LIMITED APPROXIMATION OF NUMERICAL RANGE OF NORMAL MATRIX

Maria Adam and John Maroulas

(Communicated by C.-K. Li)

Abstract

Let A be an $n \times n$ normal matrix, whose numerical range $N R[A]$ is a k-polygon. If a unit vector $v \in W \subseteq \mathbb{C}^{n}$, with $\operatorname{dim} W=k$ and the point $v^{*} A v \in \operatorname{Int} N R[A]$, then $N R[A]$ is circumscribed to $N R\left[P^{*} A P\right]$, where P is an $n \times(k-1)$ isometry of $\{\operatorname{span}\{v\}\}_{W}^{\perp} \rightarrow \mathbb{C}^{n}$, [1]. In this paper, we investigate an internal approximation of $N R[A]$ by an increasing sequence of $N R\left[C_{s}\right]$ of compressed matrices $C_{s}=R_{s}^{*} A R_{s}$, with $R_{s}^{*} R_{s}=I_{k+s-1}, \quad s=1,2, \ldots, n-k$ and additionally $N R[A]$ is expressed as limit of numerical ranges of k-compressions of A.

1. Introduction and preliminaries

Let \mathscr{M}_{n} denote the algebra of all $n \times n$ complex matrices. The numerical range of $A \in \mathscr{M}_{n}$ is the well known set

$$
N R[A]=\left\{x^{*} A x \in \mathbb{C}: x \in \mathbb{C}^{n} \text { with }\|x\|_{2}=1\right\}
$$

which is a nonempty compact and convex subset of \mathbb{C} that contains the spectrum $\sigma(A)$ of A (see [5, Chapter 1]). We recall that the numerical ranges of unitarily similar matrices are identified and if $A=M D M^{*} ; D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is the unitary diagonalising form of a normal matrix A, then $N R[A]=\operatorname{Co}\{\sigma(A)\}$, where $\operatorname{Co}\{\cdot\}$ denotes the convex hull of the set.

Given two matrices $A \in \mathscr{M}_{n}$ and $C \in \mathscr{M}_{k}$ with $1 \leqslant k<n$, the matrix C is a k-compression of A, if there exists an $n \times k$ orthonormal matrix P (i.e., $P^{*} P=I_{k}$) such that $C=P^{*} A P$. Clearly,

$$
\begin{equation*}
N R[C]=N R\left[P^{*} A P\right] \subseteq N R[A] \tag{1}
\end{equation*}
$$

and the equality holds only for $k=n$.
Moreover, we have

$$
N R[C] \subseteq N R\left[P C P^{*}\right]
$$

since $N R[C]=N R\left[P^{*}\left(P C P^{*}\right) P\right] \subseteq N R\left[P C P^{*}\right]$.
The numerical range of compressions of normal matrices have attracted attention and several results have been published in $[1,2,3,4]$. The inclusion relation of $N R[A]$

[^0]in (1) has been presented in details in [1], where the investigation leads to a structure of P such that the boundary of $N R\left[P^{*} A P\right]$ is supported by the edges of the boundary of $N R[A]$.

To explain, consider for a normal matrix $A \in \mathscr{M}_{n}$ the convex polygon $\mathscr{P}=$ $\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\rangle=\operatorname{Co}\{\sigma(D)\}=N R[A]$, where the eigenvalues $\lambda_{i}, i=1, \ldots, k$, are simple. If $W=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ and $e_{i}, i=1, \ldots, k$, are vectors of the standard basis of \mathbb{C}^{n}, then for every unit vector

$$
\begin{equation*}
v=\sum_{i=1}^{k} v_{i} e_{i} \in W \quad ; \quad v_{i} \in \mathbb{C} \backslash\{0\}, \quad i=1,2, \ldots, k, \tag{2}
\end{equation*}
$$

the point $v^{*} D v$ lies inside of the polygon \mathscr{P}. Denoting by $E_{W}^{\perp}(v)$ the orthogonal complement of $\operatorname{span}\{v\}$ with respect to the subspace W, clearly for the vector $\gamma=$ $\gamma_{1} e_{1}+\cdots+\gamma_{k} e_{k} \in E_{W}^{\perp}(v)$, we have $\gamma \circ v=\sum_{i=1}^{k} \bar{v}_{i} \gamma_{i}=0$ and further we take:

$$
\begin{equation*}
\gamma=\gamma_{1}\left(e_{1}-\frac{\bar{v}_{1}}{\bar{v}_{j}} e_{j}\right)+\gamma_{2}\left(e_{2}-\frac{\bar{v}_{2}}{\bar{v}_{j}} e_{j}\right)+\cdots+\gamma_{k}\left(e_{k}-\frac{\bar{v}_{k}}{\bar{v}_{j}} e_{j}\right) \tag{3}
\end{equation*}
$$

for an index j. Therefore, by the vectors

$$
\begin{aligned}
& b_{1}=e_{1}-\frac{\bar{v}_{1}}{\bar{v}_{j}} e_{j}, \ldots, b_{j-1}=e_{j-1}-\frac{\bar{v}_{j-1}}{\bar{v}_{j}} e_{j} \\
& b_{j}=e_{j+1}-\frac{\bar{v}_{j+1}}{\bar{v}_{j}} e_{j}, \ldots, b_{k-1}=e_{k}-\frac{\bar{v}_{k}}{\bar{v}_{j}} e_{j}
\end{aligned}
$$

an orthonormal basis $\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right\}$ of $E_{W}^{\perp}(v)$ is constructed. Defining the $n \times(k-1)$ matrix

$$
P=\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{k-1} \tag{4}
\end{array}\right]
$$

and $C=P^{*} D P$ the corresponding $(k-1)$-compression of $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, we conclude

$$
\begin{aligned}
N R[C] & =\left\{(P z)^{*} D(P z): z \in \mathbb{C}^{k-1},\|z\|_{2}=1\right\}=\left\{x^{*} D x: x=P z \in E_{W}^{\perp}(v),\|x\|_{2}=1\right\} \\
& \subseteq\left\{x^{*} D x: x \in W,\|x\|_{2}=1\right\}=\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\rangle
\end{aligned}
$$

