixed j, and C̃1,m is the corresponding (n−1)-com-

pression of D in (13), then there exists a sequence of points ci,m ∈ NR[C̃1,m]∩〈λi,λ j〉,
such that lim

m→∞
ci,m = λi.

Proof. I. Consider the unit vectors of Cn

zi,m =
qm√|υi|2 + |qm|2

ei− υ i√|υi|2 + |qm|2
e j , i = 1,2, . . . ,k,

and the vectors fi,m ∈ Ck defined by the equations R̃1,m fi,m = zi,m, where the n× k
matrix R̃1,m is constructed by ζm, as R1 in Proposition 1. Obviously, ‖ fi,m‖2 = 1
and the points

ti,m = f ∗i,mC1,m fi,m = f ∗i,mR̃∗
1,mDR̃1,m fi,m = z∗i,mDzi,m =

|υi|2λ j + |qm|2λi

|υi|2 + |qm|2

= λi +
|υi|2

|υi|2 + |qm|2 (λ j −λi ), i = 1,2, . . . ,k, (14)
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belong to NR[C1,m]∩〈λi,λ j〉. Moreover, due to lim
m→∞

‖ζm‖2 = ∞ by (14) we have

lim
m→∞

ti,m = lim
m→∞

(λi +
|υi|2

|υi|2 + |qm|2 (λ j −λi )) = λi.

II. Consider the unit vectors of Cn

ψ j,m =
ρ i√|u j,m|2 + |ρi|2

e j − uj,m√|u j,m|2 + |ρi|2
ei,

and the vectors h j,m ∈ Cn−1 defined by the equations P̃1,mh j,m = ψ j,m, where P̃1,m is
constructed as in (11). Then, the point

ci,m = h∗j,mC̃1,mh j,m = h∗j,mP̃∗
1,mDP̃1,mh j,m = ψ∗

j,mDψ j,m =
|u j,m|2λi + |ρi|2λ j

|u j,m|2 + |ρi|2 (15)

belongs to NR[C̃1,m]∩〈λi,λ j〉, and due to lim
m→∞

|u j,m| = ∞, the equality in (15) yields

lim
m→∞

ci,m = lim
m→∞

(λi +
|ρi|2

|u j,m|2 + |ρi|2 (λ j −λi )) = λi. �

Clearly, by Proposition 3 I, lim
m→∞

|ti,m|= |λi|. If the point �i,m lies on ∂NR[C1,m]∩
〈λi,λ j〉, we have

|ti,m| � |�i,m| � |λi|,
i.e.,

lim
m→∞

|�i,m| = |λi|.

Therefore, there exist an index m0(i) ∈ N and small enough ε > 0, such that for
m � m0(i), the distance d(ti,m, ∂NR[C1,m]) < ε.

Numerically, we may assume that the equality |ti,m0(i)| ≈ |�i,m0(i)| holds and the
equality in (14) leads to

|ti,m| = |υi|2
|υi|2 + |qm|2 |λ j|+ |qm|2

|υi|2 + |qm|2 |λi|,

whereby we derive

|qm0(i)|2 ≈ |υi|2
|�i,m0(i)|− |λ j|
|λi|− |�i,m0(i)|

.

Moreover, for m1 < m2, due to lim
m→∞

‖ζm‖2 = ∞ by (14) we have

|ti,m1 −λ j| = |qm1 |2
|υi|2 + |qm1 |2

|λi −λ j | � |qm2 |2
|υi|2 + |qm2 |2

|λi−λ j | = | ti,m2 −λ j |,
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yielding

NR[C1,m1 ] ⊆ NR[C1,m2 ]. (16)

Since the sequence |qm| is increasing, by (16) for m � m0(i), we conclude

|qm|2 = |υi|2 |ti,m|− |λ j|
|λi|− |ti,m| � |qm0(i)|2 = |υi|2

|�i,m0(i)|− |λ j|
|λi|− |�i,m0(i)|

,

i.e., ti,m has to be nearly a boundary point of NR[C1,m]. Hence, for m = m0(i) we can
write

ti,m0(i) ≈ f ∗i,m0(i)C1,m0(i) fi,m0(i),

where fi,m0(i) is the eigenvector of H(e−iθiC1,m0(i)) corresponding to the largest eigen-
value, λmax(H(e−iθiC1,m0(i))), of hermitian part of matrix e−iθiC1,m0(i), and θi ∈ [0,2π)
is the argument of ti,m0(i), (see [5, p. 35, Theorem 1.5.11]).