Moreover, the following unit vectors of $\mathbb{C}^{n} \cap E_{W}^{\perp}(v)$

$$
\begin{equation*}
y_{i}=\frac{\bar{v}_{i+1}}{\sqrt{\left|v_{i}\right|^{2}+\left|v_{i+1}\right|^{2}}} e_{i}-\frac{\bar{v}_{i}}{\sqrt{\left|v_{i}\right|^{2}+\left|v_{i+1}\right|^{2}}} e_{i+1} ; i=1,2, \ldots, k \tag{5}
\end{equation*}
$$

where in (5) e_{k+1} is substituted by e_{1} and v_{k+1} by v_{1}, correspond to the points

$$
\begin{equation*}
c_{i}=y_{i}^{*} D y_{i}=\frac{\left|v_{i+1}\right|^{2} \lambda_{i}+\left|v_{i}\right|^{2} \lambda_{i+1}}{\left|v_{i}\right|^{2}+\left|v_{i+1}\right|^{2}} \quad ; i=1,2, \ldots, k ; \lambda_{k+1}=\lambda_{1} \tag{6}
\end{equation*}
$$

which belong to the line segment $\left\langle\lambda_{i}, \lambda_{i+1}\right\rangle \subset \partial N R[D]$. Obviously, the points c_{i} depend on the unit vector v and by Theorem 1 in [1] we have $\partial N R[D] \cap \partial N R[C]=$ $\left\{c_{1}, \ldots, c_{k}\right\}$.

In the next section, we construct a sequence $C_{S}, s=1,2, \ldots, n-k$ of compressions of a normal matrix A such that the area of $N R\left[C_{S}\right]$ is increasing and is close enough to the polygon \mathscr{P}. Also, for $i=1,2, \ldots, k$, a sequence of points $t_{i, m} \in$ $N R\left[C_{1, m}\right] \cap\left\langle\lambda_{i}, \lambda_{r}\right\rangle$ is constructed, where the matrix $C_{1, m}$ is a k-compression of A, depending on a vector ζ_{m}, with $\left\|\zeta_{m}\right\|_{2} \rightarrow \infty$ and λ_{r} is an interior eigenvalue of the polygon, finding out that $\lim _{m \rightarrow \infty} t_{i, m}=\lambda_{i}$. By this statement we are led to $\lim _{m \rightarrow \infty} N R\left[C_{1, m}\right]=$ $N R[A]$. Analogue results are obtained for subpolygons of \mathscr{P}.

2. An interior approximation of $N R[A]$

The interior approximation of the boundary of $N R[A]$ can be further elaborated, using a compression of a normal matrix A by a sequence of numerical ranges of suitable matrices.

PROPOSITION 1. Let A be an $n \times n$ normal matrix, where its numerical range is a k-polygon \mathscr{P}. Then there exists a finite sequence of compressions $C_{s}=R_{s}^{*} D R_{s}$, with $R_{s}^{*} R_{s}=I_{k+s-1}, \quad s=1,2, \ldots, n-k$, such that

$$
\begin{equation*}
N R[C] \subseteq N R\left[C_{1}\right] \subseteq N R\left[C_{2}\right] \subseteq \cdots \subseteq N R\left[C_{n-k}\right] \subseteq N R[A] \tag{7}
\end{equation*}
$$

and for every s, we have $\left\{c_{1}, \ldots, c_{k}\right\} \subseteq N R\left[C_{s}\right] \cap \mathscr{P}$, with c_{i} in (6).
Proof. Consider the unit vector $v \in W$ in (2) and let

$$
\xi_{1}=v+\pi_{k+1} e_{k+1}=\sum_{i=1}^{k} v_{i} e_{i}+\pi_{k+1} e_{k+1}
$$

If $W_{1}=\operatorname{span}\left\{W, e_{k+1}\right\}$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}, \gamma_{k+1}\right) \in E_{W_{1}}^{\perp}\left(\xi_{1}\right)$, then, $\gamma \circ \xi_{1}=\sum_{i=1}^{k} \bar{v}_{i} \gamma_{i}+$ $\bar{\pi}_{k+1} \gamma_{k+1}=0$ and for the same index j as in (3), we have:

$$
\gamma=\gamma_{1}\left(e_{1}-\frac{\bar{v}_{1}}{\bar{v}_{j}} e_{j}\right)+\cdots+\gamma_{k}\left(e_{k}-\frac{\bar{v}_{k}}{\bar{v}_{j}} e_{j}\right)+\gamma_{k+1}\left(e_{k+1}-\frac{\bar{\pi}_{k+1}}{\bar{v}_{j}} e_{j}\right) .
$$

Thus, the orthonormal basis $\left\{w_{1}, \ldots, w_{k-1}, r_{1}\right\}$ is constructed by the vectors

$$
\begin{aligned}
& b_{1}=e_{1}-\frac{\bar{v}_{1}}{\bar{v}_{j}} e_{j}, \ldots, \quad b_{j-1}=e_{j-1}-\frac{\bar{v}_{j-1}}{\bar{v}_{j}} e_{j} \\
& b_{j}=e_{j+1}-\frac{\bar{v}_{j+1}}{\bar{v}_{j}} e_{j}, \ldots, \quad b_{k-1}=e_{k}-\frac{\bar{v}_{k}}{\bar{v}_{j}} e_{j}, \quad b_{k}=e_{k+1}-\frac{\bar{\pi}_{k+1}}{\bar{v}_{j}} e_{j}
\end{aligned}
$$

Denoting by $R_{1}=\left[\begin{array}{ll}P & r_{1}\end{array}\right]$, where P is the matrix in (4), clearly $R_{1}^{*} R_{1}=I_{k}$ and the equation

$$
C_{1}=R_{1}^{*} D R_{1}=\left[\begin{array}{cc}
P^{*} D P & P^{*} D r_{1} \tag{8}\\
r_{1}^{*} D P & r_{1}^{*} D r_{1}
\end{array}\right]
$$

yields the inclusion

$$
N R[C]=N R\left[P^{*} D P\right] \subseteq N R\left[C_{1}\right] .
$$

If $W_{2}=\operatorname{span}\left\{W_{1}, e_{k+2}\right\}=\operatorname{span}\left\{W, e_{k+1}, e_{k+2}\right\}$ and $\xi_{2}=\xi_{1}+\pi_{k+2} e_{k+2}$, similarly we define the orthonormal basis $\left\{w_{1}, \ldots, w_{k-1}, r_{1}, r_{2}\right\}$ of $E_{W_{2}}^{\perp}\left(\xi_{2}\right)$ and the matrix $R_{2}=$ $\left[\begin{array}{lll}P & r_{1} & r_{2}\end{array}\right]=\left[\begin{array}{ll}R_{1} & r_{2}\end{array}\right]$. Thus,

$$
C_{2}=R_{2}^{*} D R_{2}=\left[\begin{array}{cc}
R_{1}^{*} D R_{1} & R_{1}^{*} D r_{2} \\
r_{2}^{*} D R_{1} & r_{2}^{*} D r_{2}
\end{array}\right]
$$

concluding that $N R\left[C_{1}\right]=N R\left[R_{1}^{*} D R_{1}\right] \subseteq N R\left[C_{2}\right]$. Continuing in the same way, we consider the vector

$$
\xi_{n-k}=v+\pi_{k+1} e_{k+1}+\pi_{k+2} e_{k+2}+\cdots+\pi_{n} e_{n}
$$

of subspace $W_{n-k}=\operatorname{span}\left\{W, e_{k+1}, \ldots, e_{n}\right\}$ and for the same index j as in (3), we receive the orthonormal basis $\left\{w_{1}, \ldots, w_{k-1}, r_{1}, r_{2}, \ldots, r_{n-k}\right\}$ of $E_{W_{n-k}}^{\perp}\left(\xi_{n-k}\right)$. If

$$
C_{n-k}=R_{n-k}^{*} D R_{n-k}
$$

where $R_{n-k}=\left[\begin{array}{ll}R_{n-k-1} & r_{n-k}\end{array}\right]=\cdots=\left[\begin{array}{lllll}P & r_{1} & r_{2} & \cdots & r_{n-k}\end{array}\right]_{n \times(n-1)}$, clearly

$$
N R\left[C_{n-k-1}\right] \subseteq N R\left[C_{n-k}\right] \subseteq N R[A]
$$

Furthermore, by the inclusions in (7), we have that the tangential points c_{i} in (6) of $N R[C]$ and the polygon $\mathscr{P}=N R[A]$, belong also to $N R\left[C_{s}\right]$, for $s=1, \ldots, n-$ k. Note that the vectors y_{i} in (5) belong to the subspaces $E_{W_{s}}^{\perp}\left(\xi_{s}\right)$, with $\xi_{s}=v+$ $\pi_{k+1} e_{k+1}+\pi_{k+2} e_{k+2}+\cdots+\pi_{k+s} e_{k+s}, \quad s=1,2, \ldots, n-k$ and for the unit vectors $g_{i, s}$, $i=1, \ldots, k$, defined by the equation $R_{s} g_{i, s}=y_{i}$, we have:

$$
c_{i}=\frac{\left|v_{i}\right|^{2} \lambda_{i+1}+\left|v_{i+1}\right|^{2} \lambda_{i}}{\left|v_{i}\right|^{2}+\left|v_{i+1}\right|^{2}}=y_{i}^{*} D y_{i}=g_{i, s}^{*}\left(R_{s}^{*} D R_{s}\right) g_{i, s}=g_{i, s}^{*} C_{s} g_{i, s}
$$

with $\left\|g_{i, s}\right\|_{2}=1$.
If, instead of v in (2), we consider the vector

$$
u=\sum_{j=k+1}^{n} u_{j} e_{j}
$$

where e_{k+1}, \ldots, e_{n} are the remaining vectors of the standard basis of \mathbb{C}^{n} and simultaneously the eigenvectors of D corresponding to the eigenvalues in the interior of polygon \mathscr{P}, then $E_{W}^{\perp}(u)=W$. Thus for $\widetilde{P}=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{k}\end{array}\right]_{n \times k}=\left[\begin{array}{c}I_{k} \\ \mathbb{O}_{n-k}\end{array}\right]$, we obtain:

$$
\begin{aligned}
N R\left[\widetilde{P}^{*} D \widetilde{P}\right] & =\left\{(\widetilde{P} z)^{*} D(\widetilde{P} z): z \in \mathbb{C}^{k},\|z\|_{2}=1\right\} \\
& =\left\{z^{*} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right) z: z \in \mathbb{C}^{k},\|z\|_{2}=1\right\}=\mathscr{P} .
\end{aligned}
$$

Regarding a vector,

$$
\begin{equation*}
\beta_{i, \tau}=u+\sum_{j=i}^{\tau} \rho_{j} e_{j} ; \text { for } 1 \leqslant i \leqslant \tau \leqslant k \tag{9}
\end{equation*}
$$

along similar lines as in Proposition 1, we conclude the following proposition.
Proposition 2. Let A be an $n \times n$ normal matrix, whose the numerical range is a k-polygon \mathscr{P}. Let also a vector $\beta_{i, \tau}$ as in (9). Then there exists a $(n-1)$-compression $\widetilde{C}_{i, \tau}$ of D such that

$$
\begin{equation*}
N R\left[\widetilde{C}_{i, \tau}\right]=\operatorname{Co}\left\{\left\langle\lambda_{1}, \ldots, \lambda_{i-1}\right\rangle \cup\left\langle\lambda_{\tau+1}, \ldots, \lambda_{k}\right\rangle \cup N R\left[B_{i, \tau}\right]\right\}, \tag{10}
\end{equation*}
$$

where $B_{i, \tau}$ is an $(n-k+\tau-i)$-compression of D.
Proof. Let a vector $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \in \operatorname{span}\left\{\beta_{i, \tau}\right\}^{\perp}$, then

$$
\gamma \circ \beta_{i, \tau}=\sum_{j=k+1}^{n} \bar{u}_{j} \gamma_{j}+\sum_{j=i}^{\tau} \bar{\rho}_{j} \gamma_{j}=0
$$