THEOREM 4. For any normal matrix A, whose NR[A] is a k -polygon, there
exists a sequence of k -compressions C1,m of D in (8) such that NR[C1,m] is inscribed
to the polygon for every m and lim

m→∞
NR[C1,m] = NR[A].

Proof. Let Qm = Co{t1,m(1), . . . ,tk,m(k)}. If m0 = max{m0(1),m0(2), . . . ,m0(k)},
then by Proposition 3 I, for m > m0 and small enough ε > 0, we estimate that

|Qm| � |NR[C1,m] | � |P|,

where | · | denotes the area of a convex set. Since lim
m→∞

Qm = P, obviously we have

the convergence of area of NR[C1,m] to the area contained in NR[A]. �

COROLLARY 5. For any normal matrix A, whose NR[A] is a k -polygon, there

exists a sequence of vectors βm =
n

∑
j=k+1

u j,m e j +ρi ei ; i ∈ {1,2, . . . ,k}, and the asso-

ciated sequence C̃1,m of (n−1)-compressions of D in (13), such that

lim
m→∞

NR[C̃1,m] = NR[A],

when lim
m→∞

|u j,m| = ∞.

Proof. Since, by (13) the compression matrix

C̃1,m = diag(diag(λ1, . . . ,λi−1),diag(λi+1, . . . ,λk),B1,m),

clearly

NR[B1,m] ⊆ Co{λi,λk+1, . . . ,λn},
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and due to lim
m→∞

ci,m = λi, we obtain

lim
m→∞

NR[B1,m] = 〈λi,λk+1, . . . ,λn〉.

Hence, by (10) we have

lim
m→∞

NR[C̃1,m] = Co{〈λ1, . . . ,λi−1〉∪ 〈λi+1, . . . ,λk〉∪ lim
m→∞

NR[B1,m]}
= Co{〈λ1, . . . ,λi−1〉∪ 〈λi+1, . . . ,λk〉∪ 〈λi,λk+1, . . . ,λn〉} = 〈λ1, . . . ,λk〉.

�
The next example illustrates Proposition 3 I and indirectly Theorem 4.

EXAMPLE. Let the 6×6 normal matrix A = diag(4i,−2,−3i,5,0,1+ i), where
NR[A] = Co{4i,−2,−3i,5}, i.e., 0 and 1+ i belong to IntNR[A]. For the unit vector
v = 1√

15
e1 + 2√

15
e2 + 1√

15
e3 + 3√

15
e4, we have the matrix in (4),

P =

⎡
⎢⎢⎢⎢⎢⎣

−0.8944 −0.1826 −0.3162
0.4472 −0.3651 −0.6325

0 0.9129 −0.3162
0 0 0.6325
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

and the tangent points in (6) of ∂NR[A]∩∂NR[P∗AP]

c1 =
−2+16i

5
, c2 =

−2−12i
5

, c3 =
5−27i

10
, c4 =

5+36i
10

.

If ζ1 = v+ 4√
15

e5, we obtain R̃1,1 =

⎡
⎢⎢⎢⎢⎢⎣

−0.8944 −0.1826 −0.3162 −0.1855
0.4472 −0.3651 −0.6325 −0.3710

0 0.9129 −0.3162 −0.1855
0 0 0.6325 −0.5565
0 0 0 0.6956
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ and

the matrix C1,1 = R̃∗
1,1AR̃1,1 as in (8). By (14), for λ5 = 0, we take: t1,1 = 64i

17 =
3.7647i∈ 〈λ1,λ5〉. Also, θ1 = π/2 and |t1,1|= 3.7647 �= 3.8691=λmax(H(e−iθ1C1,1)),
i.e., t1,1 is interior point of NR[C1,1].