Thus, for an index ℓ with $k+1 \leqslant \ell \leqslant n$, we have:

$$
\begin{array}{r}
\gamma=\gamma_{1} e_{1}+\cdots+\gamma_{i}\left(e_{i}-\frac{\bar{\rho}_{i}}{\bar{u}_{\ell}} e_{\ell}\right) \\
+\cdots+\gamma_{\tau}\left(e_{\tau}-\frac{\bar{\rho}_{\tau}}{\bar{u}_{\ell}} e_{\ell}\right)+\gamma_{\tau+1} e_{\tau+1}+\cdots+\gamma_{k} e_{k} \\
\\
+\gamma_{k+1}\left(e_{k+1}-\frac{\bar{u}_{k+1}}{\bar{u}_{\ell}} e_{\ell}\right)+\cdots+\gamma_{n}\left(e_{n}-\frac{\bar{u}_{n}}{\bar{u}_{\ell}} e_{\ell}\right)
\end{array}
$$

By the vectors $\omega_{j}=e_{j}-\frac{\bar{\rho}_{j}}{\bar{u}_{\ell}} e_{\ell}(j=i, \ldots, \tau)$ and $\phi_{k+1}=e_{k+1}-\frac{\bar{u}_{k+1}}{\bar{u}_{\ell}} e_{\ell}, \ldots, \quad \phi_{\ell-1}=$ $e_{\ell-1}-\frac{\bar{u}_{\ell-1}}{\bar{u}_{\ell}} e_{\ell}, \phi_{\ell}=e_{\ell+1}-\frac{\bar{u}_{\ell+1}}{\bar{u}_{\ell}} e_{\ell}, \ldots, \phi_{n-1}=e_{n}-\frac{\bar{u}_{n}}{\bar{u}_{\ell}} e_{\ell}$ an orthonormal basis

$$
\left\{e_{1}, \ldots, e_{i-1}, \hat{\omega}_{i}, \ldots, \hat{\omega}_{\tau}, e_{\tau+1}, \ldots, e_{k}, \hat{\phi}_{k+1}, \ldots, \hat{\phi}_{n-1}\right\}
$$

is constructed and the $n \times(n-1)$ matrix

$$
\widetilde{P}_{i, \tau}=\left[\begin{array}{llll}
Q_{1} & Q_{2} & \Omega & \Phi \tag{11}
\end{array}\right],
$$

where $Q_{1}=\left[e_{1} e_{2} \cdots e_{i-1}\right], Q_{2}=\left[e_{\tau+1} e_{\tau+2} \cdots e_{k}\right]_{n \times(k-\tau)}, \Omega=\left[\hat{\omega}_{i} \cdots \hat{\omega}_{\tau}\right]_{n \times(\tau-i+1)}$, $\Phi=\left[\hat{\phi}_{k+1} \cdots \hat{\phi}_{n-1}\right]_{n \times(n-k-1)}$, is an isometry. Hence by the $(n-1)$-compression of D

$$
\begin{align*}
\widetilde{C}_{i, \tau}=\widetilde{P}_{i, \tau}^{*} D \widetilde{P}_{i, \tau} & =\left[\begin{array}{cccc}
Q_{1}^{*} D Q_{1} & \mathbb{O} & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & Q_{2}^{*} D Q_{2} & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & \mathbb{O} & \Omega^{*} D \Omega & \Omega^{*} D \Phi \\
\mathbb{O} & \mathbb{O} & \Phi^{*} D \Omega & \Phi^{*} D \Phi
\end{array}\right] \tag{12}\\
& =\left[\begin{array}{ccccc}
\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{i-1}\right) & \mathbb{O} & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & \operatorname{diag}\left(\lambda_{\tau+1}, \ldots, \lambda_{k}\right) & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & \mathbb{O} & \Omega^{*} D \Omega & \Omega^{*} D \Phi \\
\mathbb{O} & \mathbb{O} & \Phi^{*} D \Omega & \Phi^{*} D \Phi
\end{array}\right]
\end{align*}
$$

we are led to the relation

$$
N R\left[\widetilde{C}_{i, \tau}\right]=\operatorname{Co}\left\{\left\langle\lambda_{1}, \ldots, \lambda_{i-1}\right\rangle \cup\left\langle\lambda_{\tau+1}, \ldots, \lambda_{k}\right\rangle \cup N R\left[B_{i, \tau}\right]\right\},
$$

where $B_{i, \tau}=\left[\begin{array}{c}\Omega^{*} D \Omega \\ \Phi^{*} D \Phi \\ \Phi^{*} D \Omega \\ \Phi^{*} D \Phi\end{array}\right]$ is an $(n-k+\tau-i)$-compression of D.
Considering the vector

$$
\beta_{1}=u+\rho_{i} e_{i} ; i \in\{1,2, \ldots, k\}
$$

as in (9), by (12) we may construct the corresponding compression

$$
\begin{equation*}
\widetilde{C}_{1}=\operatorname{diag}\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{i-1}\right), \operatorname{diag}\left(\lambda_{i+1}, \ldots, \lambda_{k}\right), B_{1}\right), \tag{13}
\end{equation*}
$$

where $B_{1}=\left[\begin{array}{c}\hat{\omega}_{i}^{*} D \hat{\omega}_{i} \hat{\omega}_{i}^{*} D \Phi \\ \Phi^{*} D \hat{\omega}_{i} \Phi^{*} D \Phi\end{array}\right]$ is $(n-k)$-compression of D. Due to the construction of the orthonormal basis $\left\{\hat{\omega}_{i}, \Phi\right\}, \partial N R\left[B_{1}\right]$ is inscribed to the polygon $\left\langle\lambda_{i}, \lambda_{k+1}, \ldots, \lambda_{n}\right\rangle$.

PRoposition 3. Let A be an $n \times n$ normal matrix and the polygon $\mathscr{P}=\left\langle\lambda_{1}, \ldots, \lambda_{k}\right\rangle$ $=N R[A]$.
I. If we consider a sequence of vectors $\zeta_{m}=v+q_{m} e_{j}$, where e_{j} is eigenvector of D corresponding to the interior eigenvalue λ_{j} of \mathscr{P}, such that $\lim _{m \rightarrow \infty}\left\|\zeta_{m}\right\|_{2}=\infty$, and the matrices $C_{1, m} \in \mathscr{M}_{k}$ are the k-compressions of D in (8) defined by ζ_{m}, then there exists a sequence of points $t_{i, m} \in N R\left[C_{1, m}\right] \cap\left\langle\lambda_{i}, \lambda_{j}\right\rangle$, such that $\lim _{m \rightarrow \infty} t_{i, m}=\lambda_{i}$, for $i \in\{1,2, \ldots, k\}$.
II. Let $\beta_{m}=\sum_{j=k+1}^{n} u_{j, m} e_{j}+\rho_{i} e_{i}$ be a sequence of vectors, with $i \in\{1,2, \ldots, k\}$. If $\lim _{m \rightarrow \infty}\left|u_{j, m}\right|=\infty$ holds for a prefixed j, and $\widetilde{C}_{1, m}$ is the corresponding $(n-1)$-compression of D in (13), then there exists a sequence of points $c_{i, m} \in N R\left[\widetilde{C}_{1, m}\right] \cap\left\langle\lambda_{i}, \lambda_{j}\right\rangle$, such that $\lim _{m \rightarrow \infty} c_{i, m}=\lambda_{i}$.

Proof. I. Consider the unit vectors of \mathbb{C}^{n}

$$
z_{i, m}=\frac{\bar{q}_{m}}{\sqrt{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}}} e_{i}-\frac{\bar{v}_{i}}{\sqrt{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}}} e_{j}, \quad i=1,2, \ldots, k
$$

and the vectors $f_{i, m} \in \mathbb{C}^{k}$ defined by the equations $\tilde{R}_{1, m} f_{i, m}=z_{i, m}$, where the $n \times k$ matrix $\tilde{R}_{1, m}$ is constructed by ζ_{m}, as R_{1} in Proposition 1 . Obviously, $\left\|f_{i, m}\right\|_{2}=1$ and the points

$$
\begin{align*}
t_{i, m} & =f_{i, m}^{*} C_{1, m} f_{i, m}=f_{i, m}^{*} \tilde{R}_{1, m}^{*} D \tilde{R}_{1, m} f_{i, m}=z_{i, m}^{*} D z_{i, m}=\frac{\left|v_{i}\right|^{2} \lambda_{j}+\left|q_{m}\right|^{2} \lambda_{i}}{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}} \\
& =\lambda_{i}+\frac{\left|v_{i}\right|^{2}}{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}}\left(\lambda_{j}-\lambda_{i}\right), \quad i=1,2, \ldots, k \tag{14}
\end{align*}
$$

belong to $N R\left[C_{1, m}\right] \cap\left\langle\lambda_{i}, \lambda_{j}\right\rangle$. Moreover, due to $\lim _{m \rightarrow \infty}\left\|\zeta_{m}\right\|_{2}=\infty$ by (14) we have

$$
\lim _{m \rightarrow \infty} t_{i, m}=\lim _{m \rightarrow \infty}\left(\lambda_{i}+\frac{\left|v_{i}\right|^{2}}{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}}\left(\lambda_{j}-\lambda_{i}\right)\right)=\lambda_{i}
$$

II. Consider the unit vectors of \mathbb{C}^{n}

$$
\psi_{j, m}=\frac{\bar{\rho}_{i}}{\sqrt{\left|u_{j, m}\right|^{2}+\left|\rho_{i}\right|^{2}}} e_{j}-\frac{\bar{u}_{j, m}}{\sqrt{\left|u_{j, m}\right|^{2}+\left|\rho_{i}\right|^{2}}} e_{i}
$$

and the vectors $h_{j, m} \in \mathbb{C}^{n-1}$ defined by the equations $\widetilde{P}_{1, m} h_{j, m}=\psi_{j, m}$, where $\widetilde{P}_{1, m}$ is constructed as in (11). Then, the point

$$
\begin{equation*}
c_{i, m}=h_{j, m}^{*} \widetilde{C}_{1, m} h_{j, m}=h_{j, m}^{*} \widetilde{P}_{1, m}^{*} D \widetilde{P}_{1, m} h_{j, m}=\psi_{j, m}^{*} D \psi_{j, m}=\frac{\left|u_{j, m}\right|^{2} \lambda_{i}+\left|\rho_{i}\right|^{2} \lambda_{j}}{\left|u_{j, m}\right|^{2}+\left|\rho_{i}\right|^{2}} \tag{15}
\end{equation*}
$$

belongs to $N R\left[\widetilde{C}_{1, m}\right] \cap\left\langle\lambda_{i}, \lambda_{j}\right\rangle$, and due to $\lim _{m \rightarrow \infty}\left|u_{j, m}\right|=\infty$, the equality in (15) yields

$$
\lim _{m \rightarrow \infty} c_{i, m}=\lim _{m \rightarrow \infty}\left(\lambda_{i}+\frac{\left|\rho_{i}\right|^{2}}{\left|u_{j, m}\right|^{2}+\left|\rho_{i}\right|^{2}}\left(\lambda_{j}-\lambda_{i}\right)\right)=\lambda_{i}
$$

Clearly, by Proposition 3 I, $\lim _{m \rightarrow \infty}\left|t_{i, m}\right|=\left|\lambda_{i}\right|$. If the point $\ell_{i, m}$ lies on $\partial N R\left[C_{1, m}\right] \cap$ $\left\langle\lambda_{i}, \lambda_{j}\right\rangle$, we have

$$
\left|t_{i, m}\right| \leqslant\left|\ell_{i, m}\right| \leqslant\left|\lambda_{i}\right|
$$

i.e.,

$$
\lim _{m \rightarrow \infty}\left|\ell_{i, m}\right|=\left|\lambda_{i}\right| .
$$

Therefore, there exist an index $m_{0}(i) \in \mathbb{N}$ and small enough $\varepsilon>0$, such that for $m \geqslant m_{0}(i)$, the distance $d\left(t_{i, m}, \partial N R\left[C_{1, m}\right]\right)<\varepsilon$.