Similarly, if ζ2 = v+ 20√
15

e5, we have R̃1,2 =

⎡
⎢⎢⎢⎢⎢⎣

−0.8944 −0.1826 −0.3162 −0.2535
0.4472 −0.3651 −0.6325 −0.5070

0 0.9129 −0.3162 −0.2535
0 0 0.6325 −0.7605
0 0 0 0.1901
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

and the matrix C1,2 = R̃∗
1,2AR̃1,2 as in (8). By (14) we take: t1,2 = 1600i

401 = 3.9900i ∈
〈λ1,λ5〉 and |t1,2|= 3.9900 �= 3.9904 = λmax(H(e−iθ1C1,2)), i.e., t1,2 is interior point
of NR[C1,2].
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If ζ3 = v + 100√
15

e5, we have R̃1,3 =

⎡
⎢⎢⎢⎢⎢⎣

−0.8944 −0.1826 −0.3162 −0.2580
0.4472 −0.3651 −0.6325 −0.5160

0 0.9129 −0.3162 −0.2580
0 0 0.6325 −0.7740
0 0 0 0.0387
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ and

C1,3 = R̃∗
1,3AR̃1,3. By (14) we take: t1,3 = 40000i

10001 = 3.99960004i∈ 〈λ1,λ5〉 and

|t1,3| = 3.99960004≈ λmax(H(e−iθ1C1,3)) = 3.9996006. The point t1,3 almost lies on
the ∂NR[C1,3] , i.e., t1,3 ≈ f ∗1,3C1,3 f1,3 = 0.00000036896091+3.99960058200810i

∈ ∂NR[C1,3], where f1,3 =
[
0.8945 0.1825 0.3163 0.2580

]T is the eigenvector of
H(e−iθ1C1,3) corresponding to λmax(H(e−iθ1C1,3)).

If ζ4 = v + 120√
15

e5, we have R̃1,4 =

⎡
⎢⎢⎢⎢⎢⎣

−0.8944 −0.1826 −0.3162 −0.2581
0.4472 −0.3651 −0.6325 −0.5161

0 0.9129 −0.3162 −0.2581
0 0 0.6325 −0.7742
0 0 0 0.0323
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ and

C1,4 = R̃∗
1,4AR̃1,4. By (14) we take: t1,4 = 57600i

14401 = 3.9997i ∈ 〈λ1,λ5〉 and |t1,4| =
3.9997222 ≈ λmax(H(e−iθ1C1,4)) = 3.9997225. Since q3 = 100√

15
< 120√

15
= q4, then

NR[C1,3] ⊆ NR[C1,4] and we expect t1,4 to approximate ∂NR[C1,4]. In fact, f1,4 =[
0.8945 0.1826 0.3162 0.2581

]T
is eigenvector of H(e−iθ1C1,4) and t1,4 ≈ f ∗1,4C1,4 f1,4

= 0.00000017808543+3.99972250302240i.

In the next figure the numerical ranges of the compressions P∗AP, C1,1 and C1,2

are illustrated.
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Let Q = 〈λ1,λ2, . . . ,λν〉 be subpolygon of P, with 3 � ν < k and the sequence
of vectors of Cn

ημ =
ν

∑
i=1

υiei +ϕμe j ; j ∈ {k+1, . . . ,n}

and suppose furthermore that the eigenvalue λ j may not belong to Q. Denoting by
G1,μ = T ∗

1,μDT1,μ the ν -compression of D, then NR[G1,μ ] is tangent to the poly-
gon 〈λ1,λ2, . . . ,λν ,λ j〉. Thus, when lim

μ→∞
‖ημ‖2 =∞, by Theorem 4 we conclude the

equality
lim
μ→∞

NR[G1,μ ] = Q.

Therefore, the separation of polygon P =
p⋃

δ=1

Qδ into p -subpolygons leads to

p⋃
δ=1

( lim
μ→∞

NR[Gδ
1,μ ]) = NR[A],

where Gδ
1,μ is a compression of associated Qδ , according to Theorem 4.
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