Numerically, we may assume that the equality $\left|t_{i, m_{0}(i)}\right| \approx\left|\ell_{i, m_{0}(i)}\right|$ holds and the equality in (14) leads to

$$
\left|t_{i, m}\right|=\frac{\left|v_{i}\right|^{2}}{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}}\left|\lambda_{j}\right|+\frac{\left|q_{m}\right|^{2}}{\left|v_{i}\right|^{2}+\left|q_{m}\right|^{2}}\left|\lambda_{i}\right|
$$

whereby we derive

$$
\left|q_{m_{0}(i)}\right|^{2} \approx\left|v_{i}\right|^{2} \frac{\left|\ell_{i, m_{0}(i)}\right|-\left|\lambda_{j}\right|}{\left|\lambda_{i}\right|-\left|\ell_{i, m_{0}(i)}\right|}
$$

Moreover, for $m_{1}<m_{2}$, due to $\lim _{m \rightarrow \infty}\left\|\zeta_{m}\right\|_{2}=\infty$ by (14) we have

$$
\left|t_{i, m_{1}}-\lambda_{j}\right|=\frac{\left|q_{m_{1}}\right|^{2}}{\left|v_{i}\right|^{2}+\left|q_{m_{1}}\right|^{2}}\left|\lambda_{i}-\lambda_{j}\right| \leqslant \frac{\left|q_{m_{2}}\right|^{2}}{\left|v_{i}\right|^{2}+\left|q_{m_{2}}\right|^{2}}\left|\lambda_{i}-\lambda_{j}\right|=\left|t_{i, m_{2}}-\lambda_{j}\right|
$$

yielding

$$
\begin{equation*}
N R\left[C_{1, m_{1}}\right] \subseteq N R\left[C_{1, m_{2}}\right] . \tag{16}
\end{equation*}
$$

Since the sequence $\left|q_{m}\right|$ is increasing, by (16) for $m \geqslant m_{0}(i)$, we conclude

$$
\left|q_{m}\right|^{2}=\left|v_{i}\right|^{2} \frac{\left|t_{i, m}\right|-\left|\lambda_{j}\right|}{\left|\lambda_{i}\right|-\left|t_{i, m}\right|} \geqslant\left|q_{m_{0}(i)}\right|^{2}=\left|v_{i}\right|^{2} \frac{\left|\ell_{i, m_{0}(i)}\right|-\left|\lambda_{j}\right|}{\left|\lambda_{i}\right|-\left|\ell_{i, m_{0}(i)}\right|}
$$

i.e., $t_{i, m}$ has to be nearly a boundary point of $N R\left[C_{1, m}\right]$. Hence, for $m=m_{0}(i)$ we can write

$$
t_{i, m_{0}(i)} \approx f_{i, m_{0}(i)}^{*} C_{1, m_{0}(i)} f_{i, m_{0}(i)}
$$

where $f_{i, m_{0}(i)}$ is the eigenvector of $H\left(e^{-\mathbf{i} \theta_{i}} C_{1, m_{0}(i)}\right)$ corresponding to the largest eigenvalue, $\lambda_{\max }\left(H\left(e^{-\mathbf{i} \theta_{i}} C_{1, m_{0}(i)}\right)\right)$, of hermitian part of matrix $e^{-\mathbf{i} \theta_{i}} C_{1, m_{0}(i)}$, and $\theta_{i} \in[0,2 \pi)$ is the argument of $t_{i, m_{0}(i)}$, (see [5, p. 35, Theorem 1.5.11]).

THEOREM 4. For any normal matrix A, whose $N R[A]$ is a k-polygon, there exists a sequence of k-compressions $C_{1, m}$ of D in (8) such that $N R\left[C_{1, m}\right]$ is inscribed to the polygon for every m and $\lim _{m \rightarrow \infty} N R\left[C_{1, m}\right]=N R[A]$.

Proof. Let $\mathscr{Q}_{m}=\operatorname{Co}\left\{t_{1, m(1)}, \ldots, t_{k, m(k)}\right\}$. If $m_{0}=\max \left\{m_{0}(1), m_{0}(2), \ldots, m_{0}(k)\right\}$, then by Proposition $3 \mathbf{I}$, for $m>m_{0}$ and small enough $\varepsilon>0$, we estimate that

$$
\left|\mathscr{Q}_{m}\right| \leqslant\left|N R\left[C_{1, m}\right]\right| \leqslant|\mathscr{P}|
$$

where $|\cdot|$ denotes the area of a convex set. Since $\lim _{m \rightarrow \infty} \mathscr{Q}_{m}=\mathscr{P}$, obviously we have the convergence of area of $N R\left[C_{1, m}\right]$ to the area contained in $N R[A]$.

Corollary 5. For any normal matrix A, whose $N R[A]$ is a k-polygon, there exists a sequence of vectors $\beta_{m}=\sum_{j=k+1}^{n} u_{j, m} e_{j}+\rho_{i} e_{i} ; i \in\{1,2, \ldots, k\}$, and the associated sequence $\widetilde{C}_{1, m}$ of $(n-1)$-compressions of D in (13), such that

$$
\lim _{m \rightarrow \infty} N R\left[\widetilde{C}_{1, m}\right]=N R[A]
$$

when $\lim _{m \rightarrow \infty}\left|u_{j, m}\right|=\infty$.
Proof. Since, by (13) the compression matrix

$$
\widetilde{C}_{1, m}=\operatorname{diag}\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{i-1}\right), \operatorname{diag}\left(\lambda_{i+1}, \ldots, \lambda_{k}\right), B_{1, m}\right)
$$

clearly

$$
N R\left[B_{1, m}\right] \subseteq \operatorname{Co}\left\{\lambda_{i}, \lambda_{k+1}, \ldots, \lambda_{n}\right\}
$$

and due to $\lim _{m \rightarrow \infty} c_{i, m}=\lambda_{i}$, we obtain

$$
\lim _{m \rightarrow \infty} N R\left[B_{1, m}\right]=\left\langle\lambda_{i}, \lambda_{k+1}, \ldots, \lambda_{n}\right\rangle
$$

Hence, by (10) we have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} N R\left[\widetilde{C}_{1, m}\right] & =\operatorname{Co}\left\{\left\langle\lambda_{1}, \ldots, \lambda_{i-1}\right\rangle \cup\left\langle\lambda_{i+1}, \ldots, \lambda_{k}\right\rangle \cup \lim _{m \rightarrow \infty} N R\left[B_{1, m}\right]\right\} \\
& =\operatorname{Co}\left\{\left\langle\lambda_{1}, \ldots, \lambda_{i-1}\right\rangle \cup\left\langle\lambda_{i+1}, \ldots, \lambda_{k}\right\rangle \cup\left\langle\lambda_{i}, \lambda_{k+1}, \ldots, \lambda_{n}\right\rangle\right\}=\left\langle\lambda_{1}, \ldots, \lambda_{k}\right\rangle .
\end{aligned}
$$

The next example illustrates Proposition 3 I and indirectly Theorem 4.
EXAMPLE. Let the 6×6 normal matrix $A=\operatorname{diag}(4 \mathbf{i},-2,-3 \mathbf{i}, 5,0,1+\mathbf{i})$, where $N R[A]=\operatorname{Co}\{4 \mathbf{i},-2,-3 \mathbf{i}, 5\}$, i.e., 0 and $1+\mathbf{i}$ belong to $\operatorname{Int} N R[A]$. For the unit vector $v=\frac{1}{\sqrt{15}} e_{1}+\frac{2}{\sqrt{15}} e_{2}+\frac{1}{\sqrt{15}} e_{3}+\frac{3}{\sqrt{15}} e_{4}$, we have the matrix in (4),

$$
P=\left[\begin{array}{ccc}
-0.8944 & -0.1826 & -0.3162 \\
0.4472 & -0.3651 & -0.6325 \\
0 & 0.9129 & -0.3162 \\
0 & 0 & 0.6325 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and the tangent points in (6) of $\partial N R[A] \cap \partial N R\left[P^{*} A P\right]$

$$
c_{1}=\frac{-2+16 \mathbf{i}}{5}, \quad c_{2}=\frac{-2-12 \mathbf{i}}{5}, \quad c_{3}=\frac{5-27 \mathbf{i}}{10}, \quad c_{4}=\frac{5+36 \mathbf{i}}{10} .
$$

If $\zeta_{1}=v+\frac{4}{\sqrt{15}} e_{5}$, we obtain $\tilde{R}_{1,1}=\left[\begin{array}{ccccc}-0.8944 & -0.1826 & -0.3162 & -0.1855 \\ 0.4472 & -0.3651 & -0.6325 & -0.3710 \\ 0 & 0.9129 & -0.3162 & -0.1855 \\ 0 & 0 & 0.6325 & -0.5565 \\ 0 & 0 & 0 & 0.6956 \\ 0 & 0 & 0 & 0\end{array}\right]$ and the matrix $C_{1,1}=\tilde{R}_{1,1}^{*} A \tilde{R}_{1,1}$ as in (8). By (14), for $\lambda_{5}=0$, we take: $t_{1,1}=\frac{64 \mathbf{i}}{17}=$ $3.7647 \mathbf{i} \in\left\langle\lambda_{1}, \lambda_{5}\right\rangle$. Also, $\theta_{1}=\pi / 2$ and $\left|t_{1,1}\right|=3.7647 \neq 3.8691=\lambda_{\max }\left(H\left(e^{-\mathbf{i} \theta_{1}} C_{1,1}\right)\right)$, i.e., $t_{1,1}$ is interior point of $N R\left[C_{1,1}\right]$.

Similarly, if $\zeta_{2}=v+\frac{20}{\sqrt{15}} e_{5}$, we have $\tilde{R}_{1,2}=\left[\begin{array}{ccccc}-0.8944 & -0.1826 & -0.3162 & -0.2535 \\ 0.4472 & -0.3651 & -0.6325 & -0.5070 \\ 0 & 0.9129 & -0.3162 & -0.2535 \\ 0 & 0 & 0.6325 & -0.7605 \\ 0 & 0 & 0 & 0.1901 \\ 0 & 0 & 0 & 0\end{array}\right]$
and the matrix $C_{1,2}=\tilde{R}_{1,2}^{*} A \tilde{R}_{1,2}$ as in (8). By (14) we take: $t_{1,2}=\frac{1600 \mathbf{i}}{401}=3.9900 \mathbf{i} \in$ $\left\langle\lambda_{1}, \lambda_{5}\right\rangle$ and $\left|t_{1,2}\right|=3.9900 \neq 3.9904=\lambda_{\max }\left(H\left(e^{-\mathbf{i} \theta_{1}} C_{1,2}\right)\right)$, i.e., $t_{1,2}$ is interior point of $N R\left[C_{1,2}\right]$.

If $\zeta_{3}=v+\frac{100}{\sqrt{15}} e_{5}$, we have $\tilde{R}_{1,3}=\left[\begin{array}{ccccc}-0.8944 & -0.1826 & -0.3162 & -0.2580 \\ 0.4472 & -0.3651 & -0.6325 & -0.5160 \\ 0 & 0.9129 & -0.3162 & -0.2580 \\ 0 & 0 & 0.6325 & -0.7740 \\ 0 & 0 & 0 & 0.0387 \\ 0 & 0 & 0 & 0\end{array}\right]$ and
$C_{1,3}=\tilde{R}_{1,3}^{*} A \tilde{R}_{1,3}$. By (14) we take: $t_{1,3}=\frac{40000 \mathbf{i}}{10001}=3.99960004 \mathbf{i} \in\left\langle\lambda_{1}, \lambda_{5}\right\rangle$ and $\left|t_{1,3}\right|=3.99960004 \approx \lambda_{\max }\left(H\left(e^{-\mathbf{i} \theta_{1}} C_{1,3}\right)\right)=3.9996006$. The point $t_{1,3}$ almost lies on the $\partial N R\left[C_{1,3}\right]$, i.e., $t_{1,3} \approx f_{1,3}^{*} C_{1,3} f_{1,3}=0.00000036896091+3.99960058200810 \mathbf{i}$ $\in \partial N R\left[C_{1,3}\right]$, where $f_{1,3}=\left[\begin{array}{lll}0.8945 & 0.1825 & 0.31630 .2580\end{array}\right]^{T}$ is the eigenvector of $H\left(e^{-\mathbf{i} \theta_{1}} C_{1,3}\right)$ corresponding to $\lambda_{\max }\left(H\left(e^{-\mathbf{i} \theta_{1}} C_{1,3}\right)\right)$.

If $\zeta_{4}=v+\frac{120}{\sqrt{15}} e_{5}$, we have $\tilde{R}_{1,4}=\left[\begin{array}{ccccc}-0.8944 & -0.1826 & -0.3162 & -0.2581 \\ 0.4472 & -0.3651 & -0.6325 & -0.5161 \\ 0 & 0.9129 & -0.3162 & -0.2581 \\ 0 & 0 & 0.6325 & -0.7742 \\ 0 & 0 & 0 & 0.0323 \\ 0 & 0 & 0 & 0\end{array}\right]$ and
$C_{1,4}=\tilde{R}_{1,4}^{*} A \tilde{R}_{1,4}$. By (14) we take: $t_{1,4}=\frac{57600 \mathbf{i}}{14401}=3.9997 \mathbf{i} \in\left\langle\lambda_{1}, \lambda_{5}\right\rangle$ and $\left|t_{1,4}\right|=$ $3.9997222 \approx \lambda_{\max }\left(H\left(e^{-\mathbf{i} \theta_{1}} C_{1,4}\right)\right)=3.9997225$. Since $q_{3}=\frac{100}{\sqrt{15}}<\frac{120}{\sqrt{15}}=q_{4}$, then $N R\left[C_{1,3}\right] \subseteq N R\left[C_{1,4}\right]$ and we expect $t_{1,4}$ to approximate $\partial N R\left[C_{1,4}\right]$. In fact, $f_{1,4}=$ $\left[\begin{array}{lll}0.8945 & 0.1826 & 0.31620 .2581\end{array}\right]^{T}$ is eigenvector of $H\left(e^{-\mathbf{i} \theta_{1}} C_{1,4}\right)$ and $t_{1,4} \approx f_{1,4}^{*} C_{1,4} f_{1,4}$ $=0.00000017808543+3.99972250302240 \mathbf{i}$.

In the next figure the numerical ranges of the compressions $P^{*} A P, C_{1,1}$ and $C_{1,2}$ are illustrated.

Let $Q=\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{v}\right\rangle$ be subpolygon of \mathscr{P}, with $3 \leqslant v<k$ and the sequence of vectors of \mathbb{C}^{n}

$$
\eta_{\mu}=\sum_{i=1}^{v} v_{i} e_{i}+\varphi_{\mu} e_{j} ; j \in\{k+1, \ldots, n\}
$$

and suppose furthermore that the eigenvalue λ_{j} may not belong to Q. Denoting by $G_{1, \mu}=T_{1, \mu}^{*} D T_{1, \mu}$ the v-compression of D, then $N R\left[G_{1, \mu}\right]$ is tangent to the polygon $\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{v}, \lambda_{j}\right\rangle$. Thus, when $\lim _{\mu \rightarrow \infty}\left\|\eta_{\mu}\right\|_{2}=\infty$, by Theorem 4 we conclude the equality

$$
\lim _{\mu \rightarrow \infty} N R\left[G_{1, \mu}\right]=Q
$$

Therefore, the separation of polygon $\mathscr{P}=\bigcup_{\delta=1}^{p} Q_{\delta}$ into p-subpolygons leads to

$$
\bigcup_{\delta=1}^{p}\left(\lim _{\mu \rightarrow \infty} N R\left[G_{1, \mu}^{\delta}\right]\right)=N R[A]
$$

where $G_{1, \mu}^{\delta}$ is a compression of associated Q_{δ}, according to Theorem 4.

REFERENCES

[1] M. Adam and J. Maroulas, On compressions of normal matrices, Linear Algebra Appl., 341 (2002), 403-418.
[2] M. AdAm and P. Psarrakos, On a compression of normal matrix polynomials, Linear and Multilinear Algebra, 52, 3-4 (2004), 251-263.
[3] H.-L. GAU And P.Y. W U, Numerical range of a normal compression, Linear and Multilinear Algebra, 52, 3-4 (2004), 195-201.
[4] H.-L. GaU and P.Y. Wu, Numerical range of a normal compression II, Linear Algebra Appl., 390 (2004), 121-136.
[5] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

Maria Adam

John Maroulas
Department of Mathematics
National Technical University
Zografou Campus
Athens 15780, Greece
e-mail: maroulas@math.ntua.gr

Operators and Matrices

www.ele-math.com
oam@ele-math.com

[^0]: Mathematics subject classification (2000): 15A18, 15A60, 47A20.
 Keywords and phrases: Compression, eigenvalue, numerical range.